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Abstract—Freely moving autonomous mobile robots may lead
to anxiety when operating in workspaces shared with humans.
Previous works have given evidence that communicating in-
tentions using Spatial Augmented Reality (SAR) in the shared
workspace will make humans more comfortable in the vicinity of
robots. In this work, we conducted experiments with the robot
projecting various patterns in order to convey its movement
intentions during encounters with humans. In these experiments,
the trajectories of both humans and robot were recorded with
a laser scanner. Human test subjects were also equipped with
an eye tracker. We analyzed the eye gaze patterns and the
laser scan tracking data in order to understand how the robot’s
intention communication affects the human movement behavior.
Furthermore, we used retrospective recall interviews to aid in
identifying the reasons that lead to behavior changes.

I. INTRODUCTION

During interaction, humans rely on many implicit and
explicit cues to make decisions and to predict the future actions
of each other. In Human-Robot Interaction (HRI) it is therefore
necessary to express these cues clearly, <. e., the robot must
be able to communicate intentions clearly understandable to
humans in order to become a reliable, agile and adaptable
co-worker. We are interested in intention communication of
mobile robots operating in industrial scenarios. Such robots
have been commonly using pre-defined paths for navigation.
Nevertheless, with the growing demand for increased auton-
omy, they soon will have to make decisions online and may
not always stick to a pre-defined paths in order to increase
efficiency. However, such kind of behaviour may lead to
uncertainty if the robot doesn’t communicate its intentions
to the humans sharing its workspace. Our earlier findings
regarding a Spatial Augmented Reality (SAR) approach [1],
[2] indicate that a mobile robot communicating its future
intentions by projecting them onto the shared workspace,
was able to improve comfort levels in humans. For certain
attributes, this improvement was beyond the levels of human-
human interactions. Also, the system encouraged the humans
to actively choose safer paths around the robot.

In our previous work [1], Likert scale based questionnaires
and trajectory analysis were used to evaluate and understand
the influence of the chosen mode of intention communication
on the human behavior. In this work, we report a redesigned
experimental evaluation in order to provide a deeper under-
standing of how our system influences the human behavior
and how it improves the human-robot interaction. Each sub-
ject undergoes 4 trials each with different projections in a

Fig. 1. The platform used for the evaluations.

constrained passage as shown in Fig. 4. The subject wore an
eye tracking device during all the trials in order to track the
eye gaze and record the world view while interacting with the
robot. During the interaction, the subject and the robot were
captured using a laser scanner and also a video camera. In
order to get further insights about the subjects behavior, upon
completion of the interactions with the robot, each subject was
interviewed while being shown the recorded video overlaid
with their eye gaze data. This helped us to interpret their
actions and gather feedback for further development.

The key contribution of our work is the evaluation method
and analysis which lets us get deeper insights into how
intention communication affects human behavior in a human
robot interaction scenario when compared to the likert scale
questionnaires and quantitative measurements. To this end, we
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Fig. 2. Outline of the experimental evaluation

carried out interaction experiments as outlined in Fig. 2.

i) First, eye-tracking was used to measure the time spent on
paying attention to the projected pattern as well as the robot.

ii) Second, the paths taken by the human subjects in
the encounter situation were evaluated to analyze whether
a significant difference in the path can be found between
experiments.

iii) A recall interview was performed with each participant
after the trials were over. These interviews were stimulated
with the videos of the eye-tracking overlaid with the gaze in
order to acquire the subjective impression and reasoning of
the participants.

II. RELATED WORK
A. Intention Communication

During walking, humans communicate their motion inten-
tions using different types of cues such as gazing or by
adapting their trajectories according to a pattern of movement
directions [3]. If robots are to operate in human environments,
they must adapt to human expectations such that the common
human interaction patterns need not to be changed drastically.
In this context, several researchers outline the benefits of
revealing the intentions of the robot: Takayama et al. [4]
claim that if the robot shows forethought before performing
a functional action, people will be more likely to see the
robot as being more appealing, approachable and sure of
its subsequent actions. The ability to predict is stressed by
Turnwald et. al. [5] who show that humans are not only
reacting but use prediction to plan their motion. This point is
substantiated by the consensus in all studies regarding the fact
that humans anticipate future motion of other objects and with
that also possible collisions. Especially for obstacle avoidance
this beforehand usage of information seems to be important.

Lichtenthiler [6] investigated legibility and predictability of
robot navigation. Here, robot behavior was defined as legible
if a human can infer the next actions, goals and intentions
of the robot with high accuracy and confidence and the robot
behavior fulfills the expectations of human interaction partner.
Similarly, predictability encapsulates the ability to predict the

robot’s trajectory. The authors in [6] report various correlations
with legibility, namely safety, comfort, surprise, efficiency and
perceived value. This stresses the importance of making a
robots behavior legible to obtain the desired high values in
these categories.

Humans acquire an estimated 85 — 90% of informa-
tion through their visual system [7]. Researchers like Mat-
sumaru [8], Coovert at al. [9] and also ourselves in prior
work [1], [2], used SAR to reveal a robot’s future intentions
with encouraging results. In this line of thought, May et
al. [10] investigated pass-by situations where a human and
a robot aim to pass through a corridor trying to circumvent
each other given spatial constraints. Hereby they focused on
the perceived comfort, the ambiguity of the signal and the
preferences of the participants after experiencing the condi-
tions which differed in the way and presence of navigational
intent communication. Their results showed that the comfort
of the humans encountering the robot can be increased by
non-verbal signs.

B. Eye-tracking

The most reported event in eye-tracking data relates to the
state when the eye remains still over a period of time lasting
anywhere between tens of milliseconds to upto several seconds
and this is called a fixation [11]. Just and Carpenter [12]
formulated the eye-mind hypothesis [13] which states that
there is no relevant delay between what is fixated and what
is processed, which is an important assumption to be able to
interpret the measured fixations of a human.

Already Yarbus [14] noted that the task is relevant for the
gaze behavior. He found that vision seems to be tightly linked
to the cognitive goals of the observer. Several studies suggest
that the measured movements of the eyes during a task can be
used to conclude the distribution of visual attention. The term
attention can be defined in terms of its task which is according
to Miiller and Krummenacher

They state that one of the main functions of attention lays
in the selection of perceptived information for the control
of behavior. There are several studies supporting the link
between selective attention and the planning of saccadic eye
movements [15]. The authors of [16], [17] were observing
humans using tools and manipulating objects. They found
a strong relationship between the executed action and the
gaze of the participants. Thus it is possible to use the overt
attention, e.g. measured through the fixations, as a sign of
the attention. Several psychophysiological and imaging studies
furthermore give significant evidence that the relocation of
attention is reflected in the fixations [18]. In addition, there are
several studies suggesting that the visual system of attention is
involved in the planning of the whole motion sequence [15].

By analyzing differences in the scanned paths between
novices and experienced drivers, Antonya et al. [19] identi-
fied experience as an important factor influencing the gaze.
Also Yarbus [14] found that the gaze positions for observing
pictures vary a lot depending on the task carried out by the
participants. According to recent work on natural tasks [20]



it becomes obvious that the cognitive goals of the observer
have an important influence on the distribution of gaze. Fur-
thermore, the gaze priorities seem to be adjusted very quickly
to environmental probabilities. To summarize, gaze locations
seem to be very tightly linked to the task [21]. There have been
several studies looking at gaze patterns during obstacle avoid-
ance tasks, where the participants were moving and needed
to avoid obstacles — this situation resembles an encounter
with a robot in a corridor. During walking, the information
given through the vision is an important source and therefore,
according to Hayhoe and Rothkopf [21], observers must learn
where and when to look at critical locations during walking
while at the same time controlling direction and balance.
Thus, the gaze reflects a learned behavior that is adapted
depending on the locations that are rated as critical. Patla
and Vickers [22] found in their experiments that participants
planned stepping over an obstacle before actually reaching
the obstacle, so there weren’t any fixations on the obstacle
when they were stepping over it. Overall, they found these
similarities in the gaze pattern over their participants which
supports the possibility of analyzing the gaze and comparing
it. Considering all these findings, it seems to be valid to draw
conclusions about a person’s attention from the measurements
of the eye movements.

C. Retrospective Interviews

Quantitative measurements, as discussed above, provide us
with data to measure the changes and possible influences on
the human behavior. However, the reasons behind the observed
behavior cannot be inferred unambiguously. Therefore, some-
times retrospective interviews are used in addition to the eye-
tracking to find explanations for the gaze patterns and to get
a deeper insight in the underlying processes. Hereby often
videos with the overlaid gaze are shown to the participants and
they are asked to think aloud or explain their gaze patterns.
Hansen [23] investigated the question of whether participants
really remember their eye movements or resort to guesses
when they are asked to explain them. To this end, he showed
the participants recordings of someone else’s eye movements.
As the participants were able to detect the error, he concluded
that humans indeed remember their own eye movements. Guan
et al. [24] supported this hypothesis with their finding that
humans look at objects in the same order as they afterwards
also say they do. Thus, using retrospective interviews seems
to be an appropriate method to deepen the understanding of
the eye-tracking data and the laser tracking data.

III. METHODOLOGY

The robot used for the interaction scenario is the fork-lift
type vehicle depicted in Fig. 1. It was built using a manually
operated forklift which originally was equipped with motor-
ized forks and a drive wheel. The platform was retrofitted
with a steering mechanism and a commercial AGV control
system. Two SICK S300 safety laser scanners ensure a safe
operation forwards and backwards. A projector is mounted on
the robot to project a pattern in front of the forks. For more

Fig. 3. The eyetracker used for the evaluations developed by Pupil Labs [25]

detailed information about how the projection was generated
see [1]. Fiducial markers were attached to the robot in different
places in order to define the areas of interest, thus, enabling
an automatic categorization of the detected eye-gaze fixations.

For the acquiring of the eye-tracking data we used an
eyetracker from Pupil labs [25], which is a mobile eye-tracking
headset (see Fig. 3). It is equipped with a high speed world
camera with a resolution of 1920 x 1080 for a framerate
of 30 fps and two infrared spectrum eye cameras with a
resolution of 640 x 480 and a framerate of 120 fps for each
eye. Scene capturing was done using the open source software
Pupil Capture, for categorization and analysis the open source
software Pupil Player was used which was developed by
Kassner et al. [25].

During the experiment, to track the path of the subject
and the mobile robot during the encounter, a SICK LMS
500 laser scanner was used and was also recorded with a
stationary video camera. The camera was facing the robot and
thus recording the participant from behind. Furthermore, the
screen of the computer used for playing the videos with the
gaze overlay was captured together with the audio during the
interview.

IV. EXPERIMENTAL DESIGN

The experiment was designed to compare three different
projections as shown in Fig. 5 and a case without projection,
thus resulting in four trials per participant. Hereby pattern
A and B were supposed to convey the future trajectory,
with A being equivalent to the projection already used in
previous experiments reported in [1]. Pattern A depicts the
future trajectory over a time horizon while in pattern B the
information is more compressed using an arrow pointing along
the instantaneous movement direction. The arrow was chosen
for several reasons. Bertamini et al. [26] provide evidence that
angles attract attention while Bar and Neta [27] suggest that
the human brain can detect sharp features very fast as this
can help to signal potential danger. Larson et al. [28] showed
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Fig. 4. The experimental setup used for the evaluations

that a triangle with a downward-pointing vertex is recognized
more rapidly than the identical shape with an upward-pointing
vertex. Also the work in [29] used arrows to indicate the
intention of their robot and concluded that their system is
intelligible. Furthermore, people are used to arrows indicating
directions as in everyday life these are vastly used. So, to
sum up, using an arrow to communicate the future path of
a robot seems to be a good choice, as due to its angled v-
shaped top it might attract the attention and might be detected
faster than other symbols. Furthermore, it has already been
used successfully and people already have a conception about
the meaning of an arrow. This facilitates the understanding
of the pattern and thus helps the humans to understand the
intention of the robot faster. To see whether the projection of
a pattern makes a difference, pattern C was the projection of
white area. Finally, in condition D there was no projection at
all.

In our experiment 17 persons participated (8 female, age: M
= 28.8, SD = 6.08). Out of these, 13 stated Swedish as their
nationality. The participants had a wide variety of backgrounds
with four persons stating that they have experience with robots.
Four persons reported being left handed, the remaining twelve
stated to be right handed. For each condition, every participant
had one encounter with the robot resulting in a total of four
trials per participant. To avoid measuring learning effects, the
order of the conditions per participant was varied according to
a balanced latin square thus resulting in four different groups
(ABDC, BCAD, CDBA, DACB).

The setting of the experiment is shown in Fig. 4. The task
of the participants was to reach a wooden object placed at
the end of the corridor. The setting was chosen due to its
spatial constraint which resulted in a tight encounter of the
participant and the robot. Therefore, it was necessary to decide
at which side to pass the robot. Furthermore, the path of
the robot was varied randomly between two different paths,
in order to reduce the possibility of a learning effect. The

experimental procedure was as follows: first the participants
were greeted, told about the experiment and asked to fill out
a general questionnaire as well as to sign the consent form.
Afterwards the standing robot without projection was shown to
the participants in order to familiarize them with the platform.
This was done in an attempt to make the first trial more
comparable to the following trials. As a next step, the task was
explained to the participants. They were told that after setup
of the eye tracker, their task will be to reach and pick up the
wooden object and that during this task they will encounter
the robot which is on its way to accomplish a task as well.
Finally, they were informed that they were to repeat this task
four times and that the robot’s paths and behaviors will vary
across the trials.

After the participant confirmed that he/she understood the
task, the eye-tracking goggles were set up. Here, the eye
cameras needed to be adjusted such that the pupil was robustly
detected. Furthermore, the eye tracker needed to be calibrated
using manual marker calibration [25]. Then, the recording was
started, a laptop used to record the eye-tracking data was
put into a backpack carried by the participant who started
to walk at a given signal corresponding to the click sound of
the release of the break of the forklift. After the participant
had picked up the wooden object and put it back to its place
he/she was told to come back and the recording was stopped
by the experimenter. Meanwhile, the robot drove back to its
start position. This procedure was repeated four times. After
all trials commenced, the participant was told that he/she could
take off the eye-tracking headset and was then ask to come
in another room for a stimulated-recall interview. Hereby the
videos with the gaze overlay were shown to the participants
and they were asked to explain their gaze and to comment
on the experiment. The whole experiment took approximately
40 minutes, with the instruction and set up part taking about
10 — 15 minutes, the trials taking about 15 minutes and the
interview taking 10 — 15 minutes.

V. DATA ACQUISITION AND EVALUATION

A. Eye-tracking Data

The fixations were extracted using the Pupil Player soft-
ware, which uses a dispersion algorithm. The fixations were
extracted following the recommendation of Blignaut [30] to
use the values suggested by Holmgqvist et al. [11]: a minimum
duration threshold of 150 ms and a dispersion threshold of 1°.

Due to the setting of the experiment the fiducial markers that
were attached to the robot were occluded for a substantial time
of the experiment in which the projection was already visible.
Thus it was not possible to use an automated categorization
of the fixations but it had to be done manually. Therefore
each fixation that was categorized as such by the dispersion
algorithm was classified according to the place where it was
measured. To this end, the videos with the gaze overlay were
analyzed and it was decided whether a fixation either was on
an Area of Interest (AOI) on the robot (AOI-R), on the area
where the projection was or would be in the no projection



a) Projection A: trajectory line

b) Projection B: arrow

¢) Projection C: white area

Fig. 5. The different intention communication modes: In total 4 types of intention communication were tested, three of which are depicted above. The forth

mode is without projection.

condition (AOI-P) or somewhere else (see Fig. 6). All fixations
that belonged to somewhere else were ignored.

The classified fixations were then used to calculate our
dependent variables for each trial: the total fixation duration
and average fixation duration of all fixations in an AOI. To
further investigate the gaze pattern of the participant and
whether it changed depending on the patterns or the number
of trials done, another dependent variable was computed: the
number of times the AOI was fixated first over all trials for
both AOI. Here, the idea was that whether the projection area
or the robot is first fixated might change due to the projected
pattern or also due to the number of trials the participant
already completed. If this would be the case, it would mean
that the gaze pattern of the participant, at the beginning of the
encounter, was influenced.

First, in order to determine whether the AOI and the pattern
have an influence on the dependent variables, an analysis of
variance (ANOVA) was performed. The goal of running the
ANOVA was to see whether the projected pattern, as well
as the location (robot vs. projection area), have an influence
on the total and average duration of fixations. This was done
to answer the question whether the projection of patterns
influences the gaze behavior of the participants.

To make sure that the observed significant difference was
not caused by learning effects or an insufficient counterbalanc-
ing for each dependent variable, there were two more ANOVA
performed. In one, the number of the trial for the participant
(1 — 4) was used as a within factor, to make sure that the
position of the trial did not have an influence on the dependent
variable. To test whether the counterbalancing was successful,

Fig. 6. The defined areas of interest: AOI-R represents robot, AOI-P represent
the projected surface

each participant was assigned to a group (1 — 4) depending
on which order of patterns he/she had in the experiment. This
factor was used as a between factor in the ANOVA with the
pattern and the AOI being a within factor. To analyze the
number of first fixations on the two AOI a Chi-squared test
was conducted.



B. Laserscan Data

The data that was acquired through the laser scanner needed
to be processed and filtered before an analysis was possible.
Out of the 17 participants the path data of 14 could be used for
the analysis, as for two participants the measurement was not
complete and for one participant the quality of the data was not
good enough to extract the path reliably. An important point
about the path data is, that due to the different walking speeds
of the participants the encounter with the robot was slightly
different in every trial and thus the comparison of the path was
done relative to the time before the encounter with the robot.
Using standard ROS tools, the laser data was extracted in form
of the trajectories of the human and the robot and then used
to compute the dependent variables for the statistical analysis.

The dependent variables used for the evaluation of the laser
scan data are the average speed and the maximum deviation
from the average x-value in the three seconds before the
encounter as well as the minimal distance between human
and robot. These were chosen to consider different aspects of
the path and the human behavior. First the average speed in
the short interval before the encounter could vary between
the different conditions due to a different perception the
participants could get from the robot, or also due to a varying
certainty on what to do. This certainty could also be reflected
in the shape of the path, which should be possible to see
in the maximum deviation from the average x-value. For the
participant the target was located approximately straight ahead
in y-direction. As people prefer to take straight paths, the
preferred way without the robot as an obstacle would therefore
be a straight line, with coordinates only varying in y- and only
to a small extent in x- direction. If the participant now has to
veer off or adjusts his/her path, the maximum deviation of the
x-coordinate from the average coordinates in that period of
time reflects the straight path deviation. Finally, the minimal
distance shows how much space the human kept between
himself and the robot. Variations in this quantity depending
on the projected path could reflect a different perception the
human has of the robot.

VI. RESULTS AND DISCUSSION
A. Eye-tracking

The two-way repeated-measures ANOVA for the total fix-
ation duration revealed a main effect of the AOI, F(1,16) =
28.68, p i .001 as well as an interaction effect between AOI
and pattern, F(3,48) = 4.25, p = .010, which means that the
projected pattern and AOI had an influence on the total fixation
duration and average fixation duration. Both of these were
also found in the two-way repeated-measures ANOVA for the
average fixation duration (main effect AOI: F(1,16) = 11.74,
p = .003 and the interaction effect between AOI and pattern:
F(3,48) = 3.62, p = .041).

There were additionally two ANOVA computed for both
dependent variables. These were first a two-way repeated-
measures ANOVA with the number of the trial as an inde-
pendent variable, to determine whether there was a learning

effect independent of the order of the projections. The second
was a three-way mixed ANOVA with AOI and pattern as a
within-factor and the group the participant belonged to due
to the counterbalancing as a between factor. This was used
to control whether the counterbalancing was effective. For
both dependent variables there was no significant main or
interaction effect of the trial number. Furthermore, in the three-
way mixed ANOVA no significant interaction between group
and AOI or pattern was found for both dependent variables.
Thus, the statistical analysis verifies the effectiveness of the
counterbalancing and no learning effect was measured.

As the interaction effect cannot be interpreted directly, due
to the fact that four different patterns were compared, post-
hoc tests for this effect were necessary to determine where the
significance stems from. Paired t-tests were performed and to
control for the multiple comparisons that were made, the p-
values were adjusted using the method described by [31] For
the post-hoc test the data was divided into two datasets, one
for each AOIL. Then, paired t-tests to compare the different
patterns with each other were performed for each AOI and
for both dependent variables. For AOI-R, the area of interest
on the robot, the three projections were compared with each
other. This was done to investigate how different projection
patterns impact the gazes directed towards the robot. The post-
hoc t-test showed that the total fixation duration spent by the
subjects on projection A is significantly longer than in the
case of projection C, ¢.e., the subjects looked at the robot
significantly longer when its trajectory was displayed opposed
to only displaying an white area. There was no significant
difference found regarding the average fixation duration.

A possible explanation for this results could be that the
white light was very visible and drew a lot of attention,
whereas the line segment visualizing the trajectory was not
that visible. Actually, in the retrospective interviews, several
participants reported that they saw the line segment very late
or not at all. One participant even reported that she felt fooled
because she saw the line only shortly before she had to pass
the robot. Thus, it is very likely that in the line projection
mode participants only used the robot itself as an indication
to determine where to go and how to react. As proposed
by [11], the distribution of attention between different targets
can be measured by the total fixation duration over an AOI
and thus a difference here might reflect a change in the
distribution of attention between the two AOI’s. In our case,
during white area projection mode (C) the fixations on the
robot were shorter than during trajectory projection mode (A)
which might indicate that the attention was shifted from the
robot to the projection area.

Regarding AOI-P, the area of interest on the projection,
all six possible pairwise t-test comparisons were carried out
per dependent variable. The post-hoc tests revealed that the
total fixation duration spent on projection D (no projection) is
significantly lower than that of projections B and C.

It can be clearly seen that the white light projection is
the one that caused the greatest change, as it changed the
behavior for both dependent variables. An explanation for this



effect is offered by the visibility of the patterns. From all
participants, only two did report in the interview that they had
not seen the white light, 6 reported that they had not seen the
arrow and 10 could not remember seeing the trajectory line.
Thus, the visibility, or at least the attention-drawing abilities
of the projection, might vary and explain why the projections
differed in the fixations that were spent on them. This is also
might explain why projection C differed most from the other
projections.

The Chi-squared test performed between the two AOI had
a significant difference between the numbers of first fixations.
In general, AOI-R was fixated first more often than the AOI-P.
However, in the case of projection C, it was the opposite. So
the projection of the pattern (at least in the case of C) does
change the gaze pattern and thus it might help the participant
if useful information is displayed in an easily understandable
way. The Chi-squared test with respect to the trial number
for each participant had no significance, which means that the
gaze pattern at the first fixation doesn’t change depending on
the number of trials the subject already participated in.

B. Path Data

For the path data, we carried out an analysis similar
to the previously described eye-tracking data. The one-way
ANOVA with the projection pattern as independent variable
did not reveal any statistically significant main effect for the
respective pattern independent of the choice of dependent
variable. However, the one-way ANOVA with the trial number
as independent variable showed a significant main effect on
the minimal distance (F(3,39) = 3.16, p = .035), as well as
on the maximal deviation of the mean x-coordinate in the 3
seconds before the encounter (F(3,39) = 3.52, p = .024). For
both of these variables, a two-way mixed ANOVA to control
for the counterbalancing did not show a significant interaction
between the trial number and the group.

The projection pattern had no significant main effect on any
of the dependent variables. However, there was a significant
effect of the trial number on the minimal distance and maximal
deviation from the average x-coordinate in the 3 seconds
before the encounter. For these main effects post-hoc tests
were computed which, after correction, were not significant.
However, maximal deviation showed a trend to significance for
the comparison between trials 2 and 3. The maximal deviation
in the second trial is on average smaller than in the third trial.

The Chi-squared test showed a significant result regarding
the total number of subjects evading the robot on the right
side compared to the total number choosing the left side
independent of the projection pattern or the trial number.
However, there was no significant result if the data was further
divided into the patterns or the trial number. There was a
visible trend for the comparison of the second to the forth
trial regarding the minimal distance to the robot. On average,
this distance is higher in the second trial than in the fourth
trial. Although there was no significant difference found for
the speed and the veer-off distance, the average value of these
variables might still be interesting to interpret, e. g., in terms

of proxemics theory [32] for the distance. Over all participants,
the computed average of the mean speed in the last 3 seconds
before the encounter with the robot was 1.09 m/s, the average
veer-off distance was 2.11 m, whereas the average minimal
distance was 0.79 m.

VII. CONCLUSION

In this work we investigated robot intention communica-
tion via projections in industrial scenarios. To this end, we
conducted experiments using eye tracking and recorded path
data to verify how intention communication effects the human
behavior. Retrospective recall interviews were conducted to
check the results obtained from the quantitative data. The
results respectively obtained from the eye tracking and the
path data differ in various aspects. In the chosen experiment
scenario, the projection pattern had an influence on the gaze
of the participants which differed for the different projections.
However, the projection did not influence the path of the
participants. The question here is whether the participants did
not need the information of the pattern to decide on the path
or if the communicated information was unsuitable. As many
participants reported that they did not see the arrow or the line
projections, it is more probable that they could not interpret
the information in a meaningful way, the white projection
probably did not give enough information. This highlights
the importance of designing the projected patterns in a way
that they are clearly visible and easy to interpret. With our
combination of eye tracking and path data analysis, it becomes
evident that the projection did influence the participants atten-
tion but not enough to change their walking behavior in the
chosen scenario. This is in contrast to our earlier results which
could be due to a change in the design of experiments, which
is a more constrained space that affected the exposure time of
the subjects to the projections and change in the visibility con-
ditions due to the varying lighting conditions. Thus, the design
of the patterns needs to be improved to increase their benefit.
Also, we noticed that retrospective interviews give valuable
insights as well. Without these interviews, there would be no
way to find out which participant had noticed which pattern,
as a gaze on the pattern does not automatically mean that it
was processed as well. To summarize, the used measurements
yielded different results. Regarding the eye tracking data, it
was found that the projections changed the gaze patterns with
respect to the first fixation, as well as for duration of the
fixations on the areas of interest. Projecting a white rectangle
evoked the largest changes in human movement and gaze
behavior. Possible explanations for these results were found
through the conducted retrospective interviews.
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