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Grasp Envelopes: Extracting Constraints on Gripper Postures
from Online Reconstructed 3D Models

Todor Stoyanov∗, Robert Krug∗, Rajkumar Muthusamy‡ and Ville Kyrki‡

Abstract— Grasping systems that build upon meticulously
planned hand postures rely on precise knowledge of object
geometry, mass and frictional properties — assumptions which
are often violated in practice. In this work, we propose an
alternative solution to the problem of grasp acquisition in simple
autonomous pick and place scenarios, by utilizing the concept
of grasp envelopes: sets of constraints on gripper postures. We
propose a fast method for extracting grasp envelopes for objects
that fit within a known shape category, placed in an unknown
environment. Our approach is based on grasp envelope prim-
itives, which encode knowledge of human grasping strategies.
We use environment models, reconstructed from noisy sensor
observations, to refine the grasp envelope primitives and extract
bounded envelopes of collision-free gripper postures. Also, we
evaluate the envelope extraction procedure both in a stand alone
fashion, as well as an integrated component of an autonomous
picking system.

I. INTRODUCTION

Despite significant advances in gripper hardware design
and in robot planning and control algorithms, autonomous
grasp acquisition under uncontrolled conditions remains a
challenging research problem. On one hand, this is due to
the necessity to solve a high-dimensional grasp- and motion
planning problem for the full gripper-manipulator chain. On
the other hand, there are inevitable uncertainties in robot
dynamics and control, as well as in environment modeling
and perception. These uncertainties make it impossible to
precisely realize pre-planned hand postures and contact lo-
cations.

The classical approach to reduce this complexity is to
decouple the grasp synthesis problem by planning separately
for the gripper and the manipulator. To this end, state of the
art grasping systems [1], [2], [3], [4] often rely on sets of
pre-computed grasps. At runtime, these grasps are evaluated
by a motion planner and executed in an open-loop fashion,
or in combination with perceptual feedback (e. g., visual
servoing). While this approach can produce good results
in laboratory scenarios, our prior experience in realistic
application settings [3], [4] indicates several issues which
can result in computational bottlenecks, unreliable grasps
and sub-optimal manipulator motions. In order to account
for possible object arrangements in cluttered environments,
the grasp database needs to be densely populated with many
diverse gripper postures. This invariably entails that many
of the pre-planned grasps are infeasible at runtime: either
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Fig. 1. The grasp envelope extraction procedure proposed in this work
was used in an autonomous picking system, composed of the underactuated
Velvet Fingers gripper [6] mounted on a KUKA LWR4+ robot arm
(background). Experiments were performed to evaluate grasp acquisition
success rates for the five test objects in the foreground.

due to collisions between the robot and the environment,
or because they are kinematically invalid. Selecting a good
grasp out of the pre-planned database can therefore be
time consuming and often necessitates devising application-
specific heuristics [1]. In addition, this classical approach
is agnostic to the fact that often, due to symmetries of the
objects and gripper, equally good grasps can be obtained in
large regions of the hand posture space. This issue is even
more pronounced when using compliant grasping devices,
implementing soft synergies [5], underactuation [6], [7] or
compliant control schemes [8], [9]; all of which intrinsically
allow a larger tolerance on the pre-grasp pose, but are hard
to simulate accurately during offline planning.

Instead of relying on pre-planned object-specific grasps,
we leverage a constraint-based grasp formulation which
allows us to exploit redundancies in the grasping task and to
incorporate knowledge of human grasping principles [10].
We introduce the term grasp envelope to refer to a set
of constraints on a grasping device’s posture (i.e., wrist
position/orientation and hand joint values). A grasp envelope
is thus a generalization of a classical grasp, as it encodes a
set of gripper postures with similar likelihoods of resulting
in a stable grasp. This representation better captures the
redundancy in gripper pre-positioning: any gripper posture
satisfying the envelope constraints allows a subsequent com-
pliant grasp acquisition procedure to achieve a stable grasp.
As discussed in our prior work [11], this constraint-based re-



formulation of the grasping problem is particularly suitable
for an easy integration into constraint-based, manipulator
motion generation schemes. Obtaining a good set of enve-
lope constraints for a particular object placed in a specific
workspace environment is, however, still an open problem.

The main contribution of this paper is a fast procedure
for extracting grasp envelopes associated with target objects
represented in an online-reconstructed environment model.
Assuming only knowledge of the object shape category and
its pose, our method obtains a set of mutually feasible
constraints on gripper pose and joint configuration. We
tailor our approach to a compliant, underactuated gripper [6]
and demonstrate the envelope extraction procedure in two
office-like environments, achieving run-times of 20− 40 ms
per object. We subsequently integrate the proposed grasp
envelope extraction procedure in an autonomous picking
system (See Fig. 1) and perform 92 grasp acquisition trials
on five test objects, achieving average success rates of 83.7%
and average picking times of 39.9 seconds.

II. RELATED WORK

As a comprehensive overview of data-driven grasp plan-
ning is beyond the scope of this work, we direct the in-
terested reader to a recent survey by Bohg et al. [12] and
only overview relevant approaches in constraint-based grasp
representations. The grasp envelopes discussed in this work
are perhaps most closely related to the Task Maps [13] and
Task Space Regions (TSRs) [14] concepts. Both of these
prior approaches define constrained sets of manipulator end
effector poses, applied to slightly different domains. Gienger
et al. [13] propose a method to learn a set of valid grasps
for an object through simulated experiments. This set then
defines a map between discretized gripper poses and grasp
success, which is explored by an RRT search to find clusters
of valid configurations. While the idea of building clusters
of valid grasping configurations is similar to the one in
our work, we take an online approach and do not rely on
simulations, but rather operate directly on the reconstructed
environment model. Berenson et al. [14] define TSRs as
box constraints on the 6D wrist pose of a manipulator.
These regions are then used in the context of sampling-
based motion planning to bias the sampling space and satisfy
certain task-specific properties. In [14], TSRs are defined
manually, while the main focus of our work is on extracting
grasp envelopes in an automatic manner. Our grasp envelopes
can be seen as a generalization of TSRs with application to
the grasping task, and can be readily integrated in the motion
planning framework proposed by Berenson et al. That said,
grasp envelopes naturally lend themselves well to continuous
constraint-based motion generation frameworks which rely
on embedded optimization. Examples include the planner
based on trajectory optimization in [15] and the real-time
kinematic control framework proposed by Kanoun et al. [16]
which allows to generate reactive, locally optimal motions
based on a stack of hierarchical inequality tasks (SoT). We
used the approach in [16] in our previous work [11], as
well as in the experimental evaluation of this work. The
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Fig. 2. An illustration of a cylindrical grasp envelope primitive in (a) and
a corresponding grasp envelope in (b). The constraints are satisfied for any
end effector pose which brings the gripper reference frame inside the shaded
cylindrical shell sector, while maintaining orientation of the x and z axis
within their respective shaded cone regions.

promise of on-the-fly control-based motion generation for
autonomous pick & place tasks has also been highlighted in
the first Amazon picking challenge [17] held at ICRA 2015.

The second set of approaches closely related to our work
focus on the task of locating grasping affordances in various
perceptual sensor data: for example, RGB images [18] or
point clouds [19]. While there is a vast body of literature on
extracting candidate grasps from various sensing modalities,
most works concentrate on finding a single grasping configu-
ration. In that respect, the work of Pas and Platt [19] is most
similar to our approach, as they extract cylindrical shells
in the environment that would allow a parallel jaw gripper
to achieve multiple equivalent grasping configurations. In
contrast to their work, we search for grasp intervals in the
form of constraints on gripper postures and utilize Truncated
Signed Distance Function (TSDF) environment models, thus
reducing sensor noise [20] and allowing for multi-view
informed decisions.

III. GRASP ENVELOPE EXTRACTION

A. Grasp Envelopes

Let p = [x, y, z, ox, oy, oz, ow]
T be the pose of the

gripper frame relative to a fixed frame connected to the
robot kinematic model, represented by a 3D translation and
a quaternion-encoded orientation. In addition, let q ∈ Rn be
the configuration vector describing the joint angles of all n
gripper joints. We represent the posture of the gripper as a
vector x =

[
pT , qT

]T
. We then define a grasp envelope G

as a set of gripper postures satisfying constraints imposed on



the gripper pose and joint configuration:

G =
{
x ∈ Rn+7 | ci(x) ≤ 0, i = 1, . . . ,m

}
(1)

In this work, we restrict our analysis to linear inequality
constraints, in order to facilitate an efficient implementation.
In addition, we concentrate our analysis on an underactuated
gripping device with a single actuated degree of freedom,
thus q ∈ R. For simplicity, we only impose box constraints
on the gripper opening angle, i. e., qmin ≤ q ≤ qmax.

The definition of a grasp envelope G in (1) allows us to
encode various constraints on the robot end effector pose. In
this work we define two prototypical sets of grasp envelope
constraints, which we term grasp envelope primitives —
a cylindrical and a spherical primitive. At runtime, the
algorithms in Sec. III-C and III-D are used to refine the
bounds on these primitives and obtain valid collision-free
grasp envelopes for a particular object placement in the
workspace.

An illustration of a cylindrical grasp envelope primitive
is shown in Fig. 2(a), while a grasp envelope obtained by
imposing additional bounds1 on the primitive is shown in
Fig. 2(b). In this case we consider grasps which constrain
the gripper pose p inside a cylindrical shell, defined by two
concentric cylinders and two horizontal bounding planes. In
addition, we constrain the gripper orientation to roughly align
with the principal components of the inner cylinder: i. e., the
gripper’s approach axis to point towards the cylinder axis and
the gripper’s vertical axis to be parallel with the cylinder axis.
These constraints are directly motivated by research showing
that humans tend to grasp objects by aligning their hand with
the principal components of the target object [10]. Finally,
the cylindrical shell defined in this manner can be truncated
by imposing additional planar constraints, in order to exclude
undesirable regions such as ones in which the gripper would
collide with the environment. Our treatment of the spherical
shell grasp primitive is done in an analogous manner, by
constraining the gripper pose in between two concentric
spheres while aligning the gripper’s approach axis with the
vector pointing towards the sphere center and maintaining
the gripper’s lateral axis (y in Fig. 2) approximately parallel
to a horizontal plane.

The grasp envelope primitives defined in this manner
can be used as an initial guess of a grasp envelope to
be extracted for a particular previously unseen object. A
similar idea, which builds a set of bounding box primitives to
cover arbitrary triangle mesh object models was previously
presented by Huebner et. al. [21]. In this work we are
interested in solving a slightly different problem: we attempt
to refine the constraints imposed by the initial grasp envelope
primitive, in order to obtain a continuous subset of good
gripper postures. In addition, we do not assume knowledge
of a perfect object model, but rather perform all operations
directly on the current environment model reconstructed from
sensor readings. The central assumption we make in this
paper is that an object’s pose, rough size, and category have

1In previous work [11] we refer to this as a truncated grasp envelope.

been provided by an object detection system. The categories
we are interested in map directly to the two primitives:
cylindrical and spherical. Thus, the inputs to our method
are: a model (map) of the environment, a pose of an object
(or object part) to be grasped, and the size of a bounding
sphere or cylinder which covers the object, but excludes
any obstacles. Our method can be extended to other simple
primitive types by changing the sampling strategy for the
grid S and can also be further developed to handle objects
represented as a decomposition of primitive shapes. The
subsequent sections describe in detail how we construct the
initial grasp envelope primitives and how we subsequently
refine them in response to the object and environment model.

B. Pre-computing a Collision Map

The first step of our approach is to pre-compute a 3D
collision map for each of the two grasp envelope primitives.
This step is performed offline and greatly speeds up the
subsequent online primitive refinement. The procedure, illus-
trated by the 2D projection in Fig. 3(a), begins by sampling
gripper poses from the initial envelope primitive. We obtain
the samples with a regular grid in the parametric space
of each primitive and store them in a regular sample grid
S. For the cylindrical shell primitive we sample along the
distance to the center d, the orientation α (w.r.t. the cylinder
coordinate frame), and the height above the horizontal plane
h. Similarly, the spherical shell primitive is parametrized by
the radius r, and the polar and azimuth angles θ, φ.

Next, for each sampled gripper pose we generate the
gripper footprint in a collision map. As shown in Fig. 3(a),
for this step we use an idealized gripper model, consisting
of a bounding box around the palm and a semi-cylinder
covering all possible placements of the fingers under different
opening angles. Each cell of the collision map covered by
the ideal gripper footprint is then marked as occupied by
the currently evaluated sample from S. By iterating this
procedure over all samples in S we obtain a collision map
which encodes in every cell the list of gripper postures that
would potentially occupy it.

C. Finding Valid Configurations in Reconstructed Scenes

The remaining steps of our approach are performed online
using the current environment model. For the purposes of
this work, we represent the environment using a Truncated
Signed Distance Function (see [22] for details on TSDF
mapping), but any occupancy-aware representation (e. g.,
occupancy grid maps [23]) could be used instead. As stated
previously, we assume the availability of an environment map
and the pose of a target object relative to that map. Thus,
we first compute the intersection between the environment
map and the pre-computed collision map. We do this by
associating each cell in the collision map to a corresponding
environment map cell, using the object pose provided, and
checking for cases in which both cells are occupied. To
avoid planning grasps in unexplored regions, we also treat
previously unobserved cells in the environment model as
occupied.
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Fig. 3. Two-dimensional illustrations of the three main steps of our approach: (a) approach to pre-computing a collision map for the initial grasp envelope
primitive; (b) three types of collisions which can occur and which are handled differently by our approach; (c) process used for finding the maximum-volume
cluster of valid grasp postures. The maximum-volume cluster in (c) is shown in the shaded rectangle labeled b.

Once we obtain the intersection between the two maps,
we iterate through all affected cells in the collision map
and check the affected gripper pose samples from S. As
illustrated in Fig. 3(b), we distinguish between three types
of collisions: 1) between the gripper palm and the map; 2)
between the gripper fingers and the target object; and 3)
between the fingers and other objects in the environment.
Case 1) entails that the considered gripper pose would result
in a collision, and thus we mark the corresponding sample
in S as invalid. Cases 2) and 3) would result in a collision
only for specific configurations of the gripper opening angle
q, thus we use them to impose tighter bounds on qmin and
qmax associated with the respective sample in S. At the end
of this procedure we check the bounds on qmin, qmax for
all remaining valid samples in S and invalidate those that
impose infeasible constraints (i. e., qmin ≥ qmax) and those
that would not result in a grasp of the target object (qmin = 0
when no contact with the object was detected).

D. Fitting a Maximum Volume Envelope

Following the procedures outlined in the previous subsec-
tions, we obtain a grid of discrete samples S representing a
set of gripper postures. Some of the postures in S have been
invalidated by the collision checks in Sec. III-C, while the
remaining ones are valid under certain bounds on q. In order
to obtain a refined grasp envelope following the definition
in (1), we need to find a set of inequality constraints
in Cartesian space containing only valid samples from S.
Thanks to our regular grid sampling strategy from Sec. III-
B, it is straightforward to obtain a set of Cartesian-space
constraints for any axis-aligned bounding box in S. Thus,
we can obtain a refined grasp envelope by looking for the
largest axis-aligned inscribed box in S: i. e., the maximum
volume box containing only valid samples.

Finding maximum volume/area inscribed shapes is in
general a hard problem. Our problem instance is however
additionally constrained to a regular sample grid and axis
aligned shapes, and can therefore be solved efficiently. If we
treat invalid samples in S as occupied space, and conversely

valid samples as free space, we can use a variant of the
distance transform to speed up our search. In general, we
are looking for a k dimensional axis-aligned bounding box,
with k being the dimensionality of the sampling grid S.
For simplicity, in this section we discuss a 2D version
of our approach (illustrated in Fig. 3(c)), which is readily
extendable to kD. The main idea here is to look for the best
position of the lower-right corner of the maximum bounding
rectangle (the shaded rectangle labeled b in Fig. 3(c)). We
first construct a 2D distance field which for every free cell
encodes the distance to the closest occupied cell in the
negative direction (i. e., towards the upper-left corner), along
each dimension. This provides us with an absolute upper
bound on the volume of a box which uses a particular
cell as a lower-right corner: e. g., the example labeled a in
Fig. 3(c) would result in a maximal volume of 8 × 5 = 40
samples. Using this as a criterion to prune the search space,
Algorithm 1 can be used to find the maximal-area box. Lines
8-15 in the algorithm describe the search procedure along
the x direction of the distance grid, as shown also in case
b of Fig. 3(c). In essence, we keep track of the maximum
area rectangle verified so far (mi,mj), and update it for
every slice along x in lines 10-11. We next check if it is
possible to obtain a larger area rectangle (in the best case)
if we continue searching. If so, we refine the boundary dj
along y (lines 12-13), otherwise we stop the search (line
15). Last, we check if the rectangle obtained in this manner
is larger than the current best candidate and move to the next
possible bottom-right corner (lines 18-19). For the envelope
primitives discussed in this work, k = 3 and we obtain a
straight-forward extension of the presented algorithm to 3D
by searching in addition along the third dimension. At a
moderate computational cost, this algorithm can be modified
to extract the top N largest volume regions. Finally, since
the zero position for sampling dimensions associated with
varying orientation is arbitrary, in these cases we allow
regions to span across the first-to-last element border and
modify the distance field computation accordingly.
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Fig. 4. Illustration of the test environments used in this paper: (a) shows the TSDF models of the five scenes from the shelves data set, reconstructed at
5 mm resolution; (b) shows the models of the table data set at 10 mm resolution.

Algorithm 1: BBSEARCH2D: find largest rectangle
Input: Distance transform D

1 Vmax ← 0
2 for ∀ cells in D do
3 Let i, j ← index of current cell, Dx

i,j , D
y
i,j ← value

of D at i, j along x, y dimensions
4 if (i−Di)(j −Dj) > Vmax then
5 mi,mj ← 0
6 di, dj ← Dx

i,j , D
y
i,j

7 //search along x
8 for k ← i to i−Di do
9 dmin ← min(dj , D

y
k,j)

10 if (k − i)dmin > mimj then
11 mi,mj ← k − i, dmin
12 if didmin > mimj then
13 dj ← dmin
14 else
15 break
16 //search along y equivalent
17 . . .
18 if (i−mi)(j −mj) > Vmax then
19 Vmax ← (i−mi)(j −mj), store bounds
20 return Vmax, bounds

IV. EVALUATION

A. Envelope extraction evaluation

As a first step, we evaluated the proposed grasp envelope
fitting approach on a set of five test objects placed in
ten different scenes. Here, the purpose was to evaluate the
computational effort of the envelope extraction procedure,
as well as the quality of the obtained envelopes. Under
the assumption that all grasps which respect the envelope
constraints are successful, envelope quality Q is defined
as the number of valid gripper pose samples from S that
fall within the grasp envelope. This measure directly relates

to the enclosed volume of the envelope constraints. Thus,
envelopes with larger quality Q allow for more gripper pre-
grasp posture redundancy and easier grasp acquisition. Two
plush toys (a teddy bear and a pig), a water bottle, a large
cup and a cardboard box (shown in Fig. 5(a)), all graspable
by the considered gripping device, were chosen as target
objects. We placed the objects in different poses in two
different types of scenes, models of which are shown in
Fig. 4. For the first set of five scenes, the objects were placed
on shelves in an office environment, resulting in a moderately
cluttered setup. Conversely, in the second set, objects were
placed on a table top and were spaced further apart from
each other. These two sets of environments (referred to as
the shelves and table data sets) were scanned using a hand-
held Asus Xtion Pro2 RGB-D camera. The sensor pose was
tracked using the SDF Tracker algorithm [22]. The shelves
data set was reconstructed at grid resolutions of 5 mm and
10 mm, while the table data set was reconstructed only at
a resolution of 10 mm, as the lower number of geometrical
features in the latter caused bad tracker performance at higher
grid resolutions. Object poses and bounding sphere/cylinder
size were manually determined for each test case.

We pre-computed two sets of spherical and cylindrical
grasp envelopes, using collision grid resolutions of 5 mm
and 10 mm respectively. For the cylindrical envelopes, we
sampled poses at 15 radial distances with 0.1 m≤ d ≤ 0.3 m,
100 orientations with 0 ≤ α ≤ 2π rad and 7 vertical slices
over a span of 0.2 m. The spherical primitive was sampled
at 15 distances r and 100 orientations, using the same metric
bounds, as well as 7 different inclinations. In both cases, this
resulted in a 3D sampling grid S of 10500 gripper poses. A
visual example of the results obtained for the extracted grasp
envelope of one of the objects in the shelves data set is shown
in Fig. 5(b).

In addition to visual inspection, we also measured for each
grasp envelope the computation time spent in extracting it

2http://www.asus.com/Multimedia/Xtion_PRO_LIVE/
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Fig. 5. (a) shows the five test objects used in the evaluation. The two plush toys were evaluated with spherical envelope primitives fit to the head, while
the remaining objects were associated with cylindrical primitives. (b) illustrates typical constraint envelopes extracted for objects in cluttered environments;
(c) summarizes results of the proposed grasp envelope extraction method, showing the distribution of envelope quality Q over different objects and scenes.

and the quality metric Q. Fig. 5(c) shows a boxplot of the
obtained envelope qualities per object and data set, with each
box centered on the mean and spanning the area between the
25th and 75th percentile. We can draw several conclusions
from the results shown in Fig. 5(c). First, it is evident that
the less cluttered table data set results in substantially larger
grasp envelopes, validating that the proposed method is able
to find grasp envelopes with higher quality for objects that
are easier to grasp. Second, by comparing results on the
two reconstructions of the shelves data set, we note that the
grasp envelopes extracted from higher resolution models are
slightly larger. This effect is due to the more precise collision
checks performed. However, in our tests the performance
gain by using a higher resolution does not seem significant,
most likely owing to the fact that the amount of clutter in the
scenes is not extremely high. As this performance gain comes
at a price of an order of magnitude slower computational
time, we conclude that very precise environment models
should only be utilized when necessary. Finally, we note that
the performance of our method is worst for the cup object.
Upon further investigation, this artifact can be explained by
a particularity of the TSDF representation used to model the
environment: it is particularly susceptible to modeling errors
on thin objects observed from multiple viewpoints. As both
the outer and inner walls of the cup are often visible in
our data sets, the fidelity of the models is often not optimal,
resulting in lower certainty on the extracted grasp envelopes.
Regarding computational performance, our approach extracts
grasp envelopes in roughly 200 ms at a resolution of 5 mm
and 20− 40 ms at a 10 mm resolution (using a single core
of an Intel Xeon CPU E5-1620 v3 at 3.50GHz). Most of
the time is spent on computing the valid samples as per
Sec. III-C, with only a small fraction of resources expended
on extracting the maximum volume envelope.

B. Grasp acquisition success evaluation

In order to evaluate the usefulness of the extracted en-
velopes for the purpose of autonomous grasp acquisition, we
also integrated the proposed envelope extraction algorithm
into the inequality Stack-of-Tasks (SoT) [16] manipulator
control framework implementation we presented in [11].

In our experimental setup, we mounted the Velvet Fingers
gripper (augmented with an Asus Xtion Pro depth camera)
on a KUKA LWR 4+ robot. We roughly (by hand) placed
one of the target objects shown in Fig. 1 at a known picking
location, while the other four objects were placed pseudo-
randomly in the workspace to simulate clutter (sample scene
configuration shown in Fig. 6(a)). The five objects used in
these experiments were: a plush teddy bear (Teddy, 82 g), a
stack of duplo blocks (Duplo, 60 g), a water bottle (Bottle,
103 g), a coffee mug (Cup, 134 g), and a toy ball (Ball, 54 g).
The two grasp envelope primitives generated in the previous
sub-section (at a model resolution of 10 mm) were used also
in this trial: the cylindrical primitive was associated to the
Bottle, Cup and Duplo objects, while the spherical one was
used for the Teddy and Ball objects.

In each experimental run we first controlled the manip-
ulator to move the gripper-mounted camera to three pre-
defined scene observation poses. Simultaneously we built a
TSDF model from the depth images, using camera poses
obtained through the robot’s forward kinematic model. We
then used our grasp envelope extraction procedure to obtain
constraints on the gripper posture for the target object, which
were subsequently used to form control tasks used in the
SoT framework (see [11] for a more in-depth description).
At this point, we made a slight modification to the envelope
extraction procedure in order to obtain envelopes that were
more likely to be reachable for the employed robot arm. To
this end, we imposed additional constraints on the gripper
orientation prior to extracting the grasping envelopes, requir-
ing the final end effector orientation to be within a cone of
width π

2 rad, centered at the initial end effector orientation.
A sample grasp envelope extracted in this manner from a
training scene is shown in Fig. 6(b). Once the manipulator
motion control satisfied the grasp envelope constraints, we
executed the grasp acquisition routine described in [3], in
order to obtain an enveloping grasp of the target object. A
trial was judged successful if the target object could be lifted
and extracted from the scene. We performed twenty trials
for each target object, with varying placement poses of the
surrounding objects in the scene.

The results of this set of experiments are summarized in
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Fig. 6. Setup used for the experiments in Sec. IV-B. A sample scene used in the evaluation is shown in (a). A reconstructed test scene model and a
corresponding grasp envelope (visualized as a set of selected grasping configurations) are shown in (b).

TABLE I
GRASP ACQUISITION EVALUATION

Object # of exp. Success Rate [%] Q l [rad] tp [s] te [s] tm [s] tg [s]
∑

t [s]

Duplo 20 17 85.0 161.4± 109.4 4.3± 0.9 14.9± 3.0 0.06± 0.11 25.9± 3.8 14.7± 3.9 55.6± 5.3

Cup 16 16 100.0 51.2± 27.5 4.7± 1.3 13.7± 3.5 0.06± 0.05 10.8± 0.2 6.9± 2.6 31.5± 3.7

Bottle 17 15 88.2 67.1± 68.3 4.9± 2.3 14.0± 3.3 0.03± 0.05 10.8± 0.4 8.5± 3.9 33.3± 6.1

Ball 20 17 85.0 32.7± 16.6 5.6± 0.4 13.9± 3.4 0.06± 0.05 10.8± 1.4 13.9± 4.3 38.7± 4.9

Teddy 19 12 63.2 28.9± 13.8 5.6± 0.5 15.5± 2.8 0.06± 0.07 10.6± 0.9 11.5± 4.6 37.8± 4.3

Total 92 77 83.7 69.46± 78.06 5.0± 1.3 14.4± 3.2 0.06± 0.07 14.1± 6.6 11.4± 4.9 39.9± 10.0

Table I. For each of the test objects we report respectively:
the number of experiments performed; the number of suc-
cessful grasps; the respective success rate; the grasp envelope
quality Q; the trajectory length l =

∫ tm
0
‖q̇(t)‖1dt as the sum

of angular distances traveled by all joints of the manipulator;
the times tp, te, tm, and tg for the pre-positioning, envelope
extraction, grasp pose approach motion and grasp acquisition
phases respectively; as well as the total time for each run∑
t. In eight of the trials the target object was occluded

from the sensor view point and our approach did not find
a suitable grasping envelope. These trials are excluded from
the statistics in Table I.

The obtained statistics are relatively uniform across the
different trials and different objects, with two minor excep-
tions. First, the success rates for the Teddy are notably lower
than for the rest of the target objects. This discrepancy is
unlikely to be linked to the size of the extracted envelopes,
which are almost on par with the other object associated to
a spherical envelope primitive (the Ball). We attribute the
lower success rate chiefly to the lower friction coefficient
of the Teddy, which leads to frequent slippage against the
belts of the Velvet Fingers gripper and consequently a lower
likelihood of attaining a stable grasp. The second discrepancy
is in the substantially longer trajectory execution times (tm)
for the Duplo object. The reason for this is that the under-
lying task dynamics parameters in the SoT framework were

adjusted after the tests on the Duplo object, in order to speed
up testing. We also note the reasons for failure in grasping for
the remaining objects: for the Duplo object, two failures were
due to the object toppling over and one failure was due to
a collision with an obstacle during approach; for the Bottle,
both failures were due to the object toppling; finally, for the
Ball all three failures were due to the object rolling out of the
gripper upon contact. Finally, the grasp envelope extraction
procedure produced slightly smaller volumes in comparison
to the offline tests from Sec. IV-A, due to the additional
constraint on end effector orientation. The reported envelope
extraction run-times te were consistent, allowing for some
overhead for message passing between different nodes.

V. DISCUSSION

In this article we propose a method for extracting grasp
envelopes — constraints on gripper pose and joint config-
urations — from online reconstructed workspace models.
We utilize knowledge of basic human grasping strategies to
define two grasp envelope primitives favoring grasps along
the target object PCA directions. We pre-compute a collision
map which we then use to quickly sieve out invalid regions
of the prototype primitives by removing postures resulting in
collisions or lack of contact with the target. Finally, we em-
ploy a fast search procedure to extract the maximal volume
rectangular valid regions in the sampling space of the initial
primitive, thereby obtaining a refined collision-free grasp



envelope. We evaluated our algorithm as a component of
an autonomous picking system, achieving grasp acquisition
success rates of 83.7% at competitive runtimes.

The proposed approach is particularly suitable for sim-
ple, low degree of freedom grippers with a high pre-grasp
pose tolerance. In the future, it would be interesting to
test how this approach generalizes to more complex and
more dexterous grasping devices. With an increase in the
number of DOF of the gripping device, an extension of our
approach would have to tackle the curse of dimensionality
and overcome a more complex combinatorial problem. One
possible solution could be to formulate constraints on hand
synergy amplitudes [24] rather than joint configurations.
Another important open research question is to determine
how well the grasp envelope primitive constraints need to
approximate the target object’s shape for our approach to
still perform well. The degree to which the basic assumption
of our framework (a grasp can be acquired if the grasp
envelope constraints are satisfied) holds, depends both on
the capabilities of the gripper and the shape of the target
object. Therefore, it is important to choose suitable initial
grasp envelope constraints for each target object, possibly
utilizing geometry cues or shape category classification of the
object. A limitation of the current work is the lack of rigorous
treatment of kinematic feasibility of the extracted envelopes.
Therefore, we plan to extend our approach using information
of the likelihood of achieving grasp poses, e.g. by using
capability maps [25]. Our approach also does not explicitly
account for geometric grasp stability. Given that theoretical
grasp stability is conditioned on precise knowledge of the
grasp contact points/forces, we argue that pre-computing
stability metrics is of limited practical relevance. Instead,
we envision coupling our approach to an online approach
to grasp stability assessment, after grasp acquisition [26].
Finally, the low computational requirements of our method
open up avenues for future direct integration as a source of
feedback to the manipulator controller during grasping.
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