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Abstract—This paper investigates whether visual place recog-
nition techniques can be used to provide pose estimation infor-
mation for a visual SLAM system operating long-term in an
environment where the appearance may change a great deal. It
demonstrates that a combination of a conventional SURF feature
detector and a condition-invariant feature descriptor such as
HOG or conv3 can provide a method of determining the relative
transformation between two images, even when there is both
appearance change and rotation or viewpoint change.

I. INTRODUCTION

Visual place recognition techniques for performing topo-
logical localization have been widely investigated and many
successful systems have been demonstrated in environments
that experience strong appearance change [18]. Topological
localization allows a robot to perform loop closure – recog-
nizing where it is when it returns to a place is has previously
visited – which is a vital ingredient of any Simultaneous
Localization and Mapping (SLAM) system, and it has been
shown that topological loop closure is more efficient and
scalable than using metric techniques [35]. However, once
a loop closure candidate has been identified, a similarity
transformation between the frames needs to be calculated to
provide relative pose information [23].

This paper asks whether pose estimation can be performed
even when the appearance of the environment has changed
(see Figure 1). It demonstrates that using a conventional point
feature detector such as SURF [3] and a condition-invariant
feature descriptor such as Histogram of Oriented Gradients

Fig. 1. Visual features can be matched across different viewpoints and
appearance conditions, and feature correspondences used as input to loop
closure algorithms. In this example, SURF keypoints are extracted and
described using conv3 feature descriptors.

(HOG) [6] or conv3 [31] allows feature correspondences to
be calculated. These feature matches can then be used as input
to a SLAM system such as [7] or [23] to calculate the relative
pose offset.

II. PRIOR WORK

Visual place recognition in changing environments can use
a range of different feature types, but the most robust against
condition change are features that describe the whole image in
a single feature. Example of whole-image descriptors include
WI-SURF [2], low-resolution images [22] or conv3 features
[31]. However, describing the scene in a single feature means
the system is vulnerable to viewpoint change [32].

The alternative viewpoint-invariant approach is to extract
multiple features from each image that describe a portion
of the scene. Such an approach requires a two-stage process
– feature detection and feature description. Commonly used
feature detection techniques include SIFT [16], SURF, FAST
[30], and BRISK [15]. Such detectors are known as point
feature detectors as they detect keypoints in the image and
can be used to perform visual odometry as well as place
recognition. However, it has been identified that point features
often do not provide condition invariance [34, 29], and Furgale
and Barfoot [11] noted that the non-repeatability of SURF
features due to changing appearance, particularly lighting
change, was a major cause of failure during visual-teach-and-
repeat experiments.

A compromise solution between using a whole-image ap-
proach and using point feature detectors is to use parts of
an image [33, 26, 21, 25]. A number of detection techniques
can be used: Sünderhauf et al. [33] use EdgeBoxes [36],
Neubert and Protzel [25] use SIFT keypoints, Neubert and
Protzel [26] use SLIC superpixels [1] and McManus et al.
[21] select distinctive image patches using an unsupervised
learning technique. These image patch detectors provide both
condition-invariance and enhanced viewpoint invariance.

Once the feature detector of choice has selected salient
image regions from the image, whether these regions are
defined using point features or patch features, these regions are
described using feature descriptors, of which many different
kinds exist. Point feature detectors including SIFT, SURF and
BRISK each have an associated point feature descriptor, but
it is also possible to mix and match between feature detectors
and feature descriptors. SIFT and SURF descriptors have been



used in a large number of visual localization tasks [18], but
for appearance change other descriptors are preferred. HOG
descriptors have been successfully used for place recognition
in changing environments [21, 24] and features derived from
Convolutional Neural Networks (CNNs) have also been shown
to achieve impressive results in challenging environments
[33, 26].

Visual place recognition solves the topological localization
problem, where the system determines the most likely global
location of the robot. There is a corresponding metric local-
ization problem, where the system must compute the metric
location of the robot relative to either a global coordinate
frame or to a relative coordinate frame based on prior robot
positions. There are a large number of visual localization
systems that perform such pose estimation, using either sparse
visual information such as point features [7, 23, 13] or edges
[8], or dense pixel-level information [9].

There has been research into performing pose estimation in
changing environments, in particular using geometric features
such as edges [27] which are known to be relatively stable
to appearance change such as lighting variance, and can be
matched against a previously generated laser map [27, 4].
However, data association using edge features can be chal-
lenging [8]. This paper aims to contribute to this field by
investigating the feasibility of using image features to perform
pose estimation in changing environments.

III. APPROACH

The motivation behind this paper is to investigate the use
of existing visual place recognition techniques to perform
metric pose estimation for visual SLAM systems navigating
long-term in a large outdoor environment. There are several
aspects to this problem that need to be addressed. Firstly,
the system must first perform loop closure. Loop closure can
be performed using one of a number of condition-invariant
and pose-invariant methods [33, 26]. The system must then
perform a metric correction, by calculating the relative pose
estimate based on extracted features from the loop closure
candidate images. If the system is using a monocular rather
than a stereo camera, 3D information for each feature can be
inferred using tracking techniques [7] for pose estimation.

This paper is concerned with extracting and matching fea-
tures from the loop closure candidate images for input into
the SLAM tracking and pose estimation modules. It compares
the use of EdgeBoxes and SURF as feature detectors. It also
tests a number of feature descriptors that have been widely
investigated in the context of place recognition, particularly in
changing environments.

To match the features, the approach from [33] was used.
The cosine distance was calculated between the descriptors
x1, x2 from the two images I1 and I2 respectively:

d(x1, x2) = 1− (x1 − x̄1) · (x2 − x̄2)T√
(x1 · xT1 )(x2 · xT2 )

. (1)

A cross-checked nearest-neighbor test was applied, so that
two features x1 and x2 were only matched if they were each

the nearest neighbor of the other: that is, if x1 had the smallest
cosine distance to x2 of any descriptor in I1 and x2 also had
the smallest cosine distance to x1 of any descriptor in I2. To
determine a resulting correct inlier set, outliers were removed
using RANSAC [10].

IV. EXPERIMENTS

This section present results that investigate the use of
various feature detectors and feature descriptors for visual
localization in changing environments. We begin by investi-
gating whether the notion of pose estimation across changing
environments is feasible using existing feature detectors and
descriptors. This simple test case uses aligned images so
provides no viewpoint variation, but means that the relative
pose between the two images is known.

We then investigate the effect of combining rotation variance
and condition variance by artificially rotating the images
relative to each other and testing the pose estimation results.
Finally, we test the effect of a combination of viewpoint
change and condition change on feature matching and visual
localization.

A. Feature detectors – points and patches

The first experiment investigated the use of different local
feature detectors to perform pose estimation across changing
conditions. We tested two feature detectors – EdgeBoxes
and SURF detectors. SURF feature detection has been used
in many visual localization algorithms in the past [18], for
example for topological place recognition [5] and for stereo
visual odometry in [11]. However, concerns have been raised
about SURF’s inability to perform repeatably in changing
environments [11, 34]. We note however that SURF is gener-
ally considered to encompass both the SURF feature detector
and the SURF feature descriptor, while in this paper we
decouple the two phases and investigate each separately: in
this experiment only the feature detector was used. In contrast,
EdgeBoxes have been demonstrated as a successful method
of local feature extraction for topological place recognition in
changing environments [33] but do not provide the point-level
accuracy possible with SURF.

Fig. 2. Brisbane skyline images used to test feature matching across changing
environments

Two images from a static city skyline webcam from the
Australian city of Brisbane were used. One image was cap-
tured in the early morning at 6am and one during the night
at 7pm (see Figure 2). As the images were from a static



webcam, the viewpoint was known to be well-aligned, and
an accurate measure of relative pose could be calculated.
However, the near-perfect alignment means that the additional
challenges that can be caused by viewpoint change, camera
rotation, or scale change were not considered. These issues
were investigated further in Sections IV-B and IV-D.

1) Setup: EdgeBoxes were extracted using the MATLAB
code provided by the authors1 using the pre-trained object
models and default parameters, while the SURF keypoints
were extracted using the inbuilt MATLAB functions using
default parameters. The exception to the use of the default
parameters for each feature descriptor was the choice of
threshold; this meant that the number of features extracted
per image could be controlled, and for both detectors, 3000
features were extracted from each image. While this is a large
number of features, it is on a similar order of magnitude to the
number of features extracted in for example [23], where 2000
features where extracted from the 1241 × 376 KITTI dataset
images. For comparison, these images have size 982×737, or
approximately 1.5 times more pixels.

Each detected feature was described using a HOG feature.
While HOG features were originally designed for human
detection they have also been successfully used for place
recognition in changing environments [21, 24]. The HOG
feature was extracted from an image patch defined by the
size of the bounding box (for EdgeBoxes) and by the scale
parameter (for SURF features). The patches were resized so
that features of different scales could be compared, and in each
case a HOG feature of 7056 dimensions was extracted.

2) Results: Figure 3 displays example inlier matches from
each feature detector. It can be seen that both versions find a
considerable number of correct inlier matches. However, the
SURF feature detector finds a larger number of matches.

(a) EdgeBoxes and HOG descriptors

(b) SURF points and HOG descriptors

Fig. 3. Sample inlier sets for (a) the EdgeBoxes feature detector and (b)
the SURF feature detector when combined with HOG features across a day-
night image comparison task. The SURF feature detector finds more matched
features.

1https://github.com/pdollar/edges
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Fig. 4. Matching results for day-night comparison for EdgeBoxes and
SURF feature detectors, summarized using (a) number of inliers and (b)
translation estimate error. The SURF feature detector finds more inliers than
the EdgeBoxes feature detector, and has a narrower distribution of translation
errors.

As RANSAC is non-deterministic, 100 trials of each ex-
periment were run. As there could be wide variability in
the RANSAC output, particularly in the most challenging
cases, a distribution of results gives a fairer picture of the
reliability of each approach. Figure 4 presents the distribution
of inliers found by each method (see Figure 4a), and the error
in the translation estimate for each (see Figure 4b). These
results show that SURF points find more inlier matches than
EdgeBoxes (mean number of inliers: 53 vs. 17).

The minimum number of inliers found with SURF was 41,
which was substantially greater than the maximum number
of 21 found with EdgeBoxes. Similarly, the mean translation
error found was 1.5 pixels for SURF features with a maximum
translation error of 3.4 pixels. In contrast, the mean translation
error for EdgeBoxes was 9.4 pixels with a maximum error of
17.8 pixels.

As can be seen, the EdgeBoxes provide an approximate
estimate of the pose difference. However, the SURF points,
when combined with HOG features, find more inlier matches,
and provide a more accurate result. Based on these results,
SURF points were used as the chosen feature extraction
technique for the remainder of the experiments.

B. Appearance change and rotation

Place matching in the presence of camera rotation is an
area that has been identified as challenging for visual place
recognition in changing environments. Valgren and Lilienthal
[34] noted that upright SURF (that is, SURF without the ori-
entation component used), performed more reliably than other
SURF variants. The improvement of condition-invariance by
the removal of rotation-invariance is not exclusive to SURF,
with upright SIFT being found to provide better lighting
invariance than the rotation-invariant SIFT feature [29]. In
general, ground-based robotic vehicles are not required to
handle large camera rotations; however, some rotation may be
caused by traversing uneven ground and thus slight rotation
invariance may be required. This experiment investigated
whether features that are condition-invariant can simultane-
ously handle some rotation invariance, and vice versa. It tests
a known rotation-invariant feature descriptor (SURF) with
poor condition invariance with a feature descriptor known to



be robust to changing environments (HOG) but not typically
defined in a rotation-invariant way.

1) Setup: The experiment initially performed a baseline test
between two images with little appearance change between
them, using the Brisbane skyline image set described in
Section IV-A with images captured at 6am and 7am. This
comparison demonstrated the capability of the feature descrip-
tors to manage rotation variance in the absence of appearance
variation. Then the 6am and 7pm images were compared as
in Section IV-A, to investigate the effect of combined rotation
and appearance change. The 7am and 7pm images were rotated
at 5◦ intervals from 0◦ to 50◦.

Keypoints were selected using the SURF feature detector
with default parameters as in Section IV-A. The number of
allowed features per image was 3000. The associated 128-
dimension SURF descriptors were extracted, both the upright
version which ignores the SURF point orientation and which
will be referred to as U-SURF, and the full rotation-invariant
version which will be referred to as R-SURF. U-SURF features
are claimed to have some robustness to minor rotations in the
order of ±15◦ [3] and so this approach tested whether upright
descriptors could be adequate for low-rotation scenarios.

Similarly, a 7056-dimension HOG descriptor was extracted
for each keypoint, as in Section IV-A. As for the SURF
features, an upright version (U-HOG) was extracted, while
a rotation-aware version (R-HOG) was calculated by rotating
the local image region according to the calculated SURF point
orientation.

2) Results: This experiment was evaluated using a similar
approach to Section IV-A. For each test case, the distribution
of inliers over 100 RANSAC trials was calculated. The es-
timated rotation was also computed and used for evaluation,
in a similar manner as the translation estimate was used in
Section IV-A.

Figure 5 displays the median number of inliers for each im-
age matching test. In both cases (with and without appearance
change) the number of matched features is highest for U-HOG
features at low rotations, followed by R-HOG, U-SURF and
R-SURF. However, at higher image rotations (15◦ and above),
R-SURF features perform best when there is no appearance
change (Figure 5a) and R-HOG features perform best when
there is appearance change (Figure 5b). These results agree
with the expected strengths of each of the tested features
– HOG features match upright image regions well, even in
changing environments, but are not highly rotation invariant,
while SURF features demonstrate the opposite strengths and
weaknesses.

The rotation estimate is shown in Figure 6. When there
is no appearance change (Figure 6a), both R-SURF and R-
HOG accurately estimate the true rotation for all the tested
angles. U-SURF also accurately estimates the true rotation for
all offsets up to 35◦, while U-HOG is accurate to 20◦ before
failing. This result suggests that the HOG descriptor is more
sensitive to rotation variance than SURF. However, when there
is no appearance change either upright descriptor performs
well over a relatively broad range of rotation offsets.
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Fig. 5. Median number of inliers over 100 RANSAC trials for image
matching with (a) rotation change only and (b) both appearance and rotation
change. The x axis displays the relative rotation between the tested images.
Upright HOG features perform strongly when the relative rotations are small
(less than 15◦) but drop off rapidly at higher rotations. SURF features perform
well when there is only rotation variance but perform worse than HOG features
when there is also appearance change.
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Fig. 6. Median rotation estimate over 100 RANSAC trials for image matching
with (a) rotation change only and (b) both appearance and rotation change.
The x axis displays the relative rotation between the tested images, so a line
y = x demonstrates a correct rotation estimate. SURF features match or out-
perform HOG features when there is only rotation variance, but when there
is also condition change HOG features perform best.

When there is both rotation and appearance change (see Fig-
ure 6b), the performance of each descriptor is quite different.
R-SURF does not correctly match the images, even when there
is no rotation offset, while U-SURF does correctly estimate the
rotation offset for 0◦ and 5◦ but fails for larger rotation offsets.
This result agrees with the earlier results that demonstrated
that U-SURF is more repeatable in changing environments
than other SURF varieties [34]. However, R-HOG features
accurately estimate the rotation offset for all the tested rotation
values. U-HOG also accurately estimates the offset up to 15◦

before failing. This is slightly poorer performance than for the
similar appearance case, but once again demonstrates that an
upright descriptor may be robust in cases where the rotation
offset is small, even when the environmental appearance has
changed considerably.

In summary, these results demonstrate that a condition-
robust descriptor such as HOG can be combined with a SURF
orientation calculation to perform rotation-invariant feature
matching in a visually changing environment. An important
aspect to note, however, is the scale on the y-axis of each plot
of Figure 5, particularly Figure 5b. At best, fewer than 300
inlier matches are found (using U-HOG) when the appearance
of the environment has changed, even when the relative



rotation between the two images is 0◦. As the rotation offset
increases, this number rapidly decreases to fewer than 30 for
higher rotation offsets, for all the tested descriptors. As the
number of features per image is 3000, in the simplest case
only 10% of features are being matched, and in the more
challenging cases it can drop below 1% of features, although
R-HOG still manages to calculate the relative offset.

C. Dimensionality

The previous experiment demonstrated that HOG features
outperformed SURF features in changing environments. How-
ever, the two features have substantially different dimensional-
ity – SURF features possess 128 dimensions while the HOG
features used above contain 7056 dimensions. This section
investigates whether this significant disparity in dimension-
ality might have an effect on the resulting feature matching
capability.

1) Setup: This experiment uses U-HOG and U-SURF and
performs feature matching between the unrotated 6am and
7pm images, varying the dimensionality of the U-HOG feature
by resizing the image box around each keypoint to different
sizes. Note that the size of the region extracted from each
image remains unchanged, and is determined by the scale of
the SURF keypoint. However, by resizing the image box after
extraction it is possible to artificially vary the HOG feature
generated, without changing any of the default feature pa-
rameters. Performance is evaluated by calculating the median
number of inliers over 100 RANSAC trials.

2) Results: Figure 7 shows the median number of inliers
for HOG features with different numbers of dimensions. The
performance of the HOG features can be seen to decrease
rapidly as the number of dimensions decreases below 3000,
although it can also be observed that the relationship between
inlier number and dimensionality is not monotonic, but in
fact decreases after approximately 3600 dimensions. The 128-
dimension SURF features, marked in red on this plot, performs
much more competitively when compared to HOG features of
similar dimensionality.

This experiment does not imply that there are no differences
between features of the same dimension. For example, the
next section (Section IV-D) demonstrates that SURF features
of dimension 128 and image patches of dimension 121 behave
quite differently, with each performing better in a differ-
ent context. However, it does suggest that higher-dimension
features can in general can out-perform those with fewer
dimensions, suggesting the likelihood of a trade-off between
condition robustness and storage efficiency.

D. Appearance change and viewpoint change

The previous experiments used images that were captured
from the same viewpoint, so that evaluation of the inlier
matches could be easily performed. However, the real concern
is the system performance when the viewpoint of the camera
has changed. The final experiment demonstrates performance
on a dataset that demonstrates both viewpoint change and
appearance change. The image set was a set of images of
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Fig. 7. Median number of inliers for HOG features (black circles) matched
across appearance change on the Brisbane skyline images. The performance
of the HOG features decreases rapidly as the number of dimensions decreases
below 3000. The performance disparity between the SURF feature (red
marker) and a HOG feature of a similar dimensionality is less pronounced
than when compared to a HOG feature of larger dimensionality.

Notre Dame Cathedral from the well-known Paris Buildings
dataset [28] as shown in Figure 8. The images used represent a
range of different viewpoint offsets and day-night appearances.

1) Setup: Once again the SURF feature detector was used,
with 1000 features extracted per image. Four feature descrip-
tion techniques were tested – 128-dimension SURF features,
image patches resized to 121 dimensions to provide a compa-
rably sized feature to the 128-dimension SURF features, 7056-
dimension HOG features as used in the previous experiments,
and 64896-dimension conv3 features were extracted as in
[33] using the Caffe framework [12] and the default pre-trained
ImageNet model [14]. In each case, the upright feature was
used. Following [17], we learned a PCA decomposition for
each feature type on a training image and post-processed the
extracted features using Zero Components Analysis (ZCA) to

Fig. 8. Sample images of Notre Dame from the Paris image dataset,
demonstrating a number of different viewpoints and day-night appearances.



improve condition robustness. If U are the PCA eigenvectors
learned during training, and λi are the corresponding eigenval-
ues, then ZCA is calculated for the set of descriptors x from
an image I via:

xZCA =
UTx√
λi + ε

. (2)

The regularization parameter ε avoids division by zero, and
a value of 10−3 was used. Results were evaluated using a
combination of metrics. As in the previous experiments, the
distribution of inlier matches over 100 RANSAC trials were
calculated. However, in these cases there was no relative pose
ground truth as the images were all taken from disparate
viewpoints and the accuracy of the pose estimate could not
be calculated in a simplified way. However, we hypothesized
that a “good” set of feature matches would provide a more
repeatable performance over the RANSAC trials, and thus
while the ground truth accuracy of the transformation would
be unknown, the variance in the distribution of pose estimate
would give a qualitative estimate of the quality of the matching
set.

2) Results: Figure 9 shows examples of calculated inlier
sets for a number of images that demonstrate both viewpoint
and appearance change, using SURF features, image patches,
HOG features and conv3 features as descriptors. All the
features, including the SURF features, perform adequately in
the case when there is only appearance change and minor scale
change (first row of Figure 9). There are fewer SURF matches
and image patch matches in the other test cases, while both
HOG features and conv3 features perform reasonably in all
tested scenarios, particularly the conv3 feature.

Figure 10 shows the distribution of inliers calculated for all
features types. We note that the conv3 feature outperforms
the other three features in all cases, as suggested by Figure 9.
The SURF feature performs worst in all three cases involving
appearance change. When there is no appearance change but
only viewpoint change (Figure 10b), SURF features outper-
form the block image patches, which are not suited for such
transformations. Importantly, these results suggest that the
condition-invariant HOG and conv3 features also display
some viewpoint invariance, which is important for feature
matching for pose estimation.

As always, it is important to consider the scale on the y
axis of each plot, as this shows that the different images are
not all equally challenging. When there is only appearance
change (Figure 10a), an average of 491 conv3 inlier pairs
are found out of 1000 features per image; that is, a correct
match is found for nearly half of all features. When there is
only viewpoint change (Figure 10b), the average is 71 conv3
inlier pairs, while for the more challenging combinations of
viewpoint and appearance change in Figures 10c and 10d the
mean decreases to around 30 conv3 inlier pairs; that is, only
3% of all features are matched.

The number of inliers gives an impression of the quality of
the match, as do the visual examples in Figure 9. To support
this information, we consider the transformation estimate
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Fig. 10. Distribution of inliers for all tested feature descriptors between test
images displaying (a) appearance change only, (b) viewpoint change only,
(c) appearance change and viewpoint change, and (d) appearance change and
large scale change. SURF features perform worst when there is any appearance
change, while image patches perform worst when there is viewpoint change
only.

In
te

r-
q

u
a

rt
ile

 r
a

n
g

e

0

50

100

150

200

250

300

350

400

Appearance

change

Viewpoint

change

Appearance and

viewpoint change

Appearance and

scale change

SURF

Image patches

HOG

conv3

(a) Inter-quartile range

R
a
n
g
e

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Appearance

change

Viewpoint

change

Appearance and

viewpoint change

Appearance and

scale change

SURF

Image patches

HOG

conv3

(b) Total range

Fig. 11. Distribution of transformation estimates for each tested feature
descriptor and image tests across 100 RANSAC trials, summarized using the
(a) inter-quartile range, and (b) total range. The widest distribution is for SURF
features when there is appearance change and scale change (dark blue bars),
while the image patches perform poorly when there is viewpoint change.

calculated for each image. Figure 11 displays the distribution
of transformation estimate for each image type and each
feature type across 100 RANSAC trials. Figure 11a displays
the interquartile range (to eliminate outliers from the results)
and Figure 11b displays the total range (incorporating outliers).
These results are also summarized in Tables I and II. Although
the ground truth estimate is unknown, we would expect that a
successful feature set would compute the same transformation
estimate more reliably than a poor quality set.

It is instructive to compare the results from Figure 11
to the inlier distributions from Figure 10. As expected, the
most variable results are seen in Figure 11 when the median
number of features is smaller than 10, namely SURF features



(a) SURF features (b) Image patches (c) HOG features (d) conv3 features

Fig. 9. Examples of inlier matches for (a) SURF features, (b) image patches, (c) HOG features and (d) conv3 features for a number of different appearance
conditions and viewpoint positions. In general, the condition-invariant conv3 features finds the most inlier matches, followed by the HOG features. All the
features perform well on the first row comparison, despite the day-night appearance change. The image patches struggle when there is a viewpoint change,
even when the conditions have not changed a great deal (second row). The SURF features struggle on the large scale change and appearance change on the
final row.

TABLE I
INTER-QUARTILE RANGE OF TRANSFORMATION ESTIMATES IN PIXELS FOR EACH TESTED FEATURE DESCRIPTOR AND IMAGE TESTS ACROSS 100

RANSAC TRIALS.

SURF features Image patches HOG features conv3 features
Appearance change 4.4 4.1 4.2 6.8
Viewpoint change 5.0 13.1 13.0 30.8
Appearance change and viewpoint change 64.4 62.3 53.7 66.7
Appearance change and scale change 385.5 36.0 31.2 49.0

TABLE II
RANGE OF TRANSFORMATION ESTIMATES IN PIXELS FOR EACH TESTED FEATURE DESCRIPTOR AND IMAGE TESTS ACROSS 100 RANSAC TRIALS.

SURF features Image patches HOG features conv3 features
Appearance change 22.4 14.3 15.4 20.5
Viewpoint change 139.9 658.8 105.9 57.1
Appearance change and viewpoint change 243.9 231.1 182.9 215.7
Appearance change and scale change 1950.8 307.0 211.5 170.2



with appearance and scale change, and image patches with
viewpoint change. For appearance change only, all the features
perform well, with an inter-quartile range of between 4 and 7
pixels and a range of less than 23.

For viewpoint change only, SURF features achieve a top
inter-quartile range of 5 pixels, compared to a range of 13
pixels for both image patches and HOG features, and 30 pixels
for conv3 features, although as mentioned above the image
patches estimate has many extreme outliers and a range of 658
pixels. Curiously, the SURF features have a wider range than
the conv3 features. The ranges become increasingly wide as
the images matching tasks becomes increasingly challenging.
For the images that combine appearance and viewpoint or scale
change, HOG features achieve the best inter-quartile range.

An interesting note is that the conv3 feature does not
have the narrowest inter-quartile range for any of the tested
scenarios, but it does achieve a narrower range in two cases.
This result suggests that conv3 features are less accurate than
the other features in terms of precise positioning, but may find
a valid set of approximate inliers more reliably.

V. CONCLUSION

These results show that the combination of a local fea-
ture detector such as SURF with condition-invariant feature
descriptors such as HOG or conv3 provide a promising
combination to estimate pose more precisely than a topological
place recognition calculation, even when the appearance of
the environment has changed considerably. This paper is by
no means an exhaustive survey of feature types or appearance
changes, but instead presents representative examples of some
of the classes of possible tools that can be applied to the
problem using example scenarios to motivate some of the
challenges and potential solutions.

There are a number of issues to be resolved. In challenging
conditions, even the most successful feature descriptors may
only achieve inlier sets containing as few as 1% of all matches.
As a result, many features need to be kept for each image, and
there may be cases where even fewer good feature matches
may be found, and so no accurate pose estimate can be cal-
culated at all. There are also efficiency considerations – more
features need greater storage capacity and comparison steps
take longer. Furthermore, as Section IV-C suggests, features
with more dimensions are likely to display greater condition
robustness and so even greater efficiency sacrifices may be
necessary to achieve condition-invariance. Once interesting
avenue to pursue is to develop a more sophisticated way of
selecting features, so fewer features are retained, but the ones
that are kept are more likely to be useful for feature matching.

Future work includes developing a fully integrated visual
localization system that performs both global place recognition
and local pose estimation via a coarse-to-fine approach. For
example, image feature detection using EdgeBoxes has been
shown to provide good topological localization results in
changing environments with viewpoint change [33], but as we
show here it is outperformed in terms of local pose estimation
by SURF features. These results display another trade-off in

visual place recognition – in this case between condition-
invariance and viewpoint-invariance in terms of feature size.
Large features display condition-invariance to a greater degree
than small features, but provide less flexibility for drastic
viewpoint changes – whole-image descriptors being the most
extreme example [2, 32]. Ideally, the system would use the
same features for topological and metric localization, but such
trade-offs mean a compromise approach may be necessary.

These results can be extended and combined with other
techniques such as lidar-intensity images [20], illumination
invariant images [19] and high dynamic range cameras, and
future work is investigating these avenues. Other future work
includes introducing stereo cameras to improve pose estimates,
and extension of this research to yet more challenging envi-
ronments and more extreme viewpoint change.
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