Vad påverkar elevers attityder till matematik?
- En systematisk litteraturstudie med fokus på hur positiva attityder kan främjas.

Sofia Carlsson

Handledare: Malin Hagström
Abstract

In society today, mathematics appears to be a boring and difficult subject that only some people can manage. Many students have negative attitudes towards the subject, which means that their interest in what is thought in the math lessons decreases and they are missing out on opportunities to learn. To promote pupils' learning in mathematics and to prevent students from taking their negative attitudes into adulthood, the present study aims to investigate what effects various kinds of influences may have on students’ attitudes towards mathematics and, above all, how they can be positively influenced. For the survey, a systematic literature study has been used and the basis for the compiled research overview has been retrieved from the Web of Science database. The results of the study indicate that there are several types of influences on pupils’ attitudes towards mathematics and that the influence both can have a positive and a negative effect depending on how it is handled and expressed. However, the most important types of influences can be summarized into social factors, the students’ perspective on the subject and on who they think can manage it and the student’s believes of mathematics and the teaching as a meaningful subject.

Keywords: mathematics, attitudes, influence, elementary school
Sammanfattning

Nyckelord: matematik, attityder, påverkan, grundskolan
Abstract

1. Inledning ... 2
 1.1. Syfte och frågeställning 6
 1.2. Disposition .. 6
2. Teoretisk bakgrund .. 6
 2.1. Attityder .. 7
 2.2. Attityder till matematik 8
 2.3. Attityder och lärande 10
 2.4. Attityder och lärande i matematik 11
3. Metod ... 13
 3.1. Metod för datainsamling 13
 3.1.1. Manuellt urval 15
 3.2. Metod för analys av data 17
 3.3. Etiska överväganden 18
 3.4. Reliabilitet och validitet 19
4. Resultat och analys .. 19
 4.1 Översikt .. 20
 4.2 Beskrivning och fördjupning av kategorier 21
 4.2.1. Läraren .. 21
 4.2.1.1. Lärarens attityder till matematik 22
 4.2.1.2. Den emotionella relationen mellan elev-lärare 23
 4.2.2. Föräldrar .. 24
 4.2.3. Undervisning ... 26
 4.2.3.1. Undervisning-läraren 27
 4.2.3.2. Undervisning-arbetssätt 27
 4.2.4. Elevers uppfattning om sin egen förmåga 29
 4.2.5. Ämnets användbarhet 31
 4.3. Sammanfattning/syntes 32
5. Diskussion .. 34
 5.1. Sammanfattning av huvudresultat 35
 5.2. Resultatdiskussion .. 36
 5.2.1. Vad visar forskning kan påverka elevers attityder till matematik? 36
 5.2.2. Hur kan elevers positiva attityder främjas? 37
1. Inledning

För att möjliggöra elevernas utveckling och lärande samt att påverka deras matematiska prestationer kan det därför vara relevant att i matematikundervisningen bland annat fokusera på elevernas lust att lära och attityder till matematik. Den föreliggande studien kommer fördenskull att utgå från ett lärarperspektiv. Med tanke på alla följer elevers attityder till matematiken kan orsaka blir dock inte bara studien intressant för lärare utan kan även vara av intresse för andra verkande i samhället som exempelvis, elever, föräldrar, företag och politiker.
1.1. Syfte och frågeställning

Studien syftar till att undersöka vad som har inverkan på elevers attityder till ämnet matematik i skolsammanhang, som exempelvis i den direkta undervisningen, samt att skapa en bild av om deras attityder påverkas negativt eller positivt. Speciellt kommer studien att fokusera på det som främjar elevernas positiva attityder.

Frågeställningarna som ämnas besvaras är följande:
Vad säger forskning påverkar elevers attityder till matematik?
Hur kan elevernas positiva attityder till matematiken främjas?

1.2. Disposition

Den föreliggande studien kommer att fortsätta med en teoretisk bakgrund där det centrala begreppet ”attityd” presenteras och beskrivs på ett nyanserat vis. I den teoretiska bakgrunden behandlas även vilken koppling attityder har till ämnet matematik och till elevers lärande.

2. Teoretisk bakgrund

Detta avsnitt är indelat i fyra delar. Under rubriken attityder kommer just begreppet attityd att redogöras för. Den andra rubriken ”attityder till matematik” beskriver hur de matematiska attityderna överlag ser ut hos barn och vuxna i dagens samhälle. Sedan förklaras forskningens syn på attityders koppling till lärande och prestationer under rubriken ”attityder och lärande”.

Avsnittet avslutas därefter med rubriken ”attityder och lärande i matematik”, där beskrivs bland annat vilka uppfattningar som finns i samhället idag om vilka som kan lära matematik.
2.1. Attityder

2.2. Attityder till matematik

Mycket forskning runt om i världen har dokumenterat att både vuxna och barn visar på negativa attityder till matematik, att matematikundervisningen för många upplevs som traumatisk och att det finns en rädsla och oro inför ämnet i många länder världen över, som grundar sig på negativa erfarenheter där man känt ångest, skam och hopplöshet i samband med matematik (Frenzel, Pekrun & Goetz 2007; Boaler 2017; Furner & Duffy 2002).

Enligt Boaler (2008) visade en amerikansk undersökning att 4 av 10 amerikanska vuxna avskydde matematiken i skolan samt att dubbelt så många avskydde matematik mer än något annat ämne. Detta kan jämföras med en svensk opinionsundersökning där 1/3 av de 1000 deltagarna (18–79 år) uttryckte negativa attityder till ämnet matematik (Olén 2016).

Boaler (2008) visar dock på att många får upp intresset för matematiken efter
att de slutat skolan, hon menar att när de ser hur ämnet kan användas för att lösa vardagliga problem blir matematiken plötsligt rolig och intressant, till skillnad från den tidigare upplevda skolmatematiken. Detta kommer blad annat vara underlag till att diskutera meningsfullhetens inverkan på elevers attityder till matematik.

Även intresset för matematik hos skolelever är lågt då många elever i alla åldrar ogillar ämnet (Boaler 2008; Boaler 2017). I PISA mätningen av 15 åringar 2012 rapporterade stora andelar av de deltagande eleverna världen över att de är ängsliga över matematiken, samt att de överlag har en mer negativ inställning till matematik än exempelvis läsning (OECD, 2013). Ca 60% av eleverna rapporterade att de oroade sig och hade ångest över matematiken, och ca 30% rapporterade att de blev jätteneurotica, spända eller att de kände sig hjälplösa när de arbetar med matematik av olika slag. När det gäller elevernas positiva attityder rapporterade ca 53% av eleverna att de anstiga är intresserade eller jätteintresserade av det de lär sig i matematiken. Dock var det bara 38% av eleverna som medgav att de arbetar med matematik för att de tycker om det och ca 36% av eleverna ser fram emot sina matematiklektioner. Detta tyder på att ungefär hälften av barnen som deltog i PISA-undersökningen världen över har någon form av positiva attityder gentemot ämnet matematik (även om de inte ser så mycket glädje i lektionerna) medans andra hälften har negativa attityder av något slag. Mätningarna visar även att vissa elever är intresserade av matematik men att de ändå känner sig ängsliga över ämnet.

De svenska eleverna ligger straxt över OECD genomsnittet när det kommer till positiva attityder, som intresse och glädje, till matematik. Sverige visar sig dessutom vara ett av de länder som visade på minst ängslan av de deltagande länderna i PISA mätningen 2012 (OECD, 2013). I Sverige var det ca. 55% av eleverna i klass 9 som rapporterade intresse av det som undervisas på mattedéktionerna, ca 36% sa sig arbete med matematik för att de tycker om det och ca 36% av eleverna rapporterade att de ser fram emot sina matematiklektioner. När det kommer till de negativa matematikattityderna rapporterade ca 42% av eleverna att de oroar sig för att matematiken ska vara svår eller att de ska få dåliga betyg (ca 45%). Mätningarna visade även att eleverna känner sig väldigt spända, nervösa och hjälplösa när de arbetar med matemaläxan (ca 25%) och problemlösning (ca 18%– ca 21%). Trots att dessa siffror, som resumerar elevernas ängslan, är låga i förhållande till andra OECD-länder representerar dessa den näst största ökningen av ängslan bland alla OECD-länderna sedan 2003, vilket innebär ett kraftigt bakslag för den svenska skolan (OECD, 2013; Skolverket,

2.3. Attityder och lärande

lärande i matematik som tillsammans skapar en bättre chans för lärande. Self-efficacy kommer att användas för att diskutera elevens egna påverkan på hens attityder till matematik.

2.4. Attityder och lärande i matematik
Sambandet där elevernas lärande och prestationer påverkas av deras attityder går även att finna inom matematiken (Neal, 1969; Ma & Kishor, 1997). Boaler, (2017) påstår också att deras inställning och attityd är helt avgörande för hur de lyckas i skolämnet. Inom matematiken är det även extra viktigt att elevernas positiva attityder går hand i hand med en positiv self-efficacy då elevernas tilltro till sin egen matematiska förmåga har en betydande roll för såväl elevernas matematiska attityder som lärande. Forskning visar nämligen på att det finns en djupt rotad uppfattning hos samhället om att matematik inte är till för alla, och saknar då eleverna tron att de är kapabla till att läsa matematik är det lätt att de ger upp innan de ens
hunnit bilda några attityder angående ämnet (Boaler, 2017). Denna uppfattning kommer att användas som underlag i diskussionen om hur elevers positiva attityder kan främjas.

Dessa skeva uppfattningar om att vissa föds med en förmåga eller en fallenhet för ett visst ämne finns i alla ämnen men inte i samma omfattning som det präglar matematiken (Boaler, 2017). Uppfattningarna handlar om att matematiken inte är lik andra ämnen, att matematiken är ett korrekt ämne med regler och procedurer som endast kan läras på det traditionella sätt som det alltid gjorts, och om tron att vissa helt enkelt inte kan presterera i matematik. Dessa skeva uppfattningar besitts framförallt av vuxna, av föräldrar och lärare som inte sällan tröstar elever med att de inte ska oroa sig för att de inte är bra på matematik eftersom den helt enkelt inte är lämpad för alla (Boaler, 2017). Detta styrks även av den svenska opinionsundersökningen ”Mattekollen” där en tredjedel av tusen svenska, vuxna deltagare uttryckte att talang var den största orsaken till lärande i matematik (Olén, 2016). Enligt Boaler (2017), som bland annat arbetar med neurovetenskaplig forskning om människors och framförallt elevers uppfattning om sin matematiska förmåga, stämmer dock inte dessa uppfattningar överens med verkligheten. Hon beskriver:

”...Alla hjärnor är inte lika och har inte samma förutsättningar, men nästan alla kan utveckla ett avancerat matematiskt tänkande, oavsett kön och socioekonomisk eller kulturell bakgrund. […] Med rätt undervisning har alla förutsättningarna att utvecklas och bli framgångsrika i matematik.” (Boaler, 2017 s.8)

Då vuxna besitter dessa skeva uppfattningar och för över dessa på sina barn och elever är det inte konstigt att eleverna känner olust och visar på negativa attityder som ångslan och ångest inför matematikundervisningen (Boaler, 2017; OECD, 2013). Det är av största vikt att man som förälder och lärare arbetar för att främja elevers positiva attityder då elever som hamnar i negativiteten lätt fastnar i en negativ spiral där dåliga attityder leder till dåligt självförtroende och dåligt lärande, speciellt om eleverna har en låg self-efficacy (Boaler 2017; Dweck 2006; Klapp 2012). Boalers neurovetenskapliga forskning används som underlag i diskussionen för hur sociala faktorer kan påverka elevers attityder.

Eftersom elevers attityder är kopplade till deras lärande och prestationer kan det inte heller ses som en slump att de svenska eleverna visar på låga resultat även i Pisas kunskapstest (OECD, n.d). I den svenska skolan kan framförallt en koppling mellan elevers attityder och deras prestationer antas då både kurvan för elevernas resultat och kurvan för elevernas attityder till

3. Metod

I detta avsnitt beskrivs först, i två delar, hur metoden för insamling- och analys av data gått till i den föreliggande studien. Den första delen kommer att redogöra för hur tidigare forskning samlats in samt hur de relevanta artiklarna som kommer att utgöra den föreliggande studiens forskningsöversikt har identifierats. Den andra delen redogör för hur forskningsöversikten analyserats och delats upp i kategorier. I slutet av avsnittet kommer även en redogörelse för de etiska överväganden som gjorts i arbetet med den föreliggande studien samt hur studiens validitet och reliabilitet har stärkts.

3.1. Metod för datainsamling

Vid insamling av data till litteraturstudien har databasen Web of Science använts. Web of science är en internationell databas som håller hög kvalitet då alla artiklar som kan hittas där är vetenskapligt granskade. Detta kommer att ge förutsättningar för god etik i den föreliggande studien och hög kvalitet på artiklarna som ingår forskningsöversikten. En begränsning med Web of Science kan dock vara att alla befintliga artiklar inom det berörda forskningsområdet inte finns på databasen. Sökningen har gjorts på avancerad nivå vilket

Den föreliggande studien fokuserar på vad som kan påverka elevers attityder till matematik. Begrepp som attityd, elev, påverkan och matematik bör därför finnas med bland söksträngens centrala begrepp. Då sökningen sker i en internationell databas krävs det att sökorden formulerats på engelska. För att representera attityder och inställningar valdes därför orden attitude och stance. Även belief som kan översättas till åsikt och som ofta används i samband med attityder skrivs synonymt med dessa. Emotion och feeling är två ytterligare ord som i denna studie kan ses synonymt med attityder då attityder beskrivs genom och/eller med känslor. Efter att ha testat delsökningsgallrades dock stance och feeling bort då de inte tillförde sökningen något vilket kvarlämnade (attitude* OR belief* OR emotion*). För att få träffar som endast berörde attityder hos elever, samt för att kunna koppla eleverna till en viss skolålder användes de två delsökningarna (student* OR child* OR peer* OR pupil*) och ((primary OR elementary OR middle) AND school*). Genom att inkludera ordet school i
söksträngen begränsas även innehållet till de attityder som elever har till matematik i skolsammanhang vilket matchar den föreliggande studiens syfte. I den senare delsökningen har även begreppet ”grade” prövats som synonym till primary, elementary och middle. Begreppet valdes dock bort då det endast gav träffar där grade symboliserade klass eller årskurs istället för gradeschool som var den eftersträvade begreppet. Detta innebär att artiklar som berörde för höga årskurser som exempelvis ”grade 10–12” sållades bort. De artiklar som berörde rätt årskurser och var av relevans för den föreliggande studien inkluderades ändå då artiklarna även innehöll andra ord från delsökningen som exempelvis primary. Delsökningen (influen* OR affect* OR bias OR impact* OR agency), vilka symboliserar ordet påverkan, hade funktionen att begränsa forskningen till artiklar som berör hur elevernas attityder kan påverkas. Dessa fyra delsökningar samt delsökningen (math*), som syftar till att artiklarna ska beröra inställningen till matematik, bildade genom att kombineras med den booleska operatorn AND, den slutgiltiga söksträngen som kom att användas i litteraturstudien (se bilaga 1). För att precisera söksträngen ytterligare samt för att urskilja attitydernas värde har även sökningen (positive OR negative) testats. Av skälet att en sådan sökning kan sortera bort relevanta artiklar där attityder berörs trots att deras positiva eller negativa värde inte nämns valdes denna sökning bort. Slutsatsen drogs även att de artiklar som visade på en positiv eller negativ effekt ändå skulle inkluderas i studien om de behandlade de andra begreppen i resten av delsökningarna. En delsockning med ord som motivate, anxiety och andra känslobeskrivande har också övervägts att få en del i studien men beslutet togs att inte inkludera sökningen då risken fanns att det skulle vinkla studien mot ett resultat med mer positiva eller negativa attityder vilket skulle ge en orättvis bild av forskningen.

3.1.1. Manuellt urval

Efter databassökningen som resulterade i 325 artiklar gjordes ett manuellt urval utifrån förutbestämda inkluderingskriterier för att fastställa studiens forskningsfält. Artiklar som inkluderats i studien har uppfyllt följande kriterier:

- Artikeln ska beröra orsaker som kan ha verkan på elevers attityder till matematik
- Eleverna ska gå i en klass vilken motsvarar den svenska grundskolan.

Det första kriteriet innebär att de artiklar som efterfrågas är de som behandlar elevers attityder som verkan av en orsak. Artiklar där elevernas attityder är orsak till en verkan kommer därför inte att inkluderas. Till exempel har många artiklar som redogör för hur elevens attityder till matematik påverkar deras matematiska prestationer valts bort på grund av detta kriterium. Det
första kriteriet syftar även till att de inkluderade artiklarna ska behandla matematikämnet. Artiklar med fokus på andra ämnen kommer således inte ta plats i studien. Vid granskningen av artiklar upptäcktes dock ett flertal som fokuserade på STEM dvs. science, technology, engineering, and math, dessa artiklar anses uppfylja kriteriet då forskningen går att applicera till matematiska syften. Det andra kriteriet kräver att deltagarna i de vetenskapliga artiklarna är skolelever i en klass som motsvarar svenska skolans klass f-9. Forskning med fokus på andra typer av deltagare kommer därför inte inkluderas i studien av anledningen att de inte behandlas i den svenska läroplanen för grundskolan (Skolverket, 2016). I vissa fall har dock artiklar vars deltagande elevers ålder sträcker sig över grundskolan påträffats, exempelvis om elever mellan årskurs 7 och 12 har undersöknits. Dessa artiklar har inte inkluderats i den föreliggande studien. Det andra inkluderingskriteriet behövs trots att söksträngen har försökt anpassas så att eleverna i artiklarna har rätt ålder. Anledningen till detta är att de engelska orden som exempelvis ”primary” kan ha andra betydelser när det inte sitter ihop med ”school” och bildar grundskola, som exempelvis huvudsaklig. Detta har i visa fall lett till att artiklar som handlar om förskolebarn eller gymnasieelever har blivit exkludera efter databassökningen. Flera artiklar som berör lärarstudenter har även fått sällats bort.

Det manuella urvalet skedde i två steg som i studien benämns som urval 1 och urval 2. I urval 1 lästes titlar, abstracts och keywords på de 325 artiklarna som var resultatet av databassökningen för att identifiera lämpliga artiklar till litteraturstudien. Urvalet gjordes efter inkluderingskriterierna som presenterades ovan med inställningen att en artikel hellre skulle frias än fällas till urval 2 om det rådde något tvivel om artiklens relevans för den föreliggande studien. Artiklar som dock inte direkt visade någon slags relevans till studiens två kriterier uteslöts. Urval 1 resulterade i 140 potentiella artiklar till studiens forskningsöversikt. I urval 2 gjordes en mer detaljerad granskning av de kvarvarande artiklarna genom en noggrann läsning av abstract samt en översiktlig läsning av själva artikeln. I urval 2 kunde därför de artiklar som inte berörde problemområdet exkluderas så att den färdiga forskningsöversikten kunde ta form. Artiklar som berör denna studies problemområde trots att det inte nämns i artiklens syfte har stöts på vid urval 2. Dessa har inkluderats i studien av anledningen att de uppfyller inkluderingskriterierna samt för att de har en relevans för den föreliggande studien. Att utesluta dessa vore att vinkla resultatet vilket kan ses som oetiskt. Artiklarna har dock inte kunnat inkluderas om de inte uppfyllt båda inkluderingskriterierna. Några få artiklar som inte funnits i fulltext har även exkluderats av anledningen att deras underlag varit för snävt för att
kunna analyseras. Vid urval 2 gallrades de 140 artiklarna ner till 42 stycken. Dessa utgör det empiriska materialet som den föreliggande litteraturstudien grundas på.

3.2. Metod för analys av data

När de 42 artiklarna som utgör den föreliggande studiens forskningsöversikt fastställts inleddes analysarbetet av forskningsöversikten. Vid analysen lästes artiklarna ytterligare en gång översiktligt för att kunna kartläggas i en tabell med syfte att ge en övergripande bild av den föreliggande studiens forskning. De delar som eftersöktes i varje artikel och som presenteras i tabellen (se bilaga 2–6) var; artikelns syfte eller forskningsfrågor, artikeln metod för insamling av data, antal och ålder på artikeln responder, vilket land artikeln studie genomförts i samt artikeln resultat (dvs vilken typ av påverkan på elevers matematiska attityder artikeln presenterar). Eftersom att vissa artiklar har flera syften eller för avsikt att undersöka flera forskningsfrågor har inte alla syften presenterats i den övergripande tabellen utan endast den delen av syftet som har relevans för denna studie. Om en artikel exempelvis syftat till att undersöka hur lärare påverkar elevers matematiska attityder och deras self-efficacy har alltså endast den delen som berör elevernas matematiska attityder redovisats i den föreliggande studien. Av samma anledning har även endast det resultat som visar någon slags påverkan på elevers matematiska attityder presenterats.

När den övergripande kartläggningen av artiklarna var klar och forskningsöversikten sammanställts i tabellform analyserades artiklarna efter mening och mönster för att kunna identifiera och tematisera olika kategorier utifrån vad artiklarna visar kan påverka elevers attityder till matematik. Kategorierna genererades vid läsningen av artiklarna, framförallt vid läsningen av artiklarnas resultat, det fanns med andra ord ingen inledande ide om vilka kategorier som skulle tas med utan materialet fick leda vägen. Forskningsöversikten i den föreliggande studien har alltså delats in i olika kategorier utifrån vad artiklarnas resultat visar och varje kategori står för en typ av påverkan på elevers matematiska attityder som forskningen pekar på. Dessa kategorier är; läraren, föräldrar, undervisning, elevers uppfattning om sin egen förmåga, och ämnet s användbarhet. Kategorierna kommer att presenteras närmre i resultat- och analysdelen där de var och en för sig översiktligt beskrivs och fördjupas. Klasskamraternas påverkan är även något som flera artiklar visat har en inverkan på elevers matematiska attityder. Denna påverkan har dock bara kort berörts av artiklarna i form av en mening eller ett påstående, vilket innebär att för lite underlag funnits för att klasskamraternas påverkan ska bli en kategori i den föreliggande studien. Många av
artiklarna i forskningsöversikten har resultat som berör flera av den föreliggande studiens kategorier, vilket innebär att samma artikel kan förekomma i flera kategorier. Tabellen som visar forskningsöversikten har även konstruerats så att artiklarna presenteras kategoriver. Detta medför att beskrivningen av resultatet hos de artiklar som förekommer i flera kategorier kommer att skilja sig från varandra i tabellen då endast det resultat som är relevant för den specifika kategorin kommer att redovisas.

3.3. Etiska överväganden
För att denna studie ska ses som etiskt god forskning har en viktig del i den föreliggande studien varit att endast använda tidigare studier som är vetenskapligt granskade. Detta har uppfyllts genom att välja artiklar från databasen Webb of Science där alla artiklar är vetenskapligt granskade och har god etisk kvalitet. Att endast använda artiklar från en databas
kan dock innebära att all befintlig, relevant forskning inte tas med och behandlas i studien vilket minskar den föreliggande studiens etiska kvalitet. Dock hävdar Eriksson Barajas, Forsberg & Wengström (2013) att trots att det bästa vore att finna och inkludera all relevant forskning så är detta av praktiska och ekonomiska skäl inte alltid möjligt, vilket varit fallet i denna studie. Inför arbetet med den föreliggande studien har även egna åsikter och förväntningar åsidosatts för att stärka studiens etiska kvalitet. Allt material av relevans för den föreliggande studien och dess forskningsfrågor om vad som kan påverka elevers attityder till matematik har därför behandlats i studien. Inget material har med andra ord valts bort för att vinkla sökningen åt specifika perspektiv eller åsikter. Detta styrks i metoden där det beskrivs att den föreliggande studiens söksträng anpassats för att inte excludera relevanta artiklar samt att kategorierna i studien skapats utifrån resultaten hos artiklarna i forskningsöversikten och inte utifrån egna uppfattningar. För att läsaren ska få tillgång till forskningen har alla artiklar som utgör den föreliggande studiens forskningsöversikt presenteras översiktligt i tabellform (Se bilaga 2–6). Alla resultat av relevans för den föreliggande studien presenteras i resultat- och analysdelen, i presentationen av resultatet har med andra ord fokus legat på att inte resultatet ska vinklas åt något håll (Eriksson Barajas et.al., 2013).

3.4. Reliabilitet och validitet

Genom att forma bra söksträngar, inkluderingskriterier och kategorier så att syftet med den föreliggande studien, dvs. att undersöka vad som har inverkan på elevers attityder till ämnet matematik, kommer i fokus har validiteten i studien stärkts. För att reliabiliteten ska bli så hög som möjligt har även ett stort fokus lagts på att undersökningen ska ha utförts på ett noggrant, systematiskt och genomtänkt sätt. Det har även lagts stor vikt på att det i metoden tydligt ska framgå hur den föreliggande litteraturstudien genomförts vid bland annat insamling och analys av data för att studien lätt ska kunna kontrolleras eller replikeras av någon utomstående.

4. Resultat och analys

Här kommer först en översikt av forskningsfältet presenteras. Kategorierna som presenterades i metoden kommer sedan att beskrivas och fördjupas var och en för sig. Säcken kommer tillslut att knytas ihop i en sammanfattning/syntes där bland annat några slutsatser om vad de tidigare kategorierna har gemensamt dras.
4.1 Översikt
De 42 artiklarna som utgör forskningsöversikten i den föreliggande studien representerar forskning från 17 länder världen över. Den största delen av forskningsöversikten har genomförts i USA (37%) eller olika länder i Europa (39%). 17% av artiklarna visar forskning från Asien, Afrika eller Oceanien. De resterande 7% av artiklarna dvs. tre artiklar uttrycker ingen härkomst, av dessa är två artiklar litteraturstudier. Samtliga artiklar i den föreliggande studien berör mer eller mindre en eller flera saker som kan påverka elevers attityder till matematik vilket uppfyller studiens första inkluderingskriterium. I vissa artiklar används dock inte ordet attityder uttryckligen utan dessa syftar till att undersöka hur en eller flera typer av känslor, som används för att beskriva och uttrycka attityder, som exempelvis motivation, intresse eller ångest till matematiken påverkas av olika saker. Vid genomförandet av forskningarna har majoriteten (63%) av artiklarna använt sig av kvantitativa metodansatser, 10% av artiklarna har använt sig av kvalitativa metodansatser och 22% av ”mixed method” dvs. blandade metodansatser. De resterande 5% av artiklarna är de två litteraturstudierna som nämndes ovan. Storleken på artiklarnas forskning, mätt i antalet respondenter som deltagit i forskningen, är varierad. Överlag kan det dock ses som att övervägande del av forskningarna är relativt stora, 62% av artiklarna har 100–1000 respondenter och 18% har 1000–9000 respondenter medan 20% av artiklarna har 1–100 respondenter. Av de 42 artiklarna som utgör den föreliggande studiens forskningsöversikt tillhör 15 st. fler än en av de fem kategorierna som forskningsöversikten delats upp i.

I följande rubriker kommer de fem kategorierna att presenteras självständigt då var och en för sig har en individuell inverkan på elevers attityder. Dock kan det antas att eftersom att flera kategorier behandlas i samma artiklar att kategorierna även har en koppling till varandra, aningen genom att de går hand i hand och påverkar elevernas matematiska attityder på samma sätt eller att de ses som varandras orsakssamband. Dvs. att den ena kategorin påverkar den andra som i sin tur påverkar elevernas attityder till matematik. Kategorierna kan alltså både ha en direkt verkan och indirekt verkan, tillsammans eller genom en annan kategori, på elevers matematiska attityder. Detta förhållande mellan kategorierna visas grafiskt i figur 1.
4.2 Beskrivning och fördjupning av kategorier

Här kommer de fem kategorierna beskrivas och fördjupas var och en för sig.

4.2.1. Läraren

4.2.1.1. Lärarens attityder till matematik
Artiklarnas resultat visar först och främst på att en lärare i matematik måste ha en positiv anda när hen möter sina elever för att kunna förvänta sig att eleverna ska ha en positiv inställning till ämnet. Hur eleverna uppfattar matematiklärarens attityder har alltså en betydande påverkan på elevernas liknande attityder oavsett om lärarens attityder uppfattas som positiva eller negativa (Nugent et al., 2015; Kiwanuka et al., 2017; Blazar & Kraft, 2017; You et al., 2016). Resultaten visar även att lärarens uppfattningar om sin egna matematiska förmåga samt fördömande av vilka andra som kan lära matematik är relaterat till elevernas syn på sitt eget lärande och deras attityder till matematik (Gunderson et al., 2012; Thoonen et al., 2011). Detta fördjupas i artikeln nedan.

Gunderson et al. (2011) beskriver att studiens forskningssammanställning visar att många lärare liksom andra vuxna har könstereotypa övertygelser angående ämnet matematik. Några av dessa övertygelser är bland annat att pojkar är bättre på matematik medan flickor är bättre på att läsa. Dessa tror alltså att pojkar besitter en matematisk förmåga eller talang som inte flickor har. Därför beskriver man ofta att pojkars matematiska framgång främst beror på förmåga och att deras misslyckanden beror på brist på ansträngning, medan flickornas framgång beror på ansträngning, och misslyckanden på bristande förmågor. I Resultatet visar

4.2.1.2. Den emotionella relationen mellan elev-lärare

Resultaten av denna kategoris artiklar visar även att positiva lärar-elev relationer, där eleverna ges emotionellt stöd, främjar elevers positiva attityder till matematik (Lewis et al., 2012; Stipek et al., 1998; Martin & Rimm-Kaufman, 2015). Lärarens relationer till eleverna visar sig ha en stark förutsägbarhet för elevernas emotionella engagemang (Stipek et al., 1998). Får eleverna emotionellt stöd får de positivare känslor och ”can-do” attityder till matematiken (Martin et al., 2015; Lewis et al., 2012). Med en stöttande lärare gläds alltså eleverna mer åt matematiken samt får ett bättre matematiskt självförtroende vilket gör att de vågar ta sig an svårare uppgifter (Stipek et al., 1998; Ahmed et al., 2010; Sakiz et al., 2012; Dimitriadis, 2012; Woodward et al., 2006). Resultaten tyder på att det emotionella stödet är lika viktigt för såväl matematiskt starka som svaga elever (Dimitriadis, 2012; Woodward et al., 2006). De visar även att stöttande, omsorgsfulla lärare kan vara av extra betydelse för andraspråkiga elever då de även fungerar som en social tillgång (Lewis et al., 2012). Kort sammanfattat så får den stöttande läraren eleverna att känna sig trygga i skolan och tro på sig själva. Detta förklaras tydligt i artikeln Does perceived teacher affective support matter for middle school students in mathematics classrooms? av Sakiz et al. (2012) som därför får illustrera fördjupningen i denna underkategori.

Artikeln syfte är att undersöka viken av lärares affektiva stöd i relation till känslan av tillhörighet, glädje, hopplöshet, självverkan och insats i det matematiska klassrummet. I studien av Sakiz et al. (2012) deltog 317 elever i klass 7–8. Eleverna var utspridda över sex skolor från förorten och storstadsområdet i en amerikansk stad vilket innebar att urvalet täckte...
av skolor och elever med olika ekonomiska förutsättningar och bakgrund. Av eleverna som deltog i studien var könen uppdelade 60/40 där merparten av eleverna var flickor. 62% av eleverna var vita och de resterande procenten var någorlunda jämnt fördelat mellan etniciteter som afroamerikaner, asiatiska amerikaner och latinamerikaner. I genomförandet av studien fick eleverna svara på en kvantitativ frågeenkät där bland annat frågor om deras uppfattade känslor om samhörighet, attityder och uppfattning om lärarnas affektiva beteende ställdes. I Resultatet visade Sakiz et al. (2012) att elever som rapporterade sina lärare som emotionellt stöttande, dvs. att de visade erkännande, omsorg, respekt och oro för eleverna samt att de lyssnade, var uppmuntrande, hade höga förväntningar och behandlade alla rättvist, var också sannolika att rapportera större känsla av tillhörighet, större glädje och lägre hopplöshet. Resultatet tydde även på att känslan av tillhörighet, glädje och hopplöshet var förknippade med elevernas ansträngning i skolan. Positiva attityder som glädje visade alltså en positiv effekt på elevernas skolastre på engring medan negativa attityder som hopplöshet visade en negativ effekt. Elevernas uppfattade lärarstöd kan alltså bidra till positiva resultat när det gäller deras motivation och känslor. Det bidrar till en ökad glädje och njutning i det matematiska klassrummet samt en känsla av samhörighet och att man är välkommen i klassen. Att känna glädjen i matematiken och stödet från läraren gör då att eleven vågar ge sig på svårare uppgifter som kan vara ansträngande och utmanande.

4.2.2. Föräldrar

I den här kategorin finns 10 artiklar som redogör för hur elevers attityder till matematik påverkas av deras föräldrar. En del av artiklarna i denna kategori har antingen som direkt syfte (Kiwanuka et al., 2017; Gunderson et al., 2012; Kim & Chung, 2012; Fraser & Kahle, 2007) eller indirekt syfte (Soni & Kumari, 2017; Ahmed et al., 2010; Nugent et al., 2015) att undersöka föräldrarnas inverkan på deras barns attityder. Flera av de artiklar som indirekt undersöker föräldrars inverkan på elevers attityder, syftar exempelvis till att undersöka föräldrars inverkan på elevers prestationer. Eftersom att attityder påverkar prestationer måste dessa som en del i undersökningen först identifiera sambandet mellan elevers och föräldrars attityder innan de kan koppla elevernas attityder till deras prestationer. Metodansatserna som används i artiklarna är till största del kvantitativa i form av enkäter. Eleverna som deltog i artiklarnas studier gick i klass 4–9 vilket motsvarar den svenska skolans mellan- och högstadium. I tre av artiklarna användes även föräldrarna som respondenter vid insamlingen av data (Soni et al., 2017; Casad, Hale & Wachs, 2015; Fraser et al., 2007).
Artiklarnas resultat visar på att det finns ett samband mellan elevers attityder till matematik och deras föräldrarnas syn på matematik både när det gäller positiva och negativa attityder. Att en elev har föräldrar med positiva attityder som visar intresse för ämnet (Nugent et al., 2015; Soni et al., 2017) och som uppmuntrar, stöttar (Fraser et al., 2007; Ahmed et al., 2010) och ibland ställer krav på barnet (Kim et al., 2012) när hen tar sig an matematiska utmaningar har alltså en stor betydelse för att hen ska utveckla positiva attityder gentemot matematiken. Detta stöds av Bosman & De Smedt (2015) vars resultat visar på att elever med osäkra relationer till sina mödrar ofta har en hög matematisk ångest. Att inte kunna knyta an till föräldern gör att man går miste om den uppmuntran och andra delar som ofta behövs för att de positiva attityderna till matematiken ska byggas upp. I flertalet av artiklarnas resultat är dock ångest en attityd eller känsla som är vanligt förekommande. I dessa artiklar beskrivs hur föräldrarnas matematiska ångest ofta överförs till barnen och påverkar deras matematiska attityder på ett negativt sätt (Soni et al., 2017; Casad et al., 2015; Gunderson et al., 2012; Ahmed et al., 2010). Detta kan tolkas som att många föräldrar är ångestfyllda när det kommer till ämnet matematik vilket i sin tur smittar av sig på barnen. Hur eleverna lätt påverkas av sina föräldrars attityder framgår i fördjupningsartikeln The Role of Parental Math Anxiety and Math Attitude in Their Children's Math Achievement av Soni et al. (2017) som presenteras nedan. I resultaten framgår även att föräldrar eller andra familjemedlemmar kan introducera matematiska aktiviteter utanför skolan för sina barn vilket också kan påverka deras matematiska attityder.

4.2.3. Undervisning

Denna kategori innefattar 15 artiklar som redogör för hur olika typer av undervisningspraktiker kan påverka elevers attityder till ämnet matematik. Flertalet av artiklarna i denna kategori har som syfte att undersöka hur en eller flera specifika sorter av undervisning kan påverka elevers attityder till matematiken, som exempelvis användandet av brädspel, dataverktyg, bildillustrerade uppgifter, STARBASE-programmet eller utomhusmatematik (Blazar et al., 2017; Abdullah, Halim & Zakaria, 2014; Dickerson, Eckhoff, Stewart, Chappell & Hathcock, 2014; Sengul & Dereli, 2013; Garcia & Pacheco, 2013; Thoonen et al., 2011; Topping, Campbell, Douglas & Smith, 2003; Waliczek, Logan & Zajicek, 2003; Schukajlow, Leiss, Pekrun, Blum, Muller & Messner, 2012; Woodward et al., 2006). En del artiklar har däremot ett mer öppet syfte där de allmänt undersöker vad som kan påverka elevers attityder till ämnet (Kiwanuka et al., 2017; Conner & Danielson, 2016; Dimitriadis, 2012; Urdan et al., 2006). När det gäller insamling av data har ungefär en tredjedel av artiklarna i denna kategori använt sig av kvalitativa metodansatser som exempelvis intervjuer och observationer (Larkin & Jorgensen, 2016; Garcia et al., 2013; Dimitriadis, 2012; Waliczek et al., 2003) medans en tredjedel använt sig av kvantitativa metodansatser i form av enkäter (Abdullah et al., 2014; Thoonen et al., 2011; Schukajlow et al., 2012; Sengul et al., 2013; Kiwanuka et al., 2017). Artiklarna i den resterade tredjedelen har använt sig av ”mixed method” dvs att artiklarna innefattar både kvantitativa och kvalitativa metodansatser (Conner et al., 2016; Dickerson et al., 2014; Topping et al., 2003; Woodward et al., 2006). Eleverna som deltagit vid artiklarnas insamling av data har vid insamlingstiden gått i klasser vilka motsvarar svenska skolans förskoleklass till åk 9. I artiklarnas resultat kan två olika typer av slutsatser urskiljas. Den första typen är
"undervisning-läraren" dvs. den undervisning som bedrivs av läraren, och den andra typen är "undervisningen- arbetssätt" vilket syftar till de arbetssätt som används i undervisningen. Dessa kommer båda att förklaras mer ingående nedanför. Undervisning-läraren utgör dock endast en liten del av artiklarnas resultat och kommer därför inte att fördjupas med en specifik artikel utan endast förklaras översiktligt.

4.2.3.1. Undervisning-läraren
Den ena typen av slutsatser som kan urskiljas från artiklarnas resultat är att elevernas attityder till matematik påverkas av hur den direkta undervisningen mellan utbildare och elev bedrivs (Blazar et al., 2017; Conner et al., 2016; Thoonen et al., 2011; Urdan et al., 2006). Vilket sätt läraren undervisar på, som exempelvis om hen använder sig av ”processinriktade instruktioner” eller ”classroomquestioning” i sin undervisning, har alltså en inverkan på elevers attityder till matematiken, speciellt när det gäller deras motivation att arbeta med matematiken (Kiwanuka et al., 2017; Conner et al., 2016; Thoonen et al., 2011). Resultaten visar även på att elevers attityder till matematiken främjas om de själva får inflytande i undervisningen och känner att de kan vara med och påverka, till skillnad från om läraren tar all kontroll och leder undervisningen utan att ta hänsyn till elevernas åsikter och behov (Kiwanuka et al., 2017; Blazar et al., 2017). Av dessa resultat kan man få uppfattningen av att det är läraren som påverkar elevernas attityder till matematiken. Resultaten tyder dock på att det är just undervisningen som har den direkta påverkan på elevernas matematiska attityder. Lärarens påverkan finns också där eftersom det är hen som bedriver undervisningen men denna påverkan ses endast som indirekt i dessa fall.

4.2.3.2. Undervisning- arbetssätt
Resultaten av denna kategoris artiklar visar även att elevers attityder till matematik påverkas av vilka arbetssätt som används i matematikundervisningen. Arbetssätt kan exempelvis innebära vilka gruppkonstellationer eleverna arbetar i eller vilka uppgifter och vilket material de arbetar med. Trots att denna del av artiklarnas resultat har ett större fokus på den delen av undervisningen som eleverna oftast genomför på egen hand, som exempelvis eget arbete, så har läraren även här en påverkan på elevernas attityder till matematiken. Dock är också denna påverkan indirekt då läraren ofta bestämmer arbetssätt men det är arbetssättet i sig som påverkar elevernas attityder. Majoriteten av artiklarnas resultat i denna kategori visar att elevernas attityder till matematik påverkas av vilka uppgifter eller aktiviteter de förväntas
genomföra i undervisningen (Larkin et al., 2016; Conner et al., 2016; Abdullah et al., 2014; Dickerson et al., 2014; Sengul et al., 2013; Garcia et al., 2013; Dimitriadis, 2012; Topping et al., 2003; Waliczek et al., 2003; Schukajlow et al., 2012). Resultaten pekar på att uppgifter där eleverna arbetar med vanliga arbetsblad eller böcker leder till negativare attityder (Larkin et al., 2016; Conner et al., 2016; Sengul et al., 2013) medan uppgifter som baseras på en aktivitet leder till mer positiva attityder (Larkin et al., 2016; Conner et al., 2016; Topping et al., 2003; Waliczek et al., 2003). Resultaten tyder framförallt på att hands-on aktiviteter, dvs uppgifter där eleverna får vara aktiva, där man kanske använder konkret material eller går ut i naturen, främjar elevernas attityder som exempelvis motivation och intresse för matematiken (Conner et al., 2016; Dickerson et al., 2014; Topping et al., 2003; Waliczek et al., 2003). Detta fördjupas nedan med hjälp av artikeln *The Examination of a Pullout STEM Program for Urban Upper Elementary Students* av Dickerson et al. (2014). En del av artiklarnas resultat visar även att elevernas attityder kan främjas av par- eller grupparbeten (Urdan et al., 2006; 16d) samt att de uppgifter de ställs inför ska innehålla klara instruktioner (Abdullah et al., 2014; Woodward et al., 2006) då eleverna på så sätt inte misslyckas med uppgiften på grund av att de inte förstår den.

Syftet med artikeln av Dickerson et al. (2014) är att avgöra om elevers attityder till STEM-utbildning och STEM-karriärer påverkas efter deltagandet i STEM-programmet ”STARBASE”. STARBASE-programmet innebär att elever i fjärde- till sjätte klass lämnar skolan varje dag i fyra-fem heldagar i följd för att undervisas på STARBASE där de får lära sig om ett visst STEM-innehåll och karriärer i samband med ett visst projekt. Projekten kan exempelvis handla om geospatiala färdigheter, då får eleverna bland annat göra kartor med hjälp av trisshjul och GPS-enheter. STARBASE-programmet används alltså utöver elevernas vanliga naturvetenskap och matematikundervisning i klassrummet. För att undersöka artikeln syfte har Dickerson et al. (2014) använt sig av både enkäter och intervjuer som metodansatser dvs. mixed method. Det var dock intervjuer som hade störst fokus på elevernas attityder, i dessa deltog 119 elever från klass 4–6 där 65% av eleverna var flickor och majoriteten av eleverna var afroamerikaner eller vita. I själva STARBASE-programmet deltog totalt 2201 elever från klass 4–6. Resultaten i Dickerson et al.:s (2014) artikel visar att eleverna uttryckte positiva attityder till STARBASE-programmet och dess upplägg. Framförallt hade eleverna positiva attityder till arbetssättet som användes och uttryckte en önskan om fler hands-on uppgifter, där de bland annat fick experimentera, vara utomhus och uppleva, i de olika STEM-ämnena som exempelvis matematik. De menade att de STEM-aktiviteter och upplevelser samt
Eleverna visade på en uppfattning om att yrken om bland annat forskare, matematiker och ingenjör var viktiga och att en karriär inom dessa skulle innebära att de kunde göra en skillnad i världen även om det skulle vara utmanande.

4.2.4. Elevers uppfattning om sin egen förmåga

Det som kännetecknar denna kategori är hur elevers uppfattning om sin egen förmåga i matematik påverkar deras attityder och känslor till ämnet. I artiklarna definieras elevers uppfattning om sin förmåga med olika begrepp som exempelvis ”self-efficacy” (Chatzistamatiou, Dermitzaki, Efklides & Leondari, 2015; Lamb, Akmal & Petrie, 2015; Phan, 2012; Martin et al., 2015), ”self-concept” (Tornare, Czajkowski & Pons, 2015; Viljaranta, Tolvanen Aunola & Nurmi, 2014; Ferla, Valcke & Cai, 2009), ”self perceived abilities” (Wach, Spengler, Gottschling & Spinath, 2015) och ”mindset” (Tapola & Niemivirta, 2008) men eftersom att dessa begrepp har en marginell skillnad i innebörd kan de sammanfattas till en och samma definition. Definitionen elevers uppfattning om sin egen matematiska förmåga kan bland annat innebära hur eleven tror att hen lär sig bäst (Ferla et al., 2009), i vilken miljö hen lär sig (Tapola et al., 2008), vilka arbetsproblem olika matematiska områden kan orsaka för eleven (Viljaranta et al., 2014) samt om eleven tror att lärandet är formbart (Romero, Master, Paunesku, Dweck & Gross, 2014). Av de 12 artiklarna som utgör kategorin har i stort sett alla använt sig av kvantitativa enkäter som metodansats för insamling av data, vissa artiklar har även använt sig av en ytterligare metodansats som exempelvis intervjuer (Viljaranta et al., 2014; Lamb et al., 2015; Martin et al., 2015). Eleverna som svarat på artiklarnas enkäter går i klasser som motsvarar svenska skolans klass f-9. Forskningen tyder alltså, med tanke på resultatet som visas nedan, på att elevers uppfattning om sin egen förmåga påverkar deras attityder på samma sätt oavsett ålder.

Artiklarnas resultat visar både på att elevers uppfattning om sin egen förmåga påverkar positiva attityder som glädje, stolthet och intresse (Chatzistamatiou et al., 2015; Lamb et al.,
2015) och negativa attityder som skam och ångest (Phan, 2012; Ferla et al., 2009). Vilken uppfattning eleverna har om sin egen matematiska förmåga kommer alltså att ha en positiv eller negativ inverkan på deras matematiska attityder (Viljaranta et al., 2014; Martin et al., 2015; Spinath & Steinmayr, 2008; Tapola et al., 2008; Romero et al., 2014). Resultaten visar även att det finns en allmän skillnad hos flickor och pojkar när det kommer till deras uppfattning om deras matematiska förmåga (Wach et al., 2015; Ferla et al., 2009). De tyder nämligen på att det finns en allmän inställning hos flickor om att de bör presteras sämre i matematik samt att denna inställning tillslut leder till att de skapar sig en identitet som en icke matematisk människa (Wach et al., 2015; Larkin et al., 2016). Hur elevers uppfattning om sin egen matematiska förmåga påverkar deras attityder framkommer bra i artikeln: *Do student self-efficacy and teacher-student interaction quality contribute to emotional and social engagement in fifth grade math?* av Martin & Rimm-Kaufman (2015).

Ämnet s användbarhet

Denna kategori handlar om förhållandet mellan elevers syn på matematik som ett viktigt, användbart ämne och deras attityder till matematiken. Trots att ingen av artiklarna i den nuvarande studiens forskningsöversikt har som huvudsakligt syfte att undersöka just detta förhållande visar ändå flera av artiklarna, i deras resultat, på att elevernas värdering av matematiken är kopplad till deras attityder till ämnet. Av denna anledning ses därför denna kategori ”ämnets användbarhet” som en för viktig del i den föreliggande studiens resultat för att inte tas med som en egen kategori. Kategorin innehåller 8 artiklar som mer eller mindre berör elevers syn på matematikens användbarhet. Artiklarna i kategorin har till huvudsak använt sig av kvantitativa metodansatser vid insamling av data. Eleverna som deltagit i artiklarnas studier har gått i klasser som motsvarar svenska skolans förskoleklass till åk 8. Av dessa är det dock endast en av artiklarna som använt sig av deltagare från högstadiet (Lambic & Lipkovski, 2012) vilket kan göra att kategorins resultat med mindre säkerhet kan appliceras på högstadieelever i allmänhet. Artiklarnas resultat pekar på att skolelever får positivare attityder till matematik om de tycker att matematik är roligt eller om de ser ämnet som meningsfullt (Chatzistamatiou et al., 2015; Abdullah et al., 2014; Dickerson et al., 2014; Lambic et al., 2012; Ball, Huang, Cotten, Rikard & Coleman, 2016). Kan eleverna koppla matematiken till sin värld utanför skolan och se vilken nytta de kan ha av matematiken i vardagliga situationer i både nutid och framtid utvecklar de alltså ett större intresse för matematiken samt en motivation att lära sig ämnet (Abdullah et al., 2014; Dickerson et al., 2014; Thoonen et al., 2011; Ball et al., 2016). Resultaten visar även på vikten av att eleverna ser ett syfte med de matematiska uppgifter de ställs inför, för att de ska känna sig motiverade att arbeta med dem (Larkin et al., 2016; Urdan et al., 2006). Är uppgifterna intressanta och lätt att relatera till vardagslivet ser alltså eleverna en större mening med ämnet och skapar på så sätt positivare attityder till ämnet matematik. Artikeln nedanför av Ball et al. (2016) presenterar en fördjupning av hur elever kan se på matematikens användbarhet.

Artikeln Invaluable values: an expectancy-value theory analysis of youths' academic motivations and intentions av Ball et al. (2016) har som syfte att undersöka vad som påverkar motivationen att i framtiden läsa STEM-ämnen i highschool och college hos elever från minoriteter som exempelvis elever med en afroamerikansk bakgrund. Syftet med artikeln uppkom av anledningen att minoriteter som afroamerikaner är underrepresenterade i STEM-kurser i highschool och college samt i STEM-yrken. Metodansatsen som användes för insamling av data i Ball et al.:s (2016) artikel var kvantitativa enkäter. Dessa innehöll bland
annat frågor om elevernas intresse att gå ut highschool och om de tror att en highschoolutbildning kommer hjälpa dem att få ett välbetalt jobb i framtiden. Deltagarna i artikeln投降 studie var 1178 elever från klass 4 och 5 som sammanlagt representerade 12 skolor från en storstad i sydöstra USA. Av de deltagande eleverna var 95% afroamerikaner. Resultaten i Ball et al.'s (2016) artikel visar att när nyttjandevärde, dvs. huruvida eleverna anser att matematik är ett viktigt och användbart ämne, ändras så ändras även deras motivation till ämnet åt samma håll. Om eleverna utvecklar en mer positiv syn på matematikens användbarhet så förändras alltså även motivationen till det positiva och tvärt om. Resultaten pekar även på att förändringar i hur mellanstadielöptelever upplever ett ämnes nyttjandevärde kan förutsätta om eleverna har för avsikt att hoppa av eller gå klart highschool när de blir äldre. Den främsta orsaken till att elever motiverar sig till att studera mer matematik och andra STEM-ämnena i highschool samt till att gå klart skolan och inte hoppa var enligt resultaten i Balls et al.'s (2016) artikel hur det kunde förbättra deras liv på lång sikt. Exempelvis så var elevernas tro om att en highschool utbildning, där man läst STEM-ämnen, skulle hjälpa dem att få ett bra jobb där man tjänar mycket pengar en vanlig orsak till att de motiverade sig och utvecklade positiva attityder till matematiken och de andra STEM-ämnena.

4.3. Sammanfattning/syntes

Av resultaten i den föreliggande studien kan det konstateras att alla fem kategorier som studien redogör för ovan har någon slags påverkan på elevers attityder till matematik. Påverkan på elevernas matematiska attityder kan både ha en positiv och en negativ effekt beroende på hur kategorierna hanteras och kommer till uttryck. Exempelvis så visar resultaten att typen av arbetssätt har en inverkan på elevernas attityder till matematiken. Dock främjar bara arbetssättet attityderna när de av eleverna uppfattas som roliga och intressanta, gör de inte det har arbetssättet en motsatt effekt på elevernas matematiska attityder.

Som nämnts tidigare kan de olika kategorierna ibland kopplas ihop med varandra och samarbeta eller påverka varandra för att i sin tur påverka elevers matematiska attityder. I resultaten är kategorin läraren det tydligaste exemplet på detta. Resultaten visar nämligen att läraren inte bara kan påverka eleverna direkt genom sin stöttning och uppmuntran utan att hen även kan samarbeta med elevernas föräldrar genom att förmedla samma matematiska anda istället för att arbeta mot varandra och förvirra eleven. Läraren som utbildare har även
kontrollen över faktorer som bland annat undervisningsstil vilket innebär att hen indirekt, genom bestämmandet av undervisningen, kan påverka elevernas attityder.

Huvudkategorin sociala faktorer innebär den påverkan som kommer från relationen med andra människor och som skapas i sociala miljöer. De människor som resultaten främst visat sig ha en påverkan på elevers attityder till matematik är vuxna i deras närhet så som föräldrar och lärare. I elevernas relation med dessa ses de av eleverna som förebilder vilket innebär att eleverna gärna vill efterlikna och ta efter det de upplever att de vuxna tycker och tänker. Elevers matematiska attityder kan därmed både påverkas till det positiva och det negativa beroende på vilka attityder till ämnet de vuxna i deras närhet utstrålar eller förmedlar till eleverna. Huvudkategorin eleven betyder att elevers attityder till matematik kan påverkas av dem själva, dvs av deras syn på ämnet matematik samt av deras uppfattning om vilken matematisk förmåga som behövs för att kunna arbeta med ämnet under olika omständigheter. Uppfattar en elev sig själv som en person, oförmögen att klara av vissa matematiska uppgifter eller specifika arbetssätt har hen därför föga anledningar till att bygga upp positiva attityder till ämnet överlag. Har eleven däremot bilden av sig själv att hen kan klara av de matematiska prövningar hen ställs inför finns det större chans att hen skapar en positiv inställning till ämnet. Den sista huvudkategorin meningsfullhet innebär att elevernas matematiska attityder påverkas beroende på om de ser matematiken och den matematiska undervisningen som meningsfull, dvs om de anser sig kunna ha nytta av de lärdomar som matematiken kan leda till. Ser eleverna ingen meningsfullhet i matematiken eller i de arbetsuppgifter de ställs inför minskar lätt deras attityder som motivation då de anser att de arbetar i onödan. Betraktar
eleverna däremot matematiken som ett meningsfullt ämne vars lärdomar kan kopplas till vardagliga situationer är det mer sannolikt att de utvecklar positiva attityder till ämnet. Till meningsfullheten ingår även elevernas glädje till ämnet, tycker eleverna exempelvis att matematiklektionerna är roliga ökar deras känsla av att de gör något meningsfullt vilket i sin tur ökar deras positiva attityder till ämnet.

Huvudkategorierna förhåller sig till varandra liksom de fem grundkategorierna, vilka nu kan ses som underkategorier till huvudkategorierna, på ett sätt där de både enskilt, tillsammans och genom varandra kan påverka elevers attityder till matematik (se figur 2). Exempelvis kan huvudkategorierna eleven och meningsfullhet ses som närbesläktade då båda på sätt och vis bygger på åsikter och uppfattningar hos eleven, medan huvudkategorin sociala faktorer kan ses som en påverkan till de andra två.

Figur 2. Egen illustration. Huvudkategoriernas förhållningssätt till varandra

5. Diskussion

Detta avsnitt inleds med att den föreliggande studiens frågeställningar kort besvaras. Efteråt fördjupas resultaten med en koppling till den teoretiska bakgrunden och svaret på den föreläggande studiens andra frågeställning diskuteras närmare. En metoddiskussion förs därefter och efterföljs av en punkt där de konsekvenser för undervisning, som resultaten i den
föreliggande studien kan medföra, diskuteras. Diskussionen avslutas med ett stycke om vidare forskning.

5.1. Sammanfattning av huvudresultat
Målet med den föreliggande studien har varit att genom en granskning av tidigare forskning, i en systematisk litteraturstudie, undersöka vad som kan påverka elevers attityder till matematik, samt att ta reda på hur elevernas positiva attityder till ämnet kan främjas. Resultaten har visat att det finns flera saker som kan påverka elevers matematiska attityder. Dessa påverkanstyper är: hur lärare och föräldrar stöttar eleverna/barnen i deras matematiska arbete samt vilka matematiska attityder de själva förmedlar till eleverna/barnen, hur undervisningen bedrivs, hur eleverna uppfattar sin egna matematiska förmåga och huruvida de ser ämnet matematik som användbart för deras vardag och framtid. Utifrån dessa påverkansfaktorer har tre mer översiktliga typer av påverkan kunnat identifierats. De tre mer översiktliga påverkanstyperna sammanfattar det mest betydelsefulla från den föreliggande studiens resultat på ett bra sätt och kan därför ses som de främsta delarna som behövs för att kunna påverka en elevs matematiska attityder. Dessa typer av påverkan är: sociala faktorer, dvs hur elevers matematiska attityder påverkas av relationer med andra människor som lärare och föräldrar samt hur dessa framställer matematiken för eleverna; eleven, vilket innebär att elevernas attityder till matematiken påverkas av sin egna uppfattning om hur en matematisk människa bör vara samt om hen passar in i den mallen eller inte och; meningsfullhet som betyder att elevernas attityder till matematiken påverkas av huruvida de ser ett syfte eller en mening med matematiken och de matematiska uppgifter de ställs inför.

Resultaten tyder på att alla typer av påverkan som nämns i den föreliggande studien både kan ha en positiv och negativ inverkan på elevers attityder till matematik beroende på hur de används och hur de kommer till uttryck. Det kan även konstateras att ju mer positiv påverkan eleven ställs inför desto positivare attityder utvecklar eleven. Det mest optimala för att främja elevers positiva attityder är alltså att de ställs inför så många typer av rätt hanterad och uttryckt påverkan som möjligt. Hur detta kan uppnås kommer att diskuteras nedan i resultatdiskussionen, då främst med ett fokus på de tre mer översiktliga typerna av påverkan.
5.2. Resultatdiskussion

Resultatdiskussionen har delats upp i två delar vilka motsvarar den föreliggande studiens två frågeställningar.

5.2.1. Vad visar forskning kan påverka elevers attityder till matematik?

I resultaten hos den föreliggande studien har tre stora, mer översiktliga typer av påverkan på elevers attityder till matematik när det gäller skolsammanhang, nämligen eleven, meningsfullhet och sociala faktorer, kunnat identifierats utifrån det centrala innehållet hos fem mindre påverkanstyper vilka presenterats var och en för sig ovan i den föreliggande studiens metodavsnitt. Dessa tre typer av påverkan har på så sätt stöd i forskning (Woodward et al., 2006; Dickerson et al., 2014; Nugent et al., 2015) och kan anses som utgångspunkter att diskutera elevers attityder till matematik i skolsammanhang.

ändå kan ses ha de största effekterna när det gäller påverkan på elevers matematiska attityder i skolsammanhang bör fokus dock främst ligga på dessa vid arbetet i främjandet av elevers positiva matematiska attityder. Detta kan även bekräftas från den teoretiska bakgrunden där det framgår att människors negativa attityder till ämnet matematik främst bygger på negativa erfarenheter och upplevelser från den matematiska undervisningen i skolan (Frenzel, Pekrun & Goetz 2007; Boaler 2017; Furner & Duffy 2002, Boaler 2008).

5.2.2. Hur kan elevers positiva attityder främjas?

Eftersom att den föreliggande studiens resultat visar på flera exempel där elevernas matematiska attityder har påverkats till det positiva, som exempelvis i Dickerson et al.:s artikel i resultatdelen ”undervisning”, finns möjligheten att bryta den negativa syn på matematik både i och utanför skolsammanhang som råder i samhället. Detta ges även stöd
från PISA-mätningar vilka har visat att ungefär hälften av de deltagande eleverna faktiskt har ett intresse till matematiken (OECD, 2013). För att främja elevers positiva attityder till matematik i skolsammanhang visar den föreliggande studiens resultat att alla typer av påverkan som visats i resultaten bör hanteras och komma till uttryck på rätt sätt, det vill säga att den delen av en påverkanstyp som kan leda till negativa attityder motverkas samtidigt som den delen vilken kan leda till positiva attityder främjas. Eftersom att påverkanstyperna sociala faktorer, eleven och meningsfullhet behandlar det mest centrala från de andra kategorierna kan det dock ses som relevant att först och främst lägga fokus på dessa i arbetet mot att främja elevers positiva attityder till matematik i skolsammanhang.

5.2.2.1. Eleven

För att elevers attityder ska främjas genom påverkanstypen ”eleven” behöver den allmänna uppfattningen att vissa människor inte är lämpade för ämnet matematik motarbetas, speciellt med tanke på att Boaler (2017), vilket nämns i den föreliggande studiens teoretiska bakgrund, i sin neurovetenskapliga forskning beskriver att i stort sett alla människor kan utveckla ett avancerat matematiskt tänkande trots att ingen hjärna är den andra lik. Detta tyder även den föreliggande studiens resultat på där exempelvis Woodward et al. (2006) i kategorin ”läraren” beskriver att elever med svårt för matematik förbättras i ämnet när de stöttas av sina lärare i det matematiska skolarbetet. Det är dock inte bara den negativa allmänna uppfattningen om matematik som har visat sig behöva motarbetas utan även den negativa uppfattningen som vissa elever kan ha om sin egen matematiska förmåga. Detta eftersom att denna uppfattning eller self-efficacy, som är en annan benämning, inte bara är något som samspepar med elevers attityder (Shunk, 1991), vilket antyds i den teoretiska bakgrunden. I resultatdelen” elevers uppfattning om sin egen förmåga” beskrivs istället att deras self-efficacy även kan påverka deras matematiska attityder (Chatzistamatiou et al., 2015; Phan, 2012). För att denna påverkan ska få rätt effekt är det alltså viktigt att eleverna får lära sig att alla har förmågan att behärsa matematiken samt att lärandet är formbart. För att eleverna ska förstå detta är det viktigt att de blir hjälpta att lyckas samt blir medvetna om sitt eget lärande. Enligt resultaten kan detta bland annat uppnås genom att eleverna presenteras för olika typer av arbetssätt och matematiska strategier så de blir medvetna om hur de på bästa sätt tar in kunskap och tacklar olika problem (Dickerson et al., 2014). Genom att eleverna får vetskap om sina styrkor och svagheter samt bygger upp strategier för hur man tar itu med svårigheter känner de sig mer kapabla (Martin et al., 2015). Detta gör, enligt Martin et al. (2015) som beskrivs i resultatdelen ”elevers uppfattning om sin egna förmåga”, att elevernas självförtroende växer
samt deras glädje och lust att ta sig an svårare matematiska utmaningar, vilket även styrks i den teoretiska bakgrunden av Dweck (2006).

5.2.2.2. Meningsfullhet

När påverkanstypen meningsfullhet används och uttrycks rätt är undervisningen väl planerad så att ämnet och de uppgifter eleverna arbetar med framställs som intressanta och roliga. I resultatdelarna ”undervisning” och ”ämnets användbarhet” beskrivs att om eleverna ser en uppgift eller ett sätt att arbeta som intressant och viktigt eller som roligt kommer de känna en mening med det de gör och med matematiken som ämne vilket innebär att de kommer att kämpa hårdare för att lära sig det de arbetar med (Ball et al., 2016; Dickersson et al., 2014, Larkin et al., 2016). För att gynna meningsfullheten extra och på så sätt främja elevernas attityder har resultaten även visat att bland annat hands-on aktiviteter som kan kopplas till verkligheten och som eleverna ser sig ha nytta av i verkliga livet bör användas i stort omfång (Conner et al., 2016; Dickerson et al., 2014). Detta kan kopplas till den föreliggande studiens teoretiska bakgrund där det påstås att många anser att deras skolmatematik varit tråkigt men att de sedan fått upp ögonen för matematiken när de väl slutat skolan (Boaler 2008). Genom att relatera matematikundervisningen till världen utanför visar den föreliggande studiens resultat att undervisningen också kan användas för att introducera olika matematiska yrken för eleverna och på så sätt bygga upp deras intresse för fortsatta matematiska studier och framtida yrken (Dickersson et al. 2014; Ball et al., 2016). Det kan dock ses som viktigt att hänsyn tas till att alla elever är olika och att de därför inte alltid anser sig ha samma nyttjande värde av samma saker och uppgifter. Elever med olika typer av self-efficacy kan även tänkas leda till att vissa inte ser ämnet som användbart för just dem eftersom att de har uppfattningen om att matematik är något som de aldrig kommer att behärskas. Av anledningen att alla elever är olika är det viktigt att undervisningens uppgifter, arbetssätt och genomgångar varieras samt att eleverna får inflytande i vad de bör lära sig och kunna påverka undervisningen, vilket beskrivs i resultatdelen ”undervisning” (Kiwanuka et al., 2017; Blazar et al., 2017). Detta ska dock göras inom ramen för läroplanen.

5.2.2.3. Sociala faktorer

När det gäller sociala faktorer som påverkan på elevers attityder till matematik är det enligt den föreliggande studiens resultatdelar ”läraren” och ”föräldrar” viktigt att lärare och föräldrar som två sociala faktorer använder sin status som förbilder till att föregå med gott exempel
inför deras elever och barn (Nugent et al., 2015; Soni et al., 2017). Det är därför betydelsefullt att de själva om de har en dålig attityd till matematiken, ett vacklande självförtroende eller en skev syn på vilka som besitter matematiska förmågor, arbetar med dessa så att de inte överförs på eleverna/barnen (Gundersson et al., 2011; Soni et al., 2017). För att de sociala faktorernas påverkan ska ge rätt effekt måste alltså lärare och föräldrar enligt resultaten framställa matematiken på ett positivt sätt, som ett viktigt och roligt ämne. De måste även uppmuntra eleverna att våga prova på olika matematiska utmaningar samt finnas där, både på hemmaplan och i skolan, för att ge stödning och tips när det går trögt för eleverna/barnen (Sakiz et al., 2012; Fraser et al., 2007; Ahmed et al., 2010). Uppmuntringen och stödningen får eleverna att känna sig trygga och tro på sig själva. Det är alltså oerhört viktigt att eleverna känner att de vågar försöka arbeta med matematiken trots att det kanske är svårt samt att de av lärare och föräldrar blir intalade att det är okej att misslyckas då det kan antas att det oftast är misslyckandena som leder till lärdomar och framgångar. Av de sociala faktorerna har dock den sociala faktorn läraren en extra stor chans att främja elevers positiva attityder till matematik då den tiden som eleven är i skolan med läraren utgör den största delen av tiden som eleven möter matematiken. För att lärarens påverkan ska ge rätt effekt måste läraren, förutom det som nämns tidigare, behandla alla elever lika och utgå från att alla kan lära matematik, vilket ges stöd i den teoretiska bakgrunden av Boaler (2017). Läraren har även chans att indirekt främja elevernas positiva attityder genom att styra de andra påverkanstyperna. Det är exempelvis läraren som i skolan måste visa eleverna att matematik är ett ämne för alla och som ska hjälpa dem att utveckla matematiska strategier och bli medvetna om sitt egna matematiska lärande. Det är även läraren som har hand om matematiklektionerna och kan påverka undervisningen så att eleverna ser ett syfte med den samt en mening med matematiken som ämne vilket nämns i resultatdelen ”undervisning”.

Genom att systematiskt arbeta med dessa typer av påverkan som den föreliggande studien resulterat i, med målet att främja elevers positiva attityder till matematik, bör man alltså kunna leda elevernas lärande i rätt riktning. Kan vi som är verksamma i skolan hjälpa eleverna att skapa positiva matematiska attityder samt bibehålla dessa till vuxen ålder kan vi kanske även på sikt påverka den negativa synen som finns i samhället. Detta skulle kunna leda till att exempelvis tv och media börjar framställa matematiken som roligt och spännande vilket i sin tur har en positiv, kognitiv verkan på de matematiska attityderna hos en ny generation av barn. Genom att arbeta för positiva matematiska attityder i skolan borde det
alltså vara möjligt att på sikt, kunna skapa en positiv trend i samhället när det gäller matematik.

5.3. Metoddiskussion

Oavsett hur noggrant en studie genomförs är det svårt att undkomma brister i utförandet och metoden. Utöver det handlar till största del om massor av val som ska göras och beslut som ska fattas, varje beslut måste dessutom noga övervägas innan det fattas då det kan ha en stor betydelse för hur studiens slutliga resultat kommer att se ut. Det finns dock alltid faktorer som kan begränsa vilka val som görs och orsaka brister i utförandet och metoden som exempelvis den mänskliga faktorn eller begränsningar i tid och/eller tillgång till artiklar i fulltext. I den föreliggande studien har systematik och noggrannhet varit två viktiga aspekter vid genomförandet, trots det kan det inte frångås att brister, av olika orsaker, kan förkomma även här.

Mycket tid och eftertanke har lagts ner på valet av sökord och bearbetandet av den föreliggande studiens söksträng. Många delsökningar har prövats och synonymer till de bestämda orden i delsökningarna har testats fram och tillbaka. Anledningen till att flera av de orden och delsökningar som prövats har valts bort är främst att de riskerat att vinkla den föreliggande studiens forskningsöversikt och resultat eller att de inte tillfört något till den föreliggande studien. Det finns emellertid en risk att vissa synonymer till sökorden missats och att forskningsöversikten därför inte utgör all tillgänglig, relevant forskning. Om så är fallet skulle detta kunna bero på att sökningen sker på engelska, mitt ordförråd är därför begränsat då engelska inte är mitt första språk. Ett ord som upptäcktes i efterhand är "affect". Ordet borde ha testats som synonym i delsökningen med känsla- och attitydbegrepp. Men eftersom att samma ord redan används, men med en annan innebörd, i delsökningen för påverkansbegrepp har ändå de artiklar med relevans som affect skulle bidragit med inkluderats i studien. Vid en närmare efterkontroll framgick dock att ordet inte nämnvärt har påverkat den föreliggande studiens forskningsöversikt.

Efter att det manuella urvalet gjorts återstod 42 artiklar i den föreliggande studiens forskningsöversikt. Detta kan ses som förhållandevis få artiklar då forskningsöversikten innan det manuella urvalet bestod av 325 artiklar. Att glappet är så pass stort tyder på att söksträngen inte var nog preciserad till det berörda ämnet. Bland de artiklar som sorterades bort vid det manuella urvalet syntes fyra olika mönster; att kombinationen av sökorden ledde till forskning som undersökte hur elevers attityder påverkar deras prestationer eller deras self-
efficacy; att exempelvis ordet primary, som användes för att begränsa forskningsdeltagarnas ålder, hade en annan innebörd i vissa artiklars topic som exempelvis ”huvudsaklig”, vilket ledde till att artiklar där attityderna hos lärare, lärarstudenter eller elever med fel ålder undersökt; eller att artiklar som undersökte elevers attityder till naturvetenskap kom med av anledningen att de ofta innehöll referenser från matematiska tidskrifter vilka sökningen gav utslag på. För att undvika dessa resultat översvägrades redan vid uppbyggnaden av söksträngen ett införande av den booleska operatorn NOT i samband med ord som achievement, self-efficacy, teacher eller science. Dock togs beslutet att inte exkludera något ord från söksträngen då det kunnat göra mer skada än nytta om relevanta artiklar vars topic innehöll dessa ord togs bort. I efterhand kan detta ses som rätt beslut då uteslutandet av framförallt teacher och self-efficacy hade inneburit att en stor del av den föreliggande studiens resultat hade uteblivit. Som en sista avgränsning, för att minska differensen mellan de 325 artiklarna som databassökningen resulterade i och den färdiga forskningsöversikten på 42 artiklar, prövades olika ämnesområde i Web of Science såsom ”Educational/Educational research”. Det visade sig emellertid att flera relevanta artiklar då uteblev, därför gjordes det aktiva valet att inte använda ämnesområde i databasen som avgränsning.

5.4. Konsekvenser för undervisning

Resultaten i den föreliggande studien visar liksom syftet med matematik i lgr11 (skolverket 2016) på att undervisningen ska bidra till att eleverna utvecklar ett intresse för matematik samt en tilltro till sin förmåga att använda matematik i olika sammanhang. Att döma av resultaten borde dock undervisningen anpassas för att främja denna del av syftet med matematiken i högre grad än vad som verkar göras i dagens läge då PISA-resultat visar att intresset för matematik är tämligen lågt både i Sverige och i större delar av resten av världen (OECD 2013). För att uppnå detta bör skolorna arbeta mot att främja de delar av de påverkanstyper som den föreliggande studien berör, som studien visat leder till positiva matematiska attityder, samt begränsa de delarna av de olika typerna av påverkan som visat sig leda till negativa matematiska attityder hos eleverna. Detta innebär att ett stort ansvar läggs på läraren när det gäller planering av undervisning, inkluderandet av eleverna och det aktiva arbetet under lektionerna. I den föreliggande studiens resultat kan dock en redogörelse finnas för vilka typer av påverkan som kan ha en effekt på elevers matematiska attityder samt hur dessa skulle kunna tillämpas för att effekten ska bli positiv. På så sätt kan lärarna använda den föreliggande studien som en riktlinje till att öka sin medvetenhet för hur olika typer av påverkan på elevers matematiska attityder bör uttryckas när de ska tillämpa detta i praktiken och på så sätt arbeta för att främja elevers attityder till matematik på ett mer systematiskt och målmedvetet sätt. Detta gäller alla grundskolelärare då den föreliggande studiens resultat mer eller mindre kan appliceras på alla elever i den svenska grundskolan.

5.5. Fortsatta studier

Utifrån den föreliggande studiens forskningsöversikt visade sig klasskamrater vara något som ett flertal artiklar tyder på har en påverkan på elevers attityder till matematiken. Det kan därför även vara lämpligt att utforska om det finns fler typer av påverkan på elevers attityder än de som den föreliggande studien har resulterat i. Den största påverkan kanske inte ens är funnen ännu.
Referenser

Bilagor

Bilaga 1

<table>
<thead>
<tr>
<th>Webb of Science 14/5</th>
<th>Sökord/kombination av sökord</th>
<th>Avgränsningar</th>
<th>Sökträffar</th>
<th>Urval 1</th>
<th>Urval 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>(belief* OR attitude* or emotion*)</td>
<td>Topic, english, article</td>
<td>501304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td>(primary OR elementary OR middle) AND school</td>
<td>Topic, english, article</td>
<td>66378</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>(student* OR children* OR peer* OR pupil*)</td>
<td>Topic, english, article</td>
<td>1731811</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td>(influences* OR affect* OR bias OR impact* OR agency)</td>
<td>Topic, english, article</td>
<td>4684733</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>Math*</td>
<td>Topic, english, article</td>
<td>340363</td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td>#1 AND #2 AND #3 AND #4 AND #5</td>
<td>Topic, english, article</td>
<td>325 140 42</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bilaga 2: Läraren

<table>
<thead>
<tr>
<th>Referens</th>
<th>Syfte/forsknings-fråga(or)</th>
<th>Metod och data</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifika undervisningspraktiker elevernas attityder och beteenden i klassen?</td>
<td>Land: USA</td>
<td>Resultaten visade att de kvinnliga forskarna var bra förebilder till både flickor och pojkar. Detta ansågs dock snarare beror på att eleverna fick engagera sig i autentisk vetenskap och se de kvinnliga forskarna som personliga, snarare än genus matching mellan förebilden och eleven. Resultaten visar även att eleverna påverkas av vilka attityder läraren har om hen är rolig och barnvänlig.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Scientist role models in the classroom: how important is gender matching?</td>
<td>Deltagare: 231 elever i år 2–6. Metodansats: enkäter och uppföljande intervjuer.</td>
<td>Con Carino: Teacher Caring, Math Self-Efficacy, and Math Achievement Among Hispanic English Learners</td>
<td></td>
</tr>
<tr>
<td>Conner, L. D. C & Danielson, J. (2016)</td>
<td>Fråga 1: påverkar elevers uppfattningar om huruvida deras lärare stöttar dem deras matematiska ”self-efficacy”och prestationer. Skiljer sig påverkan mellan elever som redan kan engelska och elever som i stunden lär sig engelska.</td>
<td>Deltagare: 1456 elever i klass 5–6 Metodansats: frågeformulär Land: USA</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Description</td>
<td>Participants</td>
<td>Method 1</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Do student self-efficacy and teacher-student interaction quality contribute to emotional and social engagement in fifth grade math?</td>
<td>Denna studie undersökte (a) hur matematikens self-efficacy bidrar till elevernas uppfattning om sina känslomässiga och sociala engagemang i femte klassens</td>
<td>Deltagare: 387 elever från klass 5</td>
<td>Metodansats: observationer och enkäter</td>
</tr>
<tr>
<td>Autors</td>
<td>Titel</td>
<td>Sammanfattning</td>
<td>Land</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------------</td>
<td>------</td>
</tr>
<tr>
<td>Study Title</td>
<td>Syftet med studien</td>
<td>Deltagare:</td>
<td>Metodansats:</td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Effects of Student Perceptions of Teachers' Motivational Behavior on Reading, English, and Mathematics Achievement: The Mediating Role of Domain Specific Self-Efficacy and Intrinsic Motivation</td>
<td>Syftet med denna studie var att undersöka förhållandet mellan elevernas uppfattning om lärarnas motivationsbeteende och elevernas prestationer samt vilka effekter det ger på elevernas motivation och self-efficacy inom bland annat ämnet matematik.</td>
<td>6908 elever i klass 7</td>
<td>frågeformulär</td>
</tr>
<tr>
<td>Perceived Social Support and Early Adolescents' Achievement: The Mediational Roles of Motivational Beliefs and Emotions</td>
<td>Syftet med den föreliggande studien var att undersöka motivations och affektiva vägar genom vilka socialt stöd kan påverka elevers prestationer.</td>
<td>238 elever i klass 7</td>
<td>enkät</td>
</tr>
<tr>
<td>Classroom effects on student motivation: Goal structures, social relationships, and competence beliefs</td>
<td>Syftet med studien är att undersöka vilka faktorer som påverkar elevers motivation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
att motivera elever. Med andra ord, om studenten kunde vara mer motiverad om miljöförhållanden i hade varit rätt, därför måste utbildare ta ett visst personligt ansvar för studentens motivation och i förlängning för elevens uppenbara brist på motivation.

Meeting the curricular needs of academically low-achieving students in middle grade mathematics

Land:

Resultaten visar att läran kan främja elevers attityder genom att finnas där och stötta eleverna i deras arbete med uppgifterna så att de kan lösas.

Bilaga 3: Föräldrar

<table>
<thead>
<tr>
<th>Referens</th>
<th>Syfte/forsknings-fråga(or)</th>
<th>Metod och data</th>
<th>Resultat</th>
</tr>
</thead>
</table>
| **How do student and classroom characteristics affect attitude toward mathematics? A multivariate multilevel analysis**
Metodansats: Frågeformulär
Land: Uganda | Föräldrars uppfattningar om ämnet matematik hade en signifikant effekt på elevers attityder. |
<p>| The Role of Parental Math Anxiety and Math Attitude in Their | Artikelns syftar till att undersöka: a) hur barns matematiska ångest påverkas | Deltagare: 595 elever i klass 4–9 samt en förälder från varje barn. | Resultaten tyder på att föräldrars matematiska ångest och andra |</p>
<table>
<thead>
<tr>
<th>Artikel</th>
<th>Omslag</th>
<th>Författare</th>
<th>Sammanfattning</th>
<th>Metodansats</th>
<th>Land</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAND: BELGIEN</td>
<td>LAND:</td>
<td>LAND: USA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A MODEL OF FACTORS CONTRIBUTING TO STEM LEARNING AND CAREER ORIENTATION</th>
<th>Syftet med denna forskning var att utveckla och testa en modell av faktorer som bidrar till lärande och karriärorientering inom vetenskap, teknologi, teknik och matematik (STEM) samt att undersöka de komplexa vägarna och relationerna mellan sociala, motivations och instruktionsfaktorer som ligger till grund för dessa resultat hos skolungdomar.</th>
<th>Deltagare: 800 elever i klass 4–8</th>
<th>Resultaten visade att bland annat familjen hade inflytande på elevernas intresse för STEM- ämnena och därmed för matematik. När föräldrarna har intresse och positiva attityder till matematik kan dessa alltså smitta av sig. Föräldrarna kan även introducera matematiska aktiviteter utanför skolan för sina barn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAND:</td>
<td>LAND:</td>
<td>LAND: USA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASSROOM, HOME AND PEER ENVIRONMENT</th>
<th>Studien undersöker hur elevers attityder och</th>
<th>Deltagare: nästan 7000 elever</th>
<th>Support hemifrån påverkar elevers</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>Topic</td>
<td>Method</td>
<td>Country</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>-----------</td>
</tr>
</tbody>
</table>
får överlag mindre ångest över matte, tycker att matte är kul och får ett bättre självförtroende vilket leder till ett ökat intresse till ämnet.

Bilaga 4: Undervisning

<table>
<thead>
<tr>
<th>Referens</th>
<th>Syfte/forskings-fråga(or)</th>
<th>Metod och data</th>
<th>Resultat</th>
</tr>
</thead>
</table>
| *How do student and classroom characteristics affect attitude toward mathematics? A multivariate multilevel analysis*
Metodansats: Frågeformulär
Land: Uganda | Resultatet visade att "classroomquestioning" var bra för elevernas ATM (attityder till matematik) samt att eleverna så positivt på matematiken när de fick mer eget inflytande i undervisningen. |
| *Teacher and Teaching Effects on Students’ Attitudes and Behaviors*
Blazar, D & Kraft, M. A. (2017) | Fråga1: I vilken utsträckning påverkar lärare elevernas attityder och beteenden i klassen?
Fråga 2: I vilken utsträckning påverkar specifika undervisningspraktiker elevernas attityder och beteenden i klassen? | Deltagare; elever och lärare i klass 4–5
Metodansats: observationer med videospelnning och frågeformulär.
Land: USA | Elevernas attityder påverkas av allmänna undervisningspraktiker, det vill säga hur läraren undervisar. |
| *'I Hate Maths: Why Do We Need to Do Maths?' Using iPad* | Syftet med denna forskning var att få kunskap om elevernas tankar och känslor | Deltagare: klass 3 & 6
Metodansats: | Resultatet visade att eleverna utvecklade positiva attityder till |
<table>
<thead>
<tr>
<th>Artikel (och författare)</th>
<th>Syftet och det som undersöks</th>
<th>Deltagare</th>
<th>Metod</th>
<th>Land</th>
<th>Resultat och tolkning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Diaries to Investigate Attitudes and Emotions Towards Mathematics in Year 3 and Year 6 Students Larkin, K & Jorgensen, R. (2016)</td>
<td>när de engagerar sig i skolmatematik</td>
<td></td>
<td></td>
<td></td>
<td>matematiken när de kunde se ett syfte med uppgifterna exempelvis när de kunde relatera uppgifterna till världen utanför. Eleverna gillade även när uppgifterna var baserade på en aktivitet, de gillade alltså inte arbetsblad eller att kopiera från tavlan.</td>
</tr>
<tr>
<td>The Examination of a Pullout STEM Program for Urban Upper Elementary Students</td>
<td>Artikelns syfte är bland annat att undersöka vilken inverkan STEM programmet STARBASE har på mellanstadieelevers attityder och uppfattning om</td>
<td>Deltagare: 119 elever i klass 4–6</td>
<td>Metodansats: frågeformulär och</td>
<td></td>
<td>Elevernas attityder till STEM-ämnen förbättrades av de arbetsätt som användes. Elevernas kvalitativa svar</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>The Effect of Learning Integers Using Cartoons on 7th Grade Students' Attitude to Mathematics</td>
<td>Syftet med denna forskning är att undersöka effekten på elevernas attityder gentemot matematik när teckningar (bilder som symboliserar uppgifterna) används för att undervisa matematik med heltal</td>
<td>Deltagare: 61 elever i klass 7</td>
<td>Användandet av teckningar i matematikundervisningen påverkade elevernas attityder positivt och ökade intresset för mattekursen. Den vanliga, konventionella undervisningsmetoden ledde tvärt om till en minskning av elevernas intresse för mattekursen. Eleverna beskriver själva att arbetssättet gav dem glädje och ökade deras intresse för matematik.</td>
<td>Metodansats: enkäter</td>
<td>Land: Turkiet</td>
</tr>
<tr>
<td>A constructivist computational platform to support mathematics education in elementary school</td>
<td>Ett av syftena med studien var att analysera hur ett specifikt datorprogram påverkade elevernas motivation, samarbete och diskussion.</td>
<td>Deltagare: 60 elever i klass 3</td>
<td>Resultaten visar att användningen av dataprogram i metodkurser ger verktyg för att förbättra elevernas motivation, samarbete och diskussion baserat på egna förberedande erfarenheter. Det ger alltså positiva attityder och egen kunskapsskapande från ett konstruktivistiskt tillvägagångssätt med hjälp av teknik.</td>
<td>Metodansats: intervjuer</td>
<td>Land: México</td>
</tr>
<tr>
<td>Provision for mathematically gifted children in primary</td>
<td>Denna studie syftade till att framkalla fler bevis om vad som påverkar attityder hos elever med särskilda matematiska begåvningar behöver bland annat</td>
<td>Deltagare: 20 elever från grundskolan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Title</td>
<td>Description</td>
<td>Method</td>
<td>Country</td>
<td>Result</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-----------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching methods for modelling problems and students’ task-</td>
<td>Artikeln undersöker bland annat om elevers glädje,</td>
<td>Intervjuer och observationer</td>
<td>USA</td>
<td>Resultaten visade ingen skillnad i elevernas glädje.</td>
<td></td>
</tr>
</tbody>
</table>
Specific enjoyment, value, interest and self-efficacy expectations

Schukajlow, S., Leiss, D., Pekrun, R., Blum, W., Muller, M & Messner, R. (2012)

Classroom effects on student motivation: Goal structures, social relationships, and competence beliefs

| Syftet med studien är att undersöka vilka faktorer som påverkar elevers motivation | Deltagare: | Metod: litteraturstudie | Land: |

Meeting the curricular needs of academically low-achieving students in middle grade mathematics

| Syftet är att undersöka hur olika typer av arbetsuppgifter/arbetssätt påverkar attityderna hos elever med svårighet i matematik. | Deltagare: 6 lärare och 53 elever i klass 6. | Metod: observationer och enkäter | Land: |

Resultaten visar att elever kan bli motiverade om de finner uppgiften intressant, eller om de får arbeta med en klasskamrat.

| Uppgifter med klara instruktioner kan leda till bättre attityder hos elever med matematiksvårigheter då de på så sätt inte misslyckas på grund av att de inte förstått uppgiften. Arbeten i par eller mindre gruppar kan också höja attityderna. |

Bilaga 5: Elevers uppfattning om sin egna förmåga

<table>
<thead>
<tr>
<th>Referens</th>
<th>Syfte/forsknings-fråga(or)</th>
<th>Metod och data</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>'I Hate Maths: Why Do We Need to Do Maths? Using iPad Video Diaries to Investigate Attitudes and Emotions Towards Mathematics in Year 3 and Year 6</td>
<td>Syftet med denna forskning var att få kunskap om elevernas tankar och känslor när de engagerar sig i skolmatematik</td>
<td>Deltagare: klass 3 & 6</td>
<td>Resultaten visar att elever ofta har dåliga matematiska attityder eftersom att de inte ser sig själva som matematiska personer.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Development of a Cognition-Priming</td>
<td>Artikeln undersöker vad effekten av en integrerad</td>
<td>Deltagare: 254 elever i klass f-6</td>
<td>Resultatet visar att om eleverna har en hög self-</td>
</tr>
<tr>
<td>Model Describing Learning in a STEM Classroom</td>
<td>STEM-kursplan för studentpåverkan är, speciellt när det gäller self-efficacy och intresse relaterad till STEM-ämnen.</td>
<td>Metodansats: frågeformulär</td>
<td>Land: USA</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Phan, H. P. (2012)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Do student self-efficacy and teacher-student interaction quality contribute to emotional and social engagement in fifth grade math?</td>
<td>Denna studie undersökte (a) hur matematikens self-efficacy bidrar till elevernas uppfattning om sina känslomässiga och sociala engagemang i femte klassens matematik, och (b) i vilken utsträckning högkvalitativa lärar-elev interaktioner kompenserar för elevernas låga matematiska self-efficacy för att bidra till engagemang i matematiken.</td>
<td>Metod: observationer och enkäter</td>
<td>Land: USA</td>
</tr>
<tr>
<td>Academic self-efficacy and academic self-concept: Reconsidering structural</td>
<td>Syftet med studien är bland annat att undersöka vilken påverkan matematiskt ”self-concept” och ”self-efficacy”</td>
<td>Metodansats:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deltagare: 8796 elever i klass 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>relationshrelationships</td>
<td>har på eleverns motivation och prestationer.</td>
<td>frågeformulär</td>
<td>Flickor har lägre matematiskt self-concept än pojkar.</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Spinath, B & Steinmayr, R. (2008)</td>
<td>Land: Belgien</td>
<td>Metodansats: frågeformulär</td>
<td>Land: Tyskland</td>
</tr>
</tbody>
</table>

| **The role of achievement goal orientations in students' perceptions of and preferences for classroom environment** | I denna artikel framhävs betydelsen av elevernas motivationsfaktorer när man undersöker skillnader i deras uppfattning om och preferenser för lärmiljön. | ***Deltagare: 208 elever i klass 6*** | Elevers motivation påverkas av deras mindset, dvs deras uppfattning om hur man lär sig och i vilken miljö man lär sig. Motivationen uppstår alltså inte i en specifik situation utan tas med in i klassrummet. Det finns olika ”motivational patterns” som man antar beroende på vilket mindset man har (fokus på lärande, prestation eller undvikande). Dessa olika mindset gillar olika typer av arbetssätt och uppgifter. |
| **Tapola, A & Niemivirta, M. (2008)** | **Land:** Finland | **Metodansats:** frågeformulär | **Land:** USA |

| **Academic and Emotional Functioning in Middle School: The Role of Implicit Theories** | Målet med den nuvarande studien var att undersöka effekterna av implicita teorier om formbarhet på akademiska och emotionella funktioner. | ***Deltagare: 115 elever från klass 6–8*** | Resultaten visar att elevernas teorier om formbarhet av intelligens och känslor kan förutsäga akademiska och känslomässiga funktioner (som exempelvis ångest). Detta gäller först och främst för elever med sämre välmående. Elever som tror att deras |
| **Romero, C., Master, A., Paunesku, D., Dweck, C. S & Gross J. J. (2014)** | **Metodansats:** frågeformulär | **Land:** USA | ***Land:** USA |
knäslor (attityder) går att förändra är mer benägna att reagera adaptivt på emotionella utmaningar genom att engagera sig i effektiva strategier, såsom omprövning.

Bilaga 6: Ämnets användbarhet

<table>
<thead>
<tr>
<th>Referens</th>
<th>Syfte/forsknings-fråga(or)</th>
<th>Metod och data</th>
<th>Resultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>'I Hate Maths: Why Do We Need to Do Maths?' Using iPad Video Diaries to Investigate Attitudes and Emotions Towards Mathematics in Year 3 and Year 6 Students</td>
<td>Syftet med denna forskning var att få kunskap om elevernas tankar och knäslor när de engagerar sig i skolmatematik</td>
<td>Deltagare: klass 3 & 6 Metodansats: videodagbok Land: Australien</td>
<td>Resultaten visar att eleverna fick positivare attityder till matematiken när de kunde se ett syfte med uppgifterna, som exempelvis om de kunde relatera uppgifterna till världen utanför skolan.</td>
</tr>
<tr>
<td>STEM Literacy</td>
<td>ordproblemlösning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The Examination of a Pullout STEM Program for Urban Upper Elementary Students</td>
<td>Artikeln syfte är bland annat att undersöka vilken inverkan STEM programmet STARBASE har på mellanstadieelevers attityder och uppfattning om STEAM-utbildning och karriär.</td>
<td>Deltagare: 119 elever i klass 4–6</td>
<td>Resultaten visar att elevernas attityder förbättras när de sr en mening med ämnet.</td>
</tr>
<tr>
<td>Can teachers motivate students to learn?</td>
<td>I denna artikel undersöks den relativ a betydelsen av lärarnas undervisning och deras uppfattningar om ”efficacy” för att förklara variationen bland elevers motivation.</td>
<td>Deltagare: 621 lärare och 3462 elever i klass F-6</td>
<td>Resultatet visar att eleverna har positiva attityder till skolarbete som kopplas till deras egna värld</td>
</tr>
<tr>
<td>Invaluable values: an expectancy-value theory analysis of youths' academic motivations and intentions</td>
<td>Syftet med studien är att undersöka hur elever blir mer intresserade av matematik samt andra STEM-ämnen för att sedan bli mer motiverade att gå ur highschool och börja på college</td>
<td>Deltagare: 1201 elever i klass 4–5</td>
<td>Nyttjandevärdet, dvs. huruvida eleven tycker att han kan ha nytta av kunskaper i ämnet i framtiden har en betydande verkan på elevens motivation att gå ur highschool. Ex. om det är så att det kan leda till ett bra jobb kan de bli motiverade att läsa matte i highschool.</td>
</tr>
<tr>
<td>Classroom effects on student motivation: Goal structures, social relationships, and competence beliefs</td>
<td>Syftet med studien är att undersöka vilka faktorer som påverkar elevers motivation.</td>
<td>Deltagare:</td>
<td>Resultaten visar att eleverna kan bli mer motiverade att arbeta med matematik om de får intressanta uppgifter.</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>