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From Feature Detection in Truncated Signed Distance Fields to Sparse
Stable Scene Graphs
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Center of Applied Autonomous Sensor Systems (AASS),Örebro University, Sweden

Abstract— With the increased availability of GPUs and multi-
core CPUs, volumetric map representations are an increasingly
viable option for robotic applications. A particularly important
representation is the truncated signed distance �eld (TSDF) that
is at the core of recent advances in dense 3D mapping. However,
there is relatively little literature exploring the characteristics of
3D feature detection in volumetric representations. In this paper
we evaluate the performance of features extracted directly from
a 3D TSDF representation. We compare the repeatability of
Integral invariant features, speci�cally designed for volumetric
images, to the 3D extensions of Harris and Shi & Tomasi
corners. We also study the impact of different methods for
obtaining gradients for their computation. We motivate our
study with an example application for building sparse stable
scene graphs, and present an ef�cient GPU-parallel algorithm to
obtain the graphs, made possible by the combination of TSDF
and 3D feature points. Our �ndings show that while the 3D
extensions of 2D corner-detection perform as expected, integral
invariants have shortcomings when applied to discrete TSDFs.
We conclude with a discussion of the cause for these points of
failure that sheds light on possible mitigation strategies.

I. I NTRODUCTION

Since 2011, the advancement of GPU technology coupled
with the commercial availability of affordable depth-sensing
video cameras has sparked an interest in dense 3D mapping
in real time. One of the main scienti�c and technological
achievements at the start of this trend is undoubtedlyKinect
Fusion, by Newcombe et al. [1], shortly followed by several
extensions [2][3] and alternative formulations of the original
problem and solution [4][5]. At the core of these algorithms
is an elegant method for volumetric integration of depth
information into a truncated signed distance �eld (TSDF).

A TSDF computed as a weighted sum of signed distances,
measured along the rays of a perspective camera, is shown
to represent the maximum likelihood estimate for the sur-
face corresponding to a set of depth images, as its zero-
level isosurface [6]. TSDFs thus offer a map representation
that implicitly represents the mean estimate of the surface
location and its variance. Given a TSDF, novel viewpoints
can be easily synthesized by casting rays into the volume
using e.g. sphere-tracing [7]. The depth maps obtained in
this way tend to be of higher quality, and produce better
results when used for 2.5D feature detection and feature
descriptor matching [8]. In this work we are interested in
investigating the stability of feature detection directly in the
3D TSDF, instead of on the depth-maps sampled from it
or polygonal meshes extracted from it through a marching
cubes algorithm. Finding salient regions such as edges and
corners in 2D is a problem that has been studied thoroughly,

Fig. 1. Lounge dataset reconstructed as a TSDF, visualized as its
triangulated zero-set, and its associated SSSG

but the research on volumetric counterparts has not been
given the same attention. In a relatively recent work by Yu
et al. [9] six volumetric adaptations of 2D feature detectors
are comparatively evaluated on 3D volumes derived from
point-sets by Gaussian kernel density estimation. Although
TSDFs are different from density images, our choice of
corner detectors is partly motivated by their evaluations on
MRI scans.

In this study, we apply the volumetric adaptations of Har-
ris [10] and Shi-Tomasi [11] corner detectors and compare
the effects of different choices of gradient estimators on
their stability. We evaluate these corner detectors against
two types of integral invariants [12] speci�cally designed
for volumetric image domains and signed distance �elds,
but whose performance on TSDFs (let alone TSDFs gen-
erated from actual sensor data) is currently unknown. We
test all of the above for stability with respect to rigid-
body transformations. While the properties of the volumetric
extensions of standard 2D features such as Harris corners
are well understood at present, they serve to set the results
of the integral invariants into perspective, and allow us to
understand the trade-off between their relative computational
complexity and performance in a more meaningful way. In
this article we do not concentrate on evaluating saliency
detectors for polygonal meshes (e.g. [13], [14], [15]), as
such evaluations have already been reported in literature
(see [16]). Instead, our main focus here lies in evaluating
native saliency detectors that operate directly on SDF models
and are directly applicable to online usage scenarios.



Lastly, to showcase the unique applications that the com-
bination of TSDFs and feature detection in the 3D space
enable, we present an algorithm to ef�ciently extract a novel
graph structure called Sparse Stable Scene Graphs (SSSG)
that summarizes the main characteristics of a scene as a
graph of geometrically linked salient features as illustrated
in Fig. 1. We ilustrate the utility of the SSSG by means of
a proof-of-concept RANSAC based place matching applica-
tion. To summarize, our main contributions in this work are:

� a stability analysis of the volumetric extensions of
Harris and Shi & Tomasi corners with respect to the
choice of derivative estimation strategy,

� a thorough analysis of the applicability of Integral
invariant features in TSDFs,

� a novel GPU-parallel method for building sparse stable
scene graphs (SSSG) from TSDFs, given a set of feature
points.

II. FEATURE DETECTION

Feature detection and description are typical steps in many
object recognition tasks and localization steps of SLAM
algorithms. Focusing on salient features avoids computation
on indistinct regions that are likely to provide little useful
information in subsequent descriptor matching steps. Of
critical importance for the success of matching descriptors is
that the process that selected where they should be computed
is repeatable, thus our focus will be primarily on the stability
of feature detectors with regards to perturbations of the
voxel grid. In II-A we will de�ne TSDFs in more detail.
In II-B and II-C we describe the Harris and Shi & Tomasi
corner detectors and their applications to 3D images. Because
the aforementioned features are gradient-based, we dedicate
some space in II-D to discuss the rationale behind different
choices of gradient estimators and explain their derivation.
In II-E we review the concepts of integral invariant features.

A. Truncated Signed Distance Field (TSDF)

A distance �eld is an implicit surface representation that
encodes the location of an arbitrary surface� by providing,
for a given query pointx 2 R3, the signed distance to the
closest surface point on� . The sign indicates ifx is inside
(negative) the volume bounded by� or outside (positive).
The surface itself is thereby encoded as the zero-crossing of
the signed distance �eld.

dist (p; �) : R3 ! R (1)

Since the environment is not fully observable from any
given viewpoint it is not possible to construct and maintain
a full SDF (see Fig.??) reliably from depth maps. However,
a TSDF, which limits distances to be bounded by a range of
[dmin dmax ], can be constructed in real-time [17] using in-
cremental, local updates with approximate signed distances,
measured along the lines of sight of the sensor. Given a suf-
�cient number of observations and an appropriate weighing
scheme for combining them, the projective distances tend to
approximate the closest distance metric with good accuracy,
as illustrated in Fig 2.

B. Harris Corners

Most feature detection methods apply a response function
over the entire image domain and retain the locations for
which the function both exceeds a threshold and is also
locally maximal. One such response function is the minimum
sum of squared differences (SSD) [18] within a region
around a candidate location. This can be interpreted as giving
a high score to points where the image derivative is not small
in any given direction. Harris [10] approximates the Hessian
of the SSD as

H 2 =
1

jwj

X

w

�
I 2

x I x I y

I x I y I 2
y

�
(2)

wherew represents a square (or round, if desired) window
around the candidate point,jwj is the number of elements in
w, for normalization andI x , I y are the estimated gradients of
the image in horizontal and vertical directions, respectively.
The extension to 3D is straightforward.
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The responseR for a given voxel is computed as:

R = det(H 3) � k T r (H 3)3 (4)

with k being an empirical constant for which a typical
value (in the volumetric case) is0:001 [19]. The above
formulation is algebraically equivalent to the following, using
eigenvalues.

R =
dimY

i =1

(� i ) � k
dimX

i =1

(� i )3 (5)

C. Good Features to Track

Shi and Tomasi [11] argued that when images undergo
general af�ne transformations a better choice forR is simply

R = min (� 1; � � � � dim ) (6)

However, in our three dimensional image setting the af�ne
warps typically associated with projective geometry are not
likely to occur, thus we expect the assumption of pure rigid-
body motion to be suf�cient in most cases. Nonetheless, we
test the use of Eq. (6), too.

D. Derivatives

A point to be made against response functions based on
gradients is that gradients are susceptible to noise and that
this in turn reduces the stability of the resulting features.
Image derivatives may be obtained by a simple central differ-
encing scheme but are often calculated by convolution with
a �lter kernel that represents the weighted average of several
central difference computations. By including pixel samples
from a neighbourhood around the point of interest, some
robustness to noise is obtained at the expense of locality. The
same applies to voxels. A common choice of �ltering kernel
in 2D is the 3x3 Sobel-Feldman operator [20] which can be
interpreted as the application of a low pass �lter (an integer



(a) (b) (c) (d) (e) (f)
Fig. 2. In (c) and (d) we see the true TSDF and its gradient-map, computed from the scene shown in Fig.??. In (e) and (f) we see the TSDF and
gradients produced by reconstructing the same scene with measurements generated via a virtual moving depth-sensor.

approximation to the Gaussian kernel) and differentiation.
See Eq. (7) for the example of the derivative �lter in the
horizontal direction where� denotes a 2D convolution or
equivalently, (8) using ordinary matrix multiplication.

SoFeh 2 R3� 3 =
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By convolving the differencing operator and blurring op-
erator with themselves, i.e.,

�
1 0 � 1

�
�

�
1 0 � 1

�
=

�
1 2 0� 2 � 1

�
(9)

�
1 2 1
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�

�
1 2 1

�
=

�
1 4 6 4 1

�
(10)

one obtains �lter coef�cients that can be combined, in the
same manner as in Eq. (8) to produce a5 � 5 derivative
kernel.

Since the Sobel-Feldman operator is an approximation to
the derivative of the Gaussian function, the latter is worth
some consideration as an option, too. For our analysis, we
compute the analytic derivatives and directly form the 3D
�lter kernels [21] of size3� 3� 3 and5� 5� 5 with variances
� 3 = 0 :95 and� 5 = 1 :25, respectively. Keeping in mind that
our use for gradients is a means for obtaining repeatable
feature points, we are led to also investigate another set of
derivative kernels, optimized for rotation invariance, as pro-
posed by Scharr [22]. Generating the volumetric �lter kernels
from the 1D coef�cient vectors is analogous to the 2D case
and is detailed in Algorithm 1. The variablesg, b, direction ,
n are column vectors containing the derivative and blurring
�lter coef�cients, derivative direction and kernel size ( 3 or
5), respectively. The derivative and �lter coef�cients appear
in Table I , for reference.

E. Integral Invariant Features

Integral invariants were �rst introduced by Manay et al.
[23] and are local shape descriptors de�ned as integrals
over a rotationally symmetric neighbourhood. Thelocal area
invariant anddistance invariant, were both shown to provide
a local and ef�cient estimate formean curvatureof a shape
in 2D with robustness to noise. Pottmann et al. [12] presented

Algorithm 1 Computing the volumetric �lter kernels from
their 1-D coef�cient vectors
Require: b, g, direction , n

1: Allocate n � n � n elements forK
2: switch (direction )
3: case“x” :
4: S  bgT

5: for all z in 1 to ndo
6: K z  sz f T f K z , is the z-th slice ofK and sz

is the z-th column ofSg
7: case“y”, “z” :
8: Analagous, withS  gbT ; bbT , K z  szbT ; szgT

9: ReturnK

integral invariants de�ned via three-dimensional signed dis-
tance �elds and made an extension of the local area invariant
to the volumetric case. Here we further extend the study of
signed distance and volume invariants to their application
on truncated signed distance �elds. Both of these features
have their domains de�ned as the volume bounded by a
sphere, centred around asurfacepointp. The assumption that
computation is carried out centred on surface points implies
that voxel-based methods are a poor �t, since the probability
of a voxel being centred exactly on the surface i.e. the zero-
level of the TSDF, is very small. However, Pottmann et al.
[12] mathematically show that these features are stable to
perturbations of the query point location, if the integration
radius is suf�ciently large. This reported stability encourages
our attempt to apply integral invariants even in the discrete
case.

The volume invariantVr (p) is the integral of the indicator
function 1D (x ) which returns 1 ifx is in occupied space,
and 0 otherwise. This information can be obtained from
the TSDF by testing the sign of the �eld at any given
point (negative if occupied, positive otherwise). The signed
distance invariant,D r (p), is simply the integral of the
signed distance �eld within the bounding sphere of radius
r . Formally,

Vr (p) =
Z

p+ rB
1D (x )dx ; (11)

D r (p) =
Z

p+ rB
dist (x ; �) dx (12)

where B is the unit ball. The features are illustrated in



TABLE I

FILTER COEFFICIENTS USED TO DERIVE3D DERIVATIVE KERNELS

name derivative �lter

SoF e3
�
1 0 � 1

� T =2
�
1 2 1

� T =4

SoF e5
�
1 2 0 � 2 � 1

� T =6
�
1 4 6 4 1

� T =16
Scharr 3

�
1 0 � 1

� T =2
�
46:84 162:32 46:84

� T =256
Scharr 5

�
21:38 85:24 0 � 85:24 � 21:38

� T =256
�
5:96 61:81 120:46 61:81 5:96

� T =256

Fig. 3 and Fig. 3, respectively. The mean curvature of the
surface is estimated by computing the difference between
the result of the integration (or summation, in the discrete
case) and the result which would have been produced if
the computation had been carried out on a perfectly planar
surface. The following expressions approximately relate the
mean curvature of the surface to the respective descriptor
value.

~H v (p) =
8
3r

�
4Vr

�r 4 (13)

~Hd(p) =
15D r

4�r 5 (14)

From the above equations we note that while the estimated
mean curvature for volume integrals is zero if (and only if)
the amount of occupied space is equal to half of the sphere,
i.e. it is an af�ne function with a speci�c reference point.
The equation based on the signed distance integral is simply
linear. As such, the signed distance integral relates mean
surface curvature to the amount of imbalance in the total
positive and negative �elds on either side. A downside of
not using �rst-order (gradient) information about the �eld
becomes apparent here, as there is no way to distinguish
saddle points from �at surfaces, since the mean curvature is
zero in both cases.

III. D ETECTORSTABILITY EVALUATION

We are interested in evaluating how repeatable the feature
descriptors are in the context of robot mapping. Ideally, a
robot could return to a previously visited location, or observe
a known object and extract geometric descriptors at the
exact same places as before, producing a high number of
matching descriptors with high con�dence. The ideal setting
is generally not the case, however. Among the factors that
prevent the acquisition of identical maps are differences in
measurements from the sensor, variations in pose estimation
when integrating the data, and changes in the alignment
of the voxel grid. To simplify our analysis, we will only
consider the robustness of the feature detectors with respect
to changes in the alignment between the initial pose of the
voxel grid relative to the sensor. We shall see that this alone
has a substantial impact on repeatability, as it includes both
sample aliasing in the grid and anisotropy of the feature
detectors.

To ensure that the sensor data and estimated trajectory
are not a source of variation, we use a pre-recorded data-set
with a globally optimized trajectory [24] and reconstruct the
environment using the same volumetric integration strategy
as Kinect Fusion [1]. At the start of each reconstruction, we
transform the initial pose of the camera relative to the voxel

volume by increasing amounts of translation and rotation. At
the end of each session, the different types of features are
extracted and we count the number of features that remained
stable in proportion to the total amount. De�ningQs to be
the set of features locations in the unmodi�ed or source
con�guration and Q t to be the set of features locations
extracted from the target volume, for which the camera pose
was initialized with a transformationT0. Let qs 2 Qs and
qt 2 Q t denote homogeneous vectors inR3 andT0 2 R4� 4

a transformation matrix including rotation and translation
and j � j , the cardinality operator. We then de�ne stability
as the average between source to target and target to source
matches, where a match is determined to have occurred if
two features are within� match = 2 voxels of each-other.

score=
1

2(jQs j + jQ t j)
(jf qs; argmin qt kqs � T � 1

0 qt k < � match gj

+ jf qt ; argmin qs kT0qs � qt k < � match gj)

(15)

Our de�nition of the matching score thus avoids being overly
generous or strict in case the amount of features differ
between the two sets by checking for corresponding features
in both directions. We compute the matching scores for
varying baselines in translation and rotation:

� translations offsets of18 ; 2
8 ; : : : 1 voxels are applied

combinatorially along all dimensions. The sub-voxel
shifts are justi�ed by the fact that translating the volume
by whole voxel increments does not alter the aliasing
and sampling issues that we wish to investigate.

� rotational offsets of18 � �
4 ; 2

8 � �
4 ; : : : �

4 degrees are also
applied combinatorially, around each principal axis. The
reason for the chosen interval is that all the algorithms
involved are symmetric along the principal axes. Any
larger rotations than�4 could therefore be achieved by
a smaller one and a transposition of the appropriate
dimensions (which would not affect the results).

The repeatability score is computed for each reconstruc-
tion and descriptor and binned together by the offset relative
to the default pose. For translations, we quantify the offset by
theL 1 norm. For rotations, we compute the equivalent angle-
axis parametrization and bin the results by the magnitude of
the angle.

IV. SPARSESTABLE SCENE GRAPHS

As an example application, we present the Sparse Stable
Scene Graph. It is a graph structure that uses the features
extracted from the TSDF as nodes, and connects a pair of
nodes only if the edge doing so is embedded in a surface
throughout its length.



(a) (b) (c) (d)
Fig. 3. Integral invariant features: volume invariant in (a),(b), with regions in which the indicator function1D (x ) would return 1 (orange) and 0 (blue);
distance invariant (c),(d) at a �at surface (zero value) and a corner (negative invariant).

The proposed graph structure can be seen as related to a
broader class of representations used for model-based robot
vision known asrelational graphs[25][26]. While relational
graphs typically incorporate more semantic meaning in the
nodes, we remain on a lower level of abstraction from the
data, focusing on geometrically linked points of interest.

In this section we will outline an ef�cient GPU-amenable
way of building the Sparse Stable Scene Graph from a set of
feature points, extracted from a TSDF. This method assumes
no speci�c feature point detection method, but requires
features to be computed at or very close to the surface. For
a given a set of feature points, their fully connected graph
can be expressed as a matrix that relates an edge index (the
entries in the matrix) to its two endpoint nodes (represented
as the row and column index of that entry) e.g. in the
following matrix, edge number 7 connects feature points
indexed by the numbers 5 (the row) and 2 (the column).

G =

2

6
6
6
6
6
6
6
4

� � � � � � �
0 � � � � � �
1 2 � � � � �
3 4 5 � � � �
6 7 8 9 � � �
...

...
...

...
...

3

7
7
7
7
7
7
7
5

(16)

In practice, one can determine thezero-basedrow and
column indices directly from the triangular root of the edge
index i e as,

row = b
p

8i e + 1 � 1
2

c + 1 (17)

s =
row(row � 1)

2
(18)

col = i e � s (19)

without actually having to build the matrix. We know in
advance that fornf features there will be exactlyne =
n f (n f � 1)

2 edges in the fully connected graph.
To prune the graph such that it only contains the edges

embedded in the surface, we launchne separate threads on
a GPU. Each thread is designated an index corresponding to
the edge indexi e and it is then straightforward to retrieve the
feature points referenced by the row and column index using
equations (17) and (19). By linearly interpolating between
the endpoints of the feature locations we can query the
TSDF at a number of points along an edge and reject it

if the minimum absolute-valued distance measured along it
is above a chosen threshold. The number of points along the
edge to test can be made dependent on the length of the edge
or constant, if higher accuracy is desired for shorter edges.
The pass or fail decision is stored in a binary device vector of
the same size as the number of edges and a standard stream
compaction [27] operation can then be applied to extract
the pruned graph. An illustration of the process is shown in
Fig. 4.

(a) (b)
Fig. 4. Computing the SSSG of a scene. Starting from a scene reconstruc-
tion, we compute the feature response function (a) and extract feature point
locations. After connecting these into a graph and applying our in-surface
edge pruning method, enabled by the TSDF, we obtain the �nal graph (b)

There are a number of possible applications in which the
proposed SSSGs can be useful: ranging from place recogni-
tion for loop closing in SLAM, through global registration
methods, to 3D geomety-based object detection. While in
most of these it would be bene�cial to also compute a local
space feature descriptor in each graph vertex, some sense of
the utility of SSSGs can be obtained even without resorting
to feature descriptors. We leave further feature-aware SSSG
extensions as a future work and instead present a simple
descriptorless proof of concept SSSG matching algorithm.

The basic idea of the SSSG matching algorithm is ilus-
trated in Algorithm 2. In essence, we �rst �lter out the
bottom ninety percentile shortest edges, and then generate
all possible match combinations of the remaining edges. The
match candidates are then �ltered to remove edges of widely
different lengths, as well as edges whose corresponding
vertices have very different degrees. We then run RANSAC
on the remaining combinations and check for inliers among
all vertices of degree one or higher. The resulting matching
algorithm is evaluated in Section V-C.








	Introduction
	Feature Detection

