This is the published version of a paper published in *Studies in Health Technology and Informatics*.

Citation for the original published paper (version of record):

Smart Glasses: A New Tool in Medicine.
Studies in Health Technology and Informatics, 216: 901
https://doi.org/10.3233/978-1-61499-564-7-901

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-55203
Smart Glasses – A New Tool in Medicine

Gunnar O Klein, Karandeep Singh, Johan von Heideken

a Dept. of Informatics, Örebro University, Örebro, Sweden
b Dept. of Medicine, Harvard Medical School, Boston USA
c Dept. of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
d Department of Physical Therapy, Movement and Rehabilitation Sciences, Northeastern University, Boston USA

Abstract

Smart glasses, defined as a computerized communicator with a transparent screen and a video camera, wearable as a pair of glasses, have started to be tested for a variety of health related applications. This poster reviews some of the early experiences and gives a series of proposals for possible uses in medicine with a particular emphasis on medical education.

Keywords:
Clinical informatics; Educational models; Google Glass.

Introduction

Smart glasses have the following set of features:
- A hands free communicator, that can communicate via Bluetooth with, for example, a smart phone, or directly with the Internet when Wi-Fi is available.
- A video camera and voice recorder/transmitter.
- A display for viewing text and images.
- A voice input interface.

The most published product today is Google Glass which has been available for pilot beta tests since February 2013. Like tablets and smart phones, smart glasses are a platform for various applications [1]. They were not specifically targeted at health care but there are already numerous pilots supporting various medical applications. On January 15, 2015 Google announced [2] that the production of the Glass prototype was stopped but Google remains committed to the development of the product.

Methods

This poster is based on a literature review of 17 full papers.

Results

Since their release, smart glasses have been tested in health care for a variety of applications using limited numbers of patients and reported in various news media and conferences. Our literature review found seventeen scientific papers which provide a clinical evaluation of these new devices. In addition to monoapplication papers, Muensterer et al had a pediatric surgeon wear a glass device throughout the day for four weeks and recorded possible situations where the technology might assist. These papers provide mostly promising results but also caution where the technology was deemed not suited for the tested application, for example for ECG interpretation and autopsy documentation.

Table 1 – Different application areas described

<table>
<thead>
<tr>
<th>Application area</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote instruction of users wearing Glass</td>
<td>Beneficial use in cardiologist education, Orthopedic surgery training, Cancer surgery, Central venous access, Ultrasound interpretation, and in Diabetic limb assessment</td>
</tr>
<tr>
<td>Documenting procedures</td>
<td>Autopsy documentation, Airway intubation</td>
</tr>
<tr>
<td>Patient empowerment</td>
<td>Allergy patients getting access to information, Macula patients getting augmented vision</td>
</tr>
<tr>
<td>Reading signal data</td>
<td>ECG assessment, Immunochromatography, Vital signs during radiological intervention</td>
</tr>
<tr>
<td>Providing instructional films and simulation</td>
<td>Disaster medicine, Anatomy and palpation</td>
</tr>
</tbody>
</table>

Discussion

There are many potentially important applications of this new technology in medical education both for remote supervision and for the production of educational films. The usefulness in clinical practice, for example for seeking a second opinion or providing assistance to the workflow or reading of adapted EHRs remains to be studied.

References

Address for correspondence

Professor Gunnar O Klein, Centre for Empirical Research on Information Systems, Örebro University Business School, Fakultetsgatan 1, 701 82 Örebro, Sweden. E-mail: gunnar.klein@oru.se