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Grasp Envelopes: Extracting Constraints on Gripper Postures
from Online Reconstructed 3D Models

Todor Stoyanov� , Robert Krug� , Rajkumar Muthusamyz and Ville Kyrkiz

Abstract— Grasping systems that build upon meticulously
planned hand postures rely on precise knowledge of object
geometry, mass and frictional properties — assumptions which
are often violated in practice. In this work, we propose an
alternative solution to the problem of grasp acquisition in simple
autonomous pick and place scenarios, by utilizing the concept
of grasp envelopes: sets of constraints on gripper postures. We
propose a fast method for extracting grasp envelopes for objects
that �t within a known shape category, placed in an unknown
environment. Our approach is based on grasp envelope prim-
itives, which encode knowledge of human grasping strategies.
We use environment models, reconstructed from noisy sensor
observations, to re�ne the grasp envelope primitives and extract
bounded envelopes of collision-free gripper postures. Also, we
evaluate the envelope extraction procedure both in a stand alone
fashion, as well as an integrated component of an autonomous
picking system.

I. I NTRODUCTION

Despite signi�cant advances in gripper hardware design
and in robot planning and control algorithms, autonomous
grasp acquisition under uncontrolled conditions remains a
challenging research problem. On one hand, this is due to
the necessity to solve a high-dimensional grasp- and motion
planning problem for the full gripper-manipulator chain. On
the other hand, there are inevitable uncertainties in robot
dynamics and control, as well as in environment modeling
and perception. These uncertainties make it impossible to
precisely realize pre-planned hand postures and contact lo-
cations.

The classical approach to reduce this complexity is to
decouple the grasp synthesis problem by planning separately
for the gripper and the manipulator. To this end, state of the
art grasping systems [1], [2], [3], [4] often rely on sets of
pre-computed grasps. At runtime, these grasps are evaluated
by a motion planner and executed in an open-loop fashion,
or in combination with perceptual feedback (e: g:, visual
servoing). While this approach can produce good results
in laboratory scenarios, our prior experience in realistic
application settings [3], [4] indicates several issues which
can result in computational bottlenecks, unreliable grasps
and sub-optimal manipulator motions. In order to account
for possible object arrangements in cluttered environments,
the grasp database needs to be densely populated with many
diverse gripper postures. This invariably entails that many
of the pre-planned grasps are infeasible at runtime: either
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Fig. 1. The grasp envelope extraction procedure proposed in this work
was used in an autonomous picking system, composed of the underactuated
Velvet Fingers gripper [6] mounted on a KUKA LWR4+ robot arm
(background). Experiments were performed to evaluate grasp acquisition
success rates for the �ve test objects in the foreground.

due to collisions between the robot and the environment,
or because they are kinematically invalid. Selecting a good
grasp out of the pre-planned database can therefore be
time consuming and often necessitates devising application-
speci�c heuristics [1]. In addition, this classical approach
is agnostic to the fact that often, due to symmetries of the
objects and gripper, equally good grasps can be obtained in
large regions of the hand posture space. This issue is even
more pronounced when using compliant grasping devices,
implementing soft synergies [5], underactuation [6], [7] or
compliant control schemes [8], [9]; all of which intrinsically
allow a larger tolerance on the pre-grasp pose, but are hard
to simulate accurately during of�ine planning.

Instead of relying on pre-planned object-speci�c grasps,
we leverage a constraint-based grasp formulation which
allows us to exploit redundancies in the grasping task and to
incorporate knowledge of human grasping principles [10].
We introduce the termgrasp envelopeto refer to a set
of constraints on a grasping device's posture (i:e:, wrist
position/orientation and hand joint values). A grasp envelope
is thus a generalization of a classical grasp, as it encodes a
set of gripper postures with similar likelihoods of resulting
in a stable grasp. This representation better captures the
redundancy in gripper pre-positioning: any gripper posture
satisfying the envelope constraints allows a subsequent com-
pliant grasp acquisition procedure to achieve a stable grasp.
As discussed in our prior work [11], this constraint-based re-



formulation of the grasping problem is particularly suitable
for an easy integration into constraint-based, manipulator
motion generation schemes. Obtaining a good set of enve-
lope constraints for a particular object placed in a speci�c
workspace environment is, however, still an open problem.

The main contribution of this paper is a fast procedure
for extracting grasp envelopes associated with target objects
represented in an online-reconstructed environment model.
Assuming only knowledge of the object shape category and
its pose, our method obtains a set of mutually feasible
constraints on gripper pose and joint con�guration. We
tailor our approach to a compliant, underactuated gripper [6]
and demonstrate the envelope extraction procedure in two
of�ce-like environments, achieving run-times of20� 40 ms
per object. We subsequently integrate the proposed grasp
envelope extraction procedure in an autonomous picking
system (See Fig. 1) and perform92 grasp acquisition trials
on �ve test objects, achieving average success rates of83:7%
and average picking times of39:9 seconds.

II. RELATED WORK

As a comprehensive overview of data-driven grasp plan-
ning is beyond the scope of this work, we direct the in-
terested reader to a recent survey by Bohg et al. [12] and
only overview relevant approaches in constraint-based grasp
representations. The grasp envelopes discussed in this work
are perhaps most closely related to the Task Maps [13] and
Task Space Regions (TSRs) [14] concepts. Both of these
prior approaches de�ne constrained sets of manipulator end
effector poses, applied to slightly different domains. Gienger
et al. [13] propose a method to learn a set of valid grasps
for an object through simulated experiments. This set then
de�nes a map between discretized gripper poses and grasp
success, which is explored by an RRT search to �nd clusters
of valid con�gurations. While the idea of building clusters
of valid grasping con�gurations is similar to the one in
our work, we take an online approach and do not rely on
simulations, but rather operate directly on the reconstructed
environment model. Berenson et al. [14] de�ne TSRs as
box constraints on the6D wrist pose of a manipulator.
These regions are then used in the context of sampling-
based motion planning to bias the sampling space and satisfy
certain task-speci�c properties. In [14], TSRs are de�ned
manually, while the main focus of our work is on extracting
grasp envelopes in an automatic manner. Our grasp envelopes
can be seen as a generalization of TSRs with application to
the grasping task, and can be readily integrated in the motion
planning framework proposed by Berenson et al. That said,
grasp envelopes naturally lend themselves well to continuous
constraint-based motion generation frameworks which rely
on embedded optimization. Examples include the planner
based on trajectory optimization in [15] and the real-time
kinematic control framework proposed by Kanoun et al. [16]
which allows to generate reactive, locally optimal motions
based on a stack of hierarchical inequality tasks (SoT). We
used the approach in [16] in our previous work [11], as
well as in the experimental evaluation of this work. The

(a)

(b)

Fig. 2. An illustration of a cylindrical grasp envelope primitive in (a) and
a corresponding grasp envelope in (b). The constraints are satis�ed for any
end effector pose which brings the gripper reference frame inside the shaded
cylindrical shell sector, while maintaining orientation of thex and z axis
within their respective shaded cone regions.

promise of on-the-�y control-based motion generation for
autonomous pick & place tasks has also been highlighted in
the �rst Amazon picking challenge [17] held at ICRA2015.

The second set of approaches closely related to our work
focus on the task of locating grasping affordances in various
perceptual sensor data: for example, RGB images [18] or
point clouds [19]. While there is a vast body of literature on
extracting candidate grasps from various sensing modalities,
most works concentrate on �nding a single grasping con�gu-
ration. In that respect, the work of Pas and Platt [19] is most
similar to our approach, as they extract cylindrical shells
in the environment that would allow a parallel jaw gripper
to achieve multiple equivalent grasping con�gurations. In
contrast to their work, we search for grasp intervals in the
form of constraints on gripper postures and utilize Truncated
Signed Distance Function (TSDF) environment models, thus
reducing sensor noise [20] and allowing for multi-view
informed decisions.

III. G RASPENVELOPE EXTRACTION

A. Grasp Envelopes

Let p = [ x; y; z; ox ; oy ; oz ; ow ]T be the pose of the
gripper frame relative to a �xed frame connected to the
robot kinematic model, represented by a 3D translation and
a quaternion-encoded orientation. In addition, letq 2 Rn be
the con�guration vector describing the joint angles of alln
gripper joints. We represent the posture of the gripper as a
vector x =

�
pT ; qT

� T
. We then de�ne a grasp envelopeG

as a set of gripper postures satisfying constraints imposed on



the gripper pose and joint con�guration:

G =
�

x 2 Rn +7 j ci (x ) � 0; i = 1 ; : : : ; m
	

(1)

In this work, we restrict our analysis to linear inequality
constraints, in order to facilitate an ef�cient implementation.
In addition, we concentrate our analysis on an underactuated
gripping device with a single actuated degree of freedom,
thus q 2 R. For simplicity, we only impose box constraints
on the gripper opening angle,i: e:, qmin � q � qmax .

The de�nition of a grasp envelopeG in (1) allows us to
encode various constraints on the robot end effector pose. In
this work we de�ne two prototypical sets of grasp envelope
constraints, which we termgrasp envelope primitives—
a cylindrical and a spherical primitive. At runtime, the
algorithms in Sec. III-C and III-D are used to re�ne the
bounds on these primitives and obtain valid collision-free
grasp envelopes for a particular object placement in the
workspace.

An illustration of a cylindrical grasp envelope primitive
is shown in Fig. 2(a), while a grasp envelope obtained by
imposing additional bounds1 on the primitive is shown in
Fig. 2(b). In this case we consider grasps which constrain
the gripper posep inside a cylindrical shell, de�ned by two
concentric cylinders and two horizontal bounding planes. In
addition, we constrain the gripper orientation to roughly align
with the principal components of the inner cylinder:i: e:, the
gripper's approach axis to point towards the cylinder axis and
the gripper's vertical axis to be parallel with the cylinder axis.
These constraints are directly motivated by research showing
that humans tend to grasp objects by aligning their hand with
the principal components of the target object [10]. Finally,
the cylindrical shell de�ned in this manner can be truncated
by imposing additional planar constraints, in order to exclude
undesirable regions such as ones in which the gripper would
collide with the environment. Our treatment of the spherical
shell grasp primitive is done in an analogous manner, by
constraining the gripper pose in between two concentric
spheres while aligning the gripper's approach axis with the
vector pointing towards the sphere center and maintaining
the gripper's lateral axis (y in Fig. 2) approximately parallel
to a horizontal plane.

The grasp envelope primitives de�ned in this manner
can be used as an initial guess of a grasp envelope to
be extracted for a particular previously unseen object. A
similar idea, which builds a set of bounding box primitives to
cover arbitrary triangle mesh object models was previously
presented by Huebner et. al. [21]. In this work we are
interested in solving a slightly different problem: we attempt
to re�ne the constraints imposed by the initial grasp envelope
primitive, in order to obtain a continuous subset of good
gripper postures. In addition, we do not assume knowledge
of a perfect object model, but rather perform all operations
directly on the current environment model reconstructed from
sensor readings. The central assumption we make in this
paper is that an object's pose, rough size, and category have

1In previous work [11] we refer to this as atruncatedgrasp envelope.

been provided by an object detection system. The categories
we are interested in map directly to the two primitives:
cylindrical and spherical. Thus, the inputs to our method
are: a model (map) of the environment, a pose of an object
(or object part) to be grasped, and the size of a bounding
sphere or cylinder which covers the object, but excludes
any obstacles. Our method can be extended to other simple
primitive types by changing the sampling strategy for the
grid S and can also be further developed to handle objects
represented as a decomposition of primitive shapes. The
subsequent sections describe in detail how we construct the
initial grasp envelope primitives and how we subsequently
re�ne them in response to the object and environment model.

B. Pre-computing a Collision Map

The �rst step of our approach is to pre-compute a 3D
collision map for each of the two grasp envelope primitives.
This step is performed of�ine and greatly speeds up the
subsequent online primitive re�nement. The procedure, illus-
trated by the 2D projection in Fig. 3(a), begins by sampling
gripper poses from the initial envelope primitive. We obtain
the samples with a regular grid in the parametric space
of each primitive and store them in a regular sample grid
S. For the cylindrical shell primitive we sample along the
distance to the centerd, the orientation� (w.r.t. the cylinder
coordinate frame), and the height above the horizontal plane
h. Similarly, the spherical shell primitive is parametrized by
the radiusr , and the polar and azimuth angles�; � .

Next, for each sampled gripper pose we generate the
gripper footprint in a collision map. As shown in Fig. 3(a),
for this step we use an idealized gripper model, consisting
of a bounding box around the palm and a semi-cylinder
covering all possible placements of the �ngers under different
opening angles. Each cell of the collision map covered by
the ideal gripper footprint is then marked as occupied by
the currently evaluated sample fromS. By iterating this
procedure over all samples inS we obtain a collision map
which encodes in every cell the list of gripper postures that
would potentially occupy it.

C. Finding Valid Con�gurations in Reconstructed Scenes

The remaining steps of our approach are performed online
using the current environment model. For the purposes of
this work, we represent the environment using a Truncated
Signed Distance Function (see [22] for details on TSDF
mapping), but any occupancy-aware representation (e: g:,
occupancy grid maps [23]) could be used instead. As stated
previously, we assume the availability of an environment map
and the pose of a target object relative to that map. Thus,
we �rst compute the intersection between the environment
map and the pre-computed collision map. We do this by
associating each cell in the collision map to a corresponding
environment map cell, using the object pose provided, and
checking for cases in which both cells are occupied. To
avoid planning grasps in unexplored regions, we also treat
previously unobserved cells in the environment model as
occupied.



(a) (b) (c)

Fig. 3. Two-dimensional illustrations of the three main steps of our approach: (a) approach to pre-computing a collision map for the initial grasp envelope
primitive; (b) three types of collisions which can occur and which are handled differently by our approach; (c) process used for �nding the maximum-volume
cluster of valid grasp postures. The maximum-volume cluster in (c) is shown in the shaded rectangle labeledb.

Once we obtain the intersection between the two maps,
we iterate through all affected cells in the collision map
and check the affected gripper pose samples fromS. As
illustrated in Fig. 3(b), we distinguish between three types
of collisions: 1) between the gripper palm and the map; 2)
between the gripper �ngers and the target object; and 3)
between the �ngers and other objects in the environment.
Case 1) entails that the considered gripper pose would result
in a collision, and thus we mark the corresponding sample
in S as invalid. Cases 2) and 3) would result in a collision
only for speci�c con�gurations of the gripper opening angle
q, thus we use them to impose tighter bounds onqmin and
qmax associated with the respective sample inS. At the end
of this procedure we check the bounds onqmin ; qmax for
all remaining valid samples inS and invalidate those that
impose infeasible constraints (i: e:, qmin � qmax ) and those
that would not result in a grasp of the target object (qmin = 0
when no contact with the object was detected).

D. Fitting a Maximum Volume Envelope

Following the procedures outlined in the previous subsec-
tions, we obtain a grid of discrete samplesS representing a
set of gripper postures. Some of the postures inS have been
invalidated by the collision checks in Sec. III-C, while the
remaining ones are valid under certain bounds onq. In order
to obtain a re�ned grasp envelope following the de�nition
in (1), we need to �nd a set of inequality constraints
in Cartesian space containing only valid samples fromS.
Thanks to our regular grid sampling strategy from Sec. III-
B, it is straightforward to obtain a set of Cartesian-space
constraints for any axis-aligned bounding box inS. Thus,
we can obtain a re�ned grasp envelope by looking for the
largest axis-aligned inscribed box inS: i: e:, the maximum
volume box containing only valid samples.

Finding maximum volume/area inscribed shapes is in
general a hard problem. Our problem instance is however
additionally constrained to a regular sample grid and axis
aligned shapes, and can therefore be solved ef�ciently. If we
treat invalid samples inS as occupied space, and conversely

valid samples as free space, we can use a variant of the
distance transform to speed up our search. In general, we
are looking for ak dimensional axis-aligned bounding box,
with k being the dimensionality of the sampling gridS.
For simplicity, in this section we discuss a 2D version
of our approach (illustrated in Fig. 3(c)), which is readily
extendable tokD. The main idea here is to look for the best
position of the lower-right corner of the maximum bounding
rectangle (the shaded rectangle labeledb in Fig. 3(c)). We
�rst construct a 2D distance �eld which for every free cell
encodes the distance to the closest occupied cell in the
negative direction (i: e:, towards the upper-left corner), along
each dimension. This provides us with an absolute upper
bound on the volume of a box which uses a particular
cell as a lower-right corner:e: g:, the example labeleda in
Fig. 3(c) would result in a maximal volume of8 � 5 = 40
samples. Using this as a criterion to prune the search space,
Algorithm 1 can be used to �nd the maximal-area box. Lines
8-15 in the algorithm describe the search procedure along
the x direction of the distance grid, as shown also in case
b of Fig. 3(c). In essence, we keep track of the maximum
area rectangle veri�ed so far (mi ; mj ), and update it for
every slice alongx in lines 10-11. We next check if it is
possible to obtain a larger area rectangle (in the best case)
if we continue searching. If so, we re�ne the boundarydj

along y (lines 12-13), otherwise we stop the search (line
15). Last, we check if the rectangle obtained in this manner
is larger than the current best candidate and move to the next
possible bottom-right corner (lines 18-19). For the envelope
primitives discussed in this work,k = 3 and we obtain a
straight-forward extension of the presented algorithm to 3D
by searching in addition along the third dimension. At a
moderate computational cost, this algorithm can be modi�ed
to extract the topN largest volume regions. Finally, since
the zero position for sampling dimensions associated with
varying orientation is arbitrary, in these cases we allow
regions to span across the �rst-to-last element border and
modify the distance �eld computation accordingly.










