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Abstract—Autonomous mobile robots often require informa-
tion about the environment beyond merely the shape of the
work-space. In this work we present a probabilistic method for
mapping dynamics, in the sense of learning and representing
statistics about the flow of discrete objects (e.g., vehicles, people)
as well as continuous media (e.g., air flow). We also demonstrate
the capabilities of the proposed method with two use cases. One
relates to motion planning in populated environments, where
information about the flow of people can help robots to follow
social norms and to learn implicit traffic rules by observing
the movements of other agents. The second use case relates to
Mobile Robot Olfaction (MRO), where information about wind
flow is crucial for most tasks, including e.g. gas detection, gas
distribution mapping and gas source localisation. We represent
the underlying velocity field as a set of Semi-Wrapped Gaussian
Mixture Models (SWGMM) representing the learnt local PDF of
velocities. To estimate the parameters of the PDF we employ a
formulation of Expectation Maximisation (EM) algorithm specific
for SWGMM. We also describe a data augmentation method
which allows to build a dense dynamic map based on a sparse
set of measurements. In case only a small set of observations is
available we employ a hierarchical sampling method to generate
virtual observations from existing mixtures.

I. INTRODUCTION

A. Motivation

Many robotics applications can benefit from maps that
go beyond mere occupancy and instead explicitly model the
dynamics in an environment. The range of applications for
such maps is broad, from Human Robot Interaction (HRI) to
Mobile Robot Olfaction (MRO) problems. Statistics describing
dynamics of people is important for HRI while navigating in
a populated environment [7]. Such information can enhance
planning and navigation of an autonomous system, by making
it possible to plan around areas that are known to be busy, or
not to go against the expected flow of people. It will allow the
robot to comply to social norms and operate in an unobtrusive
way. The improvement in planning and navigation will not
only result in higher and more human friendly performance,
but also increase the safety while executing tasks. Both high
performance and safety are crucial for any commercial robotic
system working in vicinity of people. In the field of MRO
and environmental monitoring, statistics describing dynamics
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Fig. 1. Polar plot of Semi-Wrapped Gaussian Mixture Model (SWGMM)
of synthetic, circular-linear data.

can provide a better understanding about gas distribution. Gas
plumes are heavily influenced by the local airflow. However
the task of wind flow modelling in small scales is yet to
be solved. Probabilistic modelling of wind flow can improve
gas distribution prediction and allow to improve gas source
localisation techniques.

In this paper, we introduce Circular Linear Flow Field map
(CLiFF-map), a general purpose method for mapping of dy-
namics. In this paper we define dynamics as motion within
the environment. CLiFF-map consists of:

� a discrete representation of a continuous velocity field,
� a method combining Mean Shift and Expectation Max-

imisation for parameter estimation of Semi-Wrapped
Gaussian Mixture Models (SWGMM),

� an interpolation method for filling in unobserved regions
of the map in an informed way.



To each location in the map we associate an SWGMM [16]
describing the PDF of velocities in a local neighbourhood. Any
method providing explicit velocity measurements can be used
to build the map. In this way, the method is independent of
any particular representation. CLiFF-map computes the PDF
for each location independently, and therefore allows to build
the map using partial, incomplete data. Moreover the proposed
interpolation technique allows to reconstruct missing data.

B. Related Work

In the past decades, multiple methods were developed to
tackle the problem of map building for mobile robots [19].
There are numerous robust methods to deal with noisy data,
where dynamics are treated as faulty measurements [21, 23, 6,
2]. These algorithms aim to remove measurements caused by
moving objects, and filter them out from the final maps. Such
maps can be useful for localisation and global path planning.
However, in this way we are limiting our knowledge about the
environment to only the statically stable parts, such as walls
and fixed objects.

In recent years, a number of approaches explicitly ad-
dressing mapping of dynamics in the environment have been
developed. We can split these methods into two groups.
The first group is tied to a grid map representation of
the environment [13]. These methods try to learn from a
history of past observations how the occupancy likelihood
has changed [1, 12]. The Temporal Occupancy Grid (TOG)
introduced by Arbuckle et al. [1] is a layered occupancy grid
map. Each layer incorporates the set of measurements within
a specific time window, up to the most recent ones. Arbuckle
et al. used TOG to classify the dynamics (if both the long
term and medium term maps are empty but the short term
map is occupied that means we observe a dynamic object).
The major limitation of this approach is memory complexity.
It requires storing all observations up to the longest time scale.
Mitsou et al. [12] follow the same paradigm. They store the
full history of occupancy changes for each cell in the map.
This representation is especially interesting as a method of
storing and accessing the data for further analysis. However,
its memory requirements grows without bound over time. The
major limitation of these methods is the memory complex-
ity of the representations and the fact that it is impossible
to reason about possible future states of the environment.
To address these problems there are methods that aim to
learn spatiotemporal relation between subsequent states of
the map [22, 8, 17]. The problem of reasoning about future
states of the environment is addressed by Saarinen et al. [17]
and Luber et al. [9]. All these approaches aim to learn the
dynamics on the cell level, implicitly stating that the state of
each cell does not depend on the state of the neighbourhood.
This assumption is relaxed in the work of Wang et al. [22]
and Kucner et al. [8]. These methods build models that can
grasp the spatial relation between the state of adjacent cells.
The aforementioned methods treat dynamics as a change of
the occupancy of the cells in the map. In contrast CLiFF-map
models the velocity field of the environment and how it affects

the motion of objects.
The second group of methods come from the computer

vision community [3, 14]. They require information about the
complete trajectory of an object as input. The input trajectories
are clustered and classified. The major limitation is that such
methods cannot work with inputs that only provide velocity
estimates. Moreover, they assume that the input data consist of
all possible or pertinent trajectories and that each one of those
was fully observed from source to the goal. This assumption
makes it impossible to build maps from incomplete data.

The aforementioned methods perform well in their respec-
tive fields. However, the limitations on the type of input data
make it impossible to employ them to any other task.

As we have already mentioned, dynamics of discrete ob-
jects is often considered while planning and executing tasks
autonomously. However, there are research areas requiring
information about other kinds of motion patterns. Currently in
the field of Mobile Robot Olfaction (MRO), micro-scale wind
mapping is an active research topic. Probabilistic modelling of
wind flow can aid the trajectory planning of the robot during
exploration and improve the gas distribution model [15].

Wind is a flow of a continuous medium. Therefore, none
of the aforementioned methods used for mapping motion of
discrete objects can be used for wind mapping. There are a
number of algorithms coping with wind mapping at macro
(distance up to 5000 km) and meso (distances up to 200 km)
scales. However, the problem of wind mapping at micro
(distances below 2 km) scale is crucial for MRO and has not
yet been fully addressed. The CLiFF-map method presented
in this paper allows to build a model of local wind flow.

C. Outline

The remainder of the paper is organised as follows. In
Section II, we describe the SWGMM and present a specific
formulation of EM for learning the parameters of the model.
The same section contains an interpolation method for sparse
data. In Section III, we show and discuss results for people
tracking and wind data. Finally in section IV, we summarise
our work and present directions for future work.

II. ALGORITHM

We express the velocity of a point size object as a point
in a two-dimensional continuous state space ~V = (�; �)T

where � 2 R+ denotes the speed and � 2 [0; 2�) is the
direction. In the chosen representation each of the components
is meaningful in a physical way. Representing velocity in polar
coordinates has the advantage of fitting well to the ”banana-
shaped” distribution of motion that appears when the variance
in rotation is high. A bivariate Gaussian in Cartesian (x, y)
coordinates would need to be excessively inflated in order to
fit such a distribution. The direction is a circular quantity,
whose PDF can be modelled as a noncircular PDF that has
been wrapped around the unit circle. That is, the PDF of the
wrapped variable � = ’ mod 2� is pw(�) =

P1
k=�1 p(� +

2k�) where k is an integer winding number. A wrapped PDF is
a probability distribution describing data on an n-dimensional



sphere. In one dimension a wrapped distribution consists of
points on the unit circle and can be visualised as “wrapping”
a continuous distribution around the circle, while the winding
number denotes the current revolution around the unit circle.
Thus, the wrapped normal distribution is:

� � NW(���;���) =

1X
k=�1

N (���+ 2k�;���) (1)

Since � 2 [0; 2�), we haveZ 2�

0

NW(�j���;���) = 1 (2)

Velocity, as we have already mentioned, is a heterogeneous
quantity, We build its probabilistic model by wrapping only
the directional component. Thus, its density is given by:

~V � NSW(���;���) =

1X
k=�1

N (���+ 2�

�
k
0

�
;���) (3)

In Equations (1) and (3) we can see that to model the wrapped
distribution it is required to use an infinite sum. However
Mardia and Jupp [11] comment that, for practical purposes, the
density can be approximated by truncation to k 2 f�1; 0; 1g
for cases where � > 2� and for � < 2� the term with k = 0.
Equation (3) defines a uni-modal multivariate semi-wrapped
normal distribution. To model multi-modal phenomena, such
as the wind or pedestrian flow velocity, we define a mixture
of J semi-wrapped normal distributions.

~V � p(���) =

JX
j=1

�jNSW(���j) (4)

where �j (0 < �j < 1 and
PJ
j=1 �j = 1) are the

mixing factors, and ���j is the set of the parameters describ-
ing the jth component, namely ���j = (���;���)Tj . The symbol
��� = (���1; : : : ; ���J ; �1; : : : ; �J) denotes the complete set of
parameters of the multimodal distribution.

1) Parameter estimation with EM: To estimate the pa-
rameters of the SWGMM, we use Expectation Maximisation
(EM) [5]. For the sake of brevity, we omit the derivation of
update rules, which for the general, n-dimensional case can
be found in the work of Roy and Puri [16]. For the 2D case
we consider here, the update rules look as follows.

a) Expectation Step:

�tijk =

�t�1
j N

�
~Vi;���

t�1
j + 2�

�
k
0

�
;���t�1

j

�
MP
j=1

1P
k=�1

�t�1
j N

�
~Vi;���

t�1
j + 2�

�
k
0

�
;���t�1

j

� (5)

In the expectation step, we compute the responsibility � that
cluster j takes for the ith data point for the kth round of
wrapping, based on the parameters estimated in the previous
iteration of the algorithm.

b) Maximisation step: In the maximisation step, we
compute the new set of parameters ��� using the following
update rules.

�tj =
1

N

NX
i=1

1X
k=�1

�tijk (6)

���tj =

NP
i=1

1P
k=�1

�
~Vi � 2�

�
k
0

��
�tijk

NP
i=1

1P
k=�1

�tijk

(7)

���tj=

NP
i=1

1P
k=�1

�
~Vi����j�2�

�
k
0

���
~Vi����j�2�

�
k
0

��T
�tijk

NP
i=1

1P
k=�1

�tijk

(8)

2) Mean Shift for EM initialisation: EM has to be ini-
tialised with a set of initial modes, which are then modified
to fit the data when running the algorithm. We employ Mean
Shift [4] as a mode seeking algorithm to obtain the number
and initial positions of modes and covariances.

Mean Shift treats each data point as the mean of its
neighbourhood. The neighbourhood is defined as all the points
within a given window. In each step the algorithm computes
a new value of the mean based on the shape and size of
the window and then shift the centre of the window to
the computed mean. In this way we obtain maxima of the
underlying density function and clusters corresponding to each
maximum. We define the window as an isotropic Gaussian
whose bandwidth is estimated with Silverman’s rule [18]

� =

�
4�̂5

3N

� 1
5

(9)

where �̂ is the standard deviation and N is the number of
samples for the whole data set. We can see that Equation (9)
requires the data to be univariate. To satisfy this constraint
we express each point as its distance from the origin of the
coordinate frame. In Eq (10) we define a distance between two
points denoting some velocities.

dw1;2 =
p

(�1 	 �2)2 + (�1 � �2)2 (10)

�1	 �2 = ��f(�1 � �2)� 2� � [(�1 � �2) mod 2�]g (11)
Ttherefore the distance from the origin of the coordinate frame
is:

dw(~V ) =
p

(�)2 + (�)2 (12)
Thus the sample mean we use is

m(~V ) =

NP
i=1

N (dw(~V )j0; �)~Vi

NP
i=1

N (dw(~V )j0; �)

(13)

In Fig 2 we can see the initial set of clusters built with Mean
Shift, while in Fig 3 we can see the resulting PDF after
applying EM initialised with these clusters. We can see that
clusters estimated by Mean Shift are symmetric and sometimes
smaller than expected. The biases on size and shape of the
clusters are artefacts coming from the size and shape of the
used window. Applying EM helps to remove these biases and
also remove unnecessary clusters, which might be created if
the size of the window used by Mean Shift was too small.
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Fig. 2. Clusters obtained using Mean-Shift algorithm for one of the locations.
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Fig. 3. Distribution obtained using EM algorithm for one of the locations.

Comparing Figures 2 and 3 we can see an example of such
a change in shape and size for clusters 4 and 7.

3) Interpolation: Until now we have described how to
build a map of dynamics using dense sets of observations.
However it is not always feasible to collect measurements
for all relevant locations. One example of such cases are
wind measurements. Building dense enough sensor networks
for wind measurements is too expensive or unfeasible in
practice. Similar problems might occur also when mapping
the dynamics of discrete objects, when some parts of the
environment are constantly occluded during data collection.
To address such cases we extend our framework with an
interpolation method based on data augmentation.

Let’s denote a location as l = (x; y) and associate each
with a SWGMM denoted as ���. The set of sparsely distributed
measurement locations is denoted as LM = flM1 ; : : : ; lMN g.
Our aim is to compute � for each element of a set of densely
distributed locations LA = flA1 ; : : : ; lAKg. (As an example, LM

is shown in Figure 8 as green dots, and Figure 9 shows LA

for the same scenario.)
To estimate ��� for lAi we build a set of virtual observations

based on LM using hierarchical sampling. We associate a
weight with each element of LM based on its distance to lAi :

wlAi (lMj ) = N (jlM1 � lA1 j; 0; �) (14)
where � denotes the size of the neighbourhood, we want to
consider. In the first step we sample an element of LM accord-
ing to its weight as in Equation (14). Afterwards we sample
a virtual measurement from the corresponding distribution ���.
We repeat these two steps until we obtain the desired number
of samples. Then we fit an SWGMM as described in Section II.
We repeat this process for each lA.

Our method treats each sample as equally important and is
not modelling the uncertainties in the estimation directly. It
is appealing to apply Gaussian Process here. However, using
GP introduces new limitations. In the first place we loose
the ability to model multimodal distribution. To each location
we will be able to associate only one mode with increased
covariance matrix. Such limitation will significantly decrease
the flexibility of our method or even lead to wrong estimates
(e.g. instead of multiple modes pointing in different directions
we will obtain a distribution close to uniform).

III. RESULTS

To demonstrate the capabilities of the method for learning
and representing motion maps that was outlined in Section II
we have conducted experiments using people tracks from
overhead camera images [10] and wind data measured with
an anemometer mounted on a mobile robot [20]. For the wind
data, there is a set of measurements associated with mea-
surement locations where robot stopped during data collection
while for the pedestrian dataset measurements are distributed
unevenly over the considered area. To build a model of the flow
fields we have split data according to its locations. First we
have built a set of points of interests. Second to each point we
have associated neighbouring measurements (which are within
the radius of 0.5 m) as if the pedestrians passed through the
point.

A. People tracking data

In the camera data set, velocity estimates are not available
explicitly. We have computed them assuming that the veloci-
ties between subsequent detections are constant. In this way we
have obtained a set of observations distributed over the map.
Figure 4 shows the obtained tracks. The colour corresponds
to the direction of the motion. In Fig 4 we can observe paths
followed by the pedestrians. The dominant paths are: A-E, A-
D, B-C, E-D, E-C, C-D. If we compare the learned motion
directions in Fig 5 we can see that aforementioned patterns
are still visible.

In Fig 5 we can see a high variance in the mapped velocities.
It looks like people tend to run between points A and E
and move rather slowly between the points D and C. This
impression comes from the fact that we are not visualising
the mixing factors of the modes in the SWGMMs. However,
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Fig. 4. Tracks extracted from the raw tracking data, used as input to CLiFF-
map.
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Fig. 5. Map including all the learned motion directions. The distance between
nodes is 0.5 m.

if we split the modes based on the mixing factor we can
see an interesting phenomenon. In Fig 6 we present the
modes whose mixing factor is higher than 0.1; that is, the
modes that contribute most to the SWGMM. There is much
less discrepancy in arrow length, therefore the speed in each
direction looks homogeneous. In Fig 7 we can see the modes
with mixing factor lower than 0.1. These two figures show
that by using this simple filtering approach we can extract
dominant motion patterns. These results also show that CLiFF-
map is able to learn and represent rare events in an appropriate
way.

B. Wind data

To further demonstrate the generality of the approach, we
have also conducted experiments with wind data. Fig 8 shows a
data set with sparsely sampled wind measurements from a mo-
bile robot, which are insufficient to model wind flow properly.
To tackle this problem we have employed the interpolation
method presented in section II-3. We show the resulting map

Fig. 6. Map including the learned motion directions whose mixing factor is
higher than 0.1. The distance between nodes is 0.5 m.

Fig. 7. Map including the learned motion directions whose mixing factor is
lower than 0.1. The distance between nodes is 0.5 m.

in Fig 9. It is visible that wind direction estimates for locations
close to the edge are replicating the wind flow directions
of the most external measurement locations. The closer the
location to the centre the more turbulent the estimate is. Our
interpolation method combines sampled measurements from
adjacent locations. This results in creating a map of possible
turbulent wind flow.

It is difficult to quantify the quality of interpolation. In case
of the wind data set presented here the measurements were
conducted in sequence and therefore we have no guarantee
that the wind flow was stable over time. In such a case cross
validation will result in removing an important chunk of data,
that might directly affect the whole mapping process. One
possible evaluation method would be to use a different data
set, or to use a simulated wind data set.

IV. SUMMARY AND FUTURE WORK

In this paper we have presented our ongoing work on
Circular Linear Flow Field maps (CLiFF-maps). CLiFF-mapis



Fig. 8. Distributions obtained for a set of wind measurements using EM
algorithm. The red arrows represent the directions of the modes while colour
codded ones represent the raw measurements.

Fig. 9. A fully reconstructed wind map based on the set of measurements
shown in figure 8.

a general method for mapping dynamics (as opposed to the
structure of an environment), and locally models the under-
lying, unknown, velocity field with Semi-Wrapped Gaussian
Mixture Models (SWGMM).

We have shown how to estimate the parameters of SWGMM
PDFs using velocity observations within a predefined spatial
window. This estimation is done in two steps: first, we generate
a set of modes within the data set with Mean Shift; and
second, this set is used to initialise Expectation Maximisation
(EM). We show in detail how to apply these two methods to
heterogeneous (circular-linear) data analogous to velocity.

We have also discussed the problem of sparse and missing
data. We addressed this problem with interpolation based on
data augmentation of the available observations. To estimate
missing PDFs (from unobserved regions) we generate virtual
observations by kernel-based sampling, and fit an SWGMM
to the samples.

We have demonstrated the applicability of CLiFF-map for
two significantly different data sets: people tracks and wind
flow. In this way we have demonstrated that CLiFF-map is

independent from the type of input data as long as it is possible
to extract velocity samples from them.

In ongoing work we are developing methods to evaluate and
verify the generated maps. The most promising direction is to
rule out a number of estimated locations and reconstruct them
using the remaining ones. The quality might be measured as a
difference between the true distributions and the interpolated
ones. We are also developing a method to include a confidence
estimation for the interpolation method. Moreover we also
work on methods for motion prediction.
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