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Chapter 1

Introduction

1.1 Introduction

In this Master’s thesis project we focus on the problem of picking objects au-
tonomously using a collaborative robot. In particular, this project integrates
existing software for automated picking and explores the problem of obstacle
avoidance using Signed Distance Field representation.

Systems employing sampling based planners [1] suffer from issues of un-
natural and sub-optimal trajectories, high planning time in cluttered spaces,
etc. In addition, these systems are usually based on traditional sense-plan-
act architectures, where it is hard to incorporate real-time sensory feedback.
In a control based approach for simultaneous motion generation and execu-
tion, the controller is the planner and runs with real-time sensory feedback. A
manipulation framework based on the task priority framework [2] is quite ro-
bust for executing manipulator tasks and for specifying priorities among these
tasks. It has been demonstrated to provide good results for picking tasks [3].
The Hierarchical Quadratic Programming framework is an efficient imple-
mentation of the task priority framework by Johansson [4]. This framework
allows us to formulate a manipulator goal as a set of inequality constraints.

A particular advantage of a constraint-based approach, such as HiQP, is
that a variety of manipulation problems can be modelled as set of constraints.
For instance, the task of grasping an object could be modelled as a set of con-
straints on the pose of the end-effector or gripper. The system by Stoyanov
et al. [5], which we will henceforth refer to simply as the Grasp Planner, uses
sensory information to extract collision free regions around a target object.
This region is called the Grasp Envelope. The grasp envelope is then reduced
to primitive geometries and task formulations (or constraints) based on those
geometries. When the constraints are fed into HiQP, the gripper reaches a pose
where it is ready to grasp the target object.

The Grasp Planner only detects collision of the gripper with the environ-
ment in a small region around the target object. In other words, although the
target pose might be collision-free, the trajectory that HiQP might generate is
not guaranteed to be collision-free. This motivates the need for obstacle avoid-
ance in our picking system.

The Signed Distance Field (SDF) representation is conceptually similar to
the potential fields approach and has been shown to be well suited for both
mapping and planning [6]. The work by Dietrich et al. aims to integrate the
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CHAPTER 1. INTRODUCTION 8

potential fields approach [7] into a task hierarchy [8]. We will adopt a method
that is similar to the above mentioned schemes on an abstract level. The main
contribution of this project is the integration of a collision avoidance system
based on the SDF representation into the HiQP framework. We will also con-
duct experiments to evaluate the collision avoidance behaviour and assess the
joint motions resulting from this framework.

A reactive obstacle avoidance behaviour such as the one we present, can be
advantageous for a picking robot. For instance, in a traditional sense-plan-act
architecture when an obstacle appears suddenly, replanning might be nec-
essary to successfully avoid the obstacle. This means that a collision might
occur when this replanning happens. However, a reactive system such as ours
can dynamically avoid the obstacle since it does not involve planning. Conse-
quently, such a system can be used in colaborative picking tasks with humans
safely without injury to the colaborating human. Another example could be a
social, assistive robot used to assist the elderly or disabled with simple day-
to-day tasks, where a manipulator with reactive obstacle avoidance might be
an indispensable asset.

Implementation view

In order to provide a perspective for the rest of this text, this section aims to
give an implementation view of the entire system. Figure 1.1 shows the dif-
ferent software components in our system and data they exchange. The figure
also marks out packages actively developed in this project. The project uses
chiefly four software stacks:

1. The HiQP stack 1

2. The HiQP demos package 2

3. The grasping stack 3

4. The Yumi demos stack 4

We now outline how the complete system works in practice. Firstly, the
demonstration node is initialized by the user. The demonstration node then
requests the Grasp Planner for constraints. The Grasp Planner then uses the
SDF Map computed by the SDF Tracker along with the position given it by the
demonstration node to compute constraints for the end effector. These con-
straints are a combination of primitive geometries and tasks associated with
these geometries. For instance a sphere is a primitive geometry. A task asso-
ciated with that sphere could be: Stay on the surface of the sphere. When the
end effector satisfies these constraints, it ends up in a pose where it is ready to
grasp the target object.

The demonstration node receives these constraints and forwards them to
the HiQP controller. The HiQP controller also loads the Obstacle Avoidance
Task, which is loaded at runtime as a ROS Plugin. The Obstacle Avoidance
plugin also utilizes the SDF Map (which it receives from the SDF Tracker) to
avoid any collisions with the environment. The demonstration node contin-
uously tracks the status of these tasks and ends once all the tasks have com-
pleted (low enough error).

1https://github.com/OrebroUniversity/hiqp
2https://github.com/OrebroUniversity/hiqp_demos
3https://github.com/OrebroUniversity/grasping_oru
4https://github.com/OrebroUniversity/yumi_demos
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Figure 1.1: Implementation view of the completed system

1.2 Outline

The Chapters in this thesis are organized as follows:

• Section 2.1 describes the HiQP framework.

• Section 2.2 describes the Grasp Planner and how it extracts the Grasp
Envelopes from sensory information.

• Chapter 3 deals with the problem of obstacle avoidance using SDF rep-
resentation.

• Chapter 4 deals with the various experiments performed with our sys-
tem and the results.

• Chapter 5 offers concluding remarks, summarizes the contributions and
suggests subject areas for potential future work.





Chapter 2

Object picking using HiQP

2.1 The HiQP framework

A task is a kinematic goal (move the end-effector to a particular plane) or
dynamic goal (apply a certain force on a certain surface) in the context of ma-
nipulator control. It is of great advantage if a robot can execute multiple tasks
at the same time. This is especially true in the case of redundant manipula-
tors. For instance when a coffee cup is grasped by the manipulator, one task
could be to move the end-effector from one point in space to another. At the
same time the orientation of the end-effector should be such that the cup is
upright.

Furthermore, the task of keeping the cup upright (and hence, not spilling
the coffee) might be more important than moving the end-effector. When
facing multiple tasks at the same time, it is beneficent to be able to group
equally important tasks while prioritizing more critical tasks. The Hierarchi-
cal Quadratic Programming or HiQP for short allows us to do exactly that. In
HiQP, every task is formulated as a convex optimization problem.

The HiQP framework is a C++ based implementation of the task priority
framework first introduced by Siciliano and Slotine [9] and further general-
ized by Kanoun et al. [2]. In our work, we wish to exploit the useful properties
of the HiQP framework to implement picking tasks and an obstacle avoidance
task with the highest priority.

In this section, we look at the mathematical basis of the HiQP framework.
The explanations will only expound topics most relevant to our work. The
reader is invited to read the work by Johansson [4] for a more thorough study
of the framework.

2.1.1 Goals as constraints

A convex optimization problem is one of the form1,

minimize f (x)

subject to ATi x < bi , i = 1, ...,m

1Note that there is no loss of generality here, an equality constraint or less-than-or-equal-to
constraint can both be written using greater-than-or-equal-to constraints.

11



CHAPTER 2. OBJECT PICKING USING HIQP 12

if the function f (x) and the inequality constraints are convex. In other words,
we wish to values of x for which f (x) (called the objective) is minimum, sub-
ject to the inequality (constraints).

A kinematic or dynamic goal can be modelled an convex optimization
problem if the objective function and the constraints are convex. Suppose we
have a manipulator whose joint velocities can be controlled and we want to
make the end effector reach a particular plane in space. Suppose we have a
function e(q) which represents an error. This function is called the Task Func-
tion. For instance, it could represent the Euclidean distance between the afore-
mentioned plane and the end effector. The plane is described by the equation

nT x− a = 0 (2.1)

where vector n is the normal vector and scalar a is the offset. In this particular
case the error described above can written as

e(q) = nT p(q)− a (2.2)

where p(q) is the position of the end effector, which is a function of the joint
angles. The rate of change of the task function is

ė(q) =
∂e(q)
∂q

q̇ = nT
∂p(q)
∂q

q̇ (2.3)

The quantity nT ∂p(q)
∂q is called the task jacobian, since it describes the rate

of change of the task function with respect to the joint angles and is denoted
by Jt(q) or simply Jt .

For a velocity controlled manipulator the generalized convex optimization
equations can be written as

minimize
w,q̇

1
2

(||w||2 +λr ||q̇||2)

subject to Jtq̇ < ėd +w (2.4)

where w is a slack variable.

λr is a regularization parameter.

In words, this formulation says, “Keep the slack variables small, keep the
joint motions small while still making sure the rate of change of measured
error is a certain value”. Here ėd is the desired error dynamics. For instance,
this may correspond to exponential decay given by

ėd = −λe

In essence, these equations let us formulate a kinematic goal to the manip-
ulator as an inequality. Notice that the objective function is quadratic - it is
made up of the square of the magnitude of the joint velocity vector and the
square of the magnitude of the slack variables.

2.1.2 Prioritizing Tasks

Suppose solving Equation 2.4 results in

w = w∗
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Now suppose we introduce another set of constraints (or in other words, an-
other task) given by

J(2)
t q̇ < ė(2)

d

These can be solved by the new set of equations

minimize
v,q̇

1
2

(||v||2 +λr ||q̇||2)

subject to Jtq̇ < ėd +w*

J(2)
t q̇ < ė(2)

d + v (2.5)

where v is a slack variable.

In essence this formulation can be used to priotize tasks. Note that the sec-
ond task is only executed in the null-space of the first task. As a consequence,
the solution to the second task does not interfere with the solution to the first
task. In other words, the second task has a lower priority than the first.

2.1.3 Example task: Reaching or avoiding a plane

Let us go back to the example presented in Section 2.1.1. Consider the plane
given by equation 2.1

nT x− a = 0

Now suppose we want to keep the end effector away from the plane. Keep-
ing the end effector away can mean two things: staying either in the positive
or in negative half-space associated with the plane. The positive half-space is
given by,

χ+ = {x ∈R3| nT x− a ≥ 0}

and the negative half-space is given by,

χ− = {x ∈R3| nT x− a ≤ 0}

For simplicity, we will use above the plane to refer to the positive half-space
and below the plane to refer to the negative half-space.

This task of keeping the end effector above or below the plane can be done
by adjusting the inequality in Equation 2.4. The three cases can be summa-
rized as follows:

• Leaving the inequality unchanged in Equation 2.4 corresponds to stay-
ing above the plane2.

Jtq̇ < ėd

• Staying below the plane can be achieved by reversing the inequality sign:

Jtq̇ 4 ėd

• Reaching the plane can be achieved by combining both the above men-
tioned inequalities.

2For exponential decay error dynamics, when the signed distance is positive, −λe is negative.
So zero joint velocity would ensure Jt q̇ ≥ ėd .
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2.1.4 Reaching or avoiding primitive geometries

Tasks such as the one in Section 2.1.3 make use of the distance between the
target geometry and the geometry representing the end-effector. Note that the
task need not be associated to the end effector at all. In general the framework
allows us to attach a primitive geometry to any link on the manipulator.

Also, the geometry attached to the target could be anything as long as the
error can be represented mathematically as a distance to the geometry. To
summarize, HiQP allows two kinds of tasks between pairs of geometries -
Projection and Alignment. Projection tasks are aimed at reducing the distance
between the two associated geometries. Alignment tasks are aimed at orient-
ing two geometries together.

In this work we make use of the following tasks:

• Point on plane projection - keep the point at a certain distance on a
specific side of the plane.

• Point on cylinder projection - keep the point at a certain distance either
inside or outside of the cylinder.

• Line on line projection - make the lines intersect.

• Line on line alignment - keep the lines parallel to each other.

In the following section we describe the Grasp Planner which will output
geometries and tasks of the above form. These tasks when fed into HiQP re-
sult in the the target object being picked up.

2.2 Grasp Envelopes

The Grasp Planner forms a crucial part of our picking framework. The grasp
planner is described in detail by Stoyanov et. al. in [5] and is described briefly
in this section.

When given the pose and size of the object to be grasped, the Grasp Plan-
ner returns a set of primitive geometries (lines, cylinders and/or spheres) and
constraints associated with these geometries. It is assumed that the object to
be grasped can be fully enclosed in a cylinder (or sphere). And it is the size
and pose of this cylinder (or sphere) that is given to the Grasp Planner. Figure
2.1a shows the target object, the enclosing cylinder and the region of grasp
poses around the target object. This region of grasp poses is called the Grasp
Envelope. The grasp planner uses sensory information and information about
the gripper to remove invalid poses from this envelope. Figure 2.1b3 shows
one example of a truncated region returned by the grasp planner. The trun-
cated region consists of four planes and two cylinders. When these constraints
are fed into HiQP, the end effector is brought into this cylindrical sector.

The grasp planning operation can be divided into main stages:

• Pre-computing a collision map.

• Computing valid configurations.

• Posting constraints to HiQP.

We discuss these steps briefly in the following sections.

3Figure taken from [5] with permission.
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(a) An illustration of the grasp enve-
lope.

(b) An example of the return primi-
tives - they make up the cylindrical
sector shown.

Figure 2.1: Grasp Envelopes and collision free regions

2.2.1 Pre-computing a collision map

The region around the grasp primitive (cylinder or sphere) is sampled evenly
using three parameters. For a cylinder, the parameters are:

• the distance from the center of the cylinder, l

• the orientation, θ, and

• the height above the base of the grasp primitive, h.

For a sphere, the parameters are:

• the distance from the center of the cylinder, l

• the polar angle, θ, and

• the azimuth angle, φ.

The top view of such a space for cylindrical grasp primitive is shown in
Figure 2.2a. Note that the distance from the center, l, is limitied: configura-
tions where the palm of the gripper would collide with the target object and
configurations where the fingers would miss the target object are not consid-
ered.

The Grasp Planner constraints the orientation of the gripper to align with
the principal components of the target object. In other words, the roll axis of
the gripper is constrained to point towards the cylinder axis and the yaw axis
is constrained to be parallel to the cylinder axis. These constraints are inspired
by how humans grasp objects [10]. Given these constraints each orange dot in
Figure 2.2a corrresponds to one pose of the end effector where a grasp might
be possible. And for each such configuration of the end effector, a collision
map is computed where the cells corresponding to the gripper are marked as
occupied and the remaining cells are marked free.

2.2.2 Computing valid configurations

The next step is to validate configurations where the gripper is not in colli-
sion with the environment. The environment in our case is represented by a
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(b) Max volume region after search

Figure 2.2: Grasp Planning

Signed Distance Field. In an SDF grid, every voxel contains the distance to the
nearest occupied voxel. Note that although we use a TSDF, any representation
where occupancy information is available can be used.

Given the collision maps computed in the previous step, we intersect each
of these maps with the environment map. This is done by associating corre-
sponding cells in both the maps. If both cells are occupied, there is a potential
collision. Three types of collision are possible: 1) palm of the gripper collides
with the environment; 2) fingers collide with the environment; 3) fingers col-
lide with the target object. A collision between the gipper palm and the envi-
ronment results in the corresponding sample being marked as invalid.

Figure 2.3: An illustration of the types of collisions detected by the planner.

If this collision is between the fingers of the gripper and the environment
or target object, then the gripper opening angle is constrained. A collision be-
tween the fingers and target object would constraint the minimum opening
angle. A collision between the fingers and the environment would constrain
the maximum opening angle. If the maximum opening angle is less than the
minimum opening angle, the corresponding sample is marked invalid. Figure
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2.34 illustrates the three different types of collisions detected by the planner.

2.2.3 Constraints

After the above two steps, some configurations have been marked as invalid
while others remain valid. At this stage it is necessary to find a continuous
region of valid configurations. In particular the region with the maximum
volume of all such regions is found. For instance, this looks like Figure 2.2b
for a cylindrical grasp primitive. For a detailed explanation of the algorithm
the reader is invited to read the work by Stoyanov et. al. [5]

Now that we have the maximum volume region, note that it can be reduced
to a few inequalities. In words, the inequalities are equivalent to:

• Stay outside the inner cylinder, and inside the outer cylinder (two point
on cylinder projection tasks).

• Stay between planes 1 and 2 (two point on plane projection tasks).

• Stay above the bottom plane and below the top plane (two point on plane
projection tasks).

• Keep the end-effector upright (line on line alignement task).

• Make the end-effector face the target object during approach (line on
line projection task).

(a) Side view of the search space

(b) Top view of the search space (c) The resulting constraints

Figure 2.4: Grasp Planner: search space and constraints visualization

As mentioned earlier the last two constraints are inspired by research into
how humans pick up objects. Note that these inequalities are exactly similar
to what we saw in Section 2.1.3 and subsequently in Section 2.1.4. When fed
into hiqp, the gripper ends up in a configuration where it is ready to grasp the

4Figure taken from [5] with permission.
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target object. This is the first stage in the picking operation. A visualization5

of the search space and the extracted envelope is shown in Figure 2.4 and
Figure 2.5. The color of the displayed samples is described below:

• Red - Palm collides with environment

• Green - Selected valid pose. Is part of the returned envelope.

• Purple - Valid pose. Not part of the returned envelope.

• Yellow - Finger collides with environment or target.

• Blue - Space between fingers is empty in this configuration.

Figure 2.5: Another view of the search space

Once the object is ready to be grasped, it is grasped and extracted. Extrac-
tion of the object is also an empirical operation where the object is simply
lifted off of its original position. This is done by simply modifying the bottom
plane and top plane primitives mentioned before.

2.2.4 When there are obstacles in the way

The grasp planner can deal with obstacles that lie within the sampled region
that is used for planning. But consider the situation in Figure 2.5. An object
can be seen just outside the sampled region around the target object. When the
constraints generated by the grasp planner are fed into the HiQP controller,
the manipulator can potentially collide with this object. It is easy to imagine
numerous other cases where the manipulator can potentially collide with the
environment even in simple picking tasks. For instance, if the object to be
picked up is on a shelf, the manipulator’s links can potentially collide with
the racks in the shelf. It is therefore necessary to have an obstacle avoidance
behaviour built into the framework to help make it more robust. The follow-
ing chapter is dedicated to obstacle avoidance using the HiQP framework and
the Signed Distance Transform representation.

5This image is a screenshot of rviz when performing experiments on the robot.



Chapter 3

Obstacle avoidance using

HiQP

3.1 Generalizing the avoidance task

In Section 2.1.3 we saw how a constraint can be formulated to prevent the
end effector from reaching a plane. This idea made use of two quantities: the
distance to the plane and the direction in which this distance increases. Sadly,
the environment is not made up of planes and in order to generalize this idea
to work with any surface, we need a representation that can provide us the
distance to the surface and the direction in which this distance increases.

The Signed Distance Field representation provides exactly that. Let us start
with the error formulation and differentiate that to obtain the error dynamics.
The error is given by,

e(q) =D(p(q)) (3.1)

And the error derivative becomes,

Jtq̇ = ∇D(p)T Jpq̇ (3.2)

where D(p(q)) is the value of the distance field at a point p and ∇D(p) is the
gradient of the distance field at point p.

An obstacle avoidance behaviour can make use of this basic idea to stay
away from obstacles. This chapter focuses on the use of Signed Distance Fields
for obstacle avoidance. Signed distance fields have been used to represent 3D
volumes in computer graphics [11], in surface construction from sensor data
[12], and recently, in optimization based motion planners [13]. Research by
Oleynikova et al. [6] illustrate the advantages of using SDF maps as both a
representation for online map building and online motion planning.

Some of the advantages of SDF Maps that we would like to exploit are:

• SDF Maps allow fast look-up of closest distance to obstacle surface.

• SDF Gradients provide the direction to the closest obstacle which can be
used with our HiQP task formulation to restrict velocity.

The above formulation in Equation 3.1 and 3.2 raises the following ques-
tion:

19
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How should the manipulator itself be represented? The above equations im-
plicitly assume that there is only one end effector point that needs to be kept
away from obstacles. In the most general case, this is not true. The entire ma-
nipulator should be kept away from obstacles. One way to do this is to repre-
sent the manipulator as a combination of different geometric primitives such
as points, spheres, cylinders, etc. Once this is done, we can rewrite the error
and task jacobian formulations to work with these primitives and our chosen
scene representation format (SDF). This is discussed in Section 3.4.

3.2 Related Work

In the previous section we raised the question: “How should the manipulator be
represented”. Optimization-based motion planners such as CHOMP [13] and
STOMP [14] approximate the robot body using a set of spheres. This is in-
adequate for our work because the velocity of the manipulator in the region
between two such spheres would be unrestricted. This means that a collision
might occur between the robot link and the environment in a region between
the two spheres.

Sugiura et al. use a combination of sphere-swept line segments to approx-
imate the robot for use in self-collision avoidance [15]. Sphere-swept line seg-
ments were also used by Kanoun [16] in their work for self collision avoidance.
We call these sphere-swept lines, capsules. Note that a capsule can be reduced
to a line segment plus a radius for distance computation. For instance, the
closest distance from a manipulator link to an obstacle, is the closest distance
to the obstacle from the line segment minus the radius. This makes a capsule
computationally simple while reasonably approximating the shape of manip-
ulator links. In our work we use capsules to represent the manipulator links.

The artificial potential field approach for obstacle avoidance was intro-
duced by Khatib [7]. To quote Khatib, the goal point “is an attractive pole for
the the end effector, and obstacles are repulsive surfaces for the manipulator parts”.
Note that potential fields are akin to SDF Gradients - both are vector fields,
where, at any point in the field, the magnitude of the field is proportional to
the distance from the obstacle and the direction of the field indicates the di-
rection in which the distance from the obstacle decreases1.

On an abstract level, our method is similar to the artificial potential field
approach. The SDF map can be thought of as an implementation of the po-
tential fields concept. The artificial potential fields approach was further ex-
plored and integrated into a task hierarchy by Dietrich et. al. in their work[8].
Due to the absence of a joint effort interface to our robot, we could not use the
effort-based control scheme.

Another important study is one by Kanehiro et. al. [17], where they explore
a local method for collision avoidance. The obstacles are represented by non-
strictly convex polyhedra. These polyhedra are then decomposed into simpler
geometries from which constraints are generated. The main disadvantage is
that in complex environments, the computation time can be drastically large
(as mentioned in the work). Also, it is assumed that the full geometry of the
obstacle is available.

1Other examples of potential fields are the Gravitational Field and Electric Field.
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3.3 Scene Representation

3.3.1 TSDF and ESDF

In this work, we use the Signed Distance Field or SDF (sometimes also referred
to as the Signed Distance Transform) to represent the scene in which manip-
ulation is performed. The distance function maps an n-dimensional vector to
a scalar using a distance metric. If x denotes a point in n-dimensional space,
then the SDF is mapping given by:

D(x) : Rn→R (3.3)

If the metric used is Euclidean distance, it is called the Euclidean Distance
Transform [18]. For example, distance from a circle (with centre at the origin)
is given by the equation:

D(x) = ||x|| − r (3.4)

where r is the radius of the circle. For points on the circle, the above equa-
tion becomes the equation of the circle, as expected. For points inside the cir-
cle, the function produces a negative value, and for points outside the circle,
the function produces a positive value. Such a function is called a Euclidean
Signed Distance Function (ESDF). In 3-D, the notion of positive and negative
distances can be used to know if a point is inside or outside a specific object.

A voxel grid is usually used to represent a discrete SDF. Each voxel con-
tains the distance to the nearest surface. When using a depth camera, such as
the Kinect or Xtion, one typically gets only one view of the scene if no recon-
struction is performed. It should be easy to note that in the absence of a com-
plete reconstruction of the scene, one can not compute the ESDF. However, it
is easy to compute the distance to the surface along the direction of a ray from
the center of the sensor. Such a distance metric is an approximation of the
true Euclidean distance. This is because the distance is not computed along
the normal to the surface. The SDF thus obtained is called a projective SDF as
it uses a projection of the Euclidean distance along the ray. Hence, it is usually
truncated to only have values very close to the surface. This representation
is called a Truncated Signed Distance Field or TSDF. For more information on
how a TSDF is generated and updated, please refer to the work by Canelhas
[19].

3.3.2 Gradient of the SDF

The gradient of the SDF is a vector whose components are partial derivatives
of the SDF with respect to each spatial dimension.

n(x) = ∇D(x) =

∂D(x)/∂x
∂D(x)/∂y
∂D(x)/∂z

 (3.5)

The gradient tells us how the SDF values vary along each dimension. In
other words, it tells us along what direction the SDF value increases. In Eu-
clidean distance grids, the gradient is normal to the obstacle surface. In prac-
tice, the gradient is computed numerically using central differences. In our
implementation we use 2nd order central differences along each dimension.

∇Dx(x) =
D(l+ 2h)−D(l− 2h) + 8D(l+h) − 8D(l−h)

12 |h|
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where l is the location where we wish to compute the gradient and h is a unit
vector in the x-direction scaled by the resolution of the SDF grid. This process
is repeated (by changing h) for y and z directions.

In order to be able to use the SDF Map for obstacle avoidance we need,

• Gradients in every cell of the SDF Map

• SDF value in every cell of the SDF Map

In a TSDF grid, the gradients will point towards the origin of the sensor.
This is because the distances are computed along the direction of the ray. Also,
SDF values are only available for cells close to the observed obstacle surfaces.
Hence, we convert the TSDF grid into an ESDF grid. This is done using the
TSDF grid as a starting point and computing the minimum distances along
each dimension. The algorithm is described in detail in the work by Felzen-
szwalb and Huttenlocher [20].

3.4 SDF Maps and manipulator geometry

In this section we discuss the problem of obstacle avoidance when the manip-
ulator is represented as a combination of points, spheres and capsules.

3.4.1 Keeping a manipulator point away from obstacles

Suppose the manipulator is represented, for the purpose of obstacle avoid-
ance, by several points at different locations on it. Let us call these the test
points. And we want to keep each of these points away from the obstacle sur-
face. We discussed the task of avoiding collision with a surface (represented
by an SDF map) in Section 3.1. Note that the SDF value at each of the test
points gives us the distance to the closest point on the surface. Also, the SDF
gradient gives us the normal to the surface.

Note that since the generalized function in Equation 2.4 contains a greater-
than-or-equal-to relation, it is necessary to add a safety distance to the error
formulation to prevent the controlled point from actually reaching the obsta-
cle surface should there be a competing task of lower priority.

3.4.2 Keeping a manipulator sphere away from obstacles

When the manipulator is represented as a combination of spheres, the formu-
lation is quite similar to that of a point with a slight difference. The jacobian
stays the same. The radius r of the sphere is subtracted from the error value.
The error is simply

e(q) =D(p(q))− r (3.6)

Note that the shortest distance to a sphere is simply the shortest distance
to the centre of the sphere minus the radius, and hence, the equation for error.

3.4.3 Keeping a manipulator capsule away from obstacles

When each link of the manipulator is represented as a capsule, the formula-
tion is not quite straight-forward. Several questions arise:

• What points on the capsule should be constrained? In the above formula-
tions, both primitive geometries used can be reduced to a point. So in
effect, the velocity of this point is constrained. Kanehiro et al. [17] show
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that at least a pair of points (namely the end points) on a line segment
need to be constrained to ensure collision avoidance between that line
segment and a plane. However, this over simplifies the problem. Ide-
ally we want to contrain the velocity of a link taking every obstacle into
consideration.

• The naïve approach is to sample points on the capsule’s axis at the res-
olution of the underlying environment representation, in our case the
SDF map. This leads us to our next question, “are all the constraints
necessary?” If not, it should be possible to reduce these constraints to
a smaller number of quivalent constraints. For instance when avoiding
collision with a plane only two constraints are needed and these need to
be at the end points of the line segment.

In this work, we will adopt the aforementioned naïve method for obstacle
avoidance and evaluate it thoroughly. In the following section, we present two
simple methods to reduce constraints.

3.5 Constraint Reduction

The naïve method mentioned in the previous section works well in practice
but results in a large amount of time spent on optimization when used at the
highest resolution. Per iteration, it takes about 12 ms for optimizaiton2. This
means optimization can be run at a frequency of utmost 83 Hz. It is also quite
clear from experimentation (please refer to Figure 4.8 in Section 4.2.1) that a
reduction in the sampling length reduces the time spent on optimization.

At this juncture, we wish to answer the question, “can we intelligently prune
out constraints such that we have as much information as possible while reducing
the number of constraints significantly”? Although the answer is yes, the prob-
lem of reducing these constraints is not quite straight forward. In this work
we present a few methods to prune out constraints. These are dealt with in
the following sections.

3.5.1 Keeping a line segment away from a Plane

In order to keep a line segment above3 the plane, at least two points need to
be constrained and the two points should be the end points. This statement
is easily proved graphically. For instance, consider the line segment in Figure
3.1. When points A and C are constrained with respect to the plane below, the
segment is allowed to move to configuration shown in Figure 3.2 in the next
time instant. This is because, point C has not violated its velocity constraints
in the direction of the plane and point A has zero velocity in the direction of
the plane. However, the line segment can still collide with the plane.

When points A and B are constrained, any point between A and B on the
line segment, and hence point C, is automatically constrained. For instance,
for point C to collide with the plane either point A or B or both should also
collide with the plane. This is not possible since A and B have already been
constrained. This result gives us the easiest way to prune out constraints when
there are multiple constraints against the same plane or set of planes. We can

2Th experiments were performed on an Intel Core i7 (3.4 GHz × 8) machine running
GNU/Linux.

3Above = on the same side as the normal
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A

B

C

Plane to avoid

(a) Line segment vs Plane

A

B

C

Plane to avoid

(b) When only A and C are con-
strainted

Figure 3.1: Constraining a line-segment with respect to a plane.

keep the outer most constraints and dispense with the others as shown in Fig-
ure 3.2a and Figure 3.2b. In practice, this method helps reduce the number
of constraints if there are planar surfaces like tables, boxes, etc. When planar
surfaces are scarce, this method would not help much in reducing the number
of constraints.

A

B

C

(a) All constraints

A

B

C

(b) Redundant constraints removed

Figure 3.2: Reducing constraints related to the same plane.

3.5.2 Minimum-in-region sub-sampling

Another way of reducing constraints is by sub-sampling the constraints in
each capsule. In this particular method we divide the length of the line-segment
(longitudinal axis of the capsule) into several equal parts. We then compute
the SDF gradients at the lowest resolution and retain only the gradient that is
smallest in every region.

Suppose l is the length of the capsule associated with the link in question.
Suppose d is the discretization length and s is the subsampling length. Total
number of constraints in the naïve method would be,

no. of constraints =
l
d
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A

B

C

Figure 3.3: Application of minimim-in-region subsampling to Fig. 3.2a

As an example, for a 30-centimeters-long link, and a discretization length
of 0.003m the number of constraints would be 0.3

0.003 = 100. However, sub-
sampling would reduce it to a fraction of that value. For instance if we choose
one constraint for every 2 constraints (by picking the minimum SDF Gradi-
ent), we would already reduce the no. of constraints by half. An illustration of
this method is shown in Figure 3.3.





Chapter 4

Experiments

To evaluate our system, three different types of experiments are performed.
This chapter deals the purpose and context of each type of experiment in-
cluding the the description of the set-up used (Section 4.1) and a discussion
of the results (Section 4.2).

4.1 Outline of experiments

This section describes the context and purpose of each experiment we wish
to perform. Additionally we describe the setup used for each experiment in
detail.

For all the experiments performed the manipulators’ links are modelled
as shown in Figure 4.1. Each capsule begins at frame i to the origin of frame
i + 1. Each capsule is empirically made to fit the entire link it is attached to.
Only the last four links are modelled for our experiments since the other links
are unlikely to collide with obstacles in our particular set-up.

To recreate each of the above shown scenarios on the real robot, the setup
shown in Figure 4.2 is used. On a sheet of paper, the positions of objects (taken
from the gazebo models) are marked out for easy repeatability of experiments
on the robot. Every obstacle avoidance experiment was repeated 8-10 times.

We performed all the experiments on the Yumi robot. We use ROS as the
middle-ware1. In simulation the Yumi robot is simulated using Gazebo.

4.1.1 Goal pose in collision (pre-generated ESDF)

What: The end effector is given a final pose where it would definitely collide
with the environment. The setup used is shown in Figure 4.3a. The model of a
plane and the stanford bunny is loaded onto Gazebo. The same model is used
to generate an ESDF.

In order to generate an ESDF for use in these experiments the following is
done:

• Create a simple 3D model of the setup2. For this experiment, we used a
flat object to represent the table and we used the Stanford bunny as the
obstacle. The target pose is in collision with the bunny.

1ROS drivers for Yumi can be found at https://github.com/OrebroUniversity/yumi.
2We used the open-source program, blender, to create our models.

27
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Figure 4.1: Cylinders/capsules around each manipulator link.

Figure 4.2: The setup used for experiments on the robot
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(a) Bunny setup - gazebo (b) Bunny and box setup - gazebo

(c) Pig setup - real (d) Pig and box setup - real

• Import the above 3D model into gazebo to create a world. Use the 3D
model to create an ESDF3. This is computed once only.

Why: The most basic goal of the obstacle avoidance system is that it should
not collide with the environment. This is the simplest case to test the system
since there is only one obstacle and the end effector is prevented from collid-
ing with it.

Measured quantity: Binary result - either collision occurs or not.

4.1.2 Goal Pose in collision with obstacles in the way

(pre-generated ESDF)

What: In this experiment we use the same setup as in Section 4.1.1 except
that now there is a box in the way. In the previous experiment (when there is
no box), the path the robot takes is noted and an obstacle is placed where it
would likely collide with the robot. The system is run once without obstacle
avoidance to make sure that the box is a potential obstacle. The experimental
setup is shown in Figure 4.3b (simulation) and in Figure 4.3c. The experiment
is performed for varying values of sampling length (of the capsule primitive)
for the computation of SDF gradients.

Why: Aim is not to evaluate if the system can make the manipulator suc-
cessfully navigate around the obstacle. It is to make sure that manipulator can
avoid obstacles. Also we wish to determine what sampling length is needed to
successfully avoid obstacles and to understand if the sampling length has an
impact on the optimization time.

Measured Quantities:

3We used the SDFGen program to generate the ESDF from STL meshes. The package can be
found at https://github.com/tstoyanov/SDFGen
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Figure 4.4: The world: A ground plane, a table setup and two depth cameras.

• Binary result - either collision occurs or not.

• Velocity controls computation time - This is the time taken for HiQP to
solve the optimization problem. We would like to study how the opti-
mization time increases as the number of constraints increases. We vary
the sampling length to vary the number of constraints.

4.1.3 Goal Pose in collision with obstacles in the way

(online SDF)

This experiment is exactly the same as experiment in Section 4.1.2 with one
key difference - the SDF Map is generated online using depth sensors. These
depth sensors are added to gazebo and gazebo plugins are used to stream the
depth data back to ROS. The gazebo setup is shown in Figure 4.4.

Alternative setup

For the experiment in Section 4.1.3, the obstacle place in the way is occluded
from one of the sensors. So the same experiment is done again with obsta-
cles placed on the opposite side (right-hand-side for the viewer). The setup is
shown in Figure 4.5.

4.1.4 Picking with obstacles in the way

What: Pick up an object with obstacles in the way, using our framework and
using Moveit. Similar to the obstacle avoidance experiments, the picking op-
eration is first conducted without the obstacle avoidance task and it is made
sure that the manipulator would collide with the obstacle.
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(a) Bunny and box alternative setup -
gazebo (b) Pig and box alternative setup - real

Figure 4.5: Alternative setup for obstacle avoidance experiments

(a) Picking experiment setup - gazebo (b) Picking experiment setup - real

Figure 4.6: Setup for picking experiment

Why: To compare the movement of joints due to HiQP and Moveit. We do
not wish to test if HiQP can successfully navigate around complex obstacles.
We know that HiQP would fail to navigate around the obstacles if local min-
ima exist. However, we wish to consider cases where HiQP would be able to
find a path. We then feed the destination pose into moveit (we know this pose
is collision free).

Measured Quantities: We record all joint states. In the end we wish to
measure how much the joints have moved. To do this we incrementally sum
up all the joint displacements.

4.2 Results

4.2.1 Simple obstacle avoidance

For the simplest obstacle avoidance experiment, the experiments showed a
100% success rate for various sampling lengths ranging from 0.003 m (reso-
lution of the underlying SDF map) to 0.05 m in both simulation and on the
robot4.

4It should be noted that in the absence of any obstacles in the way, a sphere at the tip of the
last link would be enough to prevent end effector collision.



CHAPTER 4. EXPERIMENTS 32

(a) Pre-computed ESDF (b) Online Map

Figure 4.7: Online and offline computed SDF maps

4.2.2 Goal Pose in collision with obstacles in the way

(pre-generated ESDF)

Table 4.1 outlines the results from the obstacle avoidance experiment when
there is a box in the way and when a pre-generated ESDF is used.

Sampling length (m) Success rate (%)
0.007 100
0.009 100

0.01 100
0.02 100
0.03 25

Table 4.1: Success rate for different sampling lengths - Obstacle in the way
(pre-generated ESDF)

It is quite clear that increasing the sampling length above 0.02 m affects
success rate. In the naïve method for adding constraints, we are essentially
approximating the capsule with several spheres. When we increase the sam-
pling length, the spheres might be too far apart that when an obstacle appears
in between two such spheres, there is a greater chance of collision (due a laxer
velocity constraint).

4.2.3 Goal Pose in collision with obstacles in the way

(online SDF)

Simulation

When the SDF tracker is used online, some issues begin to show up. Firstly,
due to their positions relative to the workspace, the cameras do not get a view
of the space from every angle. This leads to gaps in the SDF map. For instance
(see Figure 4.7) the lateral faces of the box are not visible to the sensors. This
explains the results from using the online tracker. It is quite clear that even at
highest resolution the success rate is quite low. These results are summarized
in the table below.
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sampling length (m) Success rate (%)
0.003 50
0.005 50
0.008 25

0.01 37.5
0.03 0

Table 4.2: Obstacle in the way using online SDF in Simulation

Robot

Table 4.3 summarizes the results from the robot.

sampling length (m) Success rate (%)
0.003 33
0.006 12
0.008 0

Table 4.3: Obstacle in the way using online SDF on the Robot

The success rate is slightly worse than in simulation. This could be due to
various factors including extrinsic calibration between the cameras. For our
experiments we measured the camera placement using a tape to have a start-
ing point for the transformation. We then adjusted the transforms until the
point clouds from the two sensors aligned with the robot model in RViz.

Alternative setup

In order to verify that the failures are indeed due to occlusion, the experiment
is conducted with the box placed at another location. The table in Figure 4.5b
shows the results for the alternative setup.

sampling
length (m)

Success rate,
simulation(%)

Success rate,
robot(%)

0.003 100 100
0.006 100 88
0.008 100 45
0.015 0 -

Table 4.4: Obstacles in the way, alternative setup using online SDF

Placing the obstacle at a different location (as shown in Figure 4.5) drasti-
cally improves obstacle avoidance success rate. In the new location, the obsta-
cle is more clearly visible and hence the resulting SDF map more accurately
models the real world.

4.3 Minimum-in-region sub-sampling

We performed an evaluation of the minimum-in-region sub-sampling method
for reducing the number of constraints. This experiment was performed on
the alternative setup mentioned in the Section 4.1.3. This experiment was per-
formed only in simulation.
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Figure 4.8: Average Optimization time vs number of constraints

When a sub-sampling length of 0.015 m was used along with a sampling
length of 0.003 m, the success rate was 100% (for 10 runs). Another interest-
ing observation is the relationship between the time required for computing
velocity controls (optimization time) and the sampling length. It is clear from
Figure 4.8 that average optimization time increases significantly with an in-
crease in the number of constraints.

4.4 Object picking

As already mentioned, the object picking experiments are mainly designed
to compare the joint motions resulting from our framework and those from
Moveit. For these experiments, the SDF tracker is initialized with a cell size
of 0.005 m (side of each cell cube) and Moveit’s Occupancy Map updater is
initialized to the same cell size. With Moveit the default RRT planner from
OMPL is used.

Firstly, the picking is conducted with our framework (HiQP + obstacle
avoidance + grasp planner). This experiment is performed several times. The
resulting end effector pose from these experiments is fed into Moveit’s plan-
ning pipeline and the resulting motion is also recorded.

The graph in Figure 4.9 shows the results from the experiment. Here the
joint motions are calculated by measuring the norm of the joint distance vec-
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Figure 4.9: Comparison of Joint Motions

tor. Note that this is not the joint displacement vector. Although very different
joint trajectories may have the similar joint displacement, the joint distances
will be different. We integrate incremental joint displacements to compute the
joint distance vector. It is clear that in both simulation and real experiments,
Moveit and the HiQP-based picking framework result in similar joint motions.

4.5 Discussion

The results from these experiments can be summarized as follows:

• The obstacle avoidance experiments serve as a strong baseline for fur-
ther experimentation and future work.

• The experiments suggest that in the presence of a perfect SDF Map, col-
lisions do not occur when the sampling length is low enough.

• Velocity controls computation time seems to increase drastically with
increase in resolution (decrease in sampling length) at which the capsule
is sampled. This suggests strongly that constraint reduction techniques
could be of great advantage.

• Results from the minimum-in-region subsampling indicate that this method
is probably an effective method for computing constraints.

• The joint motions resulting from the system are similar to those result-
ing from Moveit.
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Perhaps the result that is most worthy of discussion is the one from the
minimum-in-region sub-sampling. As expected this reduces the velocity com-
putation time drastically. And though only one sub-sampling length (0.015m)
was tested, it produced a 100% success rate. When a sampling length of 0.015m
was used, it produced a 0% success rate. This can be due to several reasons.
Firstly, although sub-sampling is performed, all the information available for
a capsule is being used. Another reason could be that the sub-sampling makes
kinematic sense. The sub-sampling actually splits the line segment into mul-
tiple smaller line segments. Lets call these smaller segments sub-segments.
The method literally chooses the most critical constraint for each of these sub-
segments. It is possible that this critical constraint supplants other constraints
in the sub-segment. Further theoretical and practical study on constraint re-
duction would certainly help us understand the problem more clearly.
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Conclusion

5.1 Future Work

In section 3.5 we have suggested potential methods for reducing constraints.
Although one of the methods (minimum-in-region subsampling) has been
evaluated, implementation and thorough evaluation of the other might prove
to be useful in speeding up the computation of velocity controls when using
obstacle avoidance. Furthermore, intuition suggests that we could use theory
from kinematics of linkages to make inferences regarding velocity limitations.
The method mentioned in section 3.5.1 is an example of this. It might be use-
ful to develop more generalized methods in the same light.

It is quite clear from section 4.2.2 that the performance of obstacle avoid-
ance deteriorates when the obstalces lie in regions that are partially occluded.
Object segmentation and reconstruction can help obviate these problems. Also,
reconstruction of objects can provide additional information that can be ex-
ploited by the Grasp Planner.

This project has thus far focussed on obstacle avoidance using SDF Maps.
However, self-collision avoidance has not been implemented. The problem of
self collision avoidance requires us to determine the closes points on pairs of
capsules and then constraining these points. Such a constraint should be ap-
plied to every pair of links that can potentially collide.

The ideal future goal is to have an online obstacle avoidance behaviour. In
our current setup, the SDF Tracker and obstacle avoidance task run on differ-
ent processes. This entails that we undertake the costly operation of sending
the map as a ROS Message from the SDF Tracker to the obstacle avoidance
task. Running the two processes as two threads of the same process will help
eliminate the costly data transfer. To have an online obstacle avoidance task,
we would also need procedures to filter out depth pixels that correspond to
the robot itself.

5.2 Contributions

In this project we set out to achieve a few development goals and research
goals. In essence the developmental contributions from this work are as fol-
lows:

• The HiQP framework has been used to port existing software for picking
operations.

37
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• The HiQP framework has been extended to allow tasks to be loaded as
ROS plugins.

Research contributions resulting from this project are:

• We have implemented a local obstacle avoidance behaviour based on the
SDF representation.

• We have performed base-line evaluation of the obstacle avoidance be-
haviour.

• We have suggested a couple of methods to address the difficult prob-
lem of reducing constraints related to obstacle avoidance. We have also
evaluated one of the suggested methods in this work.
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