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The Next Step in Robot Commissioning:

Autonomous Picking & Palletizing

Robert Krug∗, Todor Stoyanov∗, Vinicio Tincani‡, Henrik Andreasson∗,

Rafael Mosberger∗, Gualtiero Fantoni‡ and Achim J. Lilienthal∗

Abstract—So far, autonomous order picking (commissioning)
systems have not been able to meet the stringent demands
regarding speed, safety and accuracy of real-world warehouse
automation, resulting in reliance on human workers. In this work
we target the next step in autonomous robot commissioning:
automatizing the currently manual order picking procedure. To
this end, we investigate the use case of autonomous picking and
palletizing with a dedicated research platform and discuss lessons
learned during testing in simplified warehouse settings. The main
theoretical contribution is a novel grasp representation scheme
which allows for redundancy in the gripper pose placement.
This redundancy is exploited by a local, prioritized kinematic
controller which generates reactive manipulator motions on-the-
fly. We validated our grasping approach by means of a large
set of experiments, which yielded an average grasp acquisition
time of 23.5 s at a success rate of 94.7%. Our system is able to
autonomously carry out simple order picking tasks in a human-
safe manner, and as such serves as an initial step towards future
commercial-scale in-house logistics automation solutions.

Index Terms—Logistics, Grasping, Autonomous Vehicle Navi-
gation, Robot Safety, Mobile Manipulation;

I. INTRODUCTION

THE increasing need for rapid order fulfillment and accu-

racy in supply chain processes has created a substantial

interest for autonomous robotic solutions. Of special interest

in logistics is autonomous commissioning (i. e., order picking

and collection of goods from storage compartments in ware-

houses). One of the main arguments for automating this task

is that the dull and strenuous nature of commissioning can

cause mental and physical illness in human workers. As a

result, in order to increase the humanization and efficiency of

workstations, the determination within the logistics sector to

invest in this area is high [1].

There exist partial solutions for the automated commission-

ing problem in controlled environments such as the system
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Fig. 1. The APPLE Platform: A retrofitted Linde CitiTruck1 forklift AGV
(7) comprises the mobile base. The nonholonomic AGV is able to detect and
pick up pallets in designated loading zones using an Asus Xtion Pro Live2

structured light camera (not depicted). For localization, a Velodyne HDL-32E3

Lidar (4) is employed. On-board safety systems include a back-mounted SICK
S3004 laser scanner, a dedicated camera system (6) to track human workforce
wearing reflective safety clothing and a projector which visually indicates the
AGV’s intended path (5). A lightweight KUKA LBR iiwa5 manipulator (3),
fitted with an under-actuated gripper (2) with conveyor belts on the inside
of each finger, is used for robust grasping and object manipulation. Object
detection is done with a Structure IO6 device (1) which is mounted on the
gripper’s palm.

described in [2]. It coordinates a fleet of Autonomous Ground

Vehicles (AGVs) which transport shelves filled with goods

to a human worker who picks the corresponding objects to

complete the order. The envisioned next step will be to allow

autonomous robots to cooperate with humans in solving the

commissioning task and let simple picking procedures be

handled automatically.

In this work, we conducted a use case evaluation of the

following important sub-task chain, which occurs during com-

missioning in prototypical warehouses: autonomous picking

of goods from a storage location, subsequent placement on a

1http://www.citi-truck.com
2http://www.asus.com
3http://www.velodynelidar.com/hdl-32e.html
4http://www.sick.com/group/EN/home/products
5http://www.kuka-lbr-iiwa.com
6http://www.structure.io
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standard EUR pallet and transport of the filled pallet to a target

location. Our previous research efforts in logistics robotics [3],

[4] indicated that human-safe AGV navigation, as well as the

autonomous grasping/manipulation of unstructured goods at

satisfactory cycle times are the key obstacles to overcome.

This led to the development of the Autonomous Picking

& Palletizing (APPLE) research platform shown in Fig. 1,

which integrates our solutions to autonomous commissioning

in environments shared with human workforce.

The main goal of this work is to outline possible solution

strategies – developed in close collaboration with partners

from industry – which will allow to overcome the current

shortcomings of robotic commissioning systems in terms of

speed, safety and accuracy. As most of our approaches to

AGV navigation [5], [3] and human detection [6] have been

published previously, here we only give a review and describe

relevant extensions while focusing mainly on the manipulation

aspect. The key insight is that the relatively simple structure

of autonomous pick & place tasks allows fast and robust

grasping by coupling compliant manipulator control strategies

with a novel redundant grasp representation. This allows

to substitute classical motion planning with online motion

generation which omits the delays occurring in the commonly

used sense-plan-act architectures. Furthermore, we propose

simple compliant grasp routines that facilitate robust grasp

acquisition by exploiting the structural features of our gripper

as well as physical constraints imposed by the target objects.

The suggested solutions are evaluated experimentally. We also

report our efforts in integrating the isolated and human-safe

sub-components which comprise the APPLE demonstrator

and discuss our lessons learned during the Hannover Messe

fair, where the platform conducted hundreds of successful

commissioning tasks.

A. Positioning with Respect to Related Work

The industry standard for autonomous navigation of forklifts

is to use pre-defined trajectories which are either manually

defined or learned through teaching-by-demonstration from a

human operator [7], [8]. Although conceptually simple, pre-

defining trajectories limits pallet handling to occur only at

pre-defined poses. In addition, only overly simple strategies

for handling unforeseen obstacles can be applied. Compared to

omni-directional mobile platforms, the fundamental difficulties

of motion planning for a forklift lie in the nonholonomic

constraints and the large sweep area it needs to occupy while

operating in a limited work space.

In order to obtain reliable localization in large dynamic

warehouses with high accuracy, it is common to mount re-

flectors, typically at a height which is not blocked by goods

or other dynamic objects, and to use a dedicated sensing

device [9]. Without additional infrastructure, navigation in

large and dynamic environments remains a challenge.

Detecting pallets at unknown/uncertain poses has been stud-

ied previously [10]. However, to the best of our knowledge,

no solution for a fully integrated autonomous pallet detection

and picking system has been reported in the literature so far.

In current autonomous grasping systems [11], [12], [13], [4],

grasp planning and manipulator motion planning are usually

seen as independent sub-problems. A database storing object

models together with sets of pre-computed grasps is used

to find suitable gripper poses and joint configurations. In

the online stage, sampling-based planners attempt to gener-

ate valid trajectories for the pre-planned grasps, which are

executed in a feasible-first manner [11]. During the execu-

tion phase, such approaches necessitate many futile motion

planning attempts, which often incurs significant time de-

lays. To relax the problem, Berenson et al. [14] propose to

represent equivalent grasps as a set of end-effector poses in

order to exploit redundancy. They then generate manipulator

trajectories by employing a randomized planner which sam-

ples the corresponding constraint manifolds. However, while

being able to solve complicated planning problems if given

enough time, sampling-based planners do not scale well to

geometrically simple scenarios, often produce sub-optimal

trajectories and are ill suited to incorporate contact events with

the environment. Instead, as has been noted by Righetti et

al. [15], interactions should be exploited during manipulation

to facilitate dexterity. They report that a few pre-planned

grasps suffice if interaction control schemes are coupled

with optimization-based planning. Blurring the line between

planning and control, Gienger et al. [16] advocate a holistic

approach to grasp selection and online manipulator motion

generation by employing an attractor-based control scheme to

achieve grasps which are encoded in learned maps.

On a conceptual level, our work shares the ideas of exploit-

ing grasp redundancy [14], [16] and online manipulator mo-

tion generation [16] to simplify/accelerate grasp acquisition,

as well as using compliant interaction control to aid grasp

robustness [15]. Our main contribution is a novel redundant

grasp representation scheme tailored to on-the-fly manipula-

tor motion generation. It is set apart from the conceptually

similar continuous representations in [14], [16], which use

box-constraints and object-specific maps respectively, in that

we formulate general algebraic constraints to define valid

grasp pose/configuration regions. This allows to encapsulate

empirical knowledge about, e. g., desired grasping device

alignment. Such a constraint-based representation is appealing

because, together with other constraints (e. g., for obstacle and

joint limits avoidance), it can directly be used in a multitude

of constraint-based motion generation/planning methods (e. g.,

the global trajectory optimization scheme employed in [15]).

As a second contribution we experimentally verify that a

local optimization-based method to simultaneous manipulator

motion generation and control, coupled with our redundant

grasp representation and appropriate compliant grasp exe-

cution strategies, is sufficient to robustly solve the targeted

autonomous pick & place problems without planning delays.

Specifically, we use the kinematic control formulation by

Kanoun et al. [17] which augments the popular Stack-of-Tasks

(SoT) framework [18] with inequality tasks. Here, hierarchical

tasks capturing the desired movement behavior are imposed

as constraints on a series of underlying optimization problems

which are solved at each time step to obtain the generalized

inverse kinematics. Our compliant grasp controller which

leverages underactuation and active surfaces of the utilized

grasping device [19] has been presented in preliminary form
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in [13] and [4]. In this article, we additionally give a statistical

evaluation regarding grasp acquisition robustness based on

a large set of executed grasps. Furthermore, we show how

conceptually difficult cluster grasping problems can be solved

reliably by exploiting compliance and physical constraints

imposed by the environment [20].

II. MOBILE BASE

We chose a motorized forklift base (see Fig. 1), originally

designed for manual operation, which provided the mechanical

setup necessary for pallet picking out-of-the box. The forklift

was retrofitted with a steering mechanism and a commercial

AGV control system which allows manual control as well as

fully autonomous employment at operational driving speeds of

1.5m/s, which roughly corresponds to human walking speed.

We review our solutions to autonomous navigation [21], [5],

[3] in Section II-A and detail our measures to assure safe

operation in the vicinity of human workers in Section II-B.

A. The APPLE Solution to Navigation

An industrial requirement for pallet picking is to achieve

an end pose accuracy of ±0.03m in position and ±1◦ in

orientation. Our navigation module ensures that these accuracy

demands, as well as human-safety requirements are met. It

comprises trajectory generation, tracking control, localization

and a system for pallet detection.

Given start and goal poses, the first step in the online

trajectory generation is to generate a discretized path, feasible

for the nonholonomic forklift kinematics, using a lattice plan-

ner [22]. Then, we provide this path as an initial guess to a

trajectory optimizer which generates a smooth, collision-free

and continuous reference trajectory [5]. A model-predictive

tracking controller allows to follow the generated trajectory

with high accuracy. For localization, a Velodyne HDL-32E

Lidar is utilized to construct a 3D map of the static parts of

the environment [23]. The map and odometry information is

then used to localize the vehicle in the presence of dynamic

entities using a dual timescale approach [21].

The current system for pallet detection and pickup requires

a rough estimate of the location of the pallet (i. e., a pre-

defined pickup zone). In order to compute the final pose based

on sensory data from an Asus Xtion Pro Live mounted on the

AGV, a Signed Distance Function (SDF) tracker [24] is used

with a given SDF model of the pallet. The tracking is done

while driving towards the pickup zone. Once the pallet pose

is obtained with sufficient confidence, the driving trajectory is

re-computed on the fly in order to pick the pallet.

B. AGV Safety

To assure safe operation, the vehicle conforms with the

standard regulation for AGV systems according to EN 1525
and is equipped with a safety laser scanner which can directly

brake the AGV independently of the navigation controller. In

addition, the vehicle is equipped with an industrial prototype

system for detecting human workforce [6]. Robust human

detection is crucial to ensure a safe work environment. We

Fig. 2. Human Detection: Reflective markers on safety garments are detected
and located at a coverage angle of 100 degree, in a range of 1–20m. This
enables the robot to detect and track humans in the close neighborhood for
safe navigation. The system can estimate human positions/velocities and infer
body pose information. Active near-infrared stereo vision in combination with
reflective safety clothing ensures robust performance nearly independent of
the illumination conditions (see [6] for details).

address this problem by using a camera-based safety system

that detects and tracks human workers wearing off-the-shelf

reflective clothing as shown in Fig. 2.

III. GRASPING & MANIPULATION SYSTEM

For an autonomous grasping system to be viable in logistics

scenarios it needs to approach human working speed – a

requirement which, based on our previous experience [13], [4],

is not achievable with traditional sense-plan-act architectures.

Also, the targeted use-case requires sharing the work envi-

ronment with humans, which excludes stiffly position/velocity

controlled manipulators as they might exert large forces to the

environment. In this section, we address these issues with a

novel integrative approach for grasp representation/planning

and manipulator motion generation. The main idea is to

provide a functional representation of grasps as intervals in

task space, which allows redundancy in the gripper pose

prior to executing the grasp as discussed in Section III-A

below. In Section III-B we leverage the obtained redundancy

to generate reactive motions by using the control framework

in [17] instead of classical motion planning. Our approach

relies on robust grasp execution strategies which we present in

Section III-C before discussing safety aspects in Section III-D.

A. Grasp Representation and Planning

Grasps planned in simulation might fail in practice due

to the inevitable uncertainties in modeling, perception and

positioning, which make it impossible to precisely reproduce

pre-planned hand poses/configurations and contact locations.

This holds especially true, when considering an underactuated

grasping device as we do in the presented work. In this case,

the gripper’s joint configuration depends on the interaction

with the environment and is difficult or impossible to de-

termine at planning time. Therefore, we represent grasps as

pre-defined pose envelopes associated with primitive object

geometries as exemplary shown in Fig. 3(a) for side grasps

on cylindrical objects. Note that analogous envelopes can

also be formed to enable, e. g., top grasps. These envelopes
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Fig. 3. Grasp Constraints: (a) The shaded cyan regions illustrate the side grasp envelope constraints for a cylindrical object. For a successful grasp, the palm
frame origin o needs to lie inside the depicted cylindrical shell, which is aligned with object axis a. The cylinders height is limited by two planes which
are normal to a. Additionally, the gripper’s vertical axis (z) is constrained to lie in a cone whose axis â is parallel to the object axis a. Furthermore, the
gripper’s approach axis (x) has to lie inside a cone centered on the normal which connects axis a and point o. (b) During the online stage, the corresponding
grasp envelope shown in Fig. 3(a) needs to be truncated (i. e., parameters for r1, r2, c, h and ϕ need to be determined) to accommodate the specific target
object dimensions and to account for the fact that some regions of the grasp envelope might not be feasible due to obstruction by the environment. (c) The
palm frame origin o needs to lie between the cyan shaded planes, the gripper’s z-axis is constrained to lie in a cone whose axis â is vertical. Furthermore,
the gripper’s approach axis (x) has to lie inside a cone centered on the horizontal approach vector v which points at the closest point c on the cluster (c is
evaluated once at grasp approach movement initiation).

bound the grasping device’s position and orientation, but do

not fully constrain its pose. In this work, for simplicity, we

limit ourselves to the illustrated grasp envelope defined for

cylindrical shapes. Corresponding envelopes can be defined

for other shape categories such as spheres and parallelepipeds

as well. Opposed to the similarly defined representations

in [16], which are learned in simulation, we deliberately design

grasp envelopes to incorporate prior knowledge about robust

grasp poses in our representation. In a concept originating

from observations of human grasping behavior, it has been

shown that the grasping device should be roughly aligned

with the target object’s principal components to achieve robust

grasps [25]. For the case depicted in Fig. 3(a), this property

is achieved by imposing cone constraints.

For evaluation purposes, the parameters of the grasp en-

velopes such as the distance range between gripper and object

were determined experimentally in this work. To ease this non-

trivial requirement, we rely on a gripper that offers a low pre-

grasp pose sensitivity combined with a compliant and robust

grasp execution routine, as discussed in Section III-C. During

operation, after the target object pose is detected, the grasp

envelope needs to be adapted to the specific scene and target

object dimensions as illustrated in Fig. 3(b). For the evaluation

in Section IV, we pre-defined the corresponding parameters

and gripper pre-grasp joint configuration, an appropriate pro-

grammatic approach is subject of ongoing work.

B. Manipulator Motion Generation

We use a control-based approach to leverage the freedom in

pre-grasp position and orientation gained from the previously

described grasp representation scheme. Although our represen-

tation could be used in any constraint-based motion generation

framework, we employ the method developed in [17] since it

offers real-time capabilities. The grasp envelope constraints, as

well as additional desiderata such as joint limit avoidance, are

cast in form of task functions. These are subsequently utilized

to form a hierarchical SoT which is then used to compute

prioritized controls during movement execution. Therefore,

motions are generated instantaneously without the planning

delays occurring in sense-plan-act architectures. Since we

directly use the method in [17], we only briefly revise the

concept in the following and refer the reader to the original

work for details.

We lean on the notation in [26] and describe the manipulator

joint configuration with the vector q and the control inputs as

corresponding joint velocities q̇. A task function e(q) is any

derivable function of q. To give an example, a task with the

purpose of bringing an end-effector point p(q) onto a plane

described by unit normal n and offset d can be transcribed

by the task function e(q) = nTp(q) − d, which formulates

the projection residual between the plane and p(q). The task

evolution is given by Jq̇ = ė with task jacobian J = ∂e
∂q .

The goal is to compute joint velocities such that the task

evolution follows a desired reference profile ė∗ (in this work

chosen as exponential decay ė∗ = −λe, with λ ∈ R+). For

a single equality task, this necessitates to solve the following

least squares Quadratic Program (QP)

q̇∗ ∈ arg min
q̇

||Jq̇ − ė∗||. (1)

In order to allow for inequality tasks, we henceforth use a

general task formulation with upper bounds

Jq̇ ≤ ė∗. (2)

As stated in [26], this allows to transcribe lower bounds

Jq̇ ≥ ė∗, double bounds ė∗ ≤ Jq̇ ≤ ˙̄e∗ and equalities

Jq̇ = ė∗ by reformulating the task respectively as

−Jq̇ ≤ −ė∗,

[

−J

J

]

q̇ ≤

[

−ė∗

˙̄e∗

]

and

[

−J

J

]

q̇ ≤

[

−ė∗

ė∗

]

.

If the constraint in (2) is infeasible, a least squares solution

for q̇∗ as in (1) can be found by introducing the slack variable
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w in the decision variables

min
q̇, w

||w|| (3)

subject to Jq̇ ≤ ė∗ +w.

To form a hierarchical SoT with p = 1, . . . , P priority levels,

we stack all task jacobians in (2) with the same assigned

priority in a matrix Ap, and all corresponding reference

velocities in a vector bp to form one constraint of the form

Apq̇ ≤ bp for each hierarchy level. The aim is to sequentially

satisfy a constraint at best in the least square sense while

solving for the subsequent constraints of lower priority in the

null-space of the previous constraint, such that the previous

solution is left unchanged. Therefore, the following QP, where

the previous slack variable solutions w∗

i are frozen between

iterations, needs to be solved for p = 1, . . . , P

min
q̇, wp

||wp|| (4)

subject to Aiq̇ ≤ bi +w∗

i , i = 1, . . . , p− 1

Apq̇ ≤ bp +wp.

The control vector q̇∗ is then obtained from the P th solution

of (4). Essentially, a sequence of instantaneous optimal control

problems is solved at each time-step. The method is local

in that it does not account for the temporal state evolution.

However, for the targeted relatively simple autonomous pick

and place operations, we found the performance satisfactory

as demonstrated in Section IV. Opposed to sampling-based

planners, the chosen control scheme can easily incorporate

qualitative requirements (e. g., the desired gripper alignment)

during motion generation and allows for redundancy exploita-

tion via appropriate task function formulations. For the case

of grasp pose and configuration control, these task functions

incorporate our grasp envelopes as exemplary shown in Fig. 3.

Manipulator obstacle avoidance is also achieved on a con-

trol level, by formulating tasks which maintain minimum

distances between simple shape primitives such as spheres,

planes, points and capsules which are used to model the

robot and environment geometries. In real-world applications,

where knowledge about the environment is available only

in form of noisy sensor data, it might not be possible to

strictly avoid contact with the environment without being

overly conservative. Instead, we argue that for the considered

application strict collision avoidance is neither necessary nor

desired, since picking and manipulation inherently necessitate

contact events which can even be exploited to achieve robust

grasping behavior as discussed in Section III-C. To this end,

the APPLE platform relies on compliant low-level control

schemes. Regarding the manipulator, we use a joint impedance

controller to track the reference velocities obtained in each

time step by solving (4). If a sufficiently accurate dynamic

model were available, the scheme could easily be adapted

to torque control [26]. However, we are not considering this

option at present.

C. Robust Grasp Control & Execution

For this component, we exploit the capabilities of the uti-

lized gripper [19], namely underactuation and active surfaces

Fig. 4. Cluster Grasping with Active Surfaces: (a) The grasp pose is obtained
by detecting the depicted cluster from a pre-defined sensing pose, forming a
grasp envelope as illustrated in Fig. 3(c) and posing corresponding constraints
to the manipulator control in (4), which generates the approach motion
reactively. To allow passive wrist pose adaption during grasp execution,
the corresponding Cartesian stiffness is set low in the horizontal plane.
Finger closing is triggered by setting a relatively low current setpoint to the
open/close motor controller. (b) Once the fingers come into contact with the
object and the target current is reached, the motion stops which is detected by
monitoring the corresponding motor encoder. If, as in the depicted case, the
opening angle indicates a grasp on multiple objects, an optional separation
step is triggered where the belts move in opposite directions. (c) The belts are
actuated to pull in the target object. (d) Once the belts block and the phalanges
have wrapped around the object an enveloping grasp is achieved, after which
a higher current setpoint is given to the open/close motor controller to ensure
a firm grasp.

on the finger pads in order to achieve robust grasping behavior.

Each of the grippers two fingers has a planar manipulator

structure with two rotary joints and active surfaces which

are implemented by conveyor belts on the inside of the two

phalanges. The mechanical structure is underactuated and

comprises only one actuated Degree of Freedom (DoF) for

opening and closing and two DoF per finger for the belt

movements. If, during grasping, the proximal phalanges are

blocked by an object, the grippers distal phalanges continue

to “wrap around” and envelope it in a firm grasp. The

experiments we reported in [13] showed, that in cluttered

scenes fingertip grasps are more likely to be feasible than

robust enveloping grasps, because the latter necessitate large

opening angles resulting in bulky gripper silhouettes which

hamper the grasp approach. Therefore, we employ the “pull-

in” strategy which is illustrated in Fig. 4. As demonstrated

previously [13], this strategy is very effective in achieving

stable grasps from a wide range of gripper pre-grasp poses.

The grasping controller was implemented by means of low-

level current control of the gripper’s DC-drives. Since the

gripper drives have a low transmission ratio and are easily

back-driveable, current control enables a simple compliant be-

havior because the current absorption increases with increasing

effort on the output. Thus, the motor current is proportional

to the resulting grasping force. The main parameters to this

routine (the current thresholds for contact and final enveloping

grasp) depend on the target object properties – namely friction

coefficient and mass. Here, good values for these parameters

were found experimentally for a set of target objects.
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TABLE I
GRASP ACQUISITION EVALUATION

Scenario # of exp. Success Rate [%] σc
1,2 [cm] |σd

1,2| [cm] l [rad] tp [s] tm [s]
∑

t [s]

Beer rct. 25 22 88.0 1.1, 0.8 6.8, 5.9 5.2± 0.3 7.3± 1.0 9.0± 0.6 16.3± 0.7

Beer rd. 25 23 92.0 2.5, 1.4 6.9, 5.1 5.4± 0.4 3.4± 0.3 11.1± 0.6 14.5± 0.7

Coke rct. 25 25 100 3.0, 2.2 6.4, 5.4 5.6± 0.1 3.0± 0.2 11.2± 0.5 14.2± 0.5

Coke rd. 25 24 96.0 2.6, 1.4 7.3, 5.4 5.1± 0.3 3.0± 0.3 11.5± 0.6 14.5± 0.6

Bull rct. 25 25 100 3.2, 2.3 5.5, 4.8 5.7± 0.2 2.4± 0.2 11.1± 0.5 13.5± 0.5

Bull rd. 25 23 92.0 2.2, 1.4 6.7, 5.0 5.1± 0.3 2.4± 0.2 11.5± 0.5 14.0± 0.5

Total 150 142 94.7 3.9, 2.6 6.6, 5.3 5.3± 0.4 3.6± 1.7 10.9± 1.0 14.5± 1.0

Rather than picking a specific object, commissioning often

involves the problem of picking one instance from a cluster of

identical objects. Trying to solve this task by identifying and

selecting an appropriate target object poses serious challenges

to perception and grasp/manipulation planning. We devise a

novel, robust solution to this problem by leveraging our grasp

representation framework and compliant interaction control

to exploit contact between grasping device and environment.

To this end, we formulate the grasp envelope constraints

illustrated in Fig. 3(c). In practice, this results in a substantial

speed-up due to the simplified perception problem since we

only detect the cluster of objects and not each separate object

instance. During grasp execution, after approaching the target

cluster with the gripper fully opened, we set the manipulator

wrist impedance low in a horizontal plane while executing

the previously described pull-in strategy. This allows the end-

effector to automatically adjust its pose based on the occurring

grasp forces (see Fig. 4), a strategy which proved to be very

effective as shown in the evaluation in Section IV.

D. Grasping & Manipulation Safety

Specific safety standards for collaborative robots are still not

fully defined, although a corresponding technical specification

(ISO TS 15066) is in development. Current guidance by

the National Institute of Standards and Technology (NIST)

includes power and force limiting. We use a light-weight

manipulator, which reduces the kinetic energy during motion,

limiting potential impact forces. Also, interaction forces are

limited by employing impedance controllers as discussed

above. Additionally, the manipulator’s joint torque sensors

allow a fast emergency stop if forces anywhere on its surface

exceed given thresholds. Due to current control and low gear

transmission ratios, the grasping device is back-driveable. This

ensures compliant behavior and allows to restrict the generated

forces by limiting the actuator currents.

IV. EVALUATION

The previously described software components were imple-

mented in the Robot Operating System (ROS)7 framework. An

off-the-shelf solver8 is used to carry out the optimizations for

the motion control according to (4). A rigorous evaluation of

the full system would need to consider a staggering variety

7http://www.ros.org
8http://www.gurobi.com
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Fig. 5. Grasp Success Rates: (Left) Grasp control evaluation rates depicted
in green; (Right) Full grasp acquisition evaluation rates shown in blue;
Unsuccessful attempts were mainly due to failure in acquiring a firm envelope
grasp leading to slippage in the subsequent object lifting phase. This happened
when, during pull-in (cf. Fig. 4), the object got stuck on the hinges between
proximal and distal phalanges which are not covered by the active surfaces.

of environment and task parameters in order to produce

generalizeable results. Thus, instead of attempting to holisti-

cally evaluate the performance of the APPLE system in an

uncontrolled warehouse environment, it is more prudent to

validate the performance of each sub-system in isolation. The

successful integration between the described sub-systems then

depends on the application specifics and target requirements.

Of these components, only the manipulation framework has

not undergone prior evaluation (for tests of the navigation

system see [21], [5], [3], for the AGV safety features see [6]).

The manipulation system was evaluated with a stationary

base in a two-step manner: first, we characterized the robust-

ness of our grasp control scheme in isolation. To this end,

we set up a grid of initial end-effector poses and attempted

grasping and lifting of four different target objects – two

square boxes (146 g/45mm and 163 g/50mm), a spray bottle

(127 g/�52mm) and a can (361 g/�53mm). The gripper was

placed within a box of 10 x 8 x 4 cm and roll/pitch angles of

±10◦, resulting in 121 to 161 different grasps per object for

a total of 526 grasps. A grasp was deemed successful if the

object could be lifted. Figure 5 visualizes the corresponding

success rates. The overall success rate was 92.4%, with the

spray bottle resulting in more failures under gripper perturba-

tion due to its irregular shape.

Second, we evaluated the full grasp acquisition procedure

for cluster grasping, starting from a pre-defined sensing pose.

First, cluster detection, segmentation and pose estimation

were carried out with standard algorithms from the Point

Cloud Library9. Subsequently, grasp approach motions were

generated as described in Section III-B, followed again by

grasp execution and a brief lifting phase to determine grasp

9http://www.pointclouds.org
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Fig. 6. Testing: (Left) The robot picks up an empty pallet in a designated zone; (Middle) The robot navigates to a loading zone where a can is detected and
picked up; (Right) The loaded pallet is transported to a target location (see the video attachment to this article).

success. We formed tightly packed clusters of 3 different object

types each in 2 different configurations – rectangular (as in

Fig. 4) and pseudo-random for a total of 6 scenarios with 25
test runs each. The utilized objects were Beer (522 g/�66mm),

Coke (358 g/�58mm) and Red Bull (272 g/�53mm). The

full results are listed in Table I. Success rates (separately

visualized in Fig. 5) reveal a satisfactory outcome across all

scenarios with an overall rate of 94.7%, which is comparable

to the previous set of experiments. This indicates that the

approach is robust to variations in perception and grasp

approach. To give an idea about the horizontal variability of

cluster positioning and dimensions for each scenario, Table I

also lists the standard deviations of the cluster center points

σc
1,2, as well as the standard deviation means of the points

forming the respective clusters |σd
1,2|. Both quantities are

measured along the eigenvectors of their respective covariance

matrices. We also measured mean/std perception execution

times tp and grasp approach movement durations tm which

are consistent across all test runs – we attribute the seemingly

longer perception times in the first scenario to the fact that

computationally expensive visualization was running on the

same machine for this case. Grasp execution duration is

roughly constant at either 6 s or 12 s, depending on whether

the optional object separation step is triggered when multiple

objects are grasped initially (see Fig. 4). Therefore, in total,

the full grasp acquisition procedure takes on average 23.5 s.

A direct comparison to previous works is difficult due to

the vast differences in hardware/experimental scenario setup

and the fact that few works actually report complete system

run times. Compared to our own previous efforts tackling

shipment container unloading (with a very different hardware

setup) using a database of 500 pre-planned grasps and a

sampling based planner [13], [4], the presented approach

offers a speed-up factor of roughly 5. This is despite the

fact that in the present work we used very conservative

movement speeds and spent little effort in parameter tuning.

The authors of [15] report average run times of 75.4 s in their

grasping/manipulation experiments but the specific scenario

setup is unclear. Lastly, we computed the joint travel distance

summed over all manipulator joints l =
∫ tm

0
‖q̇(t)‖1dt. It

is evident, that the approach motions were consistent and

repeatable to a high degree across all experiments.

Finally, to asses the feasibility of the targeted use case, we

conducted test runs in a simplified commissioning scenario

Start

Stop

AGV Navigation 

(Sec. II-B)

Manipulator Control 

(Sec. III-C)

Go to pallet pickup zone

Go to load pose Sensing configuration

Grasp execution

(Sec. III-D)

Object grasp (Sec. III-B)

Object extraction

Object transfer 

Object placement 

Home configuration Go to target pose

Detect and pick pallet

Object detection

Fig. 7. Test Run Flow Chart: After navigating to a pickup zone, which
is established in advance, a pallet is detected and picked as described in
Section II-A. Subsequently, the robot drives to a given loading location
and the manipulator assumes a pre-defined sensing configuration which
allows to observe the target objects with the palm-mounted camera. After
object detection, the pick & place procedure is sub-divided and carried out
by controlling the manipulator under obstacle constraints and sequentially
different constraint sets for grasping (using constraints according to either
Fig. 3(a) or Fig. 3(c)), object extraction (lifting the object above a given plane),
object transfer (move the object into a given cylindrical region over the pallet)
and object placement (lowering the object with low cartesian wrist impedance
in vertical direction while maintaining the cone constraint on the gripper’s
vertical axis). After moving the manipulator to its home configuration, the
loaded pallet is transported to a set target location.

as depicted in Fig. 6. The corresponding flow chart in Fig. 7

outlines the temporal sequence of events in these test runs.

We carried out successful trials in two sample system de-

ployments: one in our lab, and the second at the week-long

industrial fair Hannover Messe. In the second case, the APPLE

system was in continuous operation inside a 3 x 5m confined

area, performing hundreds of successful commissioning tasks.

Run-times for the procedure illustrated in Fig. 7 were ap-

proximately 2–3 minutes, depending on driving distance, of

which roughly 1 minute was spent on object detection and

manipulation. In the trials the major sub-components of the

APPLE system – navigation, manipulation and safety – all

satisfied the posed requirements.

V. CONCLUSIONS AND LESSONS LEARNED

In this paper, we target the next step in autonomous robot

commissioning: automatizing the order picking procedure. Our
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work is based on the use case of autonomous picking and

palletizing (APPLE) for which we developed a dedicated

research platform, in order to assess the feasibility of solving

the task under stringent industry requirements regarding speed,

accuracy and safety. The APPLE robot carries safety systems

for the detection and avoidance of human workers wearing

reflective safety clothing. The developed manipulation system

for loading/unloading unstructured goods from pallets operates

on a novel redundant grasp representation, which allows to

incorporate empirical knowledge. The key insight is that

exploiting grasp redundancy and compliant interaction control

schemes allows to robustly solve simple pick & place tasks

by leveraging fast, local motion generation based on real-time

control rather than explicit motion planning. We provide an

experimental validation of the APPLE grasping/manipulation

sub-system and demonstrate successfully executed trials of a

simplified commissioning task (see the video attachment).

Based on our experience with AGV navigation, trajectory

generation and tracking need to be treated in a holistic way

to achieve the required navigation accuracy. To this end, we

leverage trajectory optimization, which allows for a better

subsequent tracking performance due to the limited amount

of control actions required (one of the optimization criteria).

In turn, smooth execution with few changes in the control

commands leads to higher end pose accuracies and less jerky

movements.

Regarding grasping, compared to our previous experience

with sense-plan-act architectures [13], [4], the presented re-

active manipulator motion generation scheme resulted in a

tremendous speed-up, while producing more natural move-

ments at the same time. Also, exploiting compliance in the

gripper/manipulator, while relying on grasp execution schemes

with low pre-grasp wrist pose sensitivity, proved to be more

reliable than using sampling-based planning with strict ob-

stacle avoidance (which, due to sensor noise, is precarious

anyway). The chosen local motion control method proved to

be sufficient for the relatively simple pick and place operations

in this work, albeit it required to split the object manipulation

task in pre-defined discrete phases (see Fig. 7).

While the developed grasping approach showed good suc-

cess rates, an industry-grade solution needs additional mea-

sures to avoid grasp failure. We plan to address this by

evaluating grasp success online using sensory feedback after

the gripper contacts the object. This will allow to initiate

early countermeasures such as adjusting the hand pose and/or

contact locations. Also, future work will aim at reducing the

local nature of the manipulator motion generation and control

scheme by investigating optimal control approaches able to

take future state evaluations into account.
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