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From Feature Detection in Truncated Signed Distance Fields to Sparse
Stable Scene Graphs

Daniel R. Canelhas, Todor Stoyanov, Achim J. Lilienthal
Center of Applied Autonomous Sensor Systems (AASS), Örebro University, Sweden

Abstract— With the increased availability of GPUs and multi-
core CPUs, volumetric map representations are an increasingly
viable option for robotic applications. A particularly important
representation is the truncated signed distance field (TSDF) that
is at the core of recent advances in dense 3D mapping. However,
there is relatively little literature exploring the characteristics of
3D feature detection in volumetric representations. In this paper
we evaluate the performance of features extracted directly from
a 3D TSDF representation. We compare the repeatability of
Integral invariant features, specifically designed for volumetric
images, to the 3D extensions of Harris and Shi & Tomasi
corners. We also study the impact of different methods for
obtaining gradients for their computation. We motivate our
study with an example application for building sparse stable
scene graphs, and present an efficient GPU-parallel algorithm to
obtain the graphs, made possible by the combination of TSDF
and 3D feature points. Our findings show that while the 3D
extensions of 2D corner-detection perform as expected, integral
invariants have shortcomings when applied to discrete TSDFs.
We conclude with a discussion of the cause for these points of
failure that sheds light on possible mitigation strategies.

I. INTRODUCTION

Since 2011, the advancement of GPU technology coupled
with the commercial availability of affordable depth-sensing
video cameras has sparked an interest in dense 3D mapping
in real time. One of the main scientific and technological
achievements at the start of this trend is undoubtedly Kinect
Fusion, by Newcombe et al. [1], shortly followed by several
extensions [2][3] and alternative formulations of the original
problem and solution [4][5]. At the core of these algorithms
is an elegant method for volumetric integration of depth
information into a truncated signed distance field (TSDF).

A TSDF computed as a weighted sum of signed distances,
measured along the rays of a perspective camera, is shown
to represent the maximum likelihood estimate for the sur-
face corresponding to a set of depth images, as its zero-
level isosurface [6]. TSDFs thus offer a map representation
that implicitly represents the mean estimate of the surface
location and its variance. Given a TSDF, novel viewpoints
can be easily synthesized by casting rays into the volume
using e.g. sphere-tracing [7]. The depth maps obtained in
this way tend to be of higher quality, and produce better
results when used for 2.5D feature detection and feature
descriptor matching [8]. In this work we are interested in
investigating the stability of feature detection directly in the
3D TSDF, instead of on the depth-maps sampled from it
or polygonal meshes extracted from it through a marching
cubes algorithm. Finding salient regions such as edges and
corners in 2D is a problem that has been studied thoroughly,

Fig. 1. Lounge dataset reconstructed as a TSDF, visualized as its
triangulated zero-set, and its associated SSSG

but the research on volumetric counterparts has not been
given the same attention. In a relatively recent work by Yu
et al. [9] six volumetric adaptations of 2D feature detectors
are comparatively evaluated on 3D volumes derived from
point-sets by Gaussian kernel density estimation. Although
TSDFs are different from density images, our choice of
corner detectors is partly motivated by their evaluations on
MRI scans.

In this study, we apply the volumetric adaptations of Har-
ris [10] and Shi-Tomasi [11] corner detectors and compare
the effects of different choices of gradient estimators on
their stability. We evaluate these corner detectors against
two types of integral invariants [12] specifically designed
for volumetric image domains and signed distance fields,
but whose performance on TSDFs (let alone TSDFs gen-
erated from actual sensor data) is currently unknown. We
test all of the above for stability with respect to rigid-
body transformations. While the properties of the volumetric
extensions of standard 2D features such as Harris corners
are well understood at present, they serve to set the results
of the integral invariants into perspective, and allow us to
understand the trade-off between their relative computational
complexity and performance in a more meaningful way. In
this article we do not concentrate on evaluating saliency
detectors for polygonal meshes (e.g. [13], [14], [15]), as
such evaluations have already been reported in literature
(see [16]). Instead, our main focus here lies in evaluating
native saliency detectors that operate directly on SDF models
and are directly applicable to online usage scenarios.



Lastly, to showcase the unique applications that the com-
bination of TSDFs and feature detection in the 3D space
enable, we present an algorithm to efficiently extract a novel
graph structure called Sparse Stable Scene Graphs (SSSG)
that summarizes the main characteristics of a scene as a
graph of geometrically linked salient features as illustrated
in Fig. 1. We ilustrate the utility of the SSSG by means of
a proof-of-concept RANSAC based place matching applica-
tion. To summarize, our main contributions in this work are:
• a stability analysis of the volumetric extensions of

Harris and Shi & Tomasi corners with respect to the
choice of derivative estimation strategy,

• a thorough analysis of the applicability of Integral
invariant features in TSDFs,

• a novel GPU-parallel method for building sparse stable
scene graphs (SSSG) from TSDFs, given a set of feature
points.

II. FEATURE DETECTION

Feature detection and description are typical steps in many
object recognition tasks and localization steps of SLAM
algorithms. Focusing on salient features avoids computation
on indistinct regions that are likely to provide little useful
information in subsequent descriptor matching steps. Of
critical importance for the success of matching descriptors is
that the process that selected where they should be computed
is repeatable, thus our focus will be primarily on the stability
of feature detectors with regards to perturbations of the
voxel grid. In II-A we will define TSDFs in more detail.
In II-B and II-C we describe the Harris and Shi & Tomasi
corner detectors and their applications to 3D images. Because
the aforementioned features are gradient-based, we dedicate
some space in II-D to discuss the rationale behind different
choices of gradient estimators and explain their derivation.
In II-E we review the concepts of integral invariant features.

A. Truncated Signed Distance Field (TSDF)

A distance field is an implicit surface representation that
encodes the location of an arbitrary surface Φ by providing,
for a given query point x ∈ R3, the signed distance to the
closest surface point on Φ. The sign indicates if x is inside
(negative) the volume bounded by Φ or outside (positive).
The surface itself is thereby encoded as the zero-crossing of
the signed distance field.

dist(p,Φ) : R3 → R (1)

Since the environment is not fully observable from any
given viewpoint it is not possible to construct and maintain
a full SDF (see Fig. ??) reliably from depth maps. However,
a TSDF, which limits distances to be bounded by a range of
[dmin dmax], can be constructed in real-time [17] using in-
cremental, local updates with approximate signed distances,
measured along the lines of sight of the sensor. Given a suf-
ficient number of observations and an appropriate weighing
scheme for combining them, the projective distances tend to
approximate the closest distance metric with good accuracy,
as illustrated in Fig 2.

B. Harris Corners

Most feature detection methods apply a response function
over the entire image domain and retain the locations for
which the function both exceeds a threshold and is also
locally maximal. One such response function is the minimum
sum of squared differences (SSD) [18] within a region
around a candidate location. This can be interpreted as giving
a high score to points where the image derivative is not small
in any given direction. Harris [10] approximates the Hessian
of the SSD as

H2 =
1

|w|
∑
w

[
I2x IxIy
IxIy I2y

]
(2)

where w represents a square (or round, if desired) window
around the candidate point, |w| is the number of elements in
w, for normalization and Ix, Iy are the estimated gradients of
the image in horizontal and vertical directions, respectively.
The extension to 3D is straightforward.

H3 =
1

|w|
∑
w

 I2x IxIy IxIz
IxIy I2y IyIz
IxIz IyIz I2z

 (3)

The response R for a given voxel is computed as:

R = det(H3)− k Tr(H3)3 (4)

with k being an empirical constant for which a typical
value (in the volumetric case) is 0.001 [19]. The above
formulation is algebraically equivalent to the following, using
eigenvalues.

R =

dim∏
i=1

(λi)− k
dim∑
i=1

(λi)
3 (5)

C. Good Features to Track

Shi and Tomasi [11] argued that when images undergo
general affine transformations a better choice for R is simply

R = min(λ1, · · ·λdim) (6)

However, in our three dimensional image setting the affine
warps typically associated with projective geometry are not
likely to occur, thus we expect the assumption of pure rigid-
body motion to be sufficient in most cases. Nonetheless, we
test the use of Eq. (6), too.

D. Derivatives

A point to be made against response functions based on
gradients is that gradients are susceptible to noise and that
this in turn reduces the stability of the resulting features.
Image derivatives may be obtained by a simple central differ-
encing scheme but are often calculated by convolution with
a filter kernel that represents the weighted average of several
central difference computations. By including pixel samples
from a neighbourhood around the point of interest, some
robustness to noise is obtained at the expense of locality. The
same applies to voxels. A common choice of filtering kernel
in 2D is the 3x3 Sobel-Feldman operator [20] which can be
interpreted as the application of a low pass filter (an integer



(a) (b) (c) (d) (e) (f)
Fig. 2. In (c) and (d) we see the true TSDF and its gradient-map, computed from the scene shown in Fig. ??. In (e) and (f) we see the TSDF and
gradients produced by reconstructing the same scene with measurements generated via a virtual moving depth-sensor.

approximation to the Gaussian kernel) and differentiation.
See Eq. (7) for the example of the derivative filter in the
horizontal direction where ∗ denotes a 2D convolution or
equivalently, (8) using ordinary matrix multiplication.

SoFeh ∈ R3×3 =
[
1 0 −1

]
∗

1
2
1

 =

1 0 −1
2 0 −2
1 0 −1

 (7)

SoFeh ∈ R3×3 =

 1
0
−1

 [1 2 1
]

=

1 0 −1
2 0 −2
1 0 −1

 (8)

By convolving the differencing operator and blurring op-
erator with themselves, i.e.,[

1 0 −1
]
∗
[
1 0 −1

]
=
[
1 2 0− 2 −1

]
(9)[

1 2 1
]
∗
[
1 2 1

]
=
[
1 4 6 4 1

]
(10)

one obtains filter coefficients that can be combined, in the
same manner as in Eq. (8) to produce a 5 × 5 derivative
kernel.

Since the Sobel-Feldman operator is an approximation to
the derivative of the Gaussian function, the latter is worth
some consideration as an option, too. For our analysis, we
compute the analytic derivatives and directly form the 3D
filter kernels [21] of size 3×3×3 and 5×5×5 with variances
σ3 = 0.95 and σ5 = 1.25, respectively. Keeping in mind that
our use for gradients is a means for obtaining repeatable
feature points, we are led to also investigate another set of
derivative kernels, optimized for rotation invariance, as pro-
posed by Scharr [22]. Generating the volumetric filter kernels
from the 1D coefficient vectors is analogous to the 2D case
and is detailed in Algorithm 1. The variables g, b, direction,
n are column vectors containing the derivative and blurring
filter coefficients, derivative direction and kernel size ( 3 or
5), respectively. The derivative and filter coefficients appear
in Table I , for reference.

E. Integral Invariant Features

Integral invariants were first introduced by Manay et al.
[23] and are local shape descriptors defined as integrals
over a rotationally symmetric neighbourhood. The local area
invariant and distance invariant, were both shown to provide
a local and efficient estimate for mean curvature of a shape
in 2D with robustness to noise. Pottmann et al. [12] presented

Algorithm 1 Computing the volumetric filter kernels from
their 1-D coefficient vectors
Require: b, g, direction, n

1: Allocate n× n× n elements for K
2: switch (direction)
3: case “x”:
4: S ← bgT

5: for all z in 1 to n do
6: Kz ← szf

T { Kz , is the z-th slice of K and sz
is the z-th column of S}

7: case “y”, “z”:
8: Analagous, with S ← gbT , bbT , Kz ← szb

T , szg
T

9: Return K

integral invariants defined via three-dimensional signed dis-
tance fields and made an extension of the local area invariant
to the volumetric case. Here we further extend the study of
signed distance and volume invariants to their application
on truncated signed distance fields. Both of these features
have their domains defined as the volume bounded by a
sphere, centred around a surface point p. The assumption that
computation is carried out centred on surface points implies
that voxel-based methods are a poor fit, since the probability
of a voxel being centred exactly on the surface i.e. the zero-
level of the TSDF, is very small. However, Pottmann et al.
[12] mathematically show that these features are stable to
perturbations of the query point location, if the integration
radius is sufficiently large. This reported stability encourages
our attempt to apply integral invariants even in the discrete
case.

The volume invariant Vr(p) is the integral of the indicator
function 1D(x) which returns 1 if x is in occupied space,
and 0 otherwise. This information can be obtained from
the TSDF by testing the sign of the field at any given
point (negative if occupied, positive otherwise). The signed
distance invariant, Dr(p), is simply the integral of the
signed distance field within the bounding sphere of radius
r. Formally,

Vr(p) =

∫
p+rB

1D(x)dx, (11)

Dr(p) =

∫
p+rB

dist(x,Φ)dx (12)

where B is the unit ball. The features are illustrated in



TABLE I
FILTER COEFFICIENTS USED TO DERIVE 3D DERIVATIVE KERNELS

name derivative filter

SoFe3
[
1 0 −1

]T
/2

[
1 2 1

]T
/4

SoFe5
[
1 2 0 −2 −1

]T
/6

[
1 4 6 4 1

]T
/16

Scharr3
[
1 0 −1

]T
/2

[
46.84 162.32 46.84

]T
/256

Scharr5
[
21.38 85.24 0 −85.24 −21.38

]T
/256

[
5.96 61.81 120.46 61.81 5.96

]T
/256

Fig. 3 and Fig. 3, respectively. The mean curvature of the
surface is estimated by computing the difference between
the result of the integration (or summation, in the discrete
case) and the result which would have been produced if
the computation had been carried out on a perfectly planar
surface. The following expressions approximately relate the
mean curvature of the surface to the respective descriptor
value.

H̃v(p) =
8

3r
− 4Vr
πr4

(13)

H̃d(p) =
15Dr

4πr5
(14)

From the above equations we note that while the estimated
mean curvature for volume integrals is zero if (and only if)
the amount of occupied space is equal to half of the sphere,
i.e. it is an affine function with a specific reference point.
The equation based on the signed distance integral is simply
linear. As such, the signed distance integral relates mean
surface curvature to the amount of imbalance in the total
positive and negative fields on either side. A downside of
not using first-order (gradient) information about the field
becomes apparent here, as there is no way to distinguish
saddle points from flat surfaces, since the mean curvature is
zero in both cases.

III. DETECTOR STABILITY EVALUATION

We are interested in evaluating how repeatable the feature
descriptors are in the context of robot mapping. Ideally, a
robot could return to a previously visited location, or observe
a known object and extract geometric descriptors at the
exact same places as before, producing a high number of
matching descriptors with high confidence. The ideal setting
is generally not the case, however. Among the factors that
prevent the acquisition of identical maps are differences in
measurements from the sensor, variations in pose estimation
when integrating the data, and changes in the alignment
of the voxel grid. To simplify our analysis, we will only
consider the robustness of the feature detectors with respect
to changes in the alignment between the initial pose of the
voxel grid relative to the sensor. We shall see that this alone
has a substantial impact on repeatability, as it includes both
sample aliasing in the grid and anisotropy of the feature
detectors.

To ensure that the sensor data and estimated trajectory
are not a source of variation, we use a pre-recorded data-set
with a globally optimized trajectory [24] and reconstruct the
environment using the same volumetric integration strategy
as Kinect Fusion [1]. At the start of each reconstruction, we
transform the initial pose of the camera relative to the voxel

volume by increasing amounts of translation and rotation. At
the end of each session, the different types of features are
extracted and we count the number of features that remained
stable in proportion to the total amount. Defining Qs to be
the set of features locations in the unmodified or source
configuration and Qt to be the set of features locations
extracted from the target volume, for which the camera pose
was initialized with a transformation T0. Let qs ∈ Qs and
qt ∈ Qt denote homogeneous vectors in R3 and T0 ∈ R4×4

a transformation matrix including rotation and translation
and | · |, the cardinality operator. We then define stability
as the average between source to target and target to source
matches, where a match is determined to have occurred if
two features are within τmatch = 2 voxels of each-other.

score =
1

2(|Qs|+ |Qt|)
(|{qs, argminqt‖qs − T−10 qt‖ < τmatch}|
+|{qt, argminqs‖T0qs − qt‖ < τmatch}|)

(15)

Our definition of the matching score thus avoids being overly
generous or strict in case the amount of features differ
between the two sets by checking for corresponding features
in both directions. We compute the matching scores for
varying baselines in translation and rotation:
• translations offsets of 1

8 ,
2
8 , . . . 1 voxels are applied

combinatorially along all dimensions. The sub-voxel
shifts are justified by the fact that translating the volume
by whole voxel increments does not alter the aliasing
and sampling issues that we wish to investigate.

• rotational offsets of 1
8 ·

π
4 ,

2
8 ·

π
4 , . . .

π
4 degrees are also

applied combinatorially, around each principal axis. The
reason for the chosen interval is that all the algorithms
involved are symmetric along the principal axes. Any
larger rotations than π

4 could therefore be achieved by
a smaller one and a transposition of the appropriate
dimensions (which would not affect the results).

The repeatability score is computed for each reconstruc-
tion and descriptor and binned together by the offset relative
to the default pose. For translations, we quantify the offset by
the L1 norm. For rotations, we compute the equivalent angle-
axis parametrization and bin the results by the magnitude of
the angle.

IV. SPARSE STABLE SCENE GRAPHS

As an example application, we present the Sparse Stable
Scene Graph. It is a graph structure that uses the features
extracted from the TSDF as nodes, and connects a pair of
nodes only if the edge doing so is embedded in a surface
throughout its length.



(a) (b) (c) (d)
Fig. 3. Integral invariant features: volume invariant in (a),(b), with regions in which the indicator function 1D(x) would return 1 (orange) and 0 (blue);
distance invariant (c),(d) at a flat surface (zero value) and a corner (negative invariant).

The proposed graph structure can be seen as related to a
broader class of representations used for model-based robot
vision known as relational graphs [25][26]. While relational
graphs typically incorporate more semantic meaning in the
nodes, we remain on a lower level of abstraction from the
data, focusing on geometrically linked points of interest.

In this section we will outline an efficient GPU-amenable
way of building the Sparse Stable Scene Graph from a set of
feature points, extracted from a TSDF. This method assumes
no specific feature point detection method, but requires
features to be computed at or very close to the surface. For
a given a set of feature points, their fully connected graph
can be expressed as a matrix that relates an edge index (the
entries in the matrix) to its two endpoint nodes (represented
as the row and column index of that entry) e.g. in the
following matrix, edge number 7 connects feature points
indexed by the numbers 5 (the row) and 2 (the column).

G =



− − − − · · ·
0 − − − · · ·
1 2 − − · · ·
3 4 5 − · · ·
6 7 8 9 · · ·
...

...
...

...
. . .


(16)

In practice, one can determine the zero-based row and
column indices directly from the triangular root of the edge
index ie as,

row = b
√

8ie + 1− 1

2
c+ 1 (17)

s =
row(row − 1)

2
(18)

col = ie − s (19)

without actually having to build the matrix. We know in
advance that for nf features there will be exactly ne =
nf (nf−1)

2 edges in the fully connected graph.
To prune the graph such that it only contains the edges

embedded in the surface, we launch ne separate threads on
a GPU. Each thread is designated an index corresponding to
the edge index ie and it is then straightforward to retrieve the
feature points referenced by the row and column index using
equations (17) and (19). By linearly interpolating between
the endpoints of the feature locations we can query the
TSDF at a number of points along an edge and reject it

if the minimum absolute-valued distance measured along it
is above a chosen threshold. The number of points along the
edge to test can be made dependent on the length of the edge
or constant, if higher accuracy is desired for shorter edges.
The pass or fail decision is stored in a binary device vector of
the same size as the number of edges and a standard stream
compaction [27] operation can then be applied to extract
the pruned graph. An illustration of the process is shown in
Fig. 4.

(a) (b)
Fig. 4. Computing the SSSG of a scene. Starting from a scene reconstruc-
tion, we compute the feature response function (a) and extract feature point
locations. After connecting these into a graph and applying our in-surface
edge pruning method, enabled by the TSDF, we obtain the final graph (b)

There are a number of possible applications in which the
proposed SSSGs can be useful: ranging from place recogni-
tion for loop closing in SLAM, through global registration
methods, to 3D geomety-based object detection. While in
most of these it would be beneficial to also compute a local
space feature descriptor in each graph vertex, some sense of
the utility of SSSGs can be obtained even without resorting
to feature descriptors. We leave further feature-aware SSSG
extensions as a future work and instead present a simple
descriptorless proof of concept SSSG matching algorithm.

The basic idea of the SSSG matching algorithm is ilus-
trated in Algorithm 2. In essence, we first filter out the
bottom ninety percentile shortest edges, and then generate
all possible match combinations of the remaining edges. The
match candidates are then filtered to remove edges of widely
different lengths, as well as edges whose corresponding
vertices have very different degrees. We then run RANSAC
on the remaining combinations and check for inliers among
all vertices of degree one or higher. The resulting matching
algorithm is evaluated in Section V-C.



Algorithm 2 RANSAC-based SSSG matching algorithm
Require: G1 = 〈E1, V1〉, G2 = 〈E2, V2〉

1: Ef1 , E
f
2 ← top 10 percentile length edges

2: M ← combinations of Ef1 , E
f
2

3: filter M for unlikely correspondences
4: return T ← RANSAC best fit transform

V. EXPERIMENTAL RESULTS

The following analysis is based on volumetric integrations
of the copyroom, lounge and stone wall data-sets 1 with
SDF volume size of 5123 voxels with varying voxel sizes
and a truncation distance of ±vsize ∗ 4. The relatively large
truncation distance is chosen to give the integral invariant
features a better chance at producing stable features; see the
discussion in sec. V-B. For each reconstruction session we
use the first 2500 frames, as this captures representative parts
of the scene with diverse characteristics. For all experiments,
we set the non-maxima suppression window to be of size
7×7×7 and set thresholds for culling features for which the
response function is low. The saliency detectors and SSSG
extraction procedures were implemented using CUDA and
deployed on an NVIDIA GeForce GTX Titan GK110 GPU
with 6Gb of memory. A single-core CPU-space program was
used for interfacing and deployed on a computer with and
Intel Core i7 CPU at 3.50GHz.

A. Gradient-based methods

We find that Harris features are generally more stable
than Shi & Tomasi features and as we decrease the pro-
portion of features that we keep, by increasing the rejection
threshold, their performances become similar. Over all of the
experiments reported here, the stability scores of the Shi &
Tomasi detectors were on average equal to 91% of those of
the corresponding Harris detectors, and thus for presentation
reasons we will omit their curves from the following plots.
We show the performance of Harris features, when computed
using different gradient estimation methods in Fig. 5. The
smaller 3× 3× 3 kernels all produced slightly worse results
than their larger counterparts though with similar trends,
we omit them for clarity of presentation. We find that the
derivative of Gaussian outperforms Sobel-Feldman which in
turn outperforms Scharr kernels. For all three, increasing the
rejection threshold results in a larger proportion of stable
features.

Central differences are cheaper to compute but offer poor
repeatability, and when the feature rejection threshold is
increased a larger proportion of high quality features are
culled, noted by the drop in repeatability.

The sensitivity with respect to rotation is shown in
Fig. 5(c). Note that since the volume is not pivoted around
the feature locations but around the camera origin, some
translation is induced as well, explaining why the curves do
not begin at 1. Although the Scharr kernel produces the least
amount of variation with respect to rotation, the repeatability

1available from http://qianyi.info/scenedata.html

of Harris features is higher when gradients are computed
based on both Sobel-Feldman and derivative of Gaussian
kernels. Central differences provide the least robust gradient
estimate, under rotation, as expected.

In all cases , the window size w over which the summation
of the gradients to form H (see Eq. (3) is carried out was
set to 5× 5× 5.

B. Integral-based methods

The integral based methods, namely the volume integral
and signed distance integral features, do not perform as
well as the gradient-based method. We see in Fig. 5(a)—
5(b) that their repeatability is below that of all variants of
Harris features. Increasing the rejection threshold does not
produce much improvement for the signed distance integral,
and causes a slight deterioration in the case of volume
integrals. The rotation invariance, shown in Fig. 5(c) is
good, in spite of the spherical integration region being a
discrete approximation with a radius of 3.5 voxels. The
diameter of the integration region is made to match the
truncation distance of ±4 voxels. However, the actual width
of the non-truncated region of the TSDF may both be larger,
depending on sensor noise, and smaller, due to surfaces being
at grazing angles relative to the line of sight to the sensor.
The dependency between integration radius and truncation
distance is more critical for volume invariants, where the
signed distance field should ideally not be truncated within
the radius of the integration region. This is because the
volume integral is compared to a specific reference value
for curvature estimation, and this reference would need to
be readjusted in case half of the volume being occupied, as
seen in Fig 3(a) no longer corresponds to a planar surface.

Additionally, for signed distance invariants the thickness
of the thinnest object should be at least twice as large as the
radius of the integration region. This is due to the balance
needed between positive and negative fields to indicate a
mean curvature of zero. In the case of thin objects, the
negative side of the distance field will only decrease until
the mid-section of an object leading to skewed estimates.

To highlight another problem of integral invariants applied
to truncated distance fields, consider Fig. 6. Indicated in
green is the amount of additional occupancy caused by a
sharp concave bending of the surface. Here we see that
increasing the radius of the integration region beyond the
truncation distance adds no useful information to the curva-
ture estimation. In fact, it only serves to reduce the relative
difference between curved and planar surfaces, compare the
case of Fig. 6 with those of Fig. 3 for example. In the latter,
the relative difference between the planar, Fig. 3(a), and
curved, Fig. 3(b), case is large; changing from 1

2 to 3
4 of

the circle area.
The results show that the signed distance integrals fare

slightly better than the volume integrals which is expected
since the former uses both the positive and negative regions
of the field and therefore has a slightly larger sample base.
However, neither is large enough to robustly filter out noise
at the tested radius. Since merely extending the radius is
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Fig. 5. Repeatability of Harris features computed with the derivative of Gaussian kernel (size 5 × 5 × 5) when threshold is set such that only the top
50% and 10% features are maintained

Fig. 6. 2D analogy of volume integral with occupancy estimated on a
narrowly truncated signed distance field. The green region shows the total
additional ’volume’ that appears due to a sharp right-angled bend

fruitless, we are left with the option of extending the TSDF
truncation distance to accommodate a larger integration
region. However, this leads to a decrease in the quality of
scene reconstruction and makes the reconstructed geometry
more dependent on the sensor’s viewpoint locations.

The main advantage of integral invariant features is that
they are relatively cheap to compute, requiring only a sum
reduction of the distance field within a bounding region.
To make the computational cost more tangible, a naive
implementations of derivatives by convolution with a filter
kernel take between 680ms and 150ms for kernels of 5×5×5
and 3 × 3 × 3 respectively. Computing the Harris features
adds another 100ms, with approximately 8ms more for the
non-maxima suppression. In contrast, the integral invariants
take around 20ms to compute, followed by the non-maxima
suppression adding to a total of 28ms.

C. Matching Sparse Stable Scene Graphs

The graph generation is roughly equivalent to a simple ray
casting operation, though typically with fewer and shorter
rays than needed to render a VGA video frame from the

TSDF. An edge can also be rejected a priori, if its endpoints
are deemed to be too far apart. This rejection criterion
promotes the formation of more numerous disjoint graphs
which tend to have a closer relationship to objects than
overall scene structure. Any number of segmentations based
on edge lengths may be chosen if meaningful heuristics
are available for the particular environment. Typical timings
obtained are 2ms, 8ms, 26ms for 260, 700 and 1200 features,
respectively.

Our method for building Scene Graphs is very efficient,
though the resulting graph is only as stable as the features
used to generate it. Occasionally, stable features fail to be
connected because they appeared at some distance away
from the surface. This can be potentially be mitigated by
shifting the features in the direction of the local surface,
i.e., for each feature point q, compute an updated q′ =
q − α dist(q,Φ)(∆dist(q,Φ)), with α parametrizing the
size of the shift. Since corner points are, by definition, the
regions where gradient variation is high, the final location of
q′ may be difficult to predict.

VI. SUMMARY AND CONCLUSIONS

Our experiments on integral invariant features suggest that
the zero-order information contained in local regions of a
discretely sampled TSDF is not enough to separate truly
salient regions from noise and that gradient-based methods
perform better. It is possible that machine learning methods
such as FAST-ER[28] that builds a decision tree optimized
for finding repeatable points may perform better even in the
absence of gradient information.

Requiring gradients does not necessarily bar features from
being used in real-time applications since linearly separable



Fig. 7. A tabletop scene with volume integral and Harris features side-by-
side

filters can be applied very efficiently, even for large vol-
umetric images. Furthermore, since gradients are typically
computed at every frame during the camera-tracking process,
these could be incrementally fused into separate volumes
over time, as well. Other performance strategies such as
empty-space skipping may also be used to make the compu-
tation more tractable.

During our experiments we observed some practical char-
acteristics of the feature detectors, worth highlighting. In
Fig. 7 we see the implications of the integral response
function not being computed exactly on the surface, and
why shifting the grid will have an impact on the results. As
explained before, the integral invariants erroneously increase
their response as the integral is evaluated further away from
the surface and should ideally only be computed exactly
on it. We have also observed that Harris corner maximum
responses tend to occur closer to the center of a corners
radius rather than the surface, since this is where gradients
are both different and unmixed.

We have shown that feature detection in 3D, coupled
with the TSDF representation can support novel applications,
such as the SSSG. Whether this graph structure itself is a
useful approximation to the real map in a SLAM scenario
remains to be investigated. However, it is unquestionably
a lightweight wire-frame representation that can be used
for remote visualization, comprised of several orders of
magnitude fewer elements than the polygons produced by
e.g. marching-cubes [29].
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