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Abstract

This thesis is concerned with topics related to dense mapping of large scale
three-dimensional spaces. In particular, the motivating scenario of this work is
one in which a mobile robot with limited computational resources explores an
unknown environment using a depth-camera. To this end, low-level topics such
as sensor noise, map representation, interpolation, bit-rates, compression are
investigated, and their impacts on more complex tasks, such as feature detection
and description, camera-tracking, and mapping are evaluated thoroughly. A
central idea of this thesis is the use of truncated signed distance fields (TSDF) as
a map representation and a comprehensive yet accessible treatise on this subject
is the first major contribution of this dissertation. The TSDF is a voxel-based
representation of 3D space that enables dense mapping with high surface quality
and robustness to sensor noise, making it a good candidate for use in grasping,
manipulation and collision avoidance scenarios.

The second main contribution of this thesis deals with the way in which
information can be efficiently encoded in TSDF maps. The redundant way
in which voxels represent continuous surfaces and empty space is one of the
main impediments to applying TSDF representations to large-scale mapping.
This thesis proposes two algorithms for enabling large-scale 3D tracking and
mapping: a fast on-the-fly compression method based on unsupervised learning,
and a parallel algorithm for lifting a sparse scene-graph representation from the
dense 3D map.

The third major contribution of this work consists of thorough evaluations
of the impacts of low-level choices on higher-level tasks. Examples of these
are the relationships between gradient estimation methods and feature detector
repeatability, voxel bit-rate, interpolation strategy and compression ratio on
camera tracking performance. Each evaluation thus leads to a better understand-
ing of the trade-offs involved, which translate to direct recommendations for
future applications, depending on their particular resource constraints.

Keywords: 3D mapping, pose estimation, feature detection, shape description,
compression, unsupervised learning
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Chapter 1
Introduction

1.1 Background

Economic forces are already driving robotic solutions to consumer markets.
Increasingly, robots are not just manufacturing products, but becoming products
themselves. Vacuum cleaning robots have been commercially available for nearly
two decades [1] and autonomous lawnmowers are becoming an increasingly
commonplace occurrence on the lawns of Swedish home-owners [2]. Even self-
driving cars appear poised to make a mainstream breakthrough as a technology,
in spite of the additional caution warranted due to the lethal consequences of
malfunctions and the need for new legislation to regulate their use.

The faith we place in such potentially dangerous machines is to some extent
owed to impressive advances in real-time vision capabilities enabled by more
powerful graphics processing units (GPU) becoming increasingly programmable
for general purpose applications '. Both within and outside the automotive
sector, sensor technologies have also been marked by progress. For instance,
the Microsoft Kinect camera, released in 2010, inadvertently provided many
robotics researchers with an inexpensive depth sensor that featured lower power-
consumption, higher resolution and frame-rate compared to many industrial
time of flight or light detection and ranging (LiDAR) solutions.

Although the development of autonomous systems appears to progress
rapidly, the ingress of general-purpose robots into our homes still seems far off.
This may be explained by the fact that mechanical hardware is still expensive to
buy. Furthermore, even if the cost of robots themselves may be brought down,
what purpose would they serve? If we take the example of an automobile (the
manually operated kind), it is a similarly complex and costly mechanical system
to buy and maintain, but it is incredibly useful, granting freedoms that are still
hard to match by other means.

IThe increased programmability of GPUs is enabled by lower-level abstractions from the graphics
hardware, provided by frameworks such as CUDA and OpenCL, as opposed to re-purposing the
traditional computer graphics pipeline for general computation [3]
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What capabilities would a robot need to possess in order to justify our
personal investments in them? Should they be able to free us from household
chores? Entertain us? Assist us when our bodies no longer allow us to do the
things we desire independently? Replace us in the workplace? Augment us?
Fight our wars? Regardless of the role envisioned for general purpose robots
in our society, there are still enormous challenges in perception, reasoning, and
control that will have to be met before reliable, safe and efficient robots can
become a reality. There are also social and ethical challenges that undoubtedly
arise with the development of increasingly capable robots. How we address
those challenges may have profound impacts on our society. Automation is
expected to affect the need for human labor in the future [4] and the prospect of
large-scale technological unemployment has already prompted a serious discus-
sion regarding the distribution of wealth [5]. Other potential societal impacts
include: the nature of warfare [6, 7, 8], the manufacture of goods (including
robots themselves) and its subsequent impact on the environment. Robotics
and automation are already causing people to stop and ponder fundamental
questions such as “What does it mean to be human?” [9] on a much more
personal and pragmatic level than previously may have seemed sane.

This thesis is limited to a single topic within a broad field of study related
to robot perception. This field encompasses the computational methods that
govern how robots create representations of their environments at small, large
and very large scales and how they can use these representations to aid them in
different tasks. This seemingly innocuous field of study is by no means devoid of
social and ethical implications, including possible dual-use [10]. Perusing some
of the literature published in conferences on e.g. military technology, we find
that topics such as automatic target acquisition [11, 12] have a large overlap
with methods used for mapping, detecting and recognizing objects in robot
vision research. Automated mass-surveillance is another direction in which
the results presented herein could potentially be applied as e.g. shape-based
biometric descriptors that would render texture-based countermeasures, such as
CV-Dazzle [13] (that avoids automatic face-detection by painting a specific set
of contrasting patterns on a person’s face) useless 2. Either case is an example of
applications that are of questionable benefit to humanity when weighed against
the potential misuse and erosion of individual privacy and integrity.

The way in which robots “see” is fundamentally different from our own. We
do not, as a general rule, build a geometrically accurate mental representation
of our environments while constantly keeping in mind the absolute position of
our bodies, relative to the maternity clinic at which we were delivered as babies
throughout our lifespans. Robots, in a sense, do. At their core, the feature that
mabkes this feat possible for robots is their internal map representation. In this

2In fact, applying additional texture to ones face may actually aid the recovery of shape in some
cases.
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work, the properties and methods investigated concern one such representation,
known as a Truncated Signed Distance Field (TSDF).

This representation stores information at discrete box-shaped locations in
space, called voxels (from the words “volumetric” and “pixel”). Voxel-based
map representations are not new in robotics, with occupancy grids [14] having
been a standard representation for decades. A useful characteristic with voxels
is that they create a direct mapping between the memory layout and the map,
which makes the retrieval of information about a region and its surroundings
trivial, without searching through complex data-structures. Specifically for
distance fields, one has the added benefit of pre-computed distances to the
nearest surfaces, which has made them useful in applications ranging from
collision avoidance to physics simulation. But what about robotics?

The problem this thesis will address is thus: In the context of a mobile
autonomous robot, equipped with dense depth sensors, can a TSDF be used to
improve its mapping, perception, and recognition capabilities?

1.2 Contributions

In the following chapters we will, aided by experiment, study algorithms built
around the TSDF representation to attempt an answer to the stated problem.
Congruently, I thus claim the following contributions to the field to be of interest
to the robotics community:

e A gentle introduction to the TSDE, focusing on surface estimation from
depth sensor measurements. The text presented in this thesis puts into
context prior works [15, 16] and offers a more pedagogical and pragmatic
point of reference.

¢ A thorough overview of gradient estimation for volumetric images along
with benchmarks. Specifically, I show how the gradient estimation relates
to the stability of gradient-based features with respect to translation and
rotation of the uniform voxel grid.

e An in-depth review of zeroth and first-order voxel interpolation methods
and an evaluation of their performance in the context of tracking and
mapping applications.

e The derivation of a direct point-to-TSDF pose estimation algorithm from
two conceptually different starting points, i.e. Iterative Closest Point, and
3D Scene Flow.

o An evaluation of the noise-filtering capabilities of TSDFs in the context
of depth-image feature detectors and descriptors. Scores are provided for
detector repeatability and descriptor matching performance, according to
practices adapted for visual features.
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e Extension of 2D Harris corner detectors to 3D, and evaluation of their per-
formance on TSDF volumes, as a function of different gradient estimation
methods.

¢ Identification of fundamental failure modes of integral invariant feature
detectors, when applied to SDF and TSDFs.

e Proposal of novel 3D descriptors, based on PCA and auto-encoder net-
works.

e Application of these novel 3D descriptors as a means for on-the-fly com-
pression and spatial extension of the mappable volume, with evaluations
with respect to tracking performance and mapping quality. Qualitative
results for low-level semantic labeling are also provided.

e Proposal of a novel sparse stable scene graph (SSSG) structure that encodes
geometric relationships in a TSDF scene model. A high performance GPU-
parallel algorithm is also given for efficient extraction of the graph.

e Proposal and evaluation of a novel place recognition system, based on a
GPU-accelerated random sample and consensus (RANSAC) matching of
SSSGs.

These contributions are found in the relevant chapters, outlined as follows:

1.3 Outline

e Chapter 2: The first technical chapter provides a comprehensive intro-
duction to the TSDF as a geometric representation. Here, I explain its
mathematical properties and the most commonly used methods for gen-
eration, storage, access and visualization. I also discuss some of its flaws
and strategies for mitigating them.

o Chapter 3: Here, I make the assumption that a moving camera provides us
with depth images and derive an algorithm, based on simple least-squares
optimization, for how to estimate the 6-axis pose of the camera relative to
the TSDE, in real-time. I also provide a range of configurations that allow
the algorithm to be scaled down to the performance level of a regular
desktop CPU, along with evaluations of the pose estimation on several
data-sets.

e Chapter 4: In the fourth chapter, I quantitatively analyze the repeatability
of feature detectors and matching reliability of image descriptors when
computed on depth images that have been filtered through various means,
including fusing data into a TSDF from multiple viewpoints. An additional
study of feature detectors is done directly in the voxel space, where the
sensitivity in feature detector repeatability is presented, conditioned on
different gradient estimation methods.
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e Chapter 5: In the fifth chapter, I present an algorithm for compressing
the TSDF that is fast enough to allow for on-the-fly virtual extension of
the environment into several orders of magnitude larger spaces with the
positive side-effect of rejecting noise and providing low-level semantic
labels. The compression method is based on the unsupervised learning
of mappings to 3D descriptor-spaces that serve as weak labels of the
compressed content.

e Chapter 6: Here, an alternative novel light-weight representation is in-
troduced. Discarding the regular grid-based structure of the TSDEF, I
derive a sparse graph-based representation that explicitly encodes the
neighborhood relations between salient points in the geometry. A simple
place-recognition system using these graphs is presented and thoroughly
evaluated in a simultaneous localization and mapping (SLAM) setting.

e Chapter 7: In the seventh and final part of this thesis I offer concluding
remarks, summarizing my contributions to the state of the art and identify
possible future directions of this line of research.

1.4 List of Publications

The content of this thesis has in part been the subject of previous publications.
These are:

e DR Canelhas, 2012, “Scene Representation, Registration and Object De-
tection in a Truncated Signed Distance Function Representation of 3D
Space”, Orebro University, Master’s Thesis

(Chapters 2, 3)
e DR Canelhas, T Stoyanov, A] Lilienthal, 2013, “SDF tracker: A paral-
lel algorithm for on-line pose estimation and scene reconstruction from

depth images”, IEEE/RS] International Conference on Intelligent Robots
and Systems (IROS), pp. 3671-3676

(Chapters 2, 3)
e DR Canelhas, T Stoyanov, A] Lilienthal, 2013, “Improved local shape

feature stability through dense model tracking”, IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS), pp. 3203-3209

(Chapter 4)
e DR Canelhas, E Schaffernicht, T Stoyanov, A] Lilienthal, A] Davison,

2017, “Compressed Voxel-Based Mapping Using Unsupervised Learn-
ing”, MDPI Robotics 2017, 6(3), 15

(Chapter 5)
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e DR Canelhas, T Stoyanov, A] Lilienthal, 2016, “From feature detection
in truncated signed distance fields to sparse stable scene graphs”, IEEE
Robotics and Automation Letters, Volume 1, Issue 2, pp. 1148-1155

(Chapter 4, 6)

1.5 Symbols and Notation

To aid in the reading of equations, a table of notation and symbols used in this
thesis is provided. In the table below, the letters A, a, b and 1 are used as generic
variables. The notation and dimensionality of variables will also be stated in the
relevant sections in the text.

Symbol Description

A a matrix or set

AT transpose of A - the rows of A become the columns of AT

b a vector - including one-dimensional vectors, i.e. scalars

b b expressed in homogeneous coordinates i.e. b = [H

IIb]l L1 norm of b - sum of the absolute values of its components

L2 norm of b - the “length” of b computed as the square root of

b .
il the sum of its squared components

cardinality of A - the number of elements in A. If A is a set, consider
[A] the cardinality to be the number of members in the set, e.g. the
number of 3D points in a 3D point-set

[b] floor of b - b rounded down to the nearest integer

a; the i-th element of the set (or matrix) A. Note that i < |A|

det(A) determinant of A

tr(A) trace of A

abs(b) absolute value - for a scalar it is equivalent to the L1 norm
exp(b) exponential - defined, as e® where e is the irrational number

2.7182818284590... and b is a scalar
matrix exponential - a related concept to the exponential function

exp(A . .
p(A) for scalars, but has a slightly more elaborate definition, see Eq. (3.7)
min(b) minimum - the smallest value in b
min.p (expr.) minimize the expression, with respect to b
i factorial - the product of all integers from 1 to i, inclusive. By defi-
’ nition zero factorial is equal to one, i.e. 0! = 1
sum of the values of the expression, as i varies from zero to |A|.
A . . . o
Z‘i:‘() (expr.) Sometimes this is abbreviated as ZLA‘ (expr.) meaning “sum of the

expression over all members of A”

Table 1.1: Mathematical notation and symbols used in the text



Chapter 2

Truncated Signed Distance
Fields

2.1 Distance Fields: Intuition

A distance field is an implicit surface representation. Implicit, in the sense that it
describes the space around surfaces, leaving it up to us to infer surface positions
and orientations indirectly. Imagine having an exceptionally strong magnet and
standing in a room wherein everything was made of iron. The direction and
intensity of the pull of the magnet at every location in the room would not
technically be a map of the room, but it would allow one to infer very much
about the room’s geometry. A distance field is a similar abstraction. One that
may seem slightly unintuitive, but that makes a lot of sense for a computer
program. A distance field is defined as a scalar field whose value at any given
point is equal to the distance from the point to the nearest surface.

Robots generally perceive the environment through a series of sensor mea-
surements, so as a visual aid, we will assume a robot equipped with an on-board
2D range-sensor and construct a virtual sensor measurement shown in Fig.
2.1(a). Common artifacts of range-sensor measurements such as noise, occlu-
sions and false surface readings appearing at the edges of geometry have been
simulated. For each white pixel in Fig. 2.1(a) we compute the distance from the
current (white) pixel to the nearest measurement datum (black) and write this
value at the current pixel’s position in a new image. In this manner we obtain
what is often referred to as the distance transform of an image, shown in Fig.
2.1(b), color-coded with brighter color meaning larger distances, for ease of
visualization. This distance transform is a discrete, sample-based approxima-
tion to the continuous distance field. We will generally deal with discrete fields,
sampled on a grid, even though parametric representations are also possible. In
practice, interpolation is often used to obtain a continuous estimate of the field.
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(a) Synthetic pointcloud in 2D (b) A discretized Euclidean Distance Transform of the
point cloud, computed on a regular grid of pixels

Figure 2.1: An illustrative example of a virtual range-sensor’s output. The
measurements are projected into the 2D space and marked as black dots. In

the example, the sensor is assumed to be located in the upper-left corner of the
image
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Figure 2.2: Averaging the distance transforms (dotted lines) of randomly dis-
tributed samples (red crosses), produces a curve for which the sample mean
(blue circle) can no longer be recovered. A median can be obtained by looking
for minima in the curve, but this is not necessarily a unique value.
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Figure 2.3: The signed distances (dotted lines) to randomly distributed samples
(red crosses) can be averaged (thick blue line) with the resulting signed distance
transform passing through zero at the sample mean. This zero value can be
recovered to good precision by linearly interpolating from the smallest positive
and largest negative distance recorded.

Is all the information from our virtual sensor preserved in this field? While
the surface position may be approximately recovered by extracting the minimum
distance values, we find that the surface orientation is no longer known. In the
grid’s frame of reference, which side the surface was observed from becomes
unclear. Recovering the most likely location of surfaces, given a set of sequential
measurements affected by noise is also not a straightforward process as the
minimum distance becomes a less distinct value when several distance fields
are combined. To illustrate this phenomenon, in Fig.2.2 we see the effect of
averaging several one-dimensional distance fields, computed based on noisy
measurements. The surface measurements are represented as red crosses and
the distance field is sampled at regular intervals, marked by vertical dashed
lines. The average distance becomes less distinct around the minimum, which
coincides with a sample median (which may be non-unique) [17] as it is the

solution to
|K]

min. Z abs(skx —x) (2.1)
k=1
where x is the optimal location of the surface based on sy € K one-dimensional
measurements of the position.
These two drawbacks are eliminated by using signed distances. The use of
a negative sign to indicate distances beyond the measured surfaces causes the
average distance to have a zero-crossing that coincides with the sample mean as
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shown in Fig. 2.3. Finding the zero-crossing of a linear function is simpler than
estimating the minimum of the piecewise linear function that results from the
mean of absolute distances in the unsigned case. The positive direction of the
gradient at the zero-crossing also reveals how the surface is oriented .

2.2 Truncated Signed Distance Field (TSDF)

Although signing the distance field provides an unambiguous estimate of surface
position and normal direction, signed distance fields are not trivial to construct
from partial observations except for single objects with nearly complete coverage
by a moving sensor [18, 19]. The reason for this difficulty is intuitive: knowing
the full shape of an object based only on partial observations is challenging and
even seeing the whole object would not reveal its internal structure. Curless and
Levoy proposed a volumetric integration method for range images [20] that
represents a compromise. It sacrifices a full signed distance field that extends
indefinitely away from the surface geometry, but allows for local updates of the
field based on partial observations. Their method maintains the properties of
signed distances and thus accurately represent surface positions and orientations.
This is done by estimating distances along the lines of sight of a range sensor,
forming a projective signed distance field, D(x).

To explain what is meant by the projective signed distances, let us return
to our example range data from Fig.2.1(a). We can compute the line-of-sight
distances within the frustum of our sensor using the surface measurements as
references for zero (with distances becoming negative for regions behind the
surface), as shown in Fig.2.4(a). This is done by assuming each sensor ray to be
an instance of the one dimensional case, disregarding adjacent measurements.
We call this the projective signed distance field.

Truncating the field at a small negative and positive values, Dy in and Dy ax,
respectively, produces the projective truncated signed distance field, shown in
Fig.2.4(b). The band wherein the distance field varies between its positive and
negative limits, is sometimes referred to as the non-truncated region. In other
words, a point outside the truncated region, is thus located within the narrow
band that embeds the surface. Let us label this approximation to the TSDE,
based on line-of-sight distances, as D(x) and let this be added to the current
(n-th) estimate of the TSDE, D,, (x), weighted by a measurement weight W(x).

Formally expressing the update rules for the weight and distance value at a
given cell location x gives [20]:

_ Da(x)Wa(x) + Dx)W(x)
Dnii(x) = W b0 T W0 , (2.2)

1 As final example, a 3D model embedded in a volumetric signed distance field is made available
athttps://github.com/dcanelhas/sdf-dragon
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(a) projective signed distance (b) truncated projective signed distance

Figure 2.4: projective signed distances, red indicating positive and blue indicating
negative distance values, white pixels are uninitialized

W1 (x) = min(Wy (x) + W(x), Winax), (2.3)

where D, 1(x) is thus the updated truncated signed distance at x based on
the projective estimate D(x). The weight Wi, (x) is the accumulated sum (up to
a limit Winax) of measurement weights W(x). The measurement weight may
be an elaborate function modeling the uncertainty in measurement at each
updated position x, or in the simplest case of a rolling average, a constant
function. Limiting the maximum value of W/, (x) allows for the model to change
in order to represent new configurations of the environment and react robustly
to dynamic elements. The cell updates can be efficiently done in parallel, since
no dependence is assumed between them.

Truncating the distance field is not only practical, but it enables us to repre-
sent the noise distribution associated with the measurements from our sensor. To
exemplify, we will again look at a one-dimensional case, shown in Fig. 2.5 where
the sensor is assumed to be placed on the left side of a surface, and plot the
truncated signed distances (normalized to vary between +1 outside the truncated
region) and weights. For each measurement, updates are done as described in
Eq. 2.2 and Eq. 2.3. The resulting (dotted) curve has a sigmoid shape, similar
to the error function (Erf(x)) and a similar interpretation is valid, e.g. the true
location of the surface has a 50% probability of being between the locations
where the TSDF has values of +0.5. Since the error function is the integral of a



12 CHAPTER 2. TRUNCATED SIGNED DISTANCE FIELDS

05

* sl
weights
* samples

truncated signed distance
=

05

G d §d pE FE BRI D 3
6 B25 65675 7 72575775 8 82585875 9 925 95975 10
measuremant axis, discretized

(a) Noisy measurements, TSDF and weights

05

] e
@ -

negative gradent of the TSDF
=
m

8
measureman| s, dscretzed

(b) Negative derivative of TSDF

Figure 2.5: The TSDF (blue dots) is computed from the noisy measurements
(red markers). The spread of the samples causes the distance field to have a
non-linear slope that eases into the truncation limits on each end. The weights
are likewise lower on the negative side of the surface (represented by the point
where the TSDF passes through zero) due to the distribution of the samples. The
negative derivative of the TSDF has some similarities with the distribution that
generated the samples.
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Gaussian probability density function, its derivative is bell-shaped 2, peaking at
8 (also the sample mean).

The line-of-sight distances are Euclidean only in the cases in which the line
of sight intersects the surface perpendicularly, in absence of nearby surfaces.
It is therefore common to set the weight W proportional to the cosine of the
angle between the surface normal and the measurement ray [21, 20, 22]. This
ensures that the contribution of better (i.e. fronto-parallel) measurements are
given higher confidence, but requires an estimate of the surface normal. The
update weight can additionally be made dependent on a model of the sensor,
attributing lower weight to longer-range measurements, for example. Frisken et
al. [23] found that near the surface interface, the distance field can effectively
be corrected by scaling it by the local gradient magnitude, though this is not
often done in practice to avoid the cost of volumetric gradient computations
when updating the TSDF based on new data. We will also opt for the simpler
strategy in this work as in practice, the on-board sensor of a robot will move to
observe surfaces from a wide range of angles, causing the field to approximate
an Euclidean TSDE, as exemplified in Fig. 2.7 and Fig. 2.6. Although reasonably
well approximated, deviations are still present at corners evidenced by jitter in
gradient orientation.

Since the TSDF is sampled on a regular grid, it is necessary to make a
choice about what cell-size to use, and about the width of the non-truncated
region around the zero crossings. The cell-size and truncation distance are
two inter-dependent variables that may both be selected in relation to the
sensor noise variance. In Fig. 2.8, one can see the one-dimensional position
error of a reconstructed surface (represented by the zero-crossing of the TSDF)
compared to the ground truth surface position. The TSDF is reconstructed
based on simulated one-dimensional range-measurements with additive Gaussian
noise. The iso-error curves are plotted against cell-size and truncation distances,
expressed as a multiple of the variance of the measurements and as a multiple of
the cell-size, respectively. The curves reveal a trade-off, where smaller cell-sizes
require a wider band around the surface, and vice-versa. There are potentially
competing incentives at play, here. It may be desirable to set the truncation at a
small value, for instance, in order to avoid interference between the front and
back sides of thin objects. One may also desire the highest resolution possible
by reducing the cell-size. If both of these attributes are jointly sought we find
that, for any isoline of admissible surface position error, the graph represents a
Pareto front, since all other choices would be worse in at least one parameter, or
infeasible.

As an example, if the variance is estimated to be 0.01m, and allowing for an
average normalized (i.e. with the non-truncated region rescaled to +1) surface
deviation of 0.025, by picking a cell-size of 2.5 x 0.01m, the truncation distance

2Since the sensor was placed on the left side of the surface, the approximation to the error
function is reversed, having a negative slope instead of positive. To illustrate the connection to the
Gaussian pdf, the derivative has simply been negated, as indicated on the graph.



14 CHAPTER 2. TRUNCATED SIGNED DISTANCE FIELDS

(c)

Figure 2.6: In (a) and (b) we see the Euclidean TSDF and its gradient-map,
computed from a small environment with two triangular objects. In (c) and (d)
we see the TSDF and gradients produced by reconstructing the same scene with
measurements generated via a virtual moving depth-sensor.

should be set to no less than 1.1 x 2.5 x 0.01m, i.e 0.0275m. The given example
is marked with a red square on the figure. An additional note about the graph
is that since the errors shown in the graph are measured as a fraction of the
truncation distance, a point further left on the graph will have a smaller absolute
deviation. For sensors that have measurement variance as a function of range, it
thus makes sense to increase the truncation distance when updating the TSDF at
longer range, since cell-size is usually fixed.
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(a) surface reconstruction from a single (b) surface reconstruction after fusing
noisy depth frame 180 depth frames, with known sensor
poses

Figure 2.7: Fusing multiple frames with varying viewpoints into a single TSDF
allows for noise to be filtered out and fills holes caused by occlusion in the
surface reconstruction.

e

L

STO0 T
1

gz10’0
L

w w B B B

w N B b b

To———— LT~
ro————o02

L ——1

o
io
T
10

cell-size [multiple of variance]
o
n
T
1

17\ 0
X ;% iz
o a, 2 9% \\\/\,_L\
0.0125

035 N\ \\ s S
~ .05 \
e 0 0. e R .
a5l \ e g I e it
04— 02— _—0l————-
04— e — 0.2 —|
1 Il 0B L 1 1 L L L 1 1 L L —10.4 +—

0.1 -
01 03 05 07 09 11 13 15 1.7 19 21 23 25 27 29 31 33 35 37 39
Truncation distance [multiple of cell-size]

~
Y
T
S
I

Figure 2.8: The trade-off between cell-size and truncation distance is shown
by the error in surface position estimate. Cell-size is measured as a factor to
be multiplied by the variance of the measurements, and truncation distance is
indicated as a factor to be multiplied with the cell-size. The red marker indicates
the example discussed in this section.
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2.3 \Visualization of TSDFs

In some applications it may be necessary to render the TSDF from a virtual
camera, either for visualization purposes or to compare the resulting image
with a live frame from a range sensor. The methods related to visualizing
implicit surface representations can be divided into methods that directly sample
the volumetric representation to produce an image, and those that extract a
triangulated surface model that can be rasterized using standard computer
graphics pipelines such as OpenGL.

2.3.1 Direct methods

The most common approach to rendering implicit surfaces is by ray-marching,
a class of methods that assigns a ray for each pixel of a virtual camera and
marches along each ray until an intersection is found. For signed distance fields,
the sphere-tracing algorithm [24] sets the step increment along each ray to the
distance measured by the field, at the current point along the ray. This allows
fast traversal of empty space where distances are large (slightly slower in TSDF,
since distance values are limited by truncation). In our discrete representation, as
the step increment falls below the size of a voxel, one may continue at constant
steps until the first negative distance is obtained and interpolate to find the (zero-
valued) intersection based on the last two distance samples. See pseudo-code in
Algorithm 1.

Algorithm 1 Standard depth image ray-marching in a TSDF
1: <+ 0
2: for Yu € Ip, over a maximum number of iterations do
3:  compute the ray 7 through u originating from ¢ using a pinhole camera

model
4. D =TSDF(c+ af)
5: if D < 0 then
6: interpolate o based on current and previous D
7 return Ip (u) = «(73)
8. else
9: x=a+D

At the surface, one can obtain an estimate for the normal direction by
numerically computing the TSDF gradient using a finite differencing method
of choice. One can then map the surface normal to a color value directly as in
Fig. 2.9(a) or use e.g. Phong lighting [25] as in Fig. 2.9(b).

Depth images can be generated by taking the length of the projection of
the intersecting ray onto the camera view axis as the pixel value cf. Fig. 2.9(c).
A range image is obtained in a similar fashion by outputting the length of the
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(a) ray-marched intersections colored by the (b) ray-marched intersections colored using
local TSDF gradient orientation Phong lighting

(c) ray-marched intersections with grayscale (d) shading based on the number of negative
value proportional to depth (distance along cells intersected as ray traverses the volume
view-axis)

Figure 2.9: A virtual camera/sensor can be used to visualize the volume or
generate synthetic measurements, based on the aggregation of real data.
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(a) marching cubes extraction of surface (b) marching tetrahedrons extraction of sur-
face, note the smaller triangle size

Figure 2.10: Visual comparison between marching cubes and marching tetrahe-
drons for surface extraction

intersecting ray, instead. To obtain a volumetric visualization, one can let the
rays traverse the volume up to a predefined distance and count the number of
negative voxels intersected cf. Fig. 2.9(d). The volumetric rendering method
has the advantage of showing where the reconstruction is incomplete, due to
occlusions.

2.3.2 Surface Extraction

Direct methods of visualization may not always be the ideal choice. The TSDF
may be supporting several other tasks for the robot and producing visualizations
for a human operator may be of lower-priority. If an operator or process
requires interaction with the model at a higher frequency than the TSDF can
be made available for rendering, a recent view of the model may be sufficient.
Sometimes, overlaying different sources of information makes a polygonal
surface representation more convenient, and using standard computer graphics
for rasterized display is often faster than ray-marching a volume at high frame-
rates.

Whereas a virtual camera only sees the information in its field of view, a
polygonal surface representation can also be generated for the entire model. This
property may be useful for e.g. simulation or planning purposes.

To recover the surface from the scalar field, some polygonization algorithm
can be applied. The standard solution to this problem is given by the Marching
Cubes [26] or Marching Tetrahedrons [27] algorithms. These algorithms are
based on the premise that if one were to construct a cube using 8 neighboring
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voxels as vertices, there are only a few possible configurations for a surface
passing through it. Classifying the inside and outside status of the neighborhood
vertices allows mapping the small region of the scalar field to a set of pre-
determined configurations of triangular patches. The exact positions of the
vertices that define these triangles can be adjusted to embed them into the zero
level-set 3, by interpolation. In Fig. 2.10 the same region of a TSDF volume has
been extracted using marching cubes and marching tetrahedrons, for comparison.
Although Marching Tetrahedrons tends to produce smaller triangles in some
cases, there is no compelling reason other than ease of implementation to choose
one over the other. Marching Cubes leaves the choice of how to resolve certain
ambiguities open whereas Marching Tetrahedrons makes one consistent choice
automatically.

2.4 Interpolation and Gradient Estimation

Since the TSDF is stored in a discrete lattice, interpolation is advisable when
querying the field at an arbitrary real-valued location. In computer graphics the
use of 2D and 3D images as textures applied to continuous surfaces is standard
practice, GPUs generally have interpolated access to texture memory built-in for
this reason. Bilinear interpolation is the standard operation performed for flat,
2D images, and tri-linear interpolation is its volumetric equivalent.

It is possible to consider potentially more accurate interpolation functions
such as cubic or even higher-order polynomials. It may be unwise to do this,
however, as we find that the number of samples required to compute the inter-
polated value increases very quickly. The general formula for the number of
samples required for a polynomial fit is given by s = (0 + 1)™ meaning that
the number of samples (s) needed is at least one more than the order (o) of the
polynomial that one wishes to estimate, raised to the power corresponding to the
number of spatial dimensions (n). For the trilinear example we get (14 1)3 i.e.
8 samples. Tri-cubic interpolation requires 64. It is common to use odd ordered
polynomials because they require an even number of samples, which can be
taken symmetrically about the query point. Additionally gradient estimation
requires sampling the TSDF in at least two locations per dimension to obtain a
slope, so the number of memory look-ups needed for computing the gradient is
thus at least four (compared to one, for just estimating the value).

Most of the algorithms presented and discussed in this thesis require sampling
the TSDF very frequently and when implemented on a GPU, memory access
latency is likely to be the bottleneck keeping run-times from decreasing further.
This is why our general interest lies not in more complex interpolation schemes
(although these may have relevant applications to off-line reconstruction and
map-synthesis), but in simpler and faster methods. Nevertheless, we will find, in

3i.e. the set formed by the iso-level of the TSDF with a value of zero
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Chapter 4, that more sophisticated methods are sometimes inevitable and return
to the topic of gradient estimation with a slightly different perspective.

2.4.1 Mathematical Preliminaries

Consider, as an initial example, the line segment joining nodes a and b in
Fig. 2.11. Supposing that we have some arbitrary function ¢, whose values are
known at both a and b. How do we estimate the value of the function at some
intermediary point x along the line, i.e. ¢(x)?

a X b

Figure 2.11: Knowing the relative distances between a, b and x allows interpo-
lating the value at x

One way is to linearly interpolate:

¢(x) = dla)- (b—x)+d(b) - (x —a) (2.4)

In essence, at x, the weight given to the function value at a is proportional to
the length of the line segment on the opposite side of the query point i.e, (b —x),
and vice-versa. For interpolation in a square, the bilinear approach is simply

C CdX1 d
Ay, |24 oo bds,
a aby, b

Figure 2.12: Bilinear interpolation offers the choice of linearly interpolating in
x1 first, yielding ¢(cdy,) and ¢p(aby, ), and then obtaining ¢ (x) o, alternatively
starting with x;.

an extension of this logic into two dimensions. In other words, for a given

query point x = [xq,%2]", shown in Fig. 2.12 to be inside of a square defined by

vertices a, b, ¢, d € R2, the function ¢([x1,x2]7) : R — R can be approximated
as:

$lcdy,) = dlc) - (d—cdy,) + d(d) - (cdy, —¢) (2.5)

$(aby,) = ¢la) - (b—aby,) + ¢(b) - (aby, —a) (2.6)

d(x) = plaby,) - (cdyx, —x) + Plcdy,) - (x — aby, ). (2.7)



2.4. INTERPOLATION AND GRADIENT ESTIMATION 21

Bilinear interpolation scales the contribution of the function value at each
vertex by the area of the rectangle formed between the query point and the
diagonally opposite vertex. As a general rule, linear interpolation in any number
of dimensions can be performed by scaling the contribution of each vertex by
the size of the simplex formed between the query point and the other vertices.
A square is not a simplex in R?, however. A triangle is. If we return to the
example shown in Fig.2.12, we see that the point x falls inside both triangles
Aadc and Aabc. Denoting the areas of a generic triangle formed by vertices
X, Y,z as A>xyz we can compactly represent the 2-Simplex interpolated value of

d(x) as:
d(x) ~ dla) - (A%bex) + d(b) - (A%axc) + d(c) - (A%abx). (2.8)

The “size” of any n-dimensional simplex with vertices v, v1,V2,..., v, can be

[ d

a b

Figure 2.13: 2-simplex interpolation offers the choice of linearly interpolating
the value of ¢(x) from one of two triangles. Since x is closest to a, one may
prefer the triangle Aabc over Aadc

computed using the following expression [28]:
1
Ay ...V = ﬁabs(det( [\)1 —Vy V2—Vg ... Vn —vo} )) (2.9)

with n indicating the dimensionality i.e. 1 for a line, 2 for a triangle, 3 for a
tetrahedron, and so on. By det() we denote the determinant of the n x n matrix
formed by concatenating the vertex differences as its columns. We now have the
basic maths required to understand how the options of simplex interpolation
and orthogonal interpolation produce several different ways of estimating the
value of a function in between the discrete samples of a voxel grid.
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Figure 2.14: The TSDF is stored in a discrete volumetric grid. Interpolation is
the process by which we estimate the value of the field at the arbitrary point
GGX”.

In the following sections we will assume that we have a discrete lattice in
3D, with values sampled at the nodes as shown in Fig. 2.14. The node labels
correspond to the following coordinates:

01000111
[abcdefgh]:OOlOlOll (2.10)
00011101

and we are interested in estimating the value of the underlying function at the
real-valued 3D query point x whose components lie in the interval [0, 1].
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2.4.2 Trilinear interpolation

Figure 2.15: Ray-marched TSDF with trilinear interpolation used to compute
surface intersection and normals

The proverbial workhorse of volumetric interpolation methods is the tri-linear
method. It is simple to compute as three consecutive linear interpolations as
shown in Fig. 2.16. If we assume the query point illustrated in Fig. 2.14 to have
coordinates x = [x1,%2,%3]" we can pick an arbitrary dimension along which to
interpolate first. Assuming we choose x; (as in Fig. 2.16(a)) and using notation
consistent with the labels defined in Eq. (2.10) we can express the interpolation
for &(x) with the steps:

¢(p) = dla) - (b1 —x1) + d(b)xg (2.11)
d(q) = dlc) - (e —x1) + ble)x; (2.12)
d(r) = d(d) - (fr —x1) + d(f)xg (2.13)

d(s) = d(g) - (h1 —x1) + d(h)xy (2.14)

abusing the notation somewhat to simultaneously define the interpolated loca-
tions as p, ¢, T, s and the estimated value of the function ¢() at these locations.
This step is followed by,

¢(t) = d(p) - (g2 —x2) + d(q)x2 (2.15)
d(u) = ¢r) - (s2 = x2) + bs)x2 (2.16)
defining t,u as the interpolated points between p, q and 1, s, respectively. Lastly,
D) ~ b(1) - (us — x3) + blulxs (2.17)

Although this process seems to collapse the dimensions of the problem one at a
time, down to a point, it is mathematically equivalent to scaling the contribution
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of each vertex by the volume of the parallelogram formed between the query
point and the vertex diametrically opposed to the vertex in question.

Figure 2.16: Trilinear interpolation

Trilinear interpolation can be thought of in three separate steps as first finding
the planar slice within a cube that contains the query point, then by finding a line
segment within the slice that contains the point, and finally locating the point
along the line. This is mathematically equivalent to weighing the contribution of
each vertex in proportion to the volume of the parallelepiped formed between
the query point and the diagonally opposite vertex.

2.4.3 Prismatic interpolation

Relative to trilinear interpolation, prismatic interpolation [29] reduces the num-
ber of necessary samples to 6 instead of 8. The mathematics involved in com-
puting the interpolated value are also slightly simpler than the trilinear case.
One must first assume a direction of “extrusion”. This is the direction along
which interpolation will be done last. The choice can be made in advance for
the entire map, e.g. parallel with the direction normal to the floor in an indoor
environment or dependent on the scaling of the voxels. In Fig. 2.17 we have
chosen to extrude along the [0,1,0]" direction.

Regardless of the choice, the first step is determining in which half of the
neighborhood cube the query point is located. This test is made using the
remaining two dimensions (the ones not considered as the extrusion dimension)
which in our example case are x; and x3. Simply put, if x; +x3 > 1.0 we
should use the vertices associated with the values b, d, e, f, g,h and a, b, ¢, d, e, g,
otherwise (the latter is the case for our example). The inequality stems from the
shape of the unit ball defined by the L1 norm.

The next step is to interpolate the function value on each of the triangular
faces, e.g using the 2-simplex method detailed in the introduction (or other
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Figure 2.17: Prismatic interpolation

method [30, 31]). The second step is a simple linear interpolation between the
resulting values. In Fig. 2.17 we have assumed that 2-simplex interpolation
is used and color-coded the vertices and triangles such that the contribution
of each vertex is proportional to the area of the triangle with the same color.
Since the equations are identical to those described in the Sec. 2.4.1, we will
omit the formalism here, however it is worth noting that because the triangular
sides of the prism are right-angled triangles with unit catheti, the areas of the
subdivisions are straightforward to compute. See Fig. 2.18 for details. The final

Figure 2.18: The heights of the pink and green triangles are the respective
coordinates of the query point, the base is unit. The purple triangle is equal to
0.5 minus the areas of the pink and green triangles

step is a simple linear interpolation in the remaining dimension.
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2.4.4 Pyramid interpolation

Removing yet another sample results in the 5-point pyramid interpolation [32]
algorithm. Four vertices are chosen on one face of the neighborhood cube and a
single vertex is picked on the opposite side. The resulting geometry is a pyramid
with a square base and 4 triangular sides. Although the pyramid will in practice
need to be oriented different ways to encompass the query point, we will refer to
the single vertex that is not on the base as the apex. Options for how to obtain
the interpolated value at the query point are several:

¢ Find the line from the apex that intersects the base while passing through
the query point. Perform bilinear interpolation on the square base to get
the value at the intersection point, then linearly interpolate between the
base-point intersection and the apex for the final value,

e interpolate along each of the four edges connecting the apex to the base,
to get a square slice through the pyramid that embeds the query point.
Then interpolate on this cutting plane for the final value.

¢ Interpolate along one dimension of the pyramid base. This results in a
line segment across the square base of the pyramid. Form a triangle with
this line segment and the apex to get a triangle containing the query point.
Interpolate for the final value using any choice of triangular interpolation
method.

While this option does result in one less memory look-up than the prismatic
method, it leaves many options for the choice of which face to pick as the
pyramid base and apex. This choice partly depends on which face is closest to the
query point. Given that there are six different faces, and four possible apexes for
each face, the number of cases are 24, and there is substantial overlap between
them. A possible drawback of this method is that it uses a large proportion of
samples from a single side of the cube. This may cause apparent discontinuities
in the interpolation when a different configuration becomes necessary as the
query point moves within the cube. Implementation-wise this method is slightly
more cumbersome, since interpolations are needed in non-orthogonal directions.
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2.4.5 Tetrahedral interpolation

Figure 2.19: Ray-marched TSDF with tetrahedral interpolation used to compute
surface intersection and normals

When memory access is expensive relative to computation it might be reasonable
to look for methods that require as few samples as possible. Tetrahedral interpo-
lation is the method that requires fewest samples [33]. With an additional check,
it is also possible to identify the near-degenerate cases, in which a query point
is very close to a face, edge or vertex of the tetrahedron. These checks can be
done analytically, or by discretizing the sub-voxel space to some arbitrary level
of precision to determine how many samples are needed to accurately estimate
the value. For example, a query point exactly at the center of the cube could po-
tentially be interpolated by picking any pair of diametrally opposed vertices and
performing a single linear interpolation. Checking for near-degeneracy allows
for accurate interpolation with even fewer than 4 samples, on average [34].

A cube can be split into a set of tetrahedrons that occupy its entire volume
without overlapping in 13 different ways (without counting simple rotations
and reflections) [35]. While most splittings result in 6 tetrahedrons, one results
in 5, as shown in Fig. 2.20. The 5 part split is obtained by picking any set of
four corners such that none of them are joined by a side of the cube, e.g., using
the labels defined in Eq. (2.10) we define Ty = {b, ¢, d, h} . These corners form
a regular tetrahedron involving the center of the cube. Subtracting it from the
cube results in a remaining set of four tetrahedrons (T;. 4) of identical shape and
size. These remaining tetrahedrons are composed by 3 right-angled triangular
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Figure 2.20: Different splittings of a cube into tetrahedrons. On the left side, one
of the 12 splittings that produce 6 tetrahedrons and on the right, the splitting
that results in 3.

faces and one equilateral triangular face. An example 5-tetrahedron split of the
cube uses the following sets of vertices:

To = {b,c,d, h}, ( )
Ti ={a,b,c,d}, ( )
T, ={e,b,c, h}, (2.20)
T3 ={g,¢c,h,d}, (2.21)
T, ={f,b,d, h} ( )

For interpolation purposes, the motivation for splitting the cubic voxel neighbor-
hoods into 5 tetrahedrons instead of 6 is twofold. Firstly, the resulting shapes
have more planes of symmetry (3 and 4) and are closer to isotropic. Secondly,
determining which tetrahedron contains the query point can be done more
simply with § shapes instead of 6.

The interpolation within a tetrahedron (3-simplex) is analogous to the inter-
polation within a triangle (2-simplex). However, instead of scaling the contribu-
tion of the value at a triangle’s vertex by the area of the triangle formed with
the query point and the remaining vertices, the contribution of the value stored
at a vertex in the tetrahedron is scaled by the volume of the tetrahedron formed
by the query point and the remaining vertices.

Determining into which tetrahedron a given query point p is found can be
done by checking if the distance between the query point and the four corner
tetrahedrons is less than unit ( by the Ly-norm ). If not, it is found inside Ty.

The interpolated value for x, when x falls into T is given by:

__ hA’bdex 4+ bA%hedx + cA’hdbx + dA bhex

b(x) ASbdch

(2.23)
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Figure 2.21: Tetrahedral interpolation - the value at the query point marked by
“X” is found by taking the sum of the values at each vertex in proportion to
the volume of the tetrahedron formed by the remaining vertices and the query
point itself. The value is normalized by dividing the result by the volume of the
tetrahedron formed by the four vertices

This refers back to Eq. (2.9) for the general formula for the volume of a simplex,
however, it is worth noting that the equations for the volumes of T;_4 can be
greatly simplified, due to their axis-aligned faces.

2.4.6 Nearest Neighbor (winner takes all)

Figure 2.22: Ray-marched TSDF with nearest-neighbor values used to compute
surface intersection and normals

The last interpolation method is not much of an interpolation method, at all.
Strictly speaking, nearest-neighbor sampling is an extrapolation method. The
method is to simply check which octant of the voxel the query point is in and
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return the voxel value stored in that octant. It requires a single memory lookup.
If we assume I, ] and K to be the integer coordinates of the origin of the voxel
neighborhood while x y and z are the fractional parts within it, the following
code snippet returns the nearest neighbor in the 3-D array VoxelGrid:

return VoxelGrid[I + int(floorf(x+0.5))]
[J + int(floorf(y+0.5))]
[K + int(floorf(z+0.5))];

2.4.7 Flooring

Flooring entails simply returning the TSDF as stored at the integer coordinates,
completely discarding the fractional part. This is the fastest, but most inaccurate
method, with errors potentially as large as the length of a diagonal of a voxel
(/3 for isotropic scaling, in voxel units). There are few, if any, situations where
this would be preferable to any of the other options, especially when considering
its negligible performance difference relative to the nearest neighbor method.

2.5 Gradients

Gradient estimation is an important issue for several reasons. The gradient of
the TSDE, at the surface interface, relates to the surface normal orientation.
Elsewhere, it indicates the direction away from the surface (or towards it, if in
the negative region of the field). Local variation in gradients are a measure of
curvature, which is an important cue for geometric feature detection e.g. for
edges, creases and corners. The surface normal is also useful for visualization and
for the estimation of properties of the scene that cannot be observed directly [36,
37]. In general, for the applications covered in this thesis, we caution that
gradients should be disregarded when a voxel containing a truncated distance
value has been used to obtain them.

2.5.1 Central Differences

When computing the gradient of the TSDF, the standard procedure is to use
central differences. Central differences are computed by subtracting the TSDF
evaluated one voxel in the negative direction from the TSDF evaluated one voxel
in the positive direction, relative to the query point. The result is then scaled by
% (in voxel units) to produce the slope. This is done once for each dimension
and results in a vector VD, (p) € R3. Depending on the interpolation method
chosen, several grid points will end up being be re-used and one will note that
the polyhedral memberships (if applicable) and interpolation weights will be the
same for each TSDF evaluation, and need not be re-computed.
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2.5.2 Forward and Backward Differences

Central differences require 6 TSDF evaluations (2 for each dimension). An
alternative, using only 4, is forward (or backward) differences. The latter use
one TSDF evaluation where the query point is located and an additional 3, offset
in each dimension. The specific application may determine whether it is best to
use forward differences, backward differences, to alternate between them or if
the resulting estimate is just too inaccurate.

When evaluating the TSDF using the nearest neighbor method, the choice
of which points to pick is quite natural; select the nearest voxel from the
neighborhood cube and the 3 adjacent corners (connected by an edge). This
procedure results in 8 different variations that alternate between forward and
backward differences, depending on the location of the query point.

2.6 Drawbacks of TSDF Mapping and Work-arounds

Even though the TSDF offers a straightforward way of representing surfaces
with arbitrary topology and provides an efficient mechanism for combining
measurements into a consistent surface estimate, there are some cases in which
applicability of TSDFs as a surface representation is limited by the hardware or
special requirements on surface quality.

2.6.1 Memory

Computationally, operations on a TSDF are generally straightforward to split
into independent tasks that may run in parallel. Completing the required op-
erations at a rate comparable to e.g. the frame-rate of a video stream from a
sensor in many cases makes the use of a dedicated GPU indispensable. Memory
requirements for storing a given TSDF volume scales cubically with the grid
resolution (assuming uniform scaling). For applications to mobile robotics, this
is unfortunate, since low-latency memory is not abundant on current consumer
GPU hardware. However, in a way similar to how an operating system on a
computer can extend the available RAM by utilizing non-volatile memory as
virtual RAM, a similar reasoning can be applied between the memory available
to the GPU and CPU. This is the idea behind what is referred to as unified
memory. Special care has to be taken to ensure that the use of unified memory
does not cause an unacceptable decrease in performance [38]. A system that
explicitly manages the transfer of memory between CPU and GPU has been
demonstrated to work for reconstructing larger volumes than what would fit in
GPU memory at once [39].
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Figure 2.23: A sharp corner embedded in a signed distance field. The lack of
negative samples (blue) causes the surface extraction to omit the pointed corner

2.6.2 Sharp Edges

Although the TSDF encodes surface interfaces at subvoxel accuracy through
interpolation, sharp corners and edges are not straightforward to extract from a
TSDF representation. Surface extraction methods such as marching cubes are
simple to parallelize but tend to smooth out sharp features. To gain an intuition
as to why this is the case, consider Fig. 2.23. In the figure, each distance sample
has been represented as a circle of corresponding radius. Although the intended
surface is clearly seen as the red circles overlap, the surface obtained by interpola-
tion results in the green line, missing the sharp point at the top [40]. Computing
additional information about gradient orientation as in the Dual Contouring
algorithm [41] or feature-preserving surface extraction [42] produces better
results at the cost of computing (or storing) gradients in the TSDE.

ap
v

Figure 2.24: Interference between top and side when using the projective TSDF
as an input to the reconstruction
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2.6.3 Corners in General

Although sharp edges require additional effort to be extracted as a surface from
the embedding field, as long as fundamental limits on discrete sampling are not
disregarded, the information is still available in the TSDE. However, the issue we
are concerned with in this particular section is related to a special case that arises
when merging projective distances into the truncated signed distance field. If we
look at Fig. 2.24 we note that the region labeled a receives a negative update
due to the front-facing surfaces. This will cause the region on the top face to
bulge outwards slightly. We may also note that due to the assumed independence
between rays, the region labeled b is being updated towards the upper truncation
limit. Even with multiple observations, these literal corner-cases tend to remain
to some degree. One can mitigate this issue by not performing updates near
depth discontinuities in the depth image. Discontinuities can be detected by
computing local differences throughout the depth image. Perturbations of the
TSDF around corners are quite visible in Fig. 2.6, especially if we observe the
variations in gradient orientation. This issue generally highlights the importance
of limiting the TSDF to a narrow band around the surface interface. Alternatively
one may attempt decrease the weight of TSDF updates in Eq. (2.2) and Eq. (2.3)
on the negative side of the field [43]. However, asymmetric weighting strategies
risk introducing bias in favor of erroneous measurements in one direction, but
not the other, effectively causing surfaces to be reconstructed at an offset from
their actual position.

2.6.4 Surfaces vs. Truncation Distance

Truncating the TSDF at a large value ensures that we have a basis for representing
the entire noise distribution around the surface, encoding both its mean and
uncertainty. However, widening the non-truncated band around the surface also
has a detrimental effect on surface fidelity at corners (see Fig. 2.24). Related
to this issue, we have the case of thin objects: Either side of an object that
is thinner than the width of the negative region of the TSDF will be subject
to interference when the other side is being reconstructed using this method.
Potential work-arounds such as truncating the TSDF on the negative side earlier,
using lower weights for negative distance updates or conditionally updating the
cells based on their content tend to distort the estimate of the surface position.
These strategies may avoid much worse artifacts such as geometry being left out
altogether, though.

When the combination of voxel size and truncation width begin to limit the
quality of the surface reconstruction, for a given sensor, there is only so much
that can be done by increasing resolution and improving the sensor technology.
Ultimately, small-scale details are better captured using a representation that
explicitly models surfaces, such as point-based fusion [44, 45] or keyframe
based approaches [46, 47], though these trade the coherent spatial organiza-
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tion of volumetric representations for increased fidelity and detail in surface
representation.

2.7 Relationship to Occupancy

Many published algorithms and software releases in the robotics research com-
munity are centered around voxel-based maps that encode occupancy probabil-
ity [14]. This is a concept that deals with which voxels are filled and which are
empty, rather than trying to model the shared boundary between them, as TSDFs
do. Fortunately, off-the-shelf algorithms designed for occupancy grids can be
applied to TSDFs as well; occupancy probability, f(x) can be approximated
from a TSDF by a simple affine transformation using the distance and weight. I
propose the following formula:

f(x) ~ 0.5 (1 _ D‘Dm“‘)ixvv‘*)) (2.24)
Dimax and Wi ax can each be omitted if D(x) and W(x) are in the intervals
[—1,1] and [0, 1], respectively. As an illustration, consider Fig. 2.25, where
unseen regions are correctly given a prior occupancy probability of 0.5, the
empty regions that have been observed several times have a zero probability
of being occupied and the location just behind the surface has a peak which
crosses the 0.5 probability boundary at the same location where the TSDF
surface crossing occurs. A clamping the values may be necessary to avoid zero

0.5
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Figure 2.25: A simple affine function can be used to combine weight and trun-
cated signed distance into an occupancy estimate
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and unit probabilities, e.g. for updating the map using Bayesian inference. This
approximation, using the product between distance and weight, takes into
account the number of times a cell has been observed and which state it has been
in at all previous measurements. The benefits of varying the truncation distance
based on a measure of confidence, as described in section 2.2, also carry over to
the approximated occupancy probability, too.






Chapter 3
Registration of a Depth Image
to a TSDF

Some of the main features of using TSDFs as maps is that they provide a common
frame of reference for storing the aggregated data, while both preserving an
implicit encoding of the surface and the variance of the measurements. These
properties, together with a simple mechanism for fusing several depth (or range)
image frames make them an efficient and useful choice for a map representation.

In the previous chapter we explored some of the numerical properties of
the TSDF, as constructed from multiple depth image frames, obtained from
known sensor poses. But how would the sensor poses be known? Even in robots
equipped with inertial measurement units (IMUs), it is likely that provided
poses would only be approximately correct due to drift. Since these devices
typically have error-models that are quadratically time-dependent [48] the error
in pose estimation tends to accumulate quickly over time. Time-dependent error
models also apply for navigation by wheel odometry (or by "step-counting"
for legged robots). The problems with assuming that the poses estimated via
any of these methods are correct is that they all provide relative estimates that
drift, in absolute terms, as time goes by. A way of overcoming this problem is
to use the range-sensing devices (and/or cameras) that the robot may have, to
find a set of geometric transformations that give a consistent explanation to the
observations. This is known as the registration problem.

As one of the first applications of TSDFs to robotics research, we will show
here that the TSDF offers an elegant and intuitive way of expressing a pose
estimation algorithm, for cases in which depth images are not provided with
associated sensor poses (i.e. most cases).

The resulting algorithm is a conceptually simple on-line method for estimat-
ing the pose of a depth camera in six degrees of freedom and simultaneously
maintaining an updated 3D map, represented as a TSDEF, used directly to define
a cost function for accurate registration of new data. The proposed algorithm
is highly parallel, making it practical for use on modern CPU/GPU hardware,

37
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and achieves good accuracy compared to state of the art methods. It is suitable
for reconstructing single household items, workspace environments and small
rooms at real-time rates.

The pose estimation problem can be formulated as finding a transformation
(or warp) that maps the robot’s current sensory inputs to a frame of reference
wherein it best agrees with its past observations. This is an intentionally vague
statement, to highlight some assumptions that we will make in order to find a
solution.

The first assumption is that the transformation is well represented by 3D
rigid-body motion of the form T € R*** ¢ SE(3) with

R t

T=1lom 1

(3.1)

where R € R3*3 € SO(3) is a 3D rotation matrix, t € R? is a translation vector
and 0T = [0 0 0| is a row-vector of zeros. This representation essentially

boils down to stating that all the observed changes are due to the robot’s own
motion. By describing the observed changes as a rigid-body transformation, we
implicitly assume that the world is static for the duration of the robot’s operation
in the environment. While this holds true for most large-scale structures such as
buildings, vegetation and furniture, it would be a poor model for a self-driving
automobile, whose field of view would often be occupied by other cars. Likewise,
people, other robots or animals may be present in the environment and these
may need to be actively ignored in the input data or tracked independently for
the rigid-body motion model to perform as intended.

We also make an assumption that motion between frames is small. This
means that a locally optimal strategy for finding the transformation will not
converge to an incorrect solution. Small motion is reasonable to assume if the
robot is equipped with a sensor that produces measurements at a high frame-rate
relative to the robot’s speed (such as a high frame-rate video camera).

So that we do not violate the assumption of small motion, we only estimate
the parameters that describe the motion between consecutive frames. This means
that each depth image is pre-transformed with the current estimate for the pose
and only the incremental change since the last frame needs to be accounted for.
Before we go further, we will discuss how we choose to represent 3D rigid-body
motion, as there are several possible parametrizations for rotations.

3.1 Representing Motion

Our stated assumptions imply that the transformation will always be close to
T =1 (a 4 x 4 identity matrix), as larger rotations and translations would
not provide sufficient overlap between consecutive frames to register reliably.
In this region it is safe to use a minimal parametrization of rotation, without
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risking singularities. Since the motion we are interested in has six degrees of
freedom, a minimal parametrization requires six parameters corresponding to
three rotations and three translations. Therefore, let & € se(3) be a member of
the Lie algebra related to the special euclidean group. It contains six elements
representing angular and linear velocities, i.e.

.
EZ[wl wy w3 Vv V3] (3.2)

Since the Lie algebra is in a tangent-space to the special Euclidean group SE(3)
the parametrization is only valid locally and for accuracy it is still necessary to
represent the global motion using a full transformation matrix. This can be done
by mapping & € se(3) to its corresponding element in SE(3) and composing the
global pose estimate with the additional inter-frame transformation, i.e.

T(&) = exp(AtZ) (3.3)
and
T =T(E) T, (3.4)

where exp() is the matrix exponential function, At is a duration of time (re-
garded here as unitary) and = € R*** is the matrix,

0 —w3 wy V1
- w3 0 —wi1 V2
== 1w, w 0 vs (3.5)
0 0 0 0
Where we identify the skew-symmetric matrix containing rotations as,
0 —w3 wy
Q= w; 0 —w (3.6)
—Wwy w1 0

The general matrix exponential function is defined as an infinite sum of the form

— Ak 15, 1 5
exp(A):ZW:IJrAJrZ—!A + A (3.7)
k=0

which can only be computed approximately. However, due to Q being a skew-
symmetric matrix, this infinite sum can be simplified to a closed-form expression,
to directly obtain a rotation matrix from the angular velocity terms. The closed-
form expression corresponds to the Rodrigues’ rotation formula and requires
some algebraic changes to Eq. (3.6). First, we note that the angular velocity com-
ponents of & i.e. Wy, wy, and w3 are equivalent to an angle-axis representation.



40 CHAPTER 3. REGISTRATION OF A DEPTH IMAGE TO A TSDF

.
\\ — sin(t)

B
—cos(t)

08 === 4%

0.6

0.4 -

F s
0.2
0
0 0.2 0.4 0.8 1

0.6
angle [radians]

Figure 3.1: sine and cosine functions and their second-order Taylor series ap-
proximations around zero. The graph is symmetric for the negative domain

It describes a rotation by an angle of magnitude 6 =||w||, = y/w? + w} + w}
w

around the unit axis defined by 1 = Separating the angle and axis, and

n Wl
rewriting Q above we get
0 -1z L
0L=0| 13 0 —Ll=Q (3.8)
L U 0

and the rotation matrix of Eq. (3.1) is then given by the expression
R =1+ (sin®)L + (1 — cos0)L* (3.9)

Our assumption on the motion being small means that we may likewise

assume that rotations will be small in magnitude. This allows us to make
. . . 0>

use of small-angle approximations, i.e. sin® ~ 0 and cos®é ~ 1 — 5. The
approximation is much faster to compute, and gives a negligible deviation from
the trigonometric functions for small angles cf. Fig. 3.1.

We have discussed how to obtain the transformation from its parametrization
as T(&) and for completeness, we shall briefly mention how the transformation
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can be applied to a given 3D point. The most straightforward way is to write the
point in homogeneous coordinates which we will denote, for convenience, with
adot ! e.g., = [}]. The point can then be multiplied directly with the 4 x 4
transformation matrix to apply rotation and translation in a single operation i.e.

Po = TasbPa (3.10)

However, unless we explicitly need the full transformation matrix, e.g. when
updating our global pose estimate, there is a more efficient way of transforming
a point directly using the parameters contained in &. Without explicitly forming
the rotation matrix R or the transformation matrix T, one can instead compute,

Pb =Pa + Wasb X Pa +Vasb (3.11)

to apply the rotation and translation from coordinate frame a to b.

In Table 3.1 we see the timings relative to obtaining the transformation
matrix T(£) from & as well as transforming a 3D point in MATLAB 2 and C++
(using Eigen 3).

Rodrigues’
Exponential | Rodrigues’ | formula with Matrix-vector | Cross-product and
map formula small-angle multiplication | additions
approx.
C+ 34.4 19.68 0.786 0.31 0.16
MATLAB 11418 478 321 69 360

Table 3.1: Typical execution times in microseconds (us) for generating (leftmost
columns) and applying (rightmost columns) a rigid-body transformation from
its minimal parametrization, using C++ and Matlab

3.2 Registration

As discussed in Chapter 2.3, given a TSDF, we can obtain a depth image by
emitting rays from a virtual camera and computing their intersections with the
implicit surface boundaries. A bit more formally, we define a depth image as a
scalar function z,, (M) that assigns depth to all pixels of each of then =0...N
frames in a video stream. The domain of z,, is defined on the discretized 2D
image plane M € NJ. Formally, z,, : M — R,

Not to be confused with a derivative w.r.t. time. There will be no differential equations here.
2matrix-based programming language and interpreter, ht tps: //www.mathworks.com/
3C++ template library for linear algebra, http://eigen.tuxfamily.org/
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Given z, (M), and knowing the parameters of the depth camera we can
also do the inverse, i.e. project the corresponding surface points back into
3D space. Let s;,(M) be the projection of a depth image into 3D. Formally,
sn:M xR, — R3,

sn(m) = y zn(m) |, (3.12)

where m = (my, my) € M represents an image pixel and cy, ¢y, fyx,fy € R
represent the principal point and focal lengths of a pinhole camera model.

At this point we have at least 3 options for how to proceed with finding the
transformation that aligns the depth image to the surface represented by the
TSDF volume. We could either:

1. Project the current depth image out into its corresponding 3D point-set,
using Eq. (3.2) and register it to a 3D point-set obtained by sampling from
the TSDF (i.e. point-to-point);

2. Generate an approximate TSDF volume, using the projective truncated
distance transform (see Chapter 2) applied to the current depth image and
register the resulting volume to the TSDF volume (i.e. TSDF-to-TSDF);

3. Project the current depth image out into its corresponding 3D point-set,
using Eq. (3.2) and register the resulting 3D points to the TSDF volume
(i.e. point-to-TSDF).

The first option could be achieved in a number of different ways, though
a particularly efficient one is to render a depth image of the TSDF from the
current estimate of the sensor pose. If this estimated poses have been accurate
so far, ray-marching the TSDF produces a denoised depth image with small
misalignment relative to the current live frame. The noise characteristics of the
rendered depth image tend to improve as the TSDF tracks the mean of the fused
surface samples. Registering one point-set onto another, given a rough initial
alignment is an extensively researched problem for which the standard solution
is to employ some variant of the iterative closest point (ICP) algorithm [49, 50].
In this particular scenario one can do better than the general case, by noting that
the surface points of one depth map can be projectively associated # to surface
points of the other, as done in KinectFusion [21].

The second option is to maintain the model representation as a TSDF and
generate a separate TSDF, based on the current live frame and register the two
TSDF volumes directly as volumetric images. Standard image alignment methods

“4projective association between depth images is achieved by generating the 3D points from the
pixels of one image and checking which pixels they project onto in the image plane of the other
image
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such as the Lucas-Kanade algorithm [51] may then be applied. The described
approach is proposed in the SDF-2-SDF [52] algorithm. The added compu-
tational cost of performing dense voxel-based image alignment is somewhat
prohibitive, however. Notably, the SDF-2-SDF algorithm proposes frame to
frame registration rather than frame to model, needing only to generate a voxel
representations for the camera frustums. Even so, the tracking needs to process
a large amount of voxels and tends to be much slower than the point-to-point
methods. Updating a global map is left as a post-processing step. The frame-
to-frame approach of the SDF-2-SDF algorithm means that both TSDFs are
actually projective TSDFs, and there is no additional information nor denoising
gained by extrapolating the depth image into a volume. For any relative mo-
tion other than pure rotation, an additional disadvantage is that the projective
TSDFs become increasingly misaligned due to the shift in point of origin for
the projected distances. One may be tempted to maintain an iteratively updated
global TSDF and align a projective TSDE, generated from the current depth
image to it, having the benefit of denoising and accurate distances on at least
one of the TSDF volumes. This would also represent a questionable approach.
As shown in Fig. 3.2, there are several important ways in which the TSDF and
projective TSDF differ that may adversely impact the quality of registration.

The third option is our proposed middle-ground, which improves on the
convergence properties of the first option and simplifies the process by obviating
the need for ray-marching the TSDF to obtain a depth image. Since our proposed
method operates directly in the volumetric space, there are no issues with relative
scale, as are inherent in projective spaces. Meanwhile, it does not suffer from
the same computational complexity as direct volume-to-volume registration,
since it operates partly on the depth image coming from the sensor, and thus
avoids a fully volumetric framing of the problem. However, it still benefits from
having its reference model as an actual TSDF representation in full 3D instead
of a view-dependent (and possibly occluded) synthetic camera view of the scene.
As our proposed method can be regarded as a bridge between image alignment
and point-cloud registration, we will show the derivation of our point-set to
TSDF volume algorithm [53, 54] from both perspectives.
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(a) Projective TSDF with lim-(b) Euclidean TSDF, showing
ited field of view a representation of the whole
map

(c) Absolute differences between TSDFs overlaid with surface,
cropped

Figure 3.2: Aligning a projective TSDF, generated from a noisy depth image (a)
to a “ground truth” TSDF without noise (b) leads to some issues that are not
present when aligning a set of points to the TSDF. In the cropped overlay shown
in (c), we note that regions 1 and 2 are mismatches whereas 3 is approximately
correct near the surface, even though the projective TSDF is affected by some
unavoidable noise. The difference at region 1 is due to the projective TSDF not
being able to capture the far side of the circular shape that causes changes to the
distance field in the interior of the shape. The discrepancy in region 2. is due to
the grazing angle at which the distances in the projective case are computed.
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3.3 Deriving a Registration Algorithm

3.3.1 In relation to ICP

The iterative closest point (ICP) algorithm of Besl and McKay [49] is a method
for registering 3D shapes and 2D curves. This is done by iteratively finding the
rigid-body transformation that minimizes the distances between points on the
surface of one shape with the nearest points on the surface of the other shape.
ICP monotonically converges to the local minimum, expressed in terms of the
distance between the closest points between the respective surfaces. A simple
statement of the ICP algorithm can be done in two steps that are repeated in
several iterations [55]:

e Step 1 - Correspondence Search. For each point on one surface find an
associated point on the other. In standard ICP it is the closest point

e Step 2 - Transformation update. Compute the optimal alignment, given
the associated points.

00 ;o 200 a0 w0 500 1m0 200 100 am 00 80

(a) A series of starting points (blue circles) and (b) The derivative of the distance field has its lo-
their convergence towards the closest implicitly ~ cal minima (though not necessarily zeros) wher-
defined surface point (blue crosses) by stepping ever the field abruptly changes direction. For
along the negative gradient, the green cross high-  signed distance fields this corresponds to the
lights a failure mode, where two iterations were boundaries in the Voronoi diagram.

needed due to poor initialization

Figure 3.3: Individual points, descending towards the nearest local minima in
the distance field. The figure is described in greater detail in the text.
The error to be minimized is typically of the form,

[P
E=) min. Ipi — a5 (3.13)
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stating that the error is a sum of Euclidean distances between the closest point-
pairs sampled from two surfaces. Here p; and qj are assumed to be points
pertaining to the point-sets P and Q of cardinality |P| and |Q| respectively. These
point-sets need not contain equal numbers of points, and the closest-point
correspondence heuristic often leads to a many-to-one association between the
surface points. We will state the pose estimation problem using the error given in
Eq. (3.13) and replace p with the surface points obtained from the most recent
depth image, by projection into 3D space, i.e., sn+1(M). Finding the optimal
6-DoF ° parameters £* is done by solving the minimization problem:

M|
. . ) . 2
3 :mén.;m}n. [ T(E)$na1(mi) — 5|5 (3.14)

It is noted in the original article describing ICP, that the shape representation can
be of several types, including “implicit curves: §(x,y, z) = 0” for which a signed
distance field is a special case. We note that there are now two nested levels of
optimization; an inner level aiming to find the minimum-distance point-pairs
and the outer aiming to find the minimum-error transformation given those
points. Let D, (x) be the TSDF, generated from the past n depth images, we thus
rewrite the above optimization problem as one with a constraint, as follows:

IM|
N . . . 2
£ :mén. Ei min. HT(E)an(mi)foZ (3.15)

s.t. Dp(x) =0

For a general implicit curve, the value outside of the surface is not guaranteed
to be continuous, bounded or monotonically increasing. For these reasons,
obtaining the closest point on a general implicit curve, from a query point,
may require some local search. The nested optimization problem described by
Eq. (3.15) requires a feasible starting point, i.e. a value for x that does not
violate the constraint. Among all feasible starting points, we additionally desire
the one closest to the transformed point sample T(&)$,1(my). A reasonable
place to start looking for such a point is at the sampled surface point that
we wish to compare against. For general implicit surfaces this may not be a
straightforward process, but for distance fields it is fortunately quite simple. In
Fig. 3.3(a) we see the result of picking a random series of points, computing the
negative gradient direction of the distance field and taking steps along it. The
step length is equal to the distance field at the initial point. All but one converge
to the closest point in a single step. The exception is due to the initialization
being on a location where the derivative is poorly defined, and is highlighted
in green. This immediate convergence is a consequence of the (signed) distance
field being the dual to the Voronoi diagram. Essentially, the minima in the

5Six Degrees of freedom: meaning three possible rotations and translations
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gradient of the signed distance field correspond to the boundaries of the Voronoi
partitions, since this is where the distance field gradient changes direction, cf.
Fig 3.3(b). The unsigned distance field additionally has inflection points at the
actual surface points and therefore these do not strictly correspond to boundaries
in the Voronoi diagram. For sparse points, the signed and unsigned distance
fields are obviously equivalent. For continuous surfaces, the partitions in the
Voronoi diagram become infinitesimally thin, oriented along the surface normal.
Finding the nearest surface point can still be done in the same manner, though.

The relative ease with which we can obtain the nearest surface point within
the TSDF means that the constrained inner minimization, i.e. min,, can be
solved efficiently for x. To that end, we can initialize x at the projected 3D point
from the depth image (T(&)$, 1) obtain the closest surface point by taking a
step in the negative direction of the normalized TSDF gradient, scaled by the
local distance. If the local distance value is positive, this will result in a similar
situation as illustrated in the previous paragraph. However, if the distance is
negative, the step will be inverted, causing a climb along the gradient back
toward the surface. Omitting some subscripts and function arguments for sake
of readability, our solution for x can formally be expressed as:

x =Ts—D(T$)VD(Ts) (3.16)

Where V indicates a normalized gradient. Plugging this definition into Eq. (3.15)
lets us express the registration problem as follows (noting that T still depends
on &, $ on my etc.):

M| ) )
£ = min, ZHTS TS — Dn(Ts')VDn(Ts')]HZ (3.17)

Since the projected point Ts appears twice with opposite sign, it results in a
zero-vector. The only remaining component that affects the actual norm of the
resulting expression is the scaling applied to VD, (T$) (which itself is of unit
length, due to normalization). We note that this is Dy, (T$). Since the objective
function is squared (so even negative distances will result in a positive value),
we can write as follows (with identical minima):

M|
£ =min. } [[Du(T(E)ne1(mi))|; (3.18)

Later, we will discuss how to solve this optimization problem to find the
optimal camera transformation.
3.3.2 In Relation to Lucas-Kanade

Another way of looking at the problem of registration in TSDFs is to treat
both TSDF and the vertices computed from the depth-map as 3D voxel images,
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though the second one can be thought of as having non-integer voxel locations.
The standard method for image alignment is the Lucas-Kanade algorithm[51],
extended to image templates[56].

The original Lucas-Kanade algorithm was formulated as a means to find the
translation between two sequential images but can be extended to more general
image alignment, including translation, rotation and scale transformations °.

Supposing that we have two images F(x) and G(x), we can express the
photometric error between them as

B
E(h) =) [F(xi +h) — G(x;))? (3.19)

i

for a (voxel) neighborhood B, with h as a parameter by which we can influence
the error. To find an estimate for the parameter h, i.e. the displacement of the
patch defined by B, we locally approximate the image by its first order Taylor
expansion. Recalling the first-order Taylor series approximation of a function:

f(x) = f(xo) + ' (x0)(x — x0) (3.20)
and substituting xg = x and x = x + h we get

SF(x) "
ox

Fix+h)=~F(x)+h

F(x +h) =~ F(x) +

((x+h)—x)

1+ OF(x)
ox

With this approximation we can compute the derivative of the photometric
error w.r.t. the parameter h and equate it to zero to find a minimum, as this is
now a simple quadratic function. Setting % 8E — 0 (assuming partial derivatives
organized as a column vector) we get

(3.21)

B

T5F( ) 2
6hZ th g~ GIT=0
IB|
ZZN:S(:) [FOx) + hT% — Gl =0 (3.22)
and can obtain h.
h~ [Zx ﬁg(xx) zsggﬂ]fl [Zx 52(:) [G(x) — F(x)}} (3.23)

In Eq. 3.19 the error contribution from a given pixel (or voxel) x is parametrized
by a pure displacement h that aims to explain the change in intensity between

6e.g. https://github.com/dcanelhas/sim2-alignment, 2D image alignment under a similarity trans-
form
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images F(x) and G(x). This assumes that the value of the pixel (or voxel) is due
to translation (or flow), and not brightness changes, and that the spatial gradient
VF(x) = 52(;() exists.

While inserting D, in the place of F(x + h) in Eq. (3.19) gives us one 3D

image, we do not immediately have a corresponding 3D image to plug into G(x).

B
E(h) =) [Dnlxi+h) —Gx))? (3.24)

1
How about the current depth image? The reason why the depth image is
not directly applicable is that depth images are what is commonly referred to
as 2.5D, i.e., they have indexable rows and columns, but are not several layers
deep, even though each pixel has depth information. However, in a limited sense,
depth image can be considered equivalent to a volumetric TSDE. We will explore

this by way of an analogy. Let us consider the sparse matrix:

Ac RlelO _

OrFrOCOCOoOOm OOO
Fococcococococorn
cocococoococoT O
cCoroco00cO00COO
Toococococon oo
cCoococo+roO0OO
coocToococaoOo
cCoococn ococoOo
cCo—-ocoo0ocOoOO
OC—~o0o0co0co00COoO

Instead of keeping all 100 elements we can use a sparse triplet representation
for A, storing row, column and value.

A = [{1) 2’) a}! {2) 3’ b}) {33 53 C}’ {3) 7) d}’ {4) 1) e}’ {59 6) f}) {63 83 g}’
{7’ 73 h}’ {89 49 ‘i'}Q {8’ 9’ j}’ {9’ 19 k}’ {99 ]‘O’ I’},{]‘O’ 2’9 m}7 {10’ 59 n}]

In a similar fashion, for an entry in a fully volumetric 3D image, an equivalent
sparse representation would need to store row, column, layer and value as a
quadruplet. Now, if all the value components are equal, the value itself can
be omitted. If we generalize the concept of indexing to allow for non-integer
coordinates, we may define each sparse entry as a vector in R?. The depth
image, projected into 3D space i.e., s, (M), can thus be thought of as a sparse
representation of the subset of the TSDF that corresponds to the zero level-set
specifically. As there are typically many fewer projected 3D points than voxels it
makes sense to perform the summation over the domain of depth image pixels,
since those are the only locations where any comparison is meaningful. Noting
also that the distance value at the projected 3D point should be identically zero
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(due to it representing a surface measurement), we can discard G(x) from the
equation. As long as we are querying the TSDF at the locations implied by the
projected 3D points, we are implicitly making a comparison with the reference
value of zero. This results in an error function dependent only on the squared
value of the TSDF at the projected 3D points, translated by h:

M|
E(h) = ) [Dn(snii(mi) +h)P? (3.25)

i

While the original equation is stated for estimating pixel flow, i.e. pure trans-
lation h, to model camera motion, we must make the error dependent on the
rigid-body transformation T instead. Obtaining the optimal parameters £* then
amounts to solving the following problem, which is equivalent to Eq. (3.18):

IM|
" =min. ZHD €)énr1(mi))|[5 (3.26)

3.4 Solution

We obtain the solution of the optimization problem defined in either of the two
previous sections by linearizing the objective function by means of a first-order
Taylor-series approximation around & = 0, i.e.,

Dn(T(&)8ny1(my)) =
D (T(&)$n41(mi))|e—o+

VeDn(T(E)$nq1(mi))lg—o&. (3.27)

The assumption that we are close to & = 0 holds as long as the inter-frame
movement is small. Additionally, as the iterations progress, the parameter vector
tends towards zero, making the approximation less inaccurate. Noting that
T =1for § =0, Eq. (3.27) simplifies to,

Do (T(&)8ny1(my)) =~

Din($n+1(mi)) + VeDn ($ns1(mi)) e, (3.28)
In Eq. (3.28) we identify the summand to the Jacobian matrix as,

J(mi) = VeDn($ni1(mi)), (3.29)
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where J(m;) € R®*! can be computed by applying the chain-rule, as follows:

~ x 8D (x)
1) = 555 (3.30)
0 —X3 X2
X3 0 —x 3Dy (x)
—X2 X 0 stBX](x)
0o 1 0 S
0 0 1

The second part of the Jacobian is obtained by numerical methods, such as finite
differences or by convolution with a derivative kernel, as discussed in Chapter 4.
We now return to Eq. (3.18) or Eq. (3.26) to plug the new definitions back into
the objective.

M| 5
min. 3 [|Dn($n-1(mo)) + J(ma) e (3.31)

Expanding the square and simplifying the algebraic expression we end up with,

M|

mén.z £M(my)J(my) e+

28T (Mi) D ($ns1(mi)) + D ($np1(mi))% (3.32)

Carrying out the sum over the pixels in M for the terms dependent on &, we can
define the following matrix and vector, respectively,

IM|

H=Y Jmy)Jm)", (3.33)

M|
9= J(mi)Dn(énsi(mi)). (3.34)

Differentiating Eq. (3.32) with respect to & and equating the result to zero, we
find the least-squares solution &* by,
& =—Hlg. (3.35)

The set of points are transformed by T(&*) and the process is repeated for several
iterations. The estimated transform represents the incremental change between
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Figure 3.4: Main components of the system, and information flow

the current frame and the previous pose. Since the parametrization of T(§)
is only valid locally around & = 0 we reset & to zero and pre-transform each
newly arrived depth image with a global transformation matrix T, 11 = T(&£*) Ty,
with Ty = I, representing the pose change since the beginning of tracking. To
summarize, a high-level overview of the system is provided in Fig. 3.4.

Though it is not strictly necessary for convergence, we iterate using a coarse-
to-fine sub-sampling on the input depth image, as this provides significant
speed-ups in the registration by providing a fast initial alignment [53]. A fixed
number of iterations are performed on each level of detail, or until the change
in the optimization parameter falls below some pre-defined threshold.

To improve the basin of convergence for the solution, we may scale the
contribution of each measurement, based on a weighing function w(r) that takes
the residual 11, 3 = Dy ($n+1(my)) as argument and outputs a scalar weight. The
weighing function reduces the influence of outliers on the solution. Changing
Eq. (3.33) and Eq. (3.34) to

IM|

Hy =Y wirns)J(m) T (my), (3.36)
IM|

gw =Y Wwlrn)J(mi) rns (3.37)

1
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The weighing function w(r) characterizes an M-estimator [57] for which a
sensible choice is the Huber estimator [55]. The Huber penalty is dependent on
the residual, denoted here by 7, and is defined as,

Wm:{ 1k.0 if r] <=k ’ 3.38)

e otherwise

where k is a small constant. Rescaling with the Huber estimator brings the
objective close to an Ly penalty on the residuals. In practice this absolute value
assigns a higher penalty for small residuals compared to a quadratic objective
function. This allows for better small-scale adjustments when the image is close
to its correct alignment, and is robust to large outliers. However, since we
disregard any points outside of the truncation limit for the TSDF, we have
implicitly assigned a weight of zero to these anyway. Reducing the influence of
measurements associated with objects at a greater distance from the sensor may
also be beneficial, as these have a greater uncertainty.

Lastly, we note that adding a small cost related to the norm of the parameter
vector § itself (an L, or Tikhonov-regularizer [58]), has benefits in situations
where the solution would otherwise tend to oscillate around the minimum or be
poorly constrained by the geometry seen in the environment. Adding £'T¢ into
Eq. (3.29), where I' € R is a diagonal matrix attributing cost to the norm of
each individual component of &, results in,

M|
Hyr = ) T+ wW(Dn($n41(m)J(mi)J(mi)T,

where ' = «l, I being the 6 x 6 Identity matrix and « a linearly increasing
function of the number of the current solution iteration. Large values for « will
tend to dampen the amount of change made to the parameter vector at each
iteration and such dampening is only interesting once the solution is close to
optimal. This type of regularization is the essence of the Levenberg-Marquardt
algorithm, applied to ICP as LM-ICP [55]. It can be interpreted as a variable
(parametrized by «) trade-off between the Gauss-Newton and gradient descent
methods.

3.4.1 Limitations

Since our method uses the TSDF to represent alignment error, it needs a distance
function that is truncated at larger values than methods that simply use the
TSDF as a scene representation. If a projective TSDF is computed based on the
first depth image produced by the sensor, we must ensure that the surface points
computed from consecutive depth-image frames find themselves within a region
of the TSDF where numerical derivatives can be computed (see Eq. (3.29)) in
spite of motion occurring between consecutive video frames. Since the truncation
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occurs at larger values, the method is unable to reconstruct details as fine as what
would be possible using separate representations for tracking and mapping.

Apart from these limitations, the proposed method may lose track of the
pose if the assumption that we are close to the solution does not hold or if the
currently viewed geometry does not offer enough variation to constrain all six
degrees of freedom, causing the approximate Hessian matrix H in Eq. (3.35) to
be close to singular.

3.5 Results

To evaluate the accuracy of the proposed “SDF-Tracker” algorithm in an off-
line setting, we tested it on subsets of the RGB-D dataset from the “hand-held
SLAM?”, “3D Object Reconstruction”, and “Testing & Debugging” categories,
provided by the CVPR group at the Technical University of Munich [59]. The
data-set consists of several sequences of depth and RGB images, acquired within
an office environment. During data-acquisition, the sensor was fitted with
reflective markers, enabling an external motion capture system to independently
determine drift-free ground-truth poses of the sensor. Sample reconstructions of
the scenes, along with plotted camera trajectories can be seen in Tables 3.2,3.3,
and 3.4. Although the data-set contains depth and color images, the latter are
not used in any part of this work. The 3D reconstructions shown in the figures
are obtained by extracting a triangulated surface from the TSDF, constructed
using ground truth poses 7.

The parameters and constants introduced in Sec. 3.4 are listed in Table 3.6
with the values used throughout the evaluation. We evaluate the accuracy of
our algorithm by computing the absolute trajectory error, relative position error
and relative orientation error as indicated in [59]. We compare the results to
those of Kinect Fusion (as implemented by the Point-Cloud Library ¢ [60]) and
to two algorithms that use depth information in conjunction with visual fea-
tures, namely RGB-D SLAM [61], and feature-based 3D Normal Distributions
Transform (NDT-F) [62].

As can be seen in Table 3.5, our method achieves similar performance to the
tested visual feature-based methods, in spite of tracking from depth alone and not
performing any pose-graph optimization. Our method slightly outperforms the
reference implementation of KinectFusion on the “desk” and “xyz” sequences
but fares slightly worse on the “desk2” and “floor” sequences. It is interesting to
note that RGB-D SLAM typically has a larger inter-frame error but, due to global
optimization and loop-closures, achieves a smaller absolute error. Compared
to NDT-F we generally achieve better results. This is expected, since NDT-F

7Ground truth poses are only used to generate the visualizations and for evaluating the pose
estimates produced by the SDF-Tracker algorithm. They are never provided as an input to the
algorithm

8 Open Source Kinect Fusion implementation, PCL: http:/svn.pointclouds.org/pcl/trunk, accessed:
Sept. 2012.
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Figure 3.5: Frame-rate plotted as a function of interpolation method, number of
voxels and image size.

is a frame-to-frame method and can therefore not take advantage of a map
with reduced noise. A notable exception to these statements is the rather poor
performance of the proposed algorithm on the “floor” sequence. A closer look
at the relative errors in pose estimation for that data set, shown in Fig. 3.6(a)
reveals large spikes both in the rotational and translational error, occurring after
ca. 25s. Looking at the input data for which this error is produced, we note that
it is indeed a representative example for one of the failure modes discussed in
Sec. 3.4.1 (namely, H close to singular due to lack of features). The KinectFusion
algorithm produces similar behavior, for the same reasons.

The run-time of our algorithm, as measured on an Intel Core i7-4770K (3.50
GHz, 4 cores) CPU with 16GB of DDR3 memory at 1600Hz, depends on the
number of voxels used and is presented in Fig. 3.5. Performance scales up with
the number of cores available on the system and their speed. The algorithm
spends the majority of its time evaluating the TSDFE. The TSDF needs to be
sampled in order to compute the error associated with a surface measurement,
but also to compute the derivative of the error relative to position. As a result
of this, we find that reducing the complexity of the TSDF interpolation and
gradient estimation method results in lower run-time (as seen by the higher
frame rate).

But how does the pose estimation suffer in terms of accuracy when using
simpler interpolation methods? We can see the performance of the different
interpolation methods on a selection of data-sets in Figs. 3.7, 3.8, 3.9. Applying a
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Figure 3.6: Fig. 3.6(a): Relative errors — translation (top) and orientation (bot-
tom). A large spike is seen in both graphs at ca. 25s, caused by an insufficiently
constrained solution for the depth-based algorithms. Fig. 3.6(b): Example re-
construction from the fb1_xyz dataset, using 400° voxels with 0.006m edge
length.

pairwise Mann-Whitney U test [63], we find no statistically significant change in
performance between any of them. This means that lowering the computational
cost by using a cheaper interpolation method (or none at all in the case of nearest-
neighbor) can provide more stable tracking, by allowing higher frame-rates or
image resolutions. Which of these attributes to prioritize with the available
computational resources is dependent on the lighting conditions and the amount
of degradation caused by reducing the shutter time [64] of the camera.
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Figure 3.7: Absolute Trajectory Error relative to interpolation method
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Figure 3.8: Relative Pose Error in translation measured between consecutive
frames, relative to interpolation method
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Name | Trajectory length

fr1/360

fr1/desk

fr1/desk2

fr1/floor

fr1/room

5.818m

9.263m

10.161m

12.569m

15.989m

Table 3.2: Selection of sequences from the hand-held SLAM category. 3D recon-

struction visualized, with camera trajectory shown in red.
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Figure Name | Trajectory length

frl/rpy 1.664m

frl/xyz 7.112m

Table 3.3: Selection of sequences from the testing & debugging category. 3D
reconstruction visualized, with camera trajectory shown in red.

Relative pose error, rotation
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Figure 3.9: Relative Pose Error in rotation measured between consecutive frames,
relative to interpolation method
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Figure Name | Trajectory length

fr1/plant 14.795m

fr1/teddy 15.709m

Table 3.4: Selection of sequences from the 3D Object reconstruction category.
3D reconstruction visualized, with camera trajectory shown in red

Abs err. [m] Rel err. [m] Rel err. [deg]

Dataset Algorithm RMS | max | RMS | max RMS max
Ours 0.014 | 0.036 | 0.003 | 0.012 | 0.472 1.810

Xyz PCL-KinFu 0.023 | 0.070 | 0.004 | 0.056 | 0.474 1.738
(7.11m) RGB-D SLAM | 0.014 | 0.035 | 0.006 | 0.021 | 0.353 1.633
NDT-F 0.068 | 0.125 | 0.014 | 0.228 | 0.844 | 11.137

desk Ours 0.033 | 0.079 | 0.007 | 0.051 | 0.759 3.336
PCL-KinFu 0.073 | 0.256 | 0.020 | 0.272 | 2.003 | 28.317

(9.26m) RGB-D SLAM | 0.026 | 0.079 | 0.012 | 0.063 | 0.731 6.855
NDT-F 0.072 | 0.122 | 0.019 | 0.176 | 1.405 | 15.358

Ours 0.230 | 0.378 | 0.019 | 0.246 | 1.080 9.785

desk2 PCL-Kinfu | 0.102 | 0.312 | 0.020 | 0.194 | 1.795 | 28.660
(10.16m) | RGB-D SLAM | 0.043 | 0.183 | 0.018 | 0.218 | 1.067 | 9.632
NDTF 0.114 | 0.249 | 0.018 | 0.107 | 1.219 | 9.241

Ours 0.984 | 2.573 | 0.050 | 0.462 | 2.085 | 35.172
PCL-KinFu | 0.918 | 1.936 | 0.035 | 0.435 | 1.718 | 25.175
(12.57m) [ RGB-D SLAM | 0.035 | 0.085 | 0.004 | 0.027 | 0.292 | 1.929
NDTF 0.269 | 0.556 | 0.025 | 0.327 | 0.888 | 10.728

floor

Table 3.5: Comparative results, This work (Ours), An open-source implementa-
tion of the Kinect Fusion algorithm (PCL-KinFu) [21], Feature-based Normal
Distributions Transform registration (NDT-F) [62] and RGB-D SLAM [61]
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‘ Parameter ‘ value ‘
Voxels 320 x 320 x 320
Voxel size [m] 0.03
truncation (positive) [m] 0.1
truncation (negative) [m] —0.06
Huber constant k [m] 0.003
Downsampling levels 3
Downsampling / level x4, x2, x1
Iterations / level 12,6,2
Regularization « 0.001 x iteration_count
Stopping condition (interrupts current level) AllE]] < 0.0001

Table 3.6: Parameters used during evaluation
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3.6 Discussion

We have presented a camera-tracking method that uses the 3D scene represen-
tation directly as a cost function to perform 6 DoF alignment of 3D surface
points. The trajectories estimated by our method, on a well-known dataset, are
comparable to those of current state of the art methods, including algorithms
which, in addition to depth also employ visual features. Our main contribution
lies in a direct model-based approach to on-line registration, as opposed to
generating virtual sensor data from a model and performing registration in a
sensor-centric frame of reference. This allows for functional camera-tracking
and mapping to be done on a system without a GPU.

In our derivation of the objective function from ICP, we started with a
point-to-point error metric. However, what we end up with when measuring the
distance using the TSDF, is closer to the point-to-plane error. The point-to-plane
error considers the projection of the vector connecting two corresponding points
onto the normal vector associated with the target point, i.e.,

[P

E— Z min. H(pi —q) ™y Hj (3.39)

instead of Eq. 3.13. Close to a surface, where the level-sets of the TSDF tend
to be near-parallel, the distance values produced by the point-to-plane error
metric and the TSDF error metric are essentially the same. Furthermore, the
point-to-plane distance is also negatively signed when the source point (p;) is
behind the surface. Exceptions to the equivalence between the two error metrics
are found near corners in the geometry or at isolated points, such as those shown
in Fig. 3.3. In such regions, the negative TSDF gradient is oriented towards the
surface from every direction, but the normal vector is poorly defined since the
planar approximation to a single point is not well constrained enough to be
meaningful.

Compared to methods such as KinectFusion, which perform a coarse-to-fine
ICP registration a depth-image obtained from a sensor relative to a virtual depth
image rendered from the TSDF at the current estimated pose, the proposed
algorithm requires fewer steps and is simpler to implement. However, it tends to
perform equally well in terms of camera tracking, with some minor advantages.
It is expected to perform better in regions where the the point-to-plane distance
is ill-defined or when alignment between a real and virtual depth image suffers
due to occlusions present in the virtual image (which are absent in the full 3D
representation).

Although the details regarding interpolation methods and gradient estimation
may seem banal, there is evidently some merit in presenting them. A relatively
recent evaluation on the state of the art methods for real-time registration of
depth images [65] disregarded the algorithm presented here as being compu-
tationally infeasible. Their decision to do so rested on the assumption that it
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requires both trilinear interpolation and central differences to be viable, when it
in fact does rather well without using either.

3.6.1 Handling Deformations

We initially made the assumption that the world is static in order to have a
consistent map against which to compare future measurements. This assumption
can be relaxed somewhat with non-rigid registration methods. Volumetric image
registration is not uncommon in the medical sciences, as many types of patient
scans provide volumetric intensity data, with the occurrence of non-rigid warping
between scans due to tissue deformation. Embedding the TSDF in a free form
deformation grid [66], illustrated in Fig. 3.10 to warp it relative to the input, is
a possible approach, but results in a difficult problem due to the abundance of
parameters that are unconstrained by the input data. Dealing with the under-

(b) Randomly displaced deformation grid and ray-marched TSDF surface

Figure 3.10: Embedding a TSDF into a deformation grid allows for warping
the space itself. However, the deformations cannot alter the topology since
neighboring regions are still connected.
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constrained nature of this problem can be done by regularization. One can
for example encourage “well-behaved” solutions by initially setting a high,
but decreasing penalty on the curvature of the deformation grid [67]. This
states that translations, rotations, and non-uniform scaling are initially accepted
at no cost. As iterations progress, the penalty for causing curvature to the
space is reduced and local adaptations are made possible. This form of penalty
constrains the parameters to somewhat reasonable-looking solutions, but is slow
to converge and tends to spread out the effects of local deformation throughout
the deformation lattice. An example of this process is shown in Fig. 3.11 where
a sphere is non-rigidly registered to a cube. The main difficulty in using this

]

(a) Target model

(b) Source model - initial (c) ... intermediate (d) ... final

(e) Deformation grid - initial (f) ... intermediate (g) ... final

Figure 3.11: Three stages of non-rigidly registering a sphere represented as a
point-cloud to a cube, encoded as a TSDF, by updating the positions of the
nodes of a deformation grid. Initially the model is translated and stretched into
an ellipsoid, then after finding the best alignment, the grid deforms until the
points are distributed over the surface of the cube. Note the non-uniform density
of the final point distribution in (d) and asymmetry of the grid in (g).

approach for general non-rigid tracking, is that the description does not fit well
with how non-rigidity manifests itself in practice. Much of the non-rigid warping
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that occurs in the wild is not global in nature, but due to piecewise rigid motion,
such as people bending their limbs at the joints, doors opening and closing,
and objects changing position within a largely static scene. The sparse and
local nature of these deformations can be better described in a more direct way.
Efficient real-time approaches to perform template-free non-rigid tracking and
mapping have been presented. DynamicFusion [68] and VolumeDeform [69] are
two algorithms that solve the real-time non-rigid tracking and mapping problem
from depth and depth plus RGB input, respectively. A detailed overview of these
systems is beyond the scope of this thesis.

3.6.2 Thoughts on Surface Orientation

As we discussed in the previous section, the point-to-TSDF error metric has
a strong connection to the point-to-plane ICP formulation. An extension to
this idea is to utilize information regarding the orientation of surfaces in both
the source and the target surfaces. This would, in a sense, be similar to the
SDF-2-SDF [52] approach mentioned earlier, because it enforces matching of
the field behind and in front of the surface, and therefore implies constraints on
relative orientations at surface points. Since there can be substantial mismatch
between a global TSDF model and a projective TSDF computed from a single
depth image, this approach is not ideally suited to frame-to-model tracking but
seems to perform well on frame-to-frame alignment. An alternative to aligning
TSDF volumes that still enforces the mutual agreement between corresponding
surface points and their relative orientations is given by NICP [70]. NICP is an
extension to ICP that computes the optimal alignment in a 6-dimensional space
of position and surface normal orientation, using a Mahalanobis distance. That
is to say, it penalizes distances along the directions of less variance (e.g. out of
plane) more than distances within the plane, and allows rotations that maintain
surface normals pointing in the same direction.






Chapter 4
Feature Detection and
Description

Having the ability to perform tracking and mapping is useful in and of itself,
but even if a robot’s purpose is merely the autonomous surveying of sites, some
form of recognition capabilities is often needed. The necessity stems from the
usefulness inherent in realizing when the robot has re-visited the same location
again or being able to identify specific objects. The reason why place recognition
is important to building maps, is that it provides independent evidence about
the robot’s location and can be used to produce better estimates about where the
robot has been. For autonomous robots fitted with manipulators, recognizing
objects is essential to performing more complex tasks such as grasping and
manipulating objects.

When performing object recognition, scan alignment or localization, many
methods rely on detecting distinguishable regions in the available sensor data.
The sensor data at such regions can then be encoded, using a feature descriptor
and matched to other descriptors, computed from previous observations or
loaded from a database. The idea is that if something ”stands out” from the
data in one image frame, it is likely to stand out in another. However, matching
the data present at these feature locations directly is prone to failure, as changes
in view-point causes variability in the resulting measurements and the matching
process needs to be invariant to these changes. Furthermore, if one has collected
hundreds, thousands or even millions of interesting regions, comparing the data
directly may be too costly to ensure that a match is recognized in a relevant
time-frame for the robot.

For this reason, descriptors are typically devised in such a way that they
are of lower dimensionality than the underlying data used to compute them.
They may even be ordered in such a way that only the first few elements need to
be compared before rejecting a match. Descriptors are often oriented in some
consistent frame of reference, such that rotation invariance is obtained. While

67
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this process is well understood for local visual features, algorithms that operate
on depth data are a relatively recent development that has received less attention.

Depth data is of high relevance in robotics — virtually all autonomous
mobile robots are equipped with a range sensing device. It is thus not surprising
that shape-based feature descriptors have been proposed and used in robotic
applications such as scan alignment [71], place recognition [72, 73, 74], and
object detection [75, 76], to name but a few. Many of the recent contributions
focus on improving the consistency of salient feature detectors, improving
descriptors to become robust to viewpoint variations and noise as well as finding
suitable metrics for matching them.

(a) Depth image (contrast enhanced for visibil- (b) RGB image
ity)

Figure 4.1: Side-to-side comparison between a depth image and RGB color
image, both obtained using an Asus XtionPRO live sensor

Although the world has plenty of visible texture, geometrically it tends
to be quite smooth on the macroscopic scale. Fig. 4.1 shows a side by side
comparison of a typical office desk with some moderate clutter. There is notably
less variation in the depth image, than in the RGB domain. This is an illustration
of the differences between depth and RGB images, and how precious few the
geometric saliences tend to be. Even in natural environments, where geometric
variation tends to be more plentiful, it is typically still orders of magnitude
sparser than discernible texture variation. This is because differences in the
intensity of reflected light will usually be influenced by shape but also texture
and illumination [77]. As a consequence, the light intensity variation in an image
can be thought of as a strict superset of that caused by shape alone.

Because of the practical relevance of depth images in robotics and their
sparse nature, we feel compelled to contribute to their reliability, and in this
chapter will discuss ways in which we can use a TSDF to do just that.

In this chapter we will:



4.1. NOISE FILTERING OF DEPTH 69

e compare the performance feature detectors and descriptors, computed on
depth images, subject to denoising the depth image data by either fusing
several depth images into a TSDF and synthesizing a denoised version or
by applying single-frame filtering algorithms;

e compare the performance of different feature detectors, applied directly
in the volumetric TSDF domain. One type of feature detector included
in the evaluation is based on gradient orientations. We will therefore
study its stability with respect to different gradient estimation methods.
Two other types of detectors included are based on integration within
a volumetric boundary. For these, we will identify both practical and
theoretical limitations on their applicability to our problem domain.

4.1 Noise Filtering of Depth

Filtering the depth sensor noise is not in general guaranteed to result in better
feature detection or feature description results, since removing the noise may
come at the price of smoothing out important geometric structure. We examine
two standard noise removal approaches — bilateral filtering [78] and total
variation Ly norm (TV-L1) filters [79], and compare their effect on feature
stability and accuracy to that of TSDF denoising. In order to evaluate the
effect of these noise removal approaches, we will make use of several recent
depth-based feature detection and description algorithms.

In order to be useful in a place recognition or object detection context, fea-
ture detectors and descriptors should be robust to camera viewpoint changes.
Therefore, we will evaluate the stability of the Normal Aligned Radial Fea-
ture [80] (NARF) interest point detector over increasing baselines in translation
and rotation. We shall also compare the success in matching of NARF, Fast
Point Feature Histogram (FPFH) [71] and Depth Kernel [75] descriptors, over
the same range of motion.
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(c) TV-L1 filter (d) Incremental TSDF denoising (past measure-
ments only)

J 5 . A T A :
(€) Full TSDF denoising (all measurements) (f) Reconstructed TSDF surfaces along with

manually selected feature point locations

Figure 4.2: Gradient magnitude for typical depth images, processed with different
noise filtering techniques
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(a) Fourier series approximation to a square  (b) Amplitude per harmonic component
wave

Figure 4.3: Sharp discontinuities are high-frequency signals and therefore are
affected severely by low-pass filters, such as the Gaussian blur filter

From a signal processing point of view, filtering is the act of decreasing the
amplitude of unwanted frequencies in the signal. We already know that the
world is expected to be geometrically smooth, and therefore we expect that depth
sensor measurements should in general be a low-frequency signal. However, to
represent discontinuities, such as those seen at the boundaries of objects, we need
to maintain high frequency content. The reason for this can be understood by
looking at the Fourier series approximation of a square wave (see Fig. 4.3 ) and
noting that the amplitude of higher frequency components are non-negligible
(the amplitude of each component is inversely proportional to its respective
frequency, and the total sum of amplitudes is unbounded). Fortunately, there are
some edge-preserving filters that we can apply. In this section I outline relevant
noise filtering approaches for depth image denoising. Examples of a raw depth
image, as well as the filtered outputs produced by the discussed approaches are
shown in Fig. 4.2 and further explained in the next subsections.

4.1.1 Bilateral Filter

The bilateral filter is a nonlinear filter that updates a pixel p in an image I with
a weighted sum of the values of its neighbors q. Unlike a regular Gaussian
smoothing filter, which takes into account only the distance between pixels p
and q in the image plane, the bilateral filter also considers the difference in
intensity between these pixels. Formally [81],

1
BFp = 3~ 2_ No. (Ip — all)No, ([[Tp — Tql2)1q (4.1)
P qes
where N are Gaussian probability density functions (PDFs) with variances o

in pixel-space and o, in intensity-space, and W,, is a normalization factor. The
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bilateral filter is an edge-preserving low-pass filter, well suited for depth image
denoising.

4.1.2 Total Variation - L1 Filter

The TV-L1 filter is based on the observation that the noise in an image can
be described by the total variation of a pixel’s intensity value, relative to its
neighbors. Minimizing the total variation between pixels therefore reduces the
noise, but may also smooth out important features of the image, such as edges
and corners. In order to preserve edges, the filter output values are kept “close”
to the original image pixels in I using a regularized penalty, proportional to
the norm of the difference. The TV-L1 filter can then be formulated as an
optimization problem:

T[}g}.IIVulll +Auw—glly, (4.2)

where u is a vector of filtered pixel values, g is a vector containing the original
values from I, A is a regularization parameter controlling how close to the
observed image we wish the result to be and X is the space of attainable pixel
values. Finding efficient means for solving this problem is still an active area
of research, though many approaches already exist. Here we will employ a
method proposed by Chambolle and Pock [79], results from which are shown in
Fig. 4.2(c). The edge-preserving properties of TV-L1 filtering is owed to the L1
norm which, compared to a Gaussian filter (equivalent to a quadratic penalty)
induces a higher penalty on small variations and much smaller penalties on large
variations.

4.1.3 TSDF for depth image denoising

Obtaining a denoised depth image Ip from a virtual camera position ¢ given
a TSDF can be accomplished using standard ray-marching [24], as detailed in
Algorithm 1 in Chapter 2 . Unlike the previously discussed single frame noise
filtering approaches, TSDF denoising uses all prior information and incorporates
viewpoint knowledge, in order to produce a filtered image. This approach
has been shown to result in reliably good estimates of depth from moving
sensors[82] . We will compute two types of denoised depth images — rendered
from the incrementally constructed TSDF in an online fashion (Fig. 4.2(d) ),
and obtained using the TSDF of the full data set retroactively (Fig. 4.2(e) ) for
offline applications. Both cases are relevant to several recurring tasks in robotics
— ranging from object detection to place recognition.

4.2 Features on Noise-Filtered Depth

In this section we will briefly make an overview of the NARF feature detector,
and several feature descriptors. We chose the following methods because of their



4.2. FEATURES ON NOISE-FILTERED DEPTH 73

simplicity (NARF), reported performance (Kernel descriptors) and apparent
popularity in the robotics community (FPFH), though are by no means an
exhaustive list.

4.2.1 NARF feature detector

The NAREF feature detector was designed for range-images. Range images are
slightly different from depth images in that the value stored at each pixel
location in a range image is the length of the vector to the surface, from the
camera. In contrast, depth is the distance along the optical axis (by convention,
simply the z-component of the surface point, in camera-centric coordinates).
NAREF finds regions of interest in a given range image by first locating the
boundaries of objects, defined by large range differences at adjacent pixels. A
score is then computed for the local variation around each pixel, compared to
the variation of neighboring regions. Features are determined as the locations
that are different from neighboring regions, but relatively uniform within their
immediate surroundings, as this promotes repeatability in detection. Since NARF
features are detected in images, it uses a concept of neighborhood defined by
groupings of pixels. To avoid computations on surfaces that are far apart, the
feature detection takes into account borders of objects explicitly. The image-
based approach is fast to compute, since it does not require searching for
neighbors in a three-dimensional region, but it makes the features sensitive to
changes in silhouette and large variations in viewpoint [83].

Figure 4.4: lllustration of the radial star-shaped sampling pattern used for NARF
feature descriptors. The red arrow indicates the dominant direction of the patch,
determined based on local curvature. The dominant direction is used to order
the dimensions of the descriptor.
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4.2.2 NARF feature descriptor

The NARF feature descriptor is computed at a given range image pixel by defin-
ing a patch perpendicular to the estimated surface normal. The pixel intensities
within this patch are then evaluated along a pre-defined star-shaped pattern
of directions radiating out from the query pixel. The pixel intensity variation
along each radial direction is taken to be one dimension of the descriptor’s
feature descriptor. For in-plane rotation invariance, a dominant direction is also
identified within the normal-aligned patch and the feature descriptor is shifted
relative to this direction. An illustration of the sampling pattern used for the
descriptor (source: [80]) is shown in Fig. 4.4.

4.2.3 Kernel Descriptors

Kernel descriptors define the similarity between pairs of image patches. This
is done by defining relevant pixel attributes for the domain (in this case depth
images). Once pixel attributes have been defined, match kernels are designed to
express the similarity of two patches P and Q given these attributes, e.g,

attrlb P Q Z Z kattrlb P>q (43)

peP qeQ

To avoid the requirement of having pairs of patches for comparison, the problem
is reformulated as matching an input patch P against a dense sampling of
“would-be” candidates for Q, making it a feature descriptor, learned from data
that is dependent on P only. The final step is to derive low-dimensional match
kernels that approximate the original kernel functions well, by reducing the
densely sampled stand-in for Q to a dictionary comprised of a finite set of basis
vectors [84]. A feature descriptor is then obtained with the format:

attrlb Z o‘t Z kattrlb p’ut (4.4)

peP

where w1 are basis vectors uniformly sampled over the support region of pixel
attributes, b is the number of basis vectors, and «§,e € {1...E} are the top E
eigenvectors selected using kernel principal component analysis. In this work
we evaluate three types of kernel descriptors based on different pixel attributes
namely, gradient kernel descriptors which express a difference in surface gra-
dients between patches; local binary patch (LBP) kernels, which encode and
compare patterns of local depth variation; and Spin/Normal kernel descriptors
which measure the difference between surface normals around a given point.

4.2.4 Fast Point Feature Histogram Descriptors

FPFH has been made popular as part of the point cloud library [60] (PCL),
and is a method designed to work on unstructured point cloud data, with no
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assumption regarding adjacency or viewpoint e.g. as implied by a depth image.
An FPFH feature descriptor is computed by first performing a neighborhood
search in 3D, collecting points within a region of pre-defined size. Points are
then considered relative to their neighbors, along with their estimated surface
normals. A set of angles are computed based on the vectors derived from the
relative positions of the points and their normals. These angles are binned into
a histogram, constituting what is called a Simplified Point Feature Histogram
(SPFH). In a second pass, a new set of neighbors are selected for each query
point and the SPFHs of these neighbors are weighted inversely to their distance
to the query point. These histograms are then combined using their respective
weights to form a single low-dimensional feature vector that can be used as a
local descriptor of the 3D points.

4.2.5 Evaluation Methodology

Figure 4.5: The industrial robot and target environment, used as an application
scenario for our evaluation.

The evaluation approach is inspired by work on visual feature detectors
and descriptors in the context of object modeling [85]. We will use a two step
evaluation procedure — first testing the stability of feature detectors over multi-
ple data frames, then removing the variation caused by detector instability and
evaluating the accuracy of feature descriptors under ideal detection repeatability.
The results from these evaluation procedures will then be used to compare the
performance of detectors and descriptors both against each other, as well as over
various types of filtered depth data.

In all of the performed evaluations, we will use data-sets collected from
a moving Asus Xtion Pro depth camera with a resolution of 640x480 depth
pixels. The sensor was mounted on a six axis industrial manipulator, designed
for offloading of shipping containers (see Fig. 4.5). During data collection, a
container was filled with the sorts of goods typically found in containers —
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cardboard boxes of various sizes, barrels, sacks and other miscellanea (see
Fig. 4.2). The manipulator was then programmed to follow a typical unloading
pattern while recording depth images, and two representative portions of the
recorded image sequences were selected for use in the evaluation.

Given a sequence of depth images z; (M), we use the forward kinematics of
the robot together with the tracking algorithm from Chapter 3 to obtain an
accurately estimated camera trajectory by setting the forward kinematic pose as
an initial guess for the pose when obtaining a new depth image, and performing
the alignment. Tracking from depth images alone would have been challenging
both due of the fast motion of the robot and the oftentimes uninformative
content in the depth images, caused by occlusions. The forward kinematics by
itself would likewise result in distortions, due to calibration errors and lack
of temporal synchronization between encoder readings and depth images. The
result is, however, that for every depth image z;(M) we can associate a global
camera pose in the form of a homogeneous transformation matrix T;. Since
the robot’s forward kinematic model provides a good initial estimate for the
tracking algorithm at every frame, the trajectory estimate is virtually drift-free.
Therefore, for the evaluation data-sets we can regard the estimated camera poses
T; as a ground truth input to the evaluation procedure.

4.2.6 Feature Detectors

The first type of evaluation measures the stability of detected feature locations,
over a sequence of depth data z;(M). Feature detector stability is important as
it ensures that feature descriptors can be repeatedly extracted at the same salient
locations in different depth images. Thus, given two depth images z;(M) and
z;(M) collected at two different camera poses T; and Tj, we can evaluate the
stability of a feature detector by calculating the percentage of locations that are
detected in both depth frames. To calculate this ratio we need to first transform
both sets of features from local pixel coordinates to their camera-centric 3D
positions ki and k;, using the camera projection matrix. Next, we use the known
camera positions to obtain the global feature point coordinates K; = T;k; and
K; = Tjk;. Finally, we compute the ratio of features from frame i that have close
neighbors in frame j over the total number of features in frame 1i:

Idist(Ki, K;) < ti]
sign) = (LD <
1

(4.5)

where dist(Kj, Kj) is the Euclidean distance between each feature from K; and
it’s closest neighbor in Kj and |-| denotes the set cardinality. This score function is
parametrized on a feature association distance ty, which signifies the maximum
acceptable deviation in a feature position. In this evaluation we did not check
for occluded feature locations or features that do not belong to both fields of
view, and thus even a perfect detector will not achieve a score ratio of one. The
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camera motion between different evaluated frames is however relatively small
and occlusion effects are minimal. In addition, in this evaluation we are interested
primarily in comparing feature stability over differently processed depth images
and thus the feature ratio is only used as a relative and not an absolute measure.
To test the sensitivity with respect to viewpoint changes, we compute the feature
stability score s; ; over varying translation and rotation between the input depth
images z;(M) and z;(M) and report stability histograms.

4.2.7 Feature Descriptors

The second type of evaluation performed in this work measures the uniqueness
of different feature descriptors. In order to provide a reliable match between
two feature point locations, their feature descriptor representations need to
be sufficiently similar. In addition, feature descriptors extracted at different
locations need to be sufficiently different, in order to provide a clear separation
between matching and non-matching points. The similarity between two feature
descriptors v; and vj is calculated using a parametric distance ¢(vi,vj) = ((vi —
v;)TS(vi —v5))%3, where S is a measure matrix that weights the importance of
each dimension of the feature descriptor. Depending on the application scenario,
different methods can be used to learn the matrix S and select informative
dimensions. In this work we take the standard baseline approach of using an
identity S matrix, resulting in a Euclidean distance measure ¢e.

Identifying matching feature descriptors can be achieved by simply setting
a threshold on the maximum allowed Euclidean distance, but as suggested by
previous works [85], this approach is suboptimal. Much better performance
can be achieved by using a relative feature distance. Given two sets of feature
descriptors Vi = (v}, v, and V; = {V§}s=1..1v;|> the relative distance ¢y,
between a vector v} and it’s closest neighbor ijl € Vj is calculated as:

1
P (W, v51) =

(4.6)

where v)-52 is the second closest feature descriptor from Vj. The relative distance
has several desirable properties — it is normalized in the range between 0 and
1, and more importantly it attains low values only if d)e(vf,vfl) < d)e(vf,v]?‘z),
i.e. only if v is much closer to its match than to any other feature descriptor in
Vi

Using the relative distance ¢,,, we can identify the matches between two
sets of feature descriptors by applying a distance threshold t¢. Before describing
the details of the evaluation procedure, however, we need to extract feature
descriptors from the input sequence of depth images. In a typical system, the
feature points detected in the previous step will be used for determining the
locations at which we extract feature descriptors. In order to obtain results
independent of the quality of the feature detector, however, we need to extract
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vectors at precisely the same physical locations over the depth image sequence.
Therefore, we manually choose and track a set of informative feature locations
and thereby decouple the feature detection and feature extraction evaluations. An
example view from the manual feature definition tool is shown in Figure 4.2(f).
The red crosses represent user defined feature locations, which are tracked
throughout the depth image sequence and reprojected in each frame, with field
of view and occlusion checks. In this manner, we also obtain reliable ground
truth matching data — every manually selected feature and all feature descriptors
extracted at the same physical location are globally identified.

Knowing the ground truth association between features extracted at different
frames, we proceed similarly to [85]. For any two depth images z;(M) and
zj(M) we calculate the numbers of correctly and wrongly matched features,
depending on the feature association distance threshold t¢. By varying t¢ in
the range [0, 1], we obtain different values for the correctly (true positive) and
wrongly (false positive) associated features. In [85] the cut-off threshold is
manually set to a single value for all evaluated feature extraction techniques,
which can introduce some bias in the subsequent results. We use instead a
standard approach for binary classifier tuning and set the threshold to a value
that achieves equal precision and recall values. Essentially, at this value the
number of wrongly matched features is roughly equal to the number of matches
that are not reported. We calculate the percentage of correctly detected matching
features, over all ground truth matches between the two frames. This value
is then accumulated into two histograms, over the translation and rotation
difference between the two frames. In the next section, we report our results for
feature detector stability and correct match rates of different feature detectors
and descriptors.

4.2.8 Results

The results for NARF feature detector stability over translation and rotation
viewpoint changes are shown in Fig. 4.6. The percentage of re-observed features
from different viewpoints increases by roughly 20% when the raw data is filtered
using the bilateral or TV-L1 methods. The increase in performance when using
the TSDF denoised images accounts for roughly another 20%, compared to the
two noise filters. These results strongly suggest that the benefit of using past
observations for data denoising has a significant positive impact on features
stability.

A few “caveat emptor” to bear in mind that when analyzing these results, is
that the camera trajectory is composed of both rotations and translations. Even
though we sort the results by either rotation or translation magnitude, we do
not discount the effect of the uncontrolled variable, meaning that both results
remain mixed. Since the rotations are expressed in terms of the camera pose
rather than e.g. pivoting at individual feature locations, the apparent motion of
features will often contain large translation components, even when the camera
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Figure 4.6: NARF feature detection, for increasing baselines in camera transla-
tion and rotation

undergoes pure rotation. The magnitude of induced translation ||t|| caused by
an angle change of 0 in the camera orientation, for a feature point at a distance
d from the sensor is equal to:

[t] =2-d-sin(6/2). (4.7)

From this equation we can infer that a change in camera angle of e.g. 3°, for a
feature point at 1m distance, would result in roughly S5¢cm apparent translation.
Since many of the objects surveyed by the robot are located approximately be-
tween 1 and 2 meters from the end-effector, this explains the observed similarity
between graphs related to translations and rotations. Lastly, we should note
that the graphs are a representation of an underlying histogram, for which only
the center of the bins are shown in the graph. The combination of these effects
explain why none of the curves have a unit score, even for apparent “zero”
motion.

Results of the evaluation of the five types of feature descriptors chosen are
shown ! in Figures (4.7—4.11). The ratio of correctly identified matches is
measured as a function of both translation and orientation offset in the camera
pose and shown on separate plots. The impact of reducing the noise, in terms
of feature matching is vast, in some cases, such as for the FPFH descriptor
leading to over four times more matches compared to the raw data, as shown in
Figs. 4.8(a) 4.8(b). Across all the feature descriptors tested, the TSDF denoised
depth maps show by far the largest boost in performance. It is encouraging to

Iplease note the difference in scale of the ordinates
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Figure 4.8: FPFH descriptor matching

see that there is little difference between the progressively denoised model, based
on only past observations, and the model which incorporates the entire depth
image sequence at once. Interestingly, the bilateral filter improves the matching
rate on NARF feature descriptors shown in Figs. 4.7(a) and 4.7(b), but has an
adverse effect on the matching of LBP kernel features, shown in Fig. 4.10(a)
and 4.10(b), whereas the TV-L1 denoising yields a consistent improvement for
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Figure 4.9: Gradient kernel descriptor matching (n.b. the ordinate axis is scaled
to fit the data, and differs between the two graphs)

matching with the LBP descriptor, but performs slightly worse than the bilateral
filter in other cases. When using gradient kernel features, shown in Figs. 4.9(a)
and 4.9(b) neither of the single-frame denoising methods produce noticeable
improvements over the raw data.

Beyond quantifying the improvement that denoising incurs in descriptor
matching, we can also make a brief comparison between the different descriptors
for this particular application. We note, for instance that the rate of matching
for FPFH is comparatively low, possibly because it is designed to work with
unstructured point cloud data rather than image patches. Also, because FPFH is
a true 3D feature descriptor, it could make use of points collected from many
different viewpoints, if these were consistently fused into a single frame of refer-
ence. The Gradient and LBP kernel features show the best overall performance,
on both raw and denoised data. The NARF feature descriptors, simple as they
may be to compute, show a remarkably good performance. The spin kernel
descriptors appears to be the most sensitive to viewpoint variation, though it has
among the highest matching rates for short baselines, as shown in Figs. 4.11(a)
and 4.11(b).

4.2.9 Discussion

The evaluation presented above clearly indicates the benefit of computing local
shape descriptors on more consistent and less noisy depth images. It would
be interesting to compare the approach to other noise filtering techniques that
use model-based priors, such as e.g. planes [86], wavelets [87], curvelets [88]
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or any of the many other edge-preserving noise removal methods currently
available [89]. We have seen that shape-based feature detectors lead to bet-
ter repeatability when computed on denoised depth images. For all the edge-
preserving noise removal methods we studied, we were able to observe that
features were being detected at more consistent locations, in spite of viewpoint
transformations. The gap between single-frame noise-removal and pose-aware
TSDF denoising in feature detection performance is quite large, but in any case,



4.3. 3D FEATURE DETECTION 83

0.4

Figure 4.12: a 3D shape, optimized to have different silhouettes when viewed
from orthogonal directions. Discontinuities in the shape are therefore com-
pletely different depending on viewpoint and thus likely to result in disparate
descriptors, even in depth-based imaging.

some form of edge-aware denoising should be considered as a step prior to
feature detection. We also saw that the descriptors in some cases benefit from
single-frame denoising but were always more distinctly matched when using the
TSDF for filtering.

If only a single view-dependent snapshot of the geometry is to be used for
object detection and recognition, it makes sense to strive for the best possible
version of that snapshot, for the task at hand. However, there are inherent limits
on the distinctiveness of shapes given their projections. As illustrated well by the
Shadow Art [90] algorithm, geometries such as the one depicted in Fig. 4.12 2
are entirely possible and the descriptor statistics for such shapes, seen from
different views may well be multi-modal. Side-stepping the issues related to
describing 3D geometry from their projected depth images is the topic of the
next section, where we study feature detection in volumetric representations
directly.

4.3 3D Feature Detection

An issue that remains with feature detectors and descriptors operating in depth
images is that they are bound by the limits of observability. By this we mean
that any projective camera can only see, at most, half of an object (exactly half,
in the case of an orthographic camera 3). This is illustrated in Fig. 4.13, showing
two different objects that appear identical to the sensor due to self-occlusions. In
the image, some pairs of rays emitted from the sensor have been highlighted in
blue. Although the angle between each of the rays forming a pair is constant, the
length of surface between the points where the ray intersects the object is variable
(shown in red). Since the rays also diverge as one moves further away from the
sensor, the points of intersection between rays and surfaces also spread further
apart, even for surfaces without curvature. The variable sampling frequency
caused by projective cameras and occlusions are two motivating factors for
avoiding a projective space, if possible. In this section we shall therefore look
at some feature detectors, defined in a metric 3D space, where neighboring

Zsource: https://graphics.stanford.edu/ niloy/research/shadowArt/shadowArt_sigA_09.html
3e.g. using a telecentric lens or a flatbed scanner
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a b

Figure 4.13: Illustration of the limits of observability with a projective camera;
the shape appears identical to cameras a and b

samples in the data are also neighbors in the spatial sense. In the following
sections, we will introduce three different feature detectors and the theory
behind how their response functions are defined. In Section 4.3.1 we describe
the volumetric application of the Harris corner detector, which is traditionally
computed in the gradient space of two-dimensional intensity images. Because the
Harris feature is gradient-based, we dedicate some attention in Section 4.3.2 to
discuss the rationale behind different choices of gradient estimators and explain
their derivation. Taking an alternative route to feature detection in TSDFs,
in Section 4.3.3 we review the concepts of integral invariant features whose
defining characteristics are that they require no gradient estimation and have
been proposed as a fast feature detector for signed distance fields. We follow this
up with an evaluation of detector stability and a discussion of the implications
of the experimental results.

4.3.1 Harris Corners

Most feature detection methods apply a response function over the entire image
domain and retain the locations for which the function both exceeds a threshold
and is also locally maximal. One such response function is based on the sum
of squared differences (SSD) [91] between pixels within a region around a
candidate location. It is designed to give a high score to points where the
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image derivative is not small in any given direction, which is indicative of high
curvature. Harris [92] approximates the Hessian of the SSD as

1 VI2 VI, VI
HZZVVEZ[ x Y (4.8)

VLVI, VI

where w represents a square (or round, if desired) window around the candidate
point, [w| is the number of elements in w, for normalization and VI, VI, are
the estimated gradients of the image in the horizontal and vertical directions,
respectively. The extension to 3D is straightforward.

VIZ VILVI, VLVI,
Hy=—>Y |VLVIL, VI VI, VI, (4.9)
VI,VL, VI, VI, VI

The response R for a given pixel is a measure of both the scaling and
evenness of the distribution of gradients around that pixel. This is captured by
the determinant and trace of H

R = det(H,) — k Tr(Hy)? (4.10)
and equivalently, for a voxel,
R = det(H;3) — k Tr(H;3)3 (4.11)

with k being an empirical constant for which a typical value (in the volumetric
case) is 0.001 [93]. The above formulation is algebraically equivalent to the
following, using eigenvalues.

dim

R=TT00—k[ 281
i=1

}Mm (4.12)

Since the detector is based on a computation carried out over a neighborhood,
many adjacent points will have similarly high response functions. To enforce
the property of being locally maximal i.e. avoiding clusters of detected features,
non-maxima suppression is used. Non-maxima suppression entails iterating
over all candidate features within a local neighborhood, keeping only the single
highest-scoring.

4.3.2 Derivatives

A point to be made against response functions based on gradients is that gra-
dients are susceptible to noise and that this in turn reduces the stability of the
resulting detectors. Image derivatives may be obtained by a simple central differ-
encing scheme but are often calculated by convolution with a filter kernel that
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represents the weighted average of several central difference computations. By
including pixel samples from a neighborhood around the point of interest, some
robustness to noise is obtained at the cost of performing more computation and
reducing the locality of the estimate. The same applies to voxels. A common
choice of filtering kernel in 2D is the 3x3 Sobel-Feldman operator [94] which can
be interpreted as the application of a low pass filter (an integer approximation
to the Gaussian kernel) and differentiation. See Eq. (4.13) for the example of
the derivative filter in the horizontal direction where * denotes a 2D convolution
or equivalently, (4.14) using ordinary matrix multiplication.

1 10 —1

SoFeh€R3X3:{l 0 —1}* 2l=12 0 =2 (4.13)
1 10 —1
1 10 —1

SoFen e R3S = | 0 [1 2 1]: 2.0 2 (4.14)
1 10 —1

By convolving the differencing and blurring operators with themselves, i.e.,
[1 0 —1} « {1 0 —1} - [1 2 0-2 —1} (4.15)

[12@*[121}:[14641} (4.16)

one obtains filter coefficients that can be combined, in the same manner as
in Eq. (4.14) to produce a 5 x § derivative kernel.Generating the volumetric
filter kernels from the 1D coefficient vectors is analogous to the 2D case and is
detailed in Algorithm 2. The variables g, b, direction, n are column vectors
containing the derivative and blurring filter coefficients, derivative direction and
kernel size (3 or 5), respectively. The derivative and filter coefficients appear in
Table 4.1, for reference.

Since the Sobel-Feldman operator is an approximation to the derivative of
the Gaussian probability density function, the latter is worth some consideration
as an option, too. For our analysis, we compute the analytic derivatives of
the Gaussian and directly form the 3D filter kernels [95] of size 3 x 3 x 3 and
5 x5 x 5 from Gaussian with variances of 03 = 0.95 and o5 = 1.25, respectively.

An additional option well worth considering is the Scharr operator [96].
This is a derivative kernel arrived at by numerical optimization seeking to
maximize rotation invariance by minimizing the squared angular error in the
Fourier domain. As with the derivative-of-Gaussian it too has non-integer filter
coefficients.
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Algorithm 2 Computing the volumetric filter kernels from their 1-D coefficient
vectors

Require: b, g, direction, n

1

I
CAN AP I

R A A

Allocate n x n x n elements for K
switch (direction)
case "x”:
S <+ bg"
for allzin1tondo
K, < s,fT { K,, is the z-th slice of K and s, is the z-th column of S}
case ’y”:
S+ gbT
for allzin 1 ton do
K, < s,b"

»,_ 9,

: case "z

S« bb'
for allzin 1 ton do
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46.84 162.32 46.84] 1/256

Scharr; derivative
filter

T
Scharrs derivative | |21.38 85.24 0 —85.24 —21.38} 1/256

:
. filter {5.96 61.81 120.46 61.81 5.96] 1/256

Table 4.1: Filter coefficients used to derive 3D derivative kernels

4.3.3 Integral Invariant Features

Integral invariants were first introduced by Manay et al. [97] and are local shape
descriptors defined as integrals over a rotationally symmetric neighborhood.
They propose a local area invariant and distance invariant that both result
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in efficient and noise-robust estimates for mean curvature of a shape in 2D.
Pottmann et al. [98] presented integral invariants defined on three-dimensional
signed distance fields and proposed an extension of the local area invariant to the
volumetric case. Here we further extend the study of signed distance invariants
and volume invariants to their application on truncated signed distance fields.
Both of these features have their domains defined as the volume bounded by a
sphere, centered at a surface point p. The assumption that computation is carried
out centered on surface points implies that voxel-based methods are a poor fit,
since the probability of a voxel being exactly on the surface i.e. the zero-level
of the TSDE, is very small. However, Pottmann et al. [98] mathematically show
that these features are robust to perturbations of the query point location, if the
integration radius is sufficiently large. This reported stability encourages our
attempt to apply integral invariants even in the discrete case.

The volume invariant V,(p) is the integral of the indicator function 1p(x)
which returns 1 if x is in occupied space, and 0 otherwise. This information can
be obtained from the TSDF by testing the sign of the field at any given point
(negative if occupied, positive otherwise). The signed distance invariant, D, (p),
is simply the integral of the signed distance field. Both of these feature detectors
are defined within the bounding sphere of radius r. Formally,

xqm=j+8hmmm, (4.17)

p+r

D.(p) :J . dist(x, ®)dx (4.18)
p+T

The features are illustrated in Fig. 4.14 and Fig. 4.15, respectively. The mean
curvature of the surface is estimated by computing the difference between the
result of the integration (or summation, in the discrete case) and the result
which would have been produced if the computation had been carried out on
a perfectly planar surface. The following expressions approximately relate the
mean curvature estimates H, (p) and Hq(p) of the surface to the respective
descriptor values.

- CRPAVA
Fup) = 5= — — (4.19)
- 15D,
Falp) = 5= (4.20)

From the above equations we note that the estimated mean curvature for volume
integrals is zero if (and only if) the amount of occupied space is equal to half
of the sphere, i.e. the curvature estimate is an affine function with a specific
reference point. The equation based on the signed distance integral is simply
linear. As such, the signed distance integral relates mean surface curvature to the
amount of imbalance in the total positive and negative fields on either side. A
downside of not using first-order (gradient) information about the field becomes
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apparent here, as there is no way to distinguish saddle points from flat surfaces,
since the mean curvature is zero in both cases.

(a) (b)

Figure 4.14: Illustration showing the regions in which the indicator function
1p (x) would return 1 (orange) and 0 (blue).

(a) (b)

Figure 4.15: Tllustration of the signed distance invariant at a flat surface and a
corner. The surface interface (i.e. the zero-distance iso-level) is represented by a
red line. Orange indicates a negative value. The sum of all the values enclosed
by the sphere results in a negative value for the corner and in zero for the plane

4.3.4 Evaluation Methodology

We are interested in evaluating how repeatable the feature detectors are. This
interest is motivated by the cases where a robot returns to previously visited
locations (or observes known objects). In such scenarios, it would be ideal to
extract geometric descriptors at the exact same places as before, since this would
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yield the highest amount of matching local descriptors and allow the robot to be
more certain of where it was and what objects were present in the environment.

In general, re-mapping the same environment or objects will produce slightly
different results each time. Among the factors that prevent the acquisition of
identical maps are differences in measurements from the sensor, variations in
pose estimation when integrating the data, and changes in the alignment of the
voxel grid. To simplify our analysis, we will only consider the robustness of the
feature detectors with respect to changes in the alignment between the initial
pose of the voxel grid (modulo the voxel size) relative to the sensor. We shall see
that this alone has a substantial impact on repeatability, as it accounts for both
sample aliasing in the grid and anisotropy of the feature detectors.

To ensure that the sensor data and estimated trajectory are not a source
of variation, we use a pre-recorded data sequence with a globally optimized
trajectory [99] and reconstruct the environment using the volumetric integration
strategy laid out in Chapter 2. At the start of each reconstruction, we transform
the initial pose of the camera relative to the voxel volume by increasing amounts
of translation and rotation. At the end of each session, the different types of
features are extracted and we count the number of features that remained
stable in proportion to the total amount. Defining Q; to be the set of features
locations in the unmodified or source configuration and Q¢ to be the set of
features locations extracted from the target volume, for which the camera pose
was initialized with a transformation Ty. Let s € Qs and §¢ € Q¢ denote
homogeneous vectors in R*, e.g. [x,y,z,1]T, and Ty € R*** a transformation
matrix including rotation and translation and | - |, the cardinality operator. We
then define stability as the average between source to target and target to source
matches, where a match is determined to have occurred if two features are
within Tmateh = 2 voxels of each-other.

2 < Tmatch}‘ +

-
(IQuI+1Q]

score = ( \{Vqs,min.Hqs — Ty ' 4.
2 ) at (4.21)
|{Vq“ ‘maln”TOqs - thz < Tmatch}‘ )

Our definition of the matching score avoids being overly generous or strict
in case the amount of features differ between the two sets by checking for
corresponding features in both directions. We compute the matching scores for
varying baselines in translation and rotation:

e translations offsets of ,2,...1 voxels are applied combinatorially along

all dimensions. The sub-voxel shifts are justified by the fact that translating
the volume by whole voxel increments does not alter the aliasing and
sampling issues that we wish to investigate.

e rotational offsets of % R % - %,... % degrees are also applied combinatori-

ally, around each principal axis. The reason for the chosen interval is that
all the algorithms involved are symmetric along the principal axes. Any
larger rotations than 7 could therefore be achieved by a smaller one and a
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transposition of the appropriate dimensions (which would not affect the
results).

The repeatability score is computed for each reconstruction and detector and
binned together by the offset relative to the default pose. Because the translations
were performed in each of the dimensions separately, i.e., in a manbattan-like
way, plotting the scores against the Ly norm of the offsets yields a better-looking
graph. For rotations, we compute the equivalent angle-axis parametrization and
bin the results by the magnitude of the angle.

4.3.5 Experimental Results

The following analysis is based on a volumetric integration of the copyroom
data sequence * with voxel size vgize = 0.015m, and truncation at +vi,. x 4.
We use a sufficient number of voxels in each dimension to allow the entire
reconstructed surface to fit in the volume in spite of large rotations, and thus
avoids problems with bookkeeping of out-of bounds features. The relatively
large truncation distance is chosen to give the integral invariant features a better
chance at producing stable features. For each reconstruction session we use the
first 2500 frames, as this captures representative parts of the scene with diverse
characteristics. For all experiments, we set the non-maxima suppression window
to be of size 7 x 7 x 7 and set thresholds for culling features for which the
response function is low.

Gradient-based methods

We show the performance of Harris features, when computed using different
gradient estimation methods in Fig. 4.16. In all cases the window size w over
which the summation of the gradients to form H (see Eq. (4.9) is carried out
was set to 5 x § x 5. The smaller 3 x 3 x 3 kernels all produced slightly
worse results than their larger counterparts though with similar trends, we
omit them for clarity of presentation. We find that the derivative of Gaussian
outperforms Sobel-Feldman which in turn outperforms Scharr kernels. For all
three, increasing the rejection threshold results in a larger proportion of stable
features.

Central differences are cheaper to compute but offer poor repeatability, and
when the feature rejection threshold is increased a larger proportion of high
quality features are culled, noted by the drop in repeatability.

The sensitivity with respect to rotation is shown in Fig. 4.18. Note that since
the volume is not pivoted around the feature locations but around the camera
origin, some translation is induced as well. Although the Scharr kernel produces
the least amount of variation with respect to rotation, the repeatability of Harris
features is higher when gradients are computed based on both Sobel-Feldman

4available from http:/qianyi.info/scenedata.html, and given a proper introduction in Chapter 6
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and derivative of Gaussian kernels. Central differences provide the least robust
gradient estimate, under rotation, as expected.
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Figure 4.16: Repeatability of Harris features computed with the derivative of
Gaussian kernel (size 5 x 5 x 5) when threshold is set such that only the top
(a) 50% and (b) 10% features are maintained
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Figure 4.17: Repeatability of integral invariant at different threshold levels, with
respect to translation

Integral-based methods

The integral based methods, namely the volume integral and signed distance
integral features, do not perform as well as the gradient-based method. We
see in Fig. 4.17 that their repeatability is below that of all variants of Harris
features. Increasing the rejection threshold does not produce much improvement
for the signed distance integral, and causes a slight deterioration in the case
of volume integrals. The rotation invariance, shown in Fig. 4.18 is good, in
spite of the spherical integration region being a discrete approximation with a
radius of 3.5 voxels. The diameter of the integration region is made to match
the truncation distance of =4 voxels. However, the actual width of the non-
truncated region of the TSDF may both be larger, depending on sensor noise,
and smaller, due to surfaces being oriented (as defined by their normal direction)
at near-perpendicular angles relative to the line of sight to the sensor. The
dependency between integration radius and truncation distance is more critical
for volume invariants, where the signed distance field should ideally not be
truncated within the radius of the integration region. This is because the volume
integral is compared to a specific reference value for curvature estimation, and
this reference would need to be readjusted in case half of the volume being
occupied, as seen in Fig 4.14(a) no longer corresponds to a planar surface.
Additionally, for signed distance invariants the thickness of the thinnest
object should be at least twice as large as the radius of the integration region.
This is due to the balance needed between positive and negative fields to indicate
a mean curvature of zero. In the case of thin objects, the negative side of the
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Figure 4.18: Repeatability of Harris using different derivative kernels, in addition
to integral invariant features. The factors in the legend indicate the slope of the
linear approximation to the data.

distance field will only decrease until the center of an object, leading to skewed
estimates.

To highlight another problem of integral invariants applied to truncated
distance fields, consider Fig. 4.19. Indicated in green is the amount of additional
occupancy caused by a sharp concave bending of the surface. Here we see that
increasing the radius of the integration region beyond the truncation distance
adds no useful information to the curvature estimation. In fact, it only serves
to reduce the relative difference between curved and planar surfaces, compare
the case of Fig. 4.19 with those of Fig. 4.14 for example. When the distance
field extends at least as far as the circle radius, a 90° bend results in a whole
quarter of the circle area being added to the feature response. However, when
the TSDF is represented by a thin band around the surface, the added area
that arises when the surface is bent, is relatively small compared to when the
surface is flat. The results show that the signed distance integrals fare slightly
better than the volume integrals which is expected since the former use both
the positive and negative regions of the field and therefore have a slightly larger
sample base. However, neither is large enough to robustly filter out noise at
the tested radius. Since merely extending the radius is fruitless, we are left with
the option of extending the TSDF truncation distance to accommodate a larger
integration region. However, this leads to a decrease in the quality of scene
reconstruction and makes the reconstructed geometry more dependent on the
sensor’s viewpoint locations.

The main advantage of integral invariant features is that they are relatively
cheap to compute, requiring only a sum of the distance field within a bounding
region. To make the computational cost more tangible, a naive GPU implemen-
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Figure 4.19: 2D analogy of volume integral with occupancy estimated on a
narrowly truncated signed distance field. The green region shows the total
additional *volume’ that appears due to a sharp right-angled bend

tation  of derivatives by convolution with a filter kernel takes between 680ms
and 150ms for kernels of 5 x 5 x 5 and 3 x 3 x 3 respectively, for every element
within a TSDF volume of 5123 voxels. Computing the Harris features adds
another 100ms, with approximately 8ms more for the non-maxima suppression.
In contrast, the integral invariants take around 20ms to compute, followed by
the non-maxima suppression adding to a total of 28ms.

4.4 Discussion

Feature detection is a powerful tool that can allow for great savings in compu-
tation, by allowing other algorithms further down the pipeline to focus on a
smaller subset of data for processing. To be useful, the feature detector should
be repeatable, ideally flagging the same data as features every time they are
observed. However, in our experiments we have seen that features detected on
depth images are quite sensitive to viewpoint variations.

A possible explanation for this sensitivity is that although the scale of the
environment is not ambiguous due to the metric nature of range-sensing, depth-
cameras are still subject to the peculiarities of projective geometry. This means
that any fixed-sized support region used to compute features will correspond
to different actual surface areas in the scene, since measurement rays diverge as
they leave the sensor. Since geometric features also tend to be located on regions
of extreme curvature, changes in viewpoint are most likely to produce self-
occlusions or non-uniform variations in measurement quality there. A further
impediment to reliable feature detection is simply the presence of measurement
noise, for which denoising through a TSDF provides an effective countermeasure.
Avoiding the scale issues is possible by performing the feature detection, too, in
the volumetric TSDF space. However, this has its drawbacks when computing
features throughout the entire volume since the number of voxels present in a

Si.e. not exploiting separability into a series of 1-dimensional convolutions nor exploiting sparsity
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TSDF typically exceeds the pixel-count in a single depth-image, which results in
substantially higher computational costs.



Chapter 5
Compression

In Chapter 2 we mentioned the memory requirements of TSDFs as one of the
drawbacks for their use in robotics. The scalability of TSDFs in terms of memory
is an issue that affects all voxel-based representations. For TSDFs in particular,
the common method used to incrementally update the field requires storing a
weight as well. An important question is therefore how the memory requirements
for TSDFs can be reduced. The most straightforward approach is to simply
reduce the number of bits per voxel, but this leads to quantization effects that
become visible in terms of surface smoothness. The absolute limit is reached
when the signed distance is represented with a single bit. At the limit, a zero or
one simply indicates whether the voxel is behind or in front of the surface. Simply
reducing the number of bits is an approach with limited usefulness however,
since the effective voxels, i.e., voxels that can contain distinct numerical values,
also become fewer as the number of bits is reduced. For a given number of
bits, and depending on the combination of truncation limits and grid resolution,
the steps between representable distances may be in excess of the length of
an individual voxel. For applications where larger voxels are acceptable, but
where the variance of the range-sensing equipment is not proportionally larger
(meaning that the truncation limits need not be increased) it makes sense to
attempt a lower-bit representation as a first step.

In practice, one may use a bit field to store the distance and weight (and
perhaps even an indexed color value!) in a given number of bits or manually
pack data into a byte (or bytes), as this is generally the smallest addressable unit
on modern computer architectures. In the C programming language, a bit field
can be defined as e.g:

sturct voxel{

unsigned D : 4;
unsigned W : 4;
}s

97
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This declares a structure called “voxel,” containing two unsigned integers, repre-
sented with 4 bits each. One may additionally force the compiler to ensure that
this structure is aligned to one byte by issuing directives such as #pragma pack(1)
thus taking up no more memory than necessary. However, explicitly packing
data into memory may cause slower memory access, since load instructions that
read variables stored across the alignment boundaries require more operations.
The unsigned integer stored in D can then be used to represent values in the
range between Dy, i, and Dy qx. For an implementation example, see code
listing A.1 in the Appendix.

When deciding how to allocate the bits to represent either the weight or
the signed distance one should be mindful of the fact that a single weighted
update cannot effect a change in the stored value, unless the absolute value
of the update exceeds the gap between two representable digits. Having more
bits used to represent the distance produces better predictions of the surface
interface, but with fewer bits representing weight the result tends to be more
dependent on the last few samples. Low weights can make the map susceptible
to corruption by spurious outliers, too. A priori, splitting the number of bits
evenly between distance and weight, e.g. assigning one word/byte/nibble to each
is recommended, and then measure the performance obtained when changing
the balance between them.

Figure 5.1: Reducing the number of bits in the distance field causes visible
quantization artifacts, shown here is a representation using one byte per voxel.

Reducing the number of bits in the representation is sometimes not a viable
option. Shown in Fig. 5.1 is the ray-marched TSDF using a single byte per voxel,
with four bits for weight and four bits for distance. It is quite evident by the flat
and blocky appearance that the number of bits used to encode the distance field
is insufficient to place the zero crossing at an exact location within a voxel, even
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with interpolation. The quantization effect seen here illustrates that the width
of the non-truncated region of the distance field should be compatible with the
number of possible values that can be represented. Ensuring that the number of
representable values is in the same order of greatness as the number of voxels to
store them merely implies that adjacent voxels in the varying direction of the
distance field do not contain identical values, but it yields no accurate sub-voxel
positioning of the surface interface when interpolating.

As awful as the surface rendering may look, we find that we are still able to
track the camera with some success as far as down to a 3-bit representation, as
seen in Figs. 5.2,5.3,5.4. At that level of quantization, the number of distinct
values used to represent the distance field from Din to Dygx are only 7.
Given that the distance field was truncated at the fixed values of £30cm, and
the voxel size was of 2cm, this results in a piecewise constant representation
of the distance, since several adjacent voxels take on the same value. We find
that the tracking fails more often with fewer bits, leading to significantly lower
performance in trajectory estimation. However, we find that the relative error
between consecutive frames does not increase as much. This indicates that
reducing the number of bits leads to an increased brittleness, causing few but
devastating failures. There is little difference in performance, from a reliability
standpoint, when using more than 4 bits for representing the distance, and
tracking will succeed and fail to the same extent. However, we can see that the
average relative errors and variance of the error increase slightly each time one
reduces the number of bits per voxel.

Reducing the number of bits, allows a larger number of voxels to fit into
the same amount of memory but as a result, we see that the surface quality
deteriorates, as does the reliability of pose estimation relative to the map. If we
are interested in using the map for object detection, especially with gradient-
based feature detectors and descriptors, we ought to be weary of any additional
sources of high-frequency noise e.g. quantization errors. But what are the
alternatives for large scale mapping using TSDFs?
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Absolute trajectory ermror
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Figure 5.2: Absolute Trajectory Error for tracking and mapping, using different
numbers of bits per voxel to represent the TSDE The bars are grouped by data
sequence, and their heights show the mean error relative to the ground-truth
trajectory. The median pose error is represented by a red line and the variance
is given by the whiskers. We see a general trend towards greater errors and
variances as the number of bits is reduced, however this progression is not
always monotonic for all data-sets. Failures to track the camera may lead to
gross misalignments that cause all future poses to be erroneous. The large errors
are generally indicative of the severity or frequency of such failures.
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Relative pose error, translation
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Figure 5.3: Relative Pose Error in translation, measured between consecutive
frames when using different amounts of bits per voxel to represent the TSDFE.
The bars are grouped by data sequence, and their heights show the mean frame-
to-frame error in translation compared to that of the ground-truth trajectory.
The median error is represented by a red line and the variance is shown by
the whiskers. The progression seen here is gradual, with errors becoming, on
average, slightly larger as the number of bits is reduced. The median error is
close to the mean, except for the data-sets where large tracking failures likely
occur: room, 360 and teddy.
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Relative pose error, rotation
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Figure 5.4: Relative Pose Error in rotation, measured between consecutive frames
when using different amounts of bits per voxel to represent the TSDFE The bars
are grouped by data sequence, and their heights show the mean frame-to-frame
error in rotation compared to that of the ground-truth trajectory. The median
error is represented by a red line and the variance is shown by the whiskers.
The progression seen here is gradual with errors becoming, on average, slightly
larger as the number of bits is reduced. The median error is consistently close to
zero indicating that the distribution of errors is skewed by a low number of very
large errors
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5.1 Managing memory complexity - Related Work

5.1.1 General Purpose Compression

If throwing away bits is not feasible, the next obvious general-purpose approach
that can be applied is compression. There are a number of data-compression
algorithms designed for directly compressing volumetric data. Among these we
find video and volumetric image compression [100, 101], including work dealing
with distance fields specifically [102]. Although these methods produce high-
quality compression results, they are inherently sequential in their design, and
thus hard to speed up for real-time use. This is due to the complex interpolation
and extrapolation methods used to reduce the amount of data that needs to
be explicitly represented. One of the simplest, yet very efficient forms of TSDF
compression is a straightforward run-length encoding scheme [20] with reported
lossless compression ratios of 10:1 to 20:1. The common characteristic shared
by these methods is that compression and decompression become inherently
non-local operations.

5.1.2 Space Partitioning

Most solutions to managing the large memory footprint of TSDFs exploit the
sparsity i.e., a predominance of empty regions in the environment. A common
solution is found by hierarchically partitioning the volume in such a way that ho-
mogeneous regions are not represented in a redundant manner. An octree [103]
is one encoding that recursively subdivides a volume into 8 axis-aligned equal-
sized partitions until the resulting sub-volume is homogeneous (within tolerance
limits) or until a maximum depth is reached. Since the distance field value is
typically trilinearly interpolated, the optimal measure for homogeneity is not
necessarily when the contents of the sub-volume is constant, but sufficiently
well approximated by a linear function [104]. It has been shown that octrees
can be efficiently implemented on GPU architectures [105] and applications
of octrees to systems using TSDFs have claimed performance boosts in TSDF
update speeds, ray-marching, and storage efficiency [106]. The use of octrees has
made the maintenance of larger TSDF volume feasible on current CPU-based
architectures, too [107]. An advantage of using octrees is not only that they are
memory efficient but they allow geometry intersection testing to be done much
faster than on a regular grid. Octrees have been extensively used in computer
graphics as an acceleration structure for ray-tracing, path-tracing and collision
detection, to name a few applications. Although octrees may be considered the
industry standard representation for volumetric space partitioning, they are
better suited for applications where the data structure is built once and used
many times. It is also worth noting that the memory saved by partitioning the
space into an octree is variable, and depends on the geometry to a great extent.
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5.1.3 Hashing

Although efficient space-partitioning schemes can reduce the memory require-
ments of TSDFs drastically, there is still some redundancy in the representation.
Because the truncated, empty regions are still represented (although at a coarser
granularity) and because the higher levels of the hierarchy generally contain a
summarized representation of their lower levels, there is still some redundant
information being kept on multiple levels. An even more compact representation
can be made by using a hash function H(x,y, z) that maps world coordinates
to voxels [108]. Although some memory is required to store the hash table
itself, the overall memory use is typically around 1:16 of a similar regular grid
(compared to twice of that for octrees). An advantage of using a hash table is
that it doesn’t a priori impose bounds on the volume to be reconstructed and by
design grows the map as needed.

5.1.4 Moving Volumes

Although the cited methods increase the size of the feasible TSDF volume, the
main motivation behind using the TSDF may be of instrumental nature: e.g. to
enable robust and efficient pose estimation or to give de-noised representation
of a workspace for collision-free grasp planning and object recognition [109].
In such cases, it may not be necessary, or even desirable to maintain a large-
scale map, and the TSDF may thus only be required to exist around the space
currently occupied by the robot. This insight has led to approaches that cir-
cumvent the bounds imposed by a fixed volume size by translating the active
volume [110] and optionally also storing the cells that exit the boundary of
the TSDF as a triangulated surface [111]. Translating the TSDF volume allows
the robot to move further while locally enjoying the benefits of having a TSDF
representation at its disposal at a fixed memory footprint. A desirable feature
of a moving volume system is the ability to re-integrate the data back into the
TSDF representation when one returns to a previously mapped location. While
it is possible to estimate a TSDF from a given surface boundary with known
orientation using the fast marching method [112] or fast sweeping method [113],
the problem is difficult to solve correctly and efficiently [19] in general, due to
the non-manifold nature of reconstructed meshes.

5.1.5 Dictionary Learning

Going back to the concept of compression but instead of using e.g. wavelets for
sparsely decomposing the volume we can apply a more compact and representa-
tive set of basis functions. These can be learned from statistics over samples of
previously reconstructed maps. This is the main idea behind sparse coded surface
models [114] which use K-SVD [115] (a linear projection method) to reduce the
dimensionality of textured surface patches, represented as RGB + D pixels. More
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closely related to our work is the volumetric active patch model [116] which
attempt to learn representative patches ! of sampled TSDF reconstructions and
then linearly combine them with estimated rotations and translations to form
a reconstruction. This yields a very compact representation since a single code
word suffices for representing a given shape in all of its possible orientations. An
active patch model obtains robustness to viewpoint variations at the expense of
requiring an iterative method for jointly optimizing pose and shape parameters
at run-time.

5.2 Unsupervised learning for TSDF compression

In this section we will address the issue of TSDF compression by an alternative
strategy. Here we investigate encoding (and subsequently decoding) the TSDF in
a low-dimensional feature space by projection onto a learned set of basis (eigen-)
vectors derived via principal component analysis [117] (PCA) of a large data
set of sample reconstructions. We shall also see that this compression method
preserves important structures in the data while filtering out noise, allowing for
more stable camera-tracking against the model, using the tracking algorithm
from Chapter 3. We will see that this method compares favorably to nonlinear
methods based on auto-encoders (AE) in terms of compression, but slightly less
so in terms of tracking performance.

The proposed compression strategies can be applied to scenarios in which
robotic agents with limited on-board memory and computational resources
need to map large spaces. The actively reconstructed TSDF need only be a
small fraction of the size of the entire environment and be allowed to move, as
described in the related work section on “Moving Volumes”. The regions that
are no longer observed can be efficiently compressed into a low-dimensional
feature space and re-observed regions can be decompressed back into the original
TSDF representation.

Although the compression is lossy, most of the content is lost in the higher-
frequency domain which we show to even have positive side effects in terms
of noise removal. When a robot re-observes previously explored regions of a
compressed map, the low-dimensional feature representation may serve as a
descriptor, providing an opportunity for the robot to, still in the descriptor-space,
make the decision to selectively decompress regions of the map that may be of
particular interest. A proof of concept for this scenario and tracking performance
evaluations on lossily reconstructed maps are presented in Section 5.2.4.

5.2.1 Principal Component Analysis (PCA)

PCA [117] is a method for obtaining a linear transformation into a new orthog-
onal coordinate system. In this system, the first dimension is associated with the

Lit is a bit misleading to call them patches in 3D, as they are essentially voxel blocks
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direction, in a data set, that exhibits the largest variance. The second dimension
is aligned with a direction, perpendicular to the first, along which the second
most variance is exhibited and so on. We achieve this by first subtracting the
data set mean qy from each sample in the data matrix (centering) and then
applying a singular value decomposition (SVD).

Let each sample reconstruction in the data-set, which we will elaborate upon
further in Section 5.2.3, be a block of 16 x 16 x 16 voxels (unrolled into a
vector of 4096 elements). From an entire set of such samples, SVD produces a
principal component matrix of 4096 x 4096 entries. Multiplying a (centered)
vector from the input space, i.e., a voxel block unrolled into a vector (of 4096
elements) with this matrix results in a mapping from input space into a new
space of orthogonal basis vectors, one for each singular value. The magnitude
of these singular values relates to the amount of variance observed along their
associated basis vector in the data set and can be sorted in descending order, the
smallest of which are typically close to zero. This suggests that some columns
from the principal component matrix can be removed, as they are related to the
lower-variance components.

Now, multiplying a (centered) vector from the input space, with a reduced set
of principal components then projects the voxel data onto a lower-dimensional
space. Inversely, multiplying a lower-dimensional vector from the feature space
with the transpose of the principal component matrix, maps back into the input
space. The resulting voxel block is then a low-rank approximation of the initial
data.

Writing the singular value decomposition of our centered data-matrix Y as

(U, X, V] = svd(Yp). (5.1)

The matrix A = UX contain the principal components of the data. For any given
sample, p € R*°¢ in input space, we can generate a descriptor d:

dp =AT(p—a). (5.2)
Mapping back to the input space is done by computing,
P =ap+ Ad,. (5.3)

By removing columns from A, we can thus use PCA to design low-dimensional
descriptors for the high-dimensional voxel chunks, while making use of statistics
related to the training data set to pick a good approximation.

5.2.2 Artificial Neural Network

Artificial neural networks (ANNs) are often described using biological analogies,
as a nonlinear computational architecture with several layers that connect
multiple inputs to outputs as the weighted sum of their contributions, plus some
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bias. For a fully connected neural network, this is essentially a vector-matrix
product followed by addition. Described is an affine function that could be
replaced by a single layer of multiplication without any loss. However, nonlinear
properties are introduced by applying an element-wise activation function on
the vector resulting from the computation at each layer. A descriptor d,, can
thus be computed from the input vector p by chaining the multiplications with
layers Ly through Ly interleaved with element-wise activation functions f,

dp =f(Lx - f(Lf(Lyp + by) + b2) - - - + by). (5.4)

Finding an appropriate set of weights for the layers Ly, and biases by is done
by comparing the output of the network with some reference and minimizing
an objective related to this error using numerical optimization techniques. This
optimization process is appropriately called “training” the network.

Training an ANN as an auto-encoder can be done in a straightforward
manner by setting its desired output to be equal to its input and employing
e.g., back-propagation [118] to minimize the difference over a large quantity
of representative data from the target domain. For some form of encoding to
occur, it is required that somewhere in between the input layer and output layer,
there exists an intermediary hidden layer whose dimensionality is smaller than
those of the input and output (which are of the same size). We refer to this
intermediate “bottleneck™ layer as a code or feature layer. The portion of the
ANN up until the feature layer can then be treated as an encoder and the portion
after is treated as a decoder. For practical reasons (particularly when layer-wise
unsupervised pre-training is involved [119]), it makes sense to keep the encoder
and decoder symmetric.

5.2.3 Methodology
Training Data

The data set used for training consists of sub-volumes sampled from 3D recon-
structions of real-world industrial and office environments c.f. Figure 5.5. These
reconstructions are obtained by fusing sequences of depth images from an Asus
Xtion Pro camera into a TSDF as described in Chapter 2 with truncation limits
set to dmin = —0.04 and dwqx = 0.1. Camera pose estimates were produced
by the algorithm described in Chapter 3 (though any method with low drift
would do just as well). The real-world data are augmented by synthetic samples
of TSDFs, procedurally generated using libsdf %, an open-source C++ library
that implements simple implicit geometric primitives (as described in [24, 120]).
Some examples from our synthetic data set can be seen in Figure 5.6
Sub-volumes were sampled from the real-world reconstructions by taking
16 x 16 x 16 samples at every eight voxels along each spatial dimension and

thtps ://github.com/dcanelhas/libsdf
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permuting the indexing order along each axis for every sample to generate
five additional reflections at each location. Distance values were then mapped
from the interval [dnin, dmax] to [0,1] and saved. Furthermore, to avoid a
disproportionate amount of samples of empty space, sub-volumes for which the
mean sum of normalized (€ [0, 1]) distances is below 0.95 were discarded.

The procedurally generated shapes were sampled in the same manner as the
real-world data. It was generated by randomly picking a sequence of randomly
parametrized and oriented shapes from several shape categories representing
fragments of: flat surfaces, concave edges, convex edges, concave corners, con-
vex corners, rounded surfaces, and rounded edges. For non-oriented surfaces,
convexity and concavity does not matter, since one is representable by a rotation
of the other, but need to be represented as separate cases here, since the sign is
inverted in the TSDE. The distances are truncated and converted to the same in-
tervals as with the real data. The use of synthetic data allows generating training
examples in a vast number of poses, with a greater degree of geometric variation
than would be feasible to collect manually through scene reconstructions alone.

The sub-volumes, when unrolled, define an input of a dimensionality equal
ton = 4096 (i.e., 16%), and the combined number of samples m = 200, 000.
Our data set is then X € {R™*™0 < x5 < 1}

Figure 5.5: Example from the real-world data, showing the extracted zero level
set as a polygonal surface mesh. The picture depicts a partial reconstruction of a
small office environment. A sliding volume sampling strategy, with multiple re-
orderings of the voxel indexing was used to extract a large number of real-world
sample reconstructions for the training data.
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Figure 5.6: Examples from the synthetic data set showing a variety of shapes
represented by truncated distance fields, sampled onto a small volume containing
4096 voxels.

Evaluation Methodology

Having defined methods for obtaining features, either using PCA or ANN, what
is a good balance between compression ratio and map quality in the context
of robotics? We explore this question by means of two different fitness quality
measures: reconstruction fidelity and ego-motion estimation performance. To
aid in our analysis, we use a publicly available RGB-D data set [59] with ground
truth pose estimates provided by an independent external camera-tracking
system. Using the provided ground truth poses, we generate a map, by fusing
the depth images into a TSDF representation. This produces a ground truth map.
We chose teddy, room, desk, desk2, 360 and plant from the freiburg-1 collection
for evaluation as these are representative of real-world challenges that arise in
simultaneous localization and mapping (SLAM) and visual odometry, including
motion blur, sensor noise and occasional lack of geometric structure needed for
tracking. We do not use the RGB components of the data for any purpose in this
work. We perform two types of experiments, designed to test the reconstruction
fidelity and the reliability of tracking algorithms operating on the reconstructed
volume.

As a measure for reconstruction error, we compute the mean squared errors
of the decoded distance fields relative to the input. This metric is relevant to
path planning, manipulation and object detection tasks since it indirectly relates
to the fidelity of surface locations. For each data set, using each encoder/decoder,
we compute a lossy version of the original data and report the average and
standard deviation across all data sets.

Ego-motion estimation performance is measured by the absolute trajectory
error (ATE) [59]. The absolute trajectory error is the integrated distance between
all pose estimates relative to the ground truth trajectory. The evaluations are
performed by loading a complete TSDF map into memory and setting the initial
pose according to ground truth. Then, as depth images are loaded from the
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RGB-D data set, we estimate the camera transformation that minimizes the point
to model distance for each new frame. The evaluation was performed on all the
data sets, processed through each compression and subsequent decompression
method. As baselines, we also included the original map, and the map processed
with a Gaussian blur kernel of size 9 x 9 x 9 voxels and a o parameter of 4/3
voxels.

Building on the experimental results, we are able to demonstrate two applica-
tions: selective map decompression based on descriptor matching and large-scale
mapping in a dense TSDF space, by fast on-the-fly compression and decompres-
sion.

5.2.4 Experimental Results

The PCA basis was produced, using the dimensionality reduction tools from the
scikit-learn [121] library. Autoencoders were trained using pylearn2 [122] using
batch gradient descent with the change in reconstruction error on a validation
data set as a stopping criterion. The data set was split into 400 batches containing
500 samples each, of which 300 batches were used for training, 50 for testing,
and 50 for validation. The networks use sigmoid activation units and contain,
in each subsequent layer, 4096,512,d,512,4096 nodes respectively, with d
representing the number of dimensions of the descriptor. The layers up until d
are used for encoding, and the layers after d are used for decoding.

The runtime implementation for the encoder/decoder architectures was done
using the cuBLAS [123] and Thrust [124] libraries, enabling matrix-vector and
array computation on the GPU.

Reconstruction Error

We report the average reconstruction error over all non-empty blocks in all data
sets and the standard deviation among data sets in Table 5.1. The reconstruction
errors obtained strongly suggest that increasing the size of the codes for individ-
ual encoders yields better performance, though with diminishing returns. Several
attempts were made, to out-perform the PCA approach, using Artificial Neural
Networks (ANN) trained as auto-encoders, but this was generally unsuccessful.
PCA-based encoders, using 32, 64 and 128 components, produce better results
than ANN encoders in all of our experiments
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Reconstruction Reconstruction Mean ATE ~ Median
Method Error (MSE) +0¢  (m)+o ATE (m)
Original data - 0.63 £0.56 0.72
PCA 32 42.8 + 6.39 0.23 +£0.34 0.049
PCA 64 33.81 + 3.88 0.36 +0.47 0.047
PCA 128 26.88 +2.57 0.56 +£0.68 0.12
NN 32 59.66 £ 7.17 0.16 +£0.29 0.057
NN 64 49.18 - 4.72 0.12 £ 0.17 0.049
NN 128 45.66 +4.25 0.13 +£0.20 0.046

Gaussian Blur 9 x 9 x 9 - 0.10 +0.17 0.038

Table 5.1: Average reconstruction and ego-motion estimation results across all
data sets. PCA - Principal component analysis compression, NN - Artificial neu-
ral network compression, MSE - Mean squared error, ATE - Absolute trajectory
error. The suffixes: 32, 64 and 128 correspond to compression ratios of 128:1,
64:1 and 32:1, respectively. Empty cells are discarded, and do not contribute to
the reconstruction error.

The best overall reconstruction performance is given by the PCA encoder/de-
coder, using 128 components. We illustrate this with an image from the teddy
data set in Figure 5.7. Note that the decoded data set is smoother, so, in a sense,
the measured discrepancy is partly related to a qualitative improvement.

Figure 5.7: Example reconstruction using a PCA basis with 128 components.
The reconstructed version (b) includes some blocking artifacts, visible as tiles on
the floor of the room, but contains visibly less noise than the original map (a).
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Ego-Motion Estimation

The ego-motion estimation, performed by the SDF Tracker algorithm, described
in Chapter 3 uses the TSDF as a cost function to which subsequent 3D points
are aligned. This requires that the gradient of the TSDF be of correct magnitude
and point in the right direction. To get a good alignment, the minimum absolute
distance should coincide with the actual location of the surface.

In spite of being given challenging camera trajectories, performance using
the decoded maps is on average better than with the unaltered map. However,
tracking may fail for various reasons, e.g., when there is little overlap between
successive frames, when the model or depth image contains noise or when there
is not enough geometric variation to properly constrain the pose estimation.
In some of these cases, the maps that offer simplified approximations to the
original distance field fare better. The robustness in tracking is most likely owed
to the denoising effect that the encoding has, as evidenced by the performance on
the Gaussian blurred map. Of the encoded maps, we see that the auto-encoder
compression results in better pose estimation. In Figure 5.8, we see a slice
through a volume color-coded by distance.

(a) (b)

(c) (d)
Figure 5.8: A slice through the distance field reconstructed through different
methods, using 64-element encodings. Shown here are (a) the original map;

(b) the Gaussian filtered map; (c) PCA reconstruction; and (d) auto-encoder
reconstruction.
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Here, we note that, even though the PCA-based map is more similar to the
original than the auto-encoder reconstruction, on the left side of the image, it
is evident that the field is not monotonically increasing away from the surface.
Such artifacts cause the field gradient to point in the wrong direction, possibly
contributing to failure in finding the correct alignment. The large difference
between the median and mean values for the pose estimation errors is indicative
of mostly accurate pose estimations, with occasional gross misalignments.

Selective Feature-Based Map Expansion

Although the descriptors we obtain are clearly not invariant to affine transforma-
tions (if they were, the decompression could not reproduce the field in its correct
location/orientation), we can still create descriptor-based models for geometries
of particular interest by sampling their TSDFs over the range of transformations
to which we want the model to be invariant. If information about the orientation
of the map is known a priori, e.g., some dominant structures are axis-aligned
with the voxel lattice, or dominant structures are orthogonal to each other,
the models can be made even smaller. In the example illustrated in Figure 5.9,
a descriptor-based model for floors was first created by encoding the TSDFs
of horizontal planes at 15 different offsets, generating one 64-element vector
each. Each descriptor in the compressed map can then be compared to this
small model by the squared norm of their differences and only those beneath a
threshold of similarity need to be considered for expansion. Here, an advantage
of the PCA-based encoding becomes evident: since PCA generates its linear
subspace in an ordered manner, feature vectors of different dimensionality can
be tested for similarity up to the number of elements of the smallest, i.e., a
32-dimensional feature descriptor can be matched against the first half of a
64-dimensional feature descriptor. This property is useful in handling multiple
levels of compression, for different applications, whilst maintaining a common
way to describe them.
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(b)

Figure 5.9: Selective reconstruction of floor surfaces. Given a compressed map,
the minimum distance for each compressed block, to a set of descriptors that
relate to horizontal planes can be computed (e.g., floors). Only the blocks that
are similar enough to this set of descriptors need to be considered for actual
decompression. In (a), the uncompressed map is shown, with each region colored
according to its descriptor’s distance to the set of descriptors that relate to floors.
In (b), we see the selectively expanded floor cells.

Large-Scale Mapping

By extending the SDF Tracker algorithm with a moving active volume centered
around the camera translation vector, for every 16-voxel increment, we can
encode the voxel blocks exiting the active TSDF on the lagging end, (if not
empty), and decode the voxel blocks entering the active TSDF on the front end
(if they contain a previously stored descriptor). This allows mapping much larger
areas than without compression, since each voxel block can be reduced from its
4096 voxels to the chosen size of a descriptor or a token, if the block is empty.
Since the actual descriptor computation happens on the GPU, the performance
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Figure 5.10: Large scale mapping, enabled by real-time encoding and decoding
of data as the reconstruction volume translates to keep the camera within its
bounds. The active reconstruction volume is shown in black outlines. Each
block is color-coded according to which descriptors it mostly resembles. In this
example we have compared the descriptors against those associated with walls
(in two directions) and the floor, as described in the previous section.

impact on the tracking and mapping part of the algorithm is minimal. An
example of this is shown in Figure 5.10.

The tracking and mapping algorithm itself is a real-time capable system with
performance that scales with the size of the volume and resolution of the depth
images given as input. While it only handles volumes of approximately 1603
voxels at QVGA (quarter of VGA resolution: 320x240 pixels) resolution (320
x 240 pixels) and lower at 30 Hz, it does so solely on an Intel i7-4770K 3.50
GHz CPU. This leaves the GPU free to perform on-the-fly compression and
decompression.

Timing the execution of copying data to the GPU, encoding, decoding and
copying it back to the main CPU memory results in an average between 405 and
520 us per block of 16° voxels on a Nvidia GTX Titan GPU. For an active TSDF
volume of 160 x 160 x 160 voxels, shifting one voxel-block sideways would
result in 100 blocks needing to be encoded, 100 blocks decoded, and memory in
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both directions’ transfers, in the worst case. Our round-trip execution timing
puts this operation at approximately 41 to 52 milliseconds.

The span in timings depend on the encoding method used, with PCA-based
encoding representing the lower end and ANN the upper, for descriptors of 128
elements. A reference implementation is made available 3.

5.3 Discussion

In this section, we presented dimensionality reduction of TSDF volumes. We
proposed PCA and ANN encoding strategies and evaluated their performance
with respect to a camera tracking application and to reconstruction error. We
demonstrated that we can compress volumetric data using PCA and neural
networks to small sizes (between 128:1 and 32:1) and still use them in camera
tracking applications with good results. We showed that PCA produces superior
reconstruction results and although auto-encoders have inherently greater ex-
pressive power, training them is not straightforward, often resulting in lower
quality reconstructions. Neural networks offered slightly better performance in
ego-motion estimation applications, however. The discrepancy between recon-
struction error and tracking performance is likely to be the result of smoothing,
supported by good performance observed on maps that were simply subjected to
a low-pass filter. Finally, we have shown that this class of methods can be success-
fully applied to both compress and imbue the data with some low-level semantic
meaning and suggested an application in which both of these characteristics are
simultaneously desirable.

From the results presented in this section, it is clear that the proposed feature
encodings are not invariant to rigid-body transformations. Therefore, we should
not expect shapes of similar objects with different orientations to cluster in the
lower-dimensional space, as this was not part of the objective function used
to generate the mapping. An efficient method for obtaining a low-dimensional
representation as well as a reliable transformation into some canonical frame
of reference would pave the way for many interesting applications in semantic
mapping and scene understanding. Finding features in a canonical frame of
reference, along with an estimate for the pose has been attempted with deep
neural networks [125]. While the quality obtainable using deep neural network
architectures is impressive, the number of computational layers in conjunction
with the amount of voxel blocks to be processed in parallel likely results in a
solution that is beyond the computational budget of a real-time system today.
Furthermore, it seems unfortunate that pose-estimation ultimately has to occur
in the voxel domain. Given that the transformation to the low dimensional
space is a simple affine function (at least for the PCA-based encoding) it seems
intuitive that one should be able to formulate and solve the pose-estimation

Shttps://github.com/dcanelhas/sdf_tracker-LS
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problem in the reduced space with a lower memory requirement in all stages of
computation. Investigating this possibility remains an interesting open problem.






Chapter 6
Minimalistic Representations

from TSDF

So far we have defined the TSDF as a voxel-based representation of surfaces in
3D space and described how to estimate it based on depth image inputs with
known poses (Chapter 2 ). In Chapter 3 we derived a method for tracking the
pose of a depth camera against the model to relax the assumption of known
poses. We then evaluated the use of feature detectors and descriptors in TSDFs
(Chapter 4 ). As a side-effect of the effort on 3D descriptors, we also formulated
an efficient single-pass compression algorithm. The approach developed can be
used in real-time to mitigate the memory complexity of volumetric representa-
tions, whilst simultaneously providing weak semantic labeling and noise-filtering
to the surface representation (Chapter 5 ). Although the proposed method of
compression is one way of addressing the memory complexity problem, it only
does so in a limited sense. The compression hides some of the redundancy by
recognizing empty space and abbreviating it with a token, or by projecting
chunks of data down onto a lower-dimensional space. As an analogy on the
practicality of this approach, one might imagine a volume of water that was
previously stored in teacups as now being kept in buckets. Granted, there are
fewer containers to keep track of, but what would a solution look like, if we
could think a bit outside the box (or bucket, for that matter)?

The need for representing large maps is self-evident in the case for mobile
robotics if mobility is to be a design goal in any non-trivial sense of the word. The
map representation thus needs to fit into a small memory footprint. However, it
needs to strike a balance between compactness and usefulness in tasks relevant
to mobile robot applications, such as place recognition. One way to achieve the
stated goal is to continue along the path of local feature detection and description.
However, place recognition by matching local geometric feature descriptors is
expected to be a difficult task, since local shapes are sparse and highly repetitive.
This statement is true in many application domains. For instance, forests tend to
be filled with many tall cylinders and offices tend to contain mostly flat surfaces
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at right-angles from each other with the occasional coffee-filled cylinders. In
either case, knowing which shapes were seen is not helpful. In such cases where
the geometry within an environment tends to be mostly repetitive, e.g. if there are
several instances of the same objects, the uniqueness of one location compared to
another may be better determined by the relative arrangement of said geometry.

Motivated by this intuition and in possession of the algorithmic tools pre-
sented so far, we will devise a novel graph representation that is both light-weight
and captures the spatial interrelations between geometric features in a scene.
In this graph, the nodes will simply be the output of a 3D feature detector
and edges will be said to exist between pairs of nodes that can be joined by
a line drawn along a surface, represented by the TSDE. We will refer to this
representation as a sparse, stable scene-graph (SSSG) [126]. As a visual aid, the
relationship between TSDF and SSSG is illustrated in Fig. 6.1.

Figure 6.1: Lounge dataset reconstructed as a TSDF, visualized as its triangulated
zero-set, and its associated SSSG

The proposed graph structure can be seen as related to a broader class
of representations used for model-based robot vision known as relational
graphs [127, 128]. While relational graphs typically incorporate more semantic
meaning in the nodes, we will remain on a lower level of abstraction from the
data, focusing on geometrically linked points of interest. Based on the methods
we have developed so far, let us now see how such a graph can be constructed
efficiently.
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6.1 SSSG - Construction

(a) A view of the TSDF surface obtained by (b) Computing the feature response function

reconstructing the “Lounge” data-set and ray- of the Harris corner detector for the TSDF pro-

marching the reconstruction with a diffuse duces spikes at the locations where geometry

shading model is curved in several directions, shown here in
pink

Figure 6.2: TSDF and feature response function, shown side by side

To begin this section, let us make the assumption that we have reconstructed
some scene content within the bounds of a TSDF volume. As an example, we
can take a scene from Zhou’s 3D scene data-set [99], shown in Fig. 6.2(a)
as a ray-marched surface interface, with simple Phong lighting. Applying the
volumetric Harris corner detector and coloring the voxels according to its feature
response function, we get highlights at corners and along creases and edges in
the geometry. This is illustrated in Fig. 6.2(b).

Following the Harris corner detector algorithm, after performing non-
maxima suppression and thresholding, we are left with a list of detected feature
points. These represent all the local maxima of the feature response function
that exceed a threshold value. It is not guaranteed that these features will coin-
cide exactly with the surface. Feature detectors may in general tend to peak at
off-surface locations and if discrete in nature, will output the location of a voxel
rather than a real-valued coordinate. This is illustrated by the 2D example in
Fig 6.3. There are at least two simple ways to work around the issue of features
being off-surface, for general feature detectors:

1. In Chapter 3 we showed how one can use the gradient and magnitude of
the TSDF to find the nearest surface point for a location within the non-
truncated region of the field. Often, detectors require computing image
gradients, so it may already be available at no extra cost.

2. Due to the surface being represented as a distance field whose magnitude
increases further from it, we can modify any response function to decrease
its value based on the absolute TSDF value.



122 CHAPTER 6. MINIMALISTIC REPRESENTATIONS FROM TSDF

(a) TSDF (b) TSDF gradient orientations

(c) Harris response function (d) Feature points and surface

Figure 6.3: 2D example of Harris feature detection in a TSDF showing that the
maximal response does not necessarily coincide with a surface location.

In the specific case of Harris corners, we observe that features are detected
at close proximity to the surface, but that the response is much stronger at
the negative truncation limit due to the strong gradient caused by the sudden
transition from D, in to Dinax. This merely serves as yet another reminder for
why gradients based on truncated values should be avoided and we note that
when following this advice we obtain features located near the surface boundary
instead. Regarding the discrete nature of the feature detector, we have found
that in practice, integer voxel coordinates tend to be close enough for reliably
constructing an SSSG.

To construct the graph, we could iterate over all the node-pairs and test if the
lines that join them run along a surface and if so, add them to a list of edges. A
different way to do this that is better suited for parallel processing is to initially
assume that the graph is fully connected, prune the edges whose existence are
not supported by the data and write out the remaining connections as a final step.
The graph can be expressed as a matrix that relates a particular edge (represented
as an element in the matrix) to its two endpoint nodes, represented as the row
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and column index. Furthermore, whether two vertices are connected or not,
does not change based on the order in which they are picked, meaning that the
graph is undirected. An undirected graph can be represented by a triangular
matrix (omitting the main diagonal, since this would imply trivially connecting
each node to itself). To give an example, consider the following fully connected
undirected graph:

(6.1)
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We note that the triangular structure of the graph is one that is not directly
divisible into even-sized workloads. If we were to process each row in parallel,
the first thread would be assigned a single edge to verify, while the last would be
processing as many edges as there are nodes in the graph (i.e. columns in the
matrix). To get around this problem, let us consider what happens if we number
the edges sequentially:

s (6.2)
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We see that the first column contains the following series: 0, 1, 3, 6, 10 etc.
These are known as triangular numbers [129] and have a well-defined pattern.
Making use of the fact that every row will be indexed by a triangular number
allows us to take any of the entries in the matrix as an index for an edge i., and
determine its corresponding row and column indices directly !. This is done by
taking the triangular root of the edge index as follows:

row = Livglezl_lj +1 (6.3)
. row(‘rozw -1 (6.4)
col =1, —s (6.5)

without actually having to generate or store the matrix in memory. We may now
treat the entire matrix as a single linear index of edges and can split the work

lindices starting at zero
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evenly with ease. We still require the total number of edges in the fully connected
graph. For n¢ nodes, the total number of edges is given by the expression:
ne = nelne=l) (essentially the area of a triangle of base and height equal to ny¢,
and n¢ — 1, respectively)

The next step is to prune the graph such that it only contains the edges that
are embedded in the surface. To this end we launch n. separate threads on a
GPU. Each thread is given a unique thread index by the parallel programming
API. We take this index as being related to a matrix entry, i.e. an edge index ic.
It is then straightforward to retrieve the feature points referenced by the row
and column index using equations (6.3) and (6.5).

Testing whether two nodes are connected by a surface in the TSDF is, due
to the discrete representation of the signed distances, done by sampling along
the line that connects them. By linearly interpolating between endpoint feature
locations we can query the TSDF at a number of points along each edge and
reject the edge based on some statistic about the measurements made along
it. For an arbitrary edge rejection threshold we can compare it to any of the
following statistics, yielding different results:

e Maximum absolute value — this forces the entire edge to lie within a pair
of TSDF level-sets around zero. It is the most restrictive option in terms of
what will be accepted as a valid edge, and connections tend to break for
both noisy surfaces and small occluded regions that may not have been
reconstructed,

e Mean absolute value — the mean is more robust to disturbances than the
maximum. Edges can with greater ease be retained in the presence of noise
and holes in the reconstructed surface. In situations where noise is not
an issue and the main problem is connecting edges across holes in the
surface, due to the mean’s sensitivity to outliers, the rejection threshold
may need to be set higher. However, a higher threshold may sometimes
cause straight edges to also be connected through curved surfaces.

e Percentiles — An adequate percentile allows us to set a low threshold, but
still bridge gaps in the surface that occur between the endpoints, ensuring
that edges are connected via flat surfaces. Higher percentiles such as e.g.
the median, may cause up to half of the edge to extend out into free
space from an otherwise continuous, flat surface, to produce a link with a
seemingly disconnected feature point. In other words, the edge-pruning
may spend all of its gap-bridging potential on a single section of the edge.

The number of points along the edge to test can be made dependent on the
length of the edge or constant. A constant number of steps makes the spacing
denser for short edges. Regardless, it may be wise to keep the number of steps
constant, to avoid variations in the amount of work per thread. In parallel
execution models such as in GPU computing, the remaining threads within a
thread group will typically wait idly for the last one to terminate.
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We may also choose to reject edges whose endpoints are either too far apart
(to promote local clusters of object-sized subgraphs), or too close (to avoid
representing small-scale clutter). The minimum distance between feature points
will already be determined by the non-maxima suppression step of the feature
detection, but this offers an additional way of influencing the minimum edge-
length. We store pass or fail decision in a binary vector of the same size as the
number of edges and a standard stream compaction [124] operation is then used
to extract the pruned graph.

Additionally, we may wish to remove all the disconnected feature points
from the graph. Computing a histogram 2 of the edge list, using as many bins
as there are features, produces a count for how many times each feature is
referenced in the graph. Another stream compaction operation then removes the
features whose reference count is lower than one (or some other threshold, if
one has a reason to prefer more densely connected graphs). In summary, please
refer to Algorithm 3

2 A task likewise suitable for the GPU, see https://github.com/thrust/thrust/blob/
master/examples/histogram.cu for an example implementation in cuda



126 CHAPTER 6. MINIMALISTIC REPRESENTATIONS FROM TSDF

Algorithm 3 Parallel SSSG construction and deletion of unreferenced nodes in
the graph. The function isConnectedTo() implements sampling of the TSDF
at an arbitrary number of steps between the points p and q using, though
not limited to, any of the edge rejection criteria suggested in the text. The
function remaplIndices() requires performing an exclusive scan operation on the
histogram to give a cumulative count of the occurrence of zeros. This count
indicates precisely what the references in the edge list will have to be remapped
to, once the unreferenced nodes in the graph have been removed. The required
operations, as well as the expressions copylf() and histogram() are subroutines
for which parallel implementations have been made widely available [124].
Input: feature_list, TSDF
Output: edge_list, reduced_feature_list

1: {Number of features}

ns < [feature_list]|

2: {Number of edges}

Ne ng(ne—1)
: resize edge_list to n,
: edge_mask < zeros(n)

: for i, € 0: 1, in parallel do
row ¢« [Vl |4

row(row—1)

S 5

col+ 1. —s

p + feature_list[row]

10:  q + feature_list[col]

11:  edge_list[i.] + {row,col}

12:  if isConnectedTo(p, g, TSDF) then

R O

13: edge_maskl[i.] + true
14:  else
15: edge_maskl[i.] < false

16: edge_list < copylf(edge_list,edge_mask)
17: {histogram of n¢ bins}
h. < histogram(edge_list, n¢)
18: {deletes unreferenced nodes from the graph}
reduced_feature_list < copylf(feature_list,h. > 0)
19: edge_list <+ remapIndices(edge_list, h.)
20: return

6.2 Geometric Place Recognition Using SSSG

With both the concepts and implementation details of SSSG construction laid
bare, we will now turn our focus to an application within the field of robotics:
Place recognition. Specifically, we are interested in knowing if matching global
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geometric structure is a sufficient condition for achieving a robust place recogni-
tion system.

The place-recognition system that we will discuss here may serve as a modular
extension to the large-scale mapping system that we discussed in Ch. 5. The
ingredients: TSDF integration of depth data, pose estimation, and shifting
working volume all remain the same. However, instead of > compressing the
voxels that exit the volume using a projection onto a lower-dimensional space,
we build an SSSG of the current working volume and save it together with its
associated pose estimate. Since the SSSG encodes the main geometric structures
of objects and their spatial organization within the scene, we propose that
robustly comparing the graphs is enough to give a robot a useful answer to the
question “Have I been here before?”

The place-recognition back-end needs to compare the current SSSG to all
the previous graphs. The comparisons themselves are performed using my GPU
implementation 4 of the RANSAC [130] algorithm.

6.2.1 Related work - 3D-NDT Histogram Matching

To put the results in the following sections into context, we will also discuss a re-
lated work, based on the three-dimensional normal distributions transform [131]
(3D-NDT). The 3D-NDT, like the TSDF, is a voxel-based map representation.
However, unlike in the TSDF, voxels in a 3D-NDT representation contain a
3D Gaussian distribution, fitted to the point samples collected inside the voxel.
Each 3D-NDT voxel thus stores a vector representing the mean u € R3 and
a covariance matrix £ € R3*3, £ = T whose eigenvectors and associated
eigenvalues indicate the directions and magnitude, respectively, of the variance
exhibited by the point samples for each given voxel. A place recognition system
for scenes represented as 3D-NDT maps has been proposed [132] by computing
3D-NDT histograms [133].

A 3D-NDT histogram is a global descriptor that summarizes information
about an entire scene, and under this interpretation it is loosely related to the
concept of SSSGs. The histogram is computed by first classifying all 3D-NDT
voxels in a scene as representing either spherical, linear or flat distributions,
based on the relative magnitudes of the eigenvalues. The frequency of occurrence
for the different classes are then binned into a histogram. The spherical and
linear classes are given one bin each while the flat distributions are binned
according to the direction of the underlying surface normal vector (estimated
as the eigenvector associated with the smallest eigenvalue). To produce a linear
index for the histogram bins that represents a discretization of all possible
orientations, a spherical Fibonacci [134, 135] parametrization is used. Separate
histograms are computed for voxels at three different ranges (relative to the

3or in addition to, if computational resources so permit

4https ://github.com/dcanelhas/cuRANSAC
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sensor origin) and concatenated to form the final descriptor. The descriptors are
matched by first aligning the orientation components and then computing the
Euclidean distance between the feature vectors.

6.2.2 Random Sample Consensus Matching of SSSG

Matching two graphs based on their geometry is not a problem we can generally
tackle with algorithms such as ICP, since data-association by the closest point
may result in a poor final alignment and high residual even for similar scenes,
due to potentially large relative pose differences between the graphs. General
graph-matching algorithms are designed to compute the similarity of graphs
based on topological equivalence. The location of nodes and length of edges is
not necessarily of importance in such cases but may be relevant in a different
scenario, e.g. if we were also accounting for deformations.

In order to robustly identify possible matches between different SSSGs, we
base our approach on the RANSAC algorithm. The RANSAC algorithm is a
general method for parameter estimation that works well in cases where gener-
ating a hypothesis from a subset of the data and verifying it can be done quickly.
It has numerous applications in robot/computer vision but also to more general
curve-fitting. When applied to searching for rigid-body 3D transformations that
align two models (source and target) it works by executing the following steps:

1. Randomly select a minimal set of samples from the source and target
models. In 3D the required number of samples is 3. This set defines a
triangular face, provided that the points are distinct. The point sets need
not consist of corresponding points in the sense that they are related to the
same physical locations in the source and target models in order to produce
a good alignment. If the transformation that relates the two triangular
faces also aligns the models, we obtain useful results, regardless. The
requirement that one must randomly succeed in picking correspondences
is a common misconception for how the algorithm works, and offers a
slightly pessimistic outlook on the probability of finding a match. An
illustration of a few selected matchings of two graphs is shown in Fig. 6.4.

2. Compute the optimal transformation that brings these minimal source and
target sets into alignment. Since both sets of points are coplanar, as is the
case when there are only three of them, we can use the simplified version
of Horn’s formula [136].

3. Apply the transformation to the entire source model;
4. Score the alignment between source and target models.

The last step requires some extra care, since it largely determines the quality
of the outcome. Here, we must choose which properties of the graph to compare.
For example, we can score a matching by the distances between the closest
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Figure 6.4: Transformations between identical source (green) and target (red)
SSSGs produced by RANSAC. The brighter triangles illustrate the minimal
subset of vertices selected from each to compute the current transformation. We
note that the subsets are sometimes near-correspondences but often not at all.
The last image is the result when three exact correspondences were selected by
chance.

vertices in the source graph relative to the target graph. However this does not
take edges into account, which tend to be more numerous and informative than
only vertices. Another option is to take the midpoints along edges and compute
the relative distances between these. One may wish to use both of these metrics
in combination.
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Additional properties may also be used, such as differences in how many
edges are connected to each vertex, color, and edge and/or vertex labels. These
different dimensions are not trivially included into a single fitness score since
their quantities do not express similar physical concepts and are thus not directly
comparable. We will assume that scores are computed based on the distance
between edge midpoints, for the remainder of this chapter.

Given a pair of candidate matching edge midpoints, we need to make several
additional choices:

e what is the largest individual sample error (i.e., Euclidean distance between
candidate matches) we will admit, before discarding it as an outlier?

e what is the minimum ratio of inliers we require to accept a solution as
plausible?

e what is the minimum mean error we require of the remaining inliers to
accept a solution?

If the source and target models are the same, these questions are not really too
interesting since none of the points can be considered outliers and we would like
every point to contribute to the error, since the lowest will be associated with the
correct alignment. However, when we do have outliers and there is only partial
overlap between source and target models, we may well find transformations
that simply maximize overlap get better scores than those that actually match
the parts that the models have in common. Since a place recognition should be
able to recognize locations based on partial observations of previously visited
spaces, we have to treat the non-overlapping sections of the graph as outliers.

Choices for the thresholds then become conditioned on other aspects of
the system. The individual sample error is related to the repeatability of the
SSSG at a given location. If we are confident that the same features will be
detected and that the same edges will be created between them, we may set this
threshold fairly low, since we would then expect a correct alignment to place
all the corresponding features in close proximity. If we expect the vertices and
edges to merely cluster in similar locations, but to be arranged in a much less
deterministic manner, either due to very generous edge-linking policies, noisy
sensors or unstable feature detection, we may wish to set the individual sample
error threshold higher.

The inlier ratio should correspond to the amount of expected overlap be-
tween graphs, given the above criterion. If a robot has a sensor with very wide
field of view (or when the TSDF volumes that underpin the graph are initial-
ized with large overlap, and scanned exhaustively with the sensor), we may be
confident in requiring a larger ratio of inliers, since we expect to reconstruct
much of the same geometry when the robot finds itself revisiting previously
explored locations. On the other hand, if one is merely looking for a specific
object-related subgraph within a larger scene-related graph, we may need to be
much more permissive with respect to outliers.
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Finally, we should set some threshold to indicate whether we accept the
result of matching two given graphs as an indication of being in the same place.
Informing this decision is the main contribution of this section.

6.2.3 Methodology

We will evaluate the place recognition system in two ways, firstly as a binary
diagnostic test that returns positive when two graphs are deemed to be of the
same location and negative, otherwise. The second evaluation will assess the
error in estimated transformations between the graphs, relative to ground-truth
(as estimated by a global optimization algorithm [99]) pose estimation.

Place Recognition

To evaluate the place recognition system, we use a subset of the publicly available
Stanford 3D Scene data. This data-set has ground-truth camera poses obtained
by global optimization, taking into account all the data (including color) in
an anachronistic fashion. This data-set is characterized by longer trajectories
than those of the TUM RGB-D data-set, used in Chapter 3. The trajectories
also tend to form one or more loops. The sequences are shown in Table 6.1. A
moving working volume is initialized around the initial pose of the camera and
the depth data is fused into a TSDE. Whenever the translation component of
the camera pose exceeds a threshold, we run a Harris feature detector on the
current live volume and produce an SSSG that links the features through the
reconstructed surfaces. To enable real-time operation, the features are detected
on a point cloud representation of the TSDEF, extracted at a density of one point
per voxel. The SSSG, along with the current camera pose, is sent to the back-end
place recognition system that compares it to all previously extracted graphs. A
positive test indicates that the RANSAC error that resulted from the comparison
of two graphs was below a threshold, otherwise the test is negative.

The parameters used for the place recognition system are summarized in
Table 6.2. One remaining detail that ought to be mentioned is that each trans-
formation hypothesis is tested twice. Specifically, for each edge midpoint in
the source graph, we look for the closest edge midpoint in the target graph,
under the proposed transformation. If the distance between them exceeds the
maximum sample error, it is regarded as an outlier. We then apply the inverse
transformation to the target graph and compare it to the source graph in the
same way. We then take the mean of the two errors as the result. If either of the
comparisons resulted in too many outliers, its error is set to a very large value,
guaranteeing that the mean will be above the limit. This source-to-target and
target-to-source comparison is equivalent to requiring that the intersection of
the graphs be close to their union, avoiding that small features, which may con-
ceivably fit nicely in many different nooks of a much larger graph, are reported
as matching with low error.
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Name Trajectory length
Burghers of Calais 156.7m
A Cactusgarden 62.1m
Copyroom 56.4m
Lounge 43.1m
Stonewall 31.2m

Table 6.1: Selection of sequences from the 3D Scenes data-set, 3D reconstruction
visualized, with camera trajectory shown in red, lengths estimated by integrating
pose differences in the ground-truth trajectories.

Our ground-truth label for considering a pair of graphs as the same is deter-
mined by the overlap of the surfaces, extracted as point-clouds from the TSDF
reconstructions at their respective poses. If the surfaces overlap by more than
50% we consider the condition positive, anything less is considered negative.
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number of iterations 10000
maximum sample error | 0.1m

minimum inlier ratio 40%

Table 6.2: Parameters used for the RANSAC place recognition system

The surface overlap is measured by searching for the nearest neighbors from
source-to-target and target-to-source point-clouds and computing the number
of points, out of the total, that have a match (i.e. a neighbor within 30mm) in
the other point-cloud:

matCheSforward + matCheS'reverse
|p0i-ntssou.rce| + |p0intstarget|

overlap = (6.6)

While surface overlap is a necessary condition for geometric place recognition,
it is likely that some portions of the overlapping surfaces are rather featureless.
In essence this means that in practice, some ground-truth positive conditions
may be undetectable or detectable only with a high degree of uncertainty.

Pose Errors

Since RANSAC gives us not only a binary signal, but also a rigid-body transfor-
mation, we can evaluate the accuracy of these estimates, too. We can measure
errors in the relative pose estimation between graphs, by comparing it to the
ground truth pose differences.

6.2.4 Experimental Results
Place Recognition

The place recognition results for all data-sets can be represented visually, as
done in Fig. 6.5. There we see one column for each scene in the data-set used
for evaluation. The three rows in the figure correspond to (from top to bottom)
computed surface overlap, matching scores from RANSAC on SSSG and, lastly,
matching scores for 3D-NDT histograms. Since the methods examined here
actually return distances, i.e., Euclidean distance between histograms in the
case of 3D-NDT-histograms, and mean distance between candidate matching
inliers for SSSG-RANSAC, the brightness values in the figure are inverted to
be visually comparable to the overlap. On first inspection, it appears that we
can observe some general similarities between the predictions and ground truth
place correspondences for the SSSG-RANSAC method, but that the case is not
as clear for the 3D-NDT histograms.
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burghers cactusgarden copyroom lounge stonewall

Figure 6.5: The top row shows the overlap ratio for each pose relative to
all previous poses (brighter is higher and black indicates zero overlap). The
second row shows the SSSG-RANSAC matching score (brighter indicates a
lower distance between source and target models). Black indicates that none of
the random samples resulted in a transformation that passed the inlier ratio test.
The bottom row shows the respective results using 3D-NDT-histogram matching.
Each column refers to a different scene from the Stanford scene data-set. Since
the criterion that determines whether two places are the same location is based
on overlap, a successful place-recognition system would appear similar to the
top row.

Recalling the definitions of True Positive Rate (TPR) and False Positive Rate
(FPR) as:

TPR — X true positive

(6.7)

¥ condition positive

and

¥ false positive

FPR = (6.8)

¥ condition negative

respectively, lets us plot the receiver operating characteristics (ROC) of the two
classifiers, shown in Fig. 6.6. This, at a minimum, shows a performance that
appears better than random for both classifiers, with SSSG-RANSAC returning
roughly twice as many true positive matches for every false positive, compared to
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3D-NDT-histograms. For both tests we observe that an increase in the threshold
for accepting a pair of scenes as matching causes the true positive rate to rise
at a higher rate than the false positive rate. However for the SSSG-RANSAC
approach there is a point at which the inlier ratio test begins to reject matches
outright, and the curve ends abruptly. Suppose that a classifier has indicated a

1 1 T (] T A

08 - =

/ ——  3D-NDT-hist
555G-RANSAC |

True Positive Rate
(=]
wn

I | ' I 1 i |
1] 01 02 03 04 05 06 o7 08 (1] 1
False Positive Rate

Figure 6.6: True positive rate (TPR) vs. false positive rate (FPR) plotted for
varying thresholds of the classifiers. By lowering the threshold, more matches
are reported. However, this comes at a cost of mislabeling a larger proportion
of pairs (indicated by the increase in FPR). The diagonal line is the 50% ratio
which represents the performance of a classifier that randomly assigns labels,
in proportion to their true frequency e.g. guessing positive half the time, in a
situation where matching and non-matching pairs are equally numerous.

match, how safe would it be to trust it? In applications such as SLAM it is often
worse to include a false positive and distort a map that may otherwise not have
had serious issues than to miss a large number of potential matches. Another
way to phrase the question is to ask what is the precision (or positive predictive
value) of the classifier? This quantity is defined as:

X true positive
¥ prediction positive

precision = (6.9)
In other words, out of all the times that the classifier made a positive prediction,
how many times was it actually right? By looking at the precision curve in
Fig. 6.7 it seems the answer is “often”. Even at its worst, the SSSG-RANSAC
classifier is correct close to 38% of the times when indicating a match. To put
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this figure into perspective, we ought to consider that out of all pairs, only
19.5% of the pairs are actually overlapping sufficiently to be considered the
same location. This sounds good, but compared to the number of poses that
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Figure 6.7: Precision, recall and F-score for the SSSG-RANSAC classifier. The
graph is truncated on the ordinate axis since the curves stabilize at 0.05. Because
the RANSAC algorithm sets a limit on the permitted ratio of outliers when
searching for a solution, no additional matches tend to be reported beyond a
certain match threshold.

actually correspond to the same location, how often is the classifier correctly
identifying them? This is quantified by the recall, or probability of detection,
defined as:

X true positive

recall = (6.10)

% condition positive

Recall starts at a very low ratio and increases at a slower pace than the
precision deteriorates. When the match threshold is at 0.015 the classifier is
only detecting a quarter of the total matches, but the precision has already
decreased by over 30%. At the point where the precision and recall curves cross,
SSSG-RANSAC is finding half the positive matches, but is wrong approximately
half the times it reports a match. Additionally, we can consider a single score,
i.e., the F-score (also known as the F; — score), computed as:

F-score — o Precision recall (6.11)

precision + recall
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The highest F-score occurs at approximately 0.022 and represents a reasonable
trade-off between precision and recall, in the absence of specific preferences in
favor of one or the other.

In Fig. 6.8 we can see the precision, recall and F-score for 3D-NDT-histogram
matching. There we see a precision curve that appears to promise a much higher
precision for low recall than the SSSG-RANSAC method. If we care more about
quality than quantity this method seems to be the best option among the two. For
example, when finding 5% of the matches, it is outputting a correct classification
over 70% of the time, compared to a mere 60% precision of SSSG-RANSAC.
This analysis is somewhat misleading if our interest is chiefly in loop-detection,

e
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Figure 6.8: Precision, recall and F-score for 3D-NDT-histogram matching. We
see the precision stabilize at roughly 20% while the recall increases. Since the
percentage of pairs that are matching in the data-set is 19.5 %, this corresponds
to the fraction of times we should expect to be correct if simply assuming every
pair was a match

however. If we disallow matching between nearby pairs of frames and compute
the precision and recall values for the two classifiers, e.g. considering frames that
are separated by an index of at least 20 (essentially removing the 20 diagonals
closest to the main diagonal from the matrices in Fig. 6.5) we see the precision
at 5% recall drop to 16% and 44% for the 3D-NDT-histograms and SSSG-
RANSAC methods, respectively. Given that the remaining pairs with condition
positive only represent 11.5% of the total we find that the 3D-NDT-histogram
matching is barely outperforming guessing for non-adjacent pairs.
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Pose Errors

The output of SSSG-RANSAC is a hypothesized rigid-body transformation in
addition to the residual associated with it. We can compare these hypotheses to
independently derived ground-truth pose estimates, obtained by jointly optimiz-
ing over all sensor poses in a global fashion, using all the available data in the
RGB and depth images.
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Figure 6.9: Translation and Rotation errors, relative to ground truth poses shown
as different percentiles. There are no errors larger than Sm in translation, since
the reconstructed TSDF volume is Sm on each side. The largest misalignment
thus has to be strictly smaller than this. Angular error is bounded by 7t radians
since any larger angle would bring the geometry back into alignment again.

In Fig. 6.9 we see the median pose errors for the true positive matches
produced by the SSSG-RANSAC method. Translation is represented as the norm
of the difference between best RANSAC hypothesis translation and the ground-
truth. The rotation is computed by obtaining the angle-axis representation of
the relative rotation:

Rab = Ry 'Ra (6.12)

The figure also tells us that lower matching thresholds are linked to lower pose
errors. Since the graph is sparse, a rough initial alignment may still be sufficient,
for subsequent ICP-like algorithms to converge to the global optimum, since the
closest point may be an actual corresponding vertex.
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6.3 Discussion

We’ve presented a place-recognition system based on RANSAC, applied to
sparse stable scene graphs. Place recognition based only on global geometric
structure is challenging and without the abundant information present in texture
one is given precious few clues to work with. Nonetheless, the experimental
results show that the approach is feasible, with plenty of room for improvement.
Different sensor systems, such as omni-directional LIDAR arrays, may observe
larger portions of the environment at a time, leading to greater overlap between
scans and consequently performance.

The TSDF allows for the integration of more data than any single depth
image is likely to contain, thus compensating for the narrow field of view of
typical camera-like sensors. Encoding the salient features and the relationship
between them into a graph is a way of summarizing the essential geometric
structure of the TSDE By its construction, it evidently lacks information about
the orientation and extent of surfaces, other than that which is implied by
the loops that are occasionally made by the SSSG edges. Orientations may be
an important characteristic to preserve for place recognition and one could
possibly extend the concept of SSSG to reason explicitly about and promote the
formation of triangular patches within the graph.

Although we stated earlier that the method used for generating the SSSG is
independent of the process that generates the feature points, there are potential
benefits to using image-based algorithms for obtaining them. Applying a method
designed for images on the entire volume has the effect of producing a feature
response value at every voxel. In the case of features that respond to curvature,
for example, the feature response can be used to distinguish features that are
joined by flat and curved geometry. In Fig. 6.10 we show an example application
where the SSSG is extracted from the TSDF reconstruction of an office desk. The
purple edges are those that pass through the surface and simultaneously have
a high feature response along their extent. For performance, implementation

Figure 6.10: Reconstruction with feature response and SSSG wherein edges have
been differentiated based on the mean feature response along their length.
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and interfacing reasons the experiments in this chapter employed a point-cloud
based Harris detector and therefore could not integrate this information in the
SSSG-RANSAC matcher.

6.3.1 Improvements and Future work

There is potential for improvement on these methods that has not been fully
explored due to temporal constraints. For instance, the number of iterations
needed to reliably match graphs by RANSAC is somewhat limiting for real-time
applications. It would be beneficial to have a pre-screening process to filter out
unlikely matches, so that more resources can be spent on rejecting more likely
pairs. The standard approach would be to limit the selected points for generating
models to pair up with RANSAC, by trying to explicitly select correspondences
based on feature descriptors that could be stored at each vertex. This approach
imposes an ordering on the samples such that the most similar pairs of triplets
are picked first [137]. Since the geometric nature of the problem is invariant to
scale changes, one can also use the similarity between perimeter and area of the
resulting triangles as further rejection criteria. Which descriptors would serve
best in this scenario is still an open question, but we have many to choose from.
At each graph vertex we can store any of the local depth image and volumetric
feature descriptors, as discussed in Chapters 4 and 5. Since we can extract a
surface interface from the TSDF one of many 3D point-cloud features [138] can
be used, too. We are also free to compute descriptors on the graph itself, such
as Heat Kernel Signatures [139], Wave Kernel Signatures [140], and other local
graph descriptors. One may additionally adapt point-cloud descriptors to work
on graphs, making potential savings in computational complexity by using the
neighborhood relations implied by the edge connectivity instead of searching for
nearest neighbors. An interesting candidate descriptor for application on graphs
is the Histograms of Distances [141].

Modeling the observed space as a graph enables us to make use of general 3
graph matching algorithms, popular among which are spectral methods [142,
143, 144, 145], which have not been tested so far.

Improvements to the stability of the SSSG may also be achieved by obtaining
better feature detectors. For example, inspired by the FAST-ER [146] method,
a machine-learning approach to corner detection, one could possibly train a
classifier to output a feature response based on a neighborhood of voxels. While
this may not significantly outperform a corner detector such as Harris corners, it
could be made to perform more selectively, e.g. responding only to corners where
surfaces meet at right angles or even be made to factor out specific artifacts
caused by projectively fusing depth images into the TSDFE.

5 A weighted graph can trivially be constructed from the SSSG, by inputting the length of edges
into an adjacency matrix. To obtain a directed graph, some consistent convention would need to be
followed, which may prove to be more challenging



Chapter 7
Conclusion

In this thesis we have taken, as a point of departure, the TSDF representation and
the range image integration algorithm of Curless et al. [16, 20] and investigated
its applicability to the field of robotics as a map representation. The TSDF
accurately captures the mean and variance of the measurements used to generate
it and was shown, by Newcombe et al. [21], that the TSDF provides an efficient
way of generating high-quality depth images for frame-to-frame tracking. We
proposed an alternative formulation of the tracking problem that uses point-
to-model distances leading to an implementation better suited for use on CPU
hardware. Building on this result, we investigated the potential benefits of TSDFs
to aid in object and place recognition tasks and found TSDF maps to be of
instrumental benefit to robots involved in shape-based recognition tasks. Having
presented a case for the adoption of TSDF maps in robotics, we then focus
on mitigating their most obvious shortcomings in memory and computational
complexity. We show that through unsupervised learning algorithms based on
PCA and artificial neural networks, constant-time lossy compression schemes
can be devised to virtually extend mapped volumes from small rooms to much
larger environments, with potentially beneficial side-effects in terms of noise-
removal. Finally, we propose a derived map representation that can be applied to
even larger-scales or, as explored in this thesis; to place recognition. We review
these contributions in the sections 7.1, 7.2, and 7.3. In section 7.4, we discuss
future work.

7.1 A Practical Guide to TSDF Mapping

While signed distance fields (or functions) are not in themselves an uncommon
occurrence in mathematics and computer graphics their use as a map represen-
tation in robotics is a relatively recent development. In spite of its increasing
popularity, the problem of reconstructing a discrete volumetric TSDF from a
set of depth measurements involves several methods and assumptions that are
not always clearly stated, understood nor questioned in the literature. Among

141
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these we can count the truncation distance, its relationship with grid resolution
and sensor variance, the number of bits per voxel, as well as interpolation and
gradient estimation methods; these design choices are all investigated in this
thesis. For the benefit of those who desire an introduction to the topic as well
as those who require a reliable reference guide, one of the main contributions
of this thesis is an accessible overview to TSDFs and an in-depth analysis of
their different properties. To relate the various parameter choices to concrete
implications, we investigate the impact they have on the task of pose-tracking
and surface mapping.

7.2 Large-Scale Tracking and Mapping

While different approaches have been aimed at extending the working volume
of TSDF models for mapping applications this thesis presents a first use of a fast
single-pass compression algorithm for this purpose. We arrived at this approach
by investigating unsupervised machine-learning methods using auto-encoder
networks and PCA-based dictionaries. Although the resulting compression
method is lossy, experiments indicate that much of the discarded content is
high-frequency noise. Consequently, tracking depth-cameras against maps that
have undergone compression often results in more stable performance than
tracking against the original map. The ability to re-integrate previously mapped
sections that have been compressed, back into the original TSDF representation
allows this method to be used as a seamless modular replacement for the regular
representation. Since the tracking algorithm proposed in Chapter 3 is designed
to run on a multi-core CPU, the compression algorithm was instead designed
to exploit the parallel functionality of GPUs to allow tracking, mapping and
compression to run simultaneously on a single system in real-time scenarios. The
proposed volumetric compression method is not useful only for our particular
application, however. A number of interesting algorithms in robotics are already
based on voxel representations and can be similarly extended, to enable either
larger maps or higher resolution, whilst simultaneously dealing with noisy input.

7.3 TSDFs and Shape-based Features

Much of the work in this thesis has focused on the evaluation of feature detec-
tors and descriptors due to their common use in object and place recognition
pipelines. These evaluations are counted among our contributions insofar as
they offer useful guidelines for researchers, students and engineers faced with
making choices between many available options.

It is known that the underrepresentation of sharp corners in sample-based
TSDFs is a weakness, as described in Chapter 2. However, we find that fea-
ture detectors and descriptors are, respectively, more stable and more reliably
matched on depth images rendered from TSDF than on raw depth images from a
physical sensor. Porting standard computer vision algorithms based on 2D image
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pixels with intensity content to 3D image voxels containing signed distances is
shown to be another viable strategy, as evidenced by our implementation and
evaluation of Harris corners in TSDFs. However, we also show that integral
invariant features, specifically designed for signed distance fields break down
in truncated and discrete settings (and even in their intended application do-
main, for some overlooked cases). These evaluations provide insights for further
research in shape-based perception.

This thesis also proposes to go beyond standard methods involving local
geometric descriptors by describing the mapped geometry as a scene graph of
interconnected salient features. Using a global alignment strategy for matching
these graphs results in much better scores than related work on global shape
descriptors based on 3D normal distributions transforms. The results of these
experiments indicate that place recognition by means of global shape description
is a difficult problem. Though the presented study does offer some directions for
further improvement.

7.4 Future Work

Although much has been written in this thesis regarding the TSDF representa-
tion itself, there are several points of view on the subject that have not been
explored. Curless originally derived the TSDF integration algorithm used here
as a maximum likelihood estimate for the surface position [16]. Among the
assumptions used in that derivation were: that each measurement ray is statisti-
cally independent, that the noise-model of the sensor is Gaussian, that the sensor
alignment errors are much smaller than the measurement errors, and that these
measurement errors are distributed along the line of sight of each ray. As sensor
characteristics change, it may be worth to review these assumptions to find more
fitting formulations for the volumetric integration process of TSDFs.

The recent popularity of TSDFs is arguably owed to the KinectFusion algo-
rithm, proposed by Newcombe et al. [21] in 2011. And there have been many
extensions proposed to it. In fact, one may view the tracking algorithm [53]
from Chapter 3 as one among them. The modular way in which the topic of
TSDFs for tracking and mapping applications has been explored in this thesis is
useful, since it allows one to look specifically at the impact of bit-rates, inter-
polation strategies, gradient estimation, and compression. However, we have
yet to evaluate the effect of several of these (and other!) proposed choices in
combination.

The challenge of shape-based place recognition remains an open problem in
confined spaces with limited field of view. However machine learning methods
that use TSDF volumes as input achieve object detection with remarkable ro-
bustness to occlusions and measurement noise [147]. Other object recognition
systems have been proposed, using volumetric occupancy [148, 149]. These
methods are applicable to TSDF volumes as well by converting to an approxi-
mate occupancy, as described in Chapter 2. While these methods, including our
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compression algorithms from Chapter 5 all work on small chunks of volumetric
data, they could be adapted to yield novel whole-scene descriptors for place
recognition. An interesting future work is to employ such scene descriptors to fil-
ter candidate locations for place recognition, reducing the number of subsequent
steps using e.g. RANSAC.

7.5 Closing Remarks

The TSDF is a powerful and versatile representation of 3D space, that lends
itself to many different applications and extensions. However, the impression
that remains with me, at the end of this thesis is that we are not likely to find
one map representation to rule them all, so to speak. Even if one can find a
representation that on average performs well on a wide range of tasks, there
is likely to be a better solution from heterogeneous representations that may
not require compromises between competing objectives. This may entail using
highly specialized views of the world that are suitable for particular problems.
For example, using sparse landmarks for localization, dense mapping for precise
manipulation or 2D color images for object recognition. An amalgam of different
mapping paradigms may thus be necessary for robots to reach human-level
performance on complex tasks that involve several different subtasks from a
variety of problem domains.

On the other hand, as we explore the possibilities that open up given dense
volumetric modeling, we may even discover entirely new problem domains
that become addressable. One might for example envision connecting dense
3D mapping to multi-physics simulation, allowing robots to make accurate
predictions in the field that would be infeasible given even the best of human
intuition and reasoning.

The answer to whether a TSDF can be used to improve the mapping, per-
ception and recognition capabilities of mobile autonomous robots is, as for any
question worth investigating, inconclusive. In a warehouse designed for robots,
with tags and markers spaced out at regular intervals and bar-codes on every
relevant object, the answer is trivially negative. In an environment where precise
maneuvering or manipulation needs to be performed, but recognizable markers
are absent, the TSDF may provide certain benefits over (and in combination
with) other methods. If visual sensing is barred by environmental factors or
perhaps by privacy concerns, it may be among the top candidate choices within
the current state of the art.
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Appendix A
Code listings

A.1 C++ code for packing multiple variables into a
single byte

This code listing provides an example implementation in C++ of packing two
values into a single byte using a bitfield. Alternatively, it also shows how one
can store the two values as a single variable e.g. an unsigned byte, and use bit
shifts and bit-masks for reading and writing

/! Arrays of bitfields and bytes
#include <iostream>

#include <string>

#include <ctime>

#include <cmath>

#define numBits 4
constexpr unsigned int maxVal = pow(2,numBits)—1;

#pragma pack (push,1)
struct voxel{
unsigned D : numBits;
unsigned W : numBits ;
I3
#pragma pack (pop)

unsigned int bitsFromFloat(const float input){
return std::min<unsigned int>(maxVal, std::rint(maxVal=input));
)

float floatFromBits(const unsigned int input){
return input/float(maxVal);
)

unsigned int readD (const unsigned char byteVoxel){
return byteVoxel >> 4;

}

unsigned int readW(const unsigned char byteVoxel)|
return byteVoxel & 0b00001111;
}

void writeD (unsigned char &byteVoxel, const unsigned char input){
byteVoxel = byteVoxel & 0b00001111; //clear 4 MSB
byteVoxel = byteVoxel | (input << 4); //write

)
void writeW (unsigned char &byteVoxel, const unsigned char input){

byteVoxel = byteVoxel & 0b11110000; //clear 4 LSB
byteVoxel = byteVoxel | (input & 0b00001111); //write
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int main()
{
constexpr auto N = 10u;
voxel bitfieldArray [N];
unsigned char byteArray[N];

sed::srand (std i time (0))5
for (auto idx = Ou; idx<N ; ++idx)

float d = float (st
float w = float (st

rand () ) /RAND MAX;
rand ())/RAND_MAX;

std::cout << "inserting"
<< d << "_and_ "
<< w << " "

as_
<< bitsFromFloat(d) << "
<< bitsFromFloat(w) <<"\n";

bitficldArray [idx].D
bitfieldArray [idx ].W

bitsFromFloat(d);
bitsFromFloat (w);

writeD (byteArray[idx ], bitsFromFloat(d));
writeW (byteArray[idx], bitsFromFloat(w));

std::endl;
"bitfieldArray_requires_"

<< sizeof (bi

for (auto idx

{

Ou; idx<N ; ++idx)

std s cout << idx << "_bitfield -~ as_int: "
<< readD (byteArray [idx]) << ",.'
<< readW (byteArray [idx])

<< "\t_as_float: "

<< floatFromBits (readD (byteArray [idx])) <<
<< floatFromBits ( readW(byteArray[idx])) <<

std ::cout << idx << "_byte ——as_in "

[

<< bitfieldArray[idx].D << ",_"

<< bitfieldArray [idx ].W

<< "\t_as_float: "

<< floatFromBits (bitfieldArray[idx].D) << "
<< floatFromBits (bitfieldArray [idx].W) << "

}

Example output:

inserting 0.631785 and 0.617026 as 9 and 9
inserting 0.852161 and 0.147901 as 13 and 2
inserting 0.0856126 and 0.415967 as 1 and 6
inserting 0.78367 and 0.153177 as 12 and 2
inserting 0.212242 and 0.687655 as 3 and 10
inserting 0.572266 and 0.49504 as 9 and 7
inserting 0.892832 and 0.799307 as 13 and 12
inserting 0.465086 and 0.862731 as 7 and 13
inserting 0.145797 and 0.230016 as 2 and 3
inserting 0.486525 and 0.215539 as 7 and 3
bitfieldArray requires 10 bytes

byteArray requires 10 bytes

0 bitfield -- as int: 9, 9 as float: 0.6, 0.6

0 byte as int: 9, 9 as float: 0.6, 0.6

1 bitfield -- as int: 13, 2 as float: 0.866667, 0.133333
1 byte -- as 13, 2 as float: 0.866667, 0.133333
2 bitfield -- as 1, 6 as float: 0.0666667, 0.4

2 byte -- as 1, 6 as float: 0.0666667, 0.4

3 bitfield -- as 12, 2 as float: 0.8, 0.13333

3 byte -- as 12, 2 as float: 0.8, 0.133333

4 bitfield —- as 3, 10 as float: 0.2, 0.666667

4 byte -- as 10 as float: 0.2, 0.666667

5 bitfield -- as 7 as float: 0.6, 0.466667

5 byte as 7 as float: 0.6, 0.466667

6 bitfield as 12 as float: 0.866667, 0.8

6 byte as 12 as float: 0.866667, 0.8

7 bitfield as 13 as float: 0.466667, 0.866667
7 byte -— as 13 as float: 0.466667, 0.866667
8 bitfield -- as 3 as float: 0.133333, 0.2

8 byte -- as 3 as float: 0.133333, 0.2

9 bitfield -- as 3 as float: 0.466667, 0.2

9 byte -- as 3 as float: 0.466667, 0.2

APPENDIX A. CODE LISTINGS

tficldArray) << "_bytes\n";

"byteArray_requires_" << sizcof (byteArray) << "_bytes\n\n";

"\n";

\n";
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