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Mobile Robots for Learning Spatio-temporal Interpolation Models in
Sensor Networks - The Echo State Map Approach

Erik Schaffernicht1, Victor Hernandez Bennetts1, and Achim J. Lilienthal1

Abstract— Sensor networks have limited capabilities to model
complex phenomena occuring between sensing nodes. Mobile
robots can be used to close this gap and learn local interpo-
lation models. In this paper, we utilize Echo State Networks
in order to learn the calibration and interpolation model
between sensor nodes using measurements collected by a mobile
robot. The use of Echo State Networks allows to deal with
temporal dependencies implicitly, while the spatial mapping
with a Gaussian Process estimator exploits the fact that Echo
State Networks learn linear combinations of complex temporal
dynamics. The resulting Echo State Map elegantly combines
spatial and temporal cues into a single representation. We
showcase the method in the exposure modeling task of building
dust distribution maps for foundries, a challenge which is
of great interest to occupational health researchers. Results
from simulated data and real world experiments highlight the
potential of Echo State Maps. While we focus on particulate
matter measurements, the method can be applied for any other
environmental variables like temperature or gas concentration.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are usually installed
in order to monitor certain environmental variables over a
long time interval and are often subject to severe constraints
regarding placement, budget and maintenance frequency.
Yet, the resulting measurements and spatial models of the
environment should be as accurate as possible. Hence it is
necessary to calibrate the sensors properly and to devise an
interpolation scheme to generate estimates at places without
sensor nodes.

An example application is the creation of dust exposure
models for workers in foundries. Excessive exposure to high
concentrations of respirable dust causes severe damage to
workers’ health. Occupational health professionals are highly
interested in precise dust distribution models for working
environments [1], but high quality measurement devices
are expensive and often only available for limited time
intervals. It is therefore common practice to perform only
point measurements at hand-picked places for short times
[2]. It proves to be quite hard to properly generalize those
measurements in space and time.

In this work, we propose a novel approach to estimate
spatial models (i.e. maps) of environmental variables using
Echo State Maps and a hybrid sensing framework, composed
of a mobile robot and a WSN. The mobile robot is equipped
with sophisticated, high quality sensors, while the sensors
in the WSN are of cost effective, low fidelity devices. The
contributions that we present in this paper are as follows:
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Fig. 1. The RAISE project: Dust measurements from stationary sensor
nodes and a mobile robot are combinded to create dust exposure maps in
industrial work environments like foundries.

• We introduce an approach that combines data collected
with mobile robots and a WSN, using a learning scheme able
to handle spatial and temporal interpolation. While the WSN
provides non-calibrated measurements at sparse locations for
very long periods of time, the robot can provide only time-
limited, but calibrated data that is used to learn a model for
interpolating between the sensing nodes.
• The comparative evalution of our proposed approach
shows that it outperfoms simpler methods that only consider
spatial aspects.
• We address a practical application, namely dust pollution
monitoring in a foundry hall (see Fig. 1), which is of high
interest for occupational health and safety specialists. A
more detailed description of this application scenario, its
challenges and individual data exploration, i.e. robot-only
and sensor network-only, is available in [3].

II. RELATED WORK

The estimation of the spatial distribution of environmental
variables (e.g. gas, temperature, etc.) is a problem that has
been widely studied. However, most works addresse either
sensors on a mobile robot or a WSN, while the fusion of
both technologies has yet to be fully explored.

Mobile robots have been widely used to create models of
the spatial distribution of, e.g., gaseous emissions [4], [5].
Mobile platforms can only sense one location at a time and
have limited operation times. This results in models, often
based on kernel estimation methods [6], that are time-limited
snapshots of the variable under study.



In contrast, the predicted models of WSNs are computed
with relatively sparse sensing positions but at a high temporal
resolution. With a limited number of nodes, research has
been focused on optimal sensor placement [7] and local
interpolation schemes [8], [9].

A hybrid monitoring system, composed of a mobile robot
and a WSN, was presented in [10]. The authors used an
aerial robot and a set of sensing nodes to create temperature
maps in an ad-hoc testing environment. Under strong a
priori assumptions (including time-invariance) regarding the
spatial distribution of the ambient temperature, the authors
thoroughly evaluated the predictions of their model and
concluded that, in order to achieve high spatio-temporal
measurement density and prediction accuracy, it is required
to combine both, sensor networks and mobile robots.

III. SENSOR CHARACTERISTICS

Two different dust sensors are employed throughout this
work. On one hand, we use a low-cost dust sensor as part of
our sensing nodes (Fig. 2(a)), which as a reference is also
mounted on the robot, and on the other hand, a high-cost dust
sensor, usually used by occupational health professionals,
which is only mounted on the robot (Fig. 2(b)). Both sensors
have a sampling frequency of 1Hz.

The low-cost sensor is a Sharp GP2Y1010AU. It is an
optical sensor for fine airborne particles (e.g. dust, smoke),
and has a mass concentration resolution of 0.1 mg/m3. The
GP2Y1010AU is directly exposed to the environment and its
output is proportional to the particle size and concentration,
but it does not differentiate between different particle sizes.
A few big particles might give the same reading as a
high concentration of smaller particles. In the context of
occupational health, the lack of selectivity to the particle
size strongly limits the usefulness of the sensor, since the
particulate matter size of interest is often very specific based
on the type of dust in the environment.

In contrast, the Dusttrak II/DRX is much more sophis-
ticated and expensive. The measurement principle is also
based on a light-scattering photometer, but the air sample is
pumped into a calibrated measurement chamber that adjusts
e.g. for humidity. The dust concentrations are measured for
specifically selected particulate matter sizes.

The goal of this work is to estimate and predict the
readings of the Dusttrak at an arbitrary position in the area
by combining the readings of all stationary low-cost sensor.

First, we investigated how correlated those two types of
sensors are. Thereto, the Dusttrak and the Sharp sensor were
mounted next to each other on the robot. Si = sit1 , ..., s

i
tn

denotes the time series of dust measurements obtained by
stationary sensing node i. D(x,y) = dt1 , ..., dtn denotes the
time series of dust measurements obtained by the Dusttrak
mounted on the robot at position (x, y). We consider 11
measurement tours conducted in a foundry with changing
conditions, each with a duration between 1 and 1.5 hours
for a total of 14 hours.

Analyzing the signals of both sensors for those trials (two
examples are given in Fig. 3), we observe the following:

(a) (b)

Fig. 2. Sensors and plattforms. (a) Stationary sensing node (1) Sharp
dust sensor, (2) temperature and humidity sensor. The gray box protects a
microcontroller and a Wifi connector from the harsh environment conditions
in foundries. (b) Dusttrak (6) mounted on a Clearpath Husky plattform (1).
Other sensors of the plattform include a GPS/IMU (2), a photo inonization
detector (3), LIDAR range sensors (4,8) for mapping and localization, an
anemometer (5) and the Sharp dust sensor (7).
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Fig. 3. Two examples of the data collected (x-axis: time in sec, y-
axis: voltage in mV) (a) 90 minutes tour through the foundry with various
activities happening. (b) Sand casting creating big amounts of dust particles
in close proximity to the robot. Please not that the Sharp sensor quickly
goes into saturation.

• The signal-to-noise ratio of the Sharp sensor is much
lower.

• The Sharp sensor goes into saturation in high dust
concentration scenarios.

• In the non-saturation phases the signals are correlated.
Quantitatively, we calculated Pearson’s correlation coeffi-

cient between both raw sensor signals1 S and D as r = 0.71.
Using 11-fold cross-validation, we trained Echo State

Networks (see next section) with different parameter settings,
attempting to predict the Dusttrak signals D with the low-
cost sensor data S as input to the network. The correlation
coefficient between the network prediction and the real signal
improved to r = 0.87 on average, indicating that the non-
linear processing by the ESN is indeed helpful.

Furthermore, we investigated adding additional input vari-
ables (e.g. predicting the Dusttrak data from the low-cost sen-
sor and humidity values) using weighted mutual information
as a feature selection method [11]. Out of the investigated
inputs (wind speed, wind direction, robot speed, robot pose,
humidity and temperature), none but the temperature showed

1The problematic periods of saturation are not excluded from the eval-
uations presented. From an application’s point of view, they are of high
interest.



a significant improvement in the results of the dust estimation
(r = 0.95). Examination of these results showed that the
temperatures were different for all cases in which the low-
cost sensor went into saturation. The network learned to
predict the true dust levels based on temperature for these
cases, yet occupational health experts and process engineers
from the foundry are not aware of a causal relation. Thus, we
focus on the dust readings for the remainder of the paper, a
proper investigation of additional modalities is future work.

IV. ECHO STATE MAPS

In this section we will discuss Echo State Networks (ESN)
and how to extend them spatially via Gaussian Processes
(GP).

A. Echo State Networks

Introduced by Jaeger [12], [13], ESNs are a well estab-
lished tool for times series analysis. They are well suited for
non-linear signal processing, very quick and easy to train,
and can be extended with new output units. Furthermore, the
output layer structure is very suitable for spatial interpolation.

This neural network model consists of a single large, fully
recurrent hidden layer, the so-called reservoir. The weights
of this layer, denoted by the matrix W, are not adapted, but
instead randomly chosen, subject to the ’Echo State property’
(the largest eigenvalue of W < 1). As response to the input
data this reservoir creates many temporal patterns that will
fade over time (an echo). The internal state X of the network
is computed as

X(t) = f(W ∗X(t− 1) +W in ∗ St). (1)

St are the sensor measurements as discussed in the previ-
ous section. The function f is in most cases chosen as the
hyperbolic tangent, introducing non-linearity to the system,
while W in are the randomly chosen weights from the input
layer to the reservoir, which are fixed as well. The only
learning step is to estimate the weights of the output layer
W out as a linear combination of those patterns within the
reservoir to match the teaching signal D, which is often
executed as a least-squares fitting via the pseudo-inverse:

W out
(x,y) = (XTX)−1XD(x,y). (2)

This simple least-square fitting is not only very fast, but
allows to learn new outputs in an already existing network
without changing or retraining it.

The output of the network Y is computed as

Y(x,y) =W out
(x,y) ∗X(t). (3)

In the context of environmental mapping, the stationary
sensor readings are the input time series to the network. We
then learn a linear combination of the ’echos’ of the input
data to match the robot’s Dusttrak readings D(x1,y1) at posi-
tion (x1, y1), creating a predictor for the dust concentration
at that position. Fig. 4(a) visualizes the described use of Echo
State Networks for dust concentration estimation. Please note

that this predictor implicitly learns the calibration for the
sensors as part of the prediction model. Up to this point,
there is no spatial information connected to the sensor input,
this information will be introduced via the output weights in
the next section.

Since the network can be extended easily, robot mea-
surements at a new position (x2, y2) can be used to learn
a different linear combination of ’echos’ existing in the
same network. In this way, we iteratively learn the linear
combination for each cell in a grid map using a single ESN
to create what we call an Echo State Map.

B. Spatial Interpolation of ESN weights

Acquiring the necessary training data for each single cell
of the map is very time consuming and often completely
unfeasible. For this reason, we propose the use of a Gaussian
Process to inter- and extrapolate the output weights W out

(x,y)

of the ESN to the unobserved cells of the map. This even
allows for a continuous representation of the dust exposure,
eliminating the explicit need for a grid map.

The general idea of interpolating the network weights
between robot measurement positions is visualized in Fig.
4(b).

We follow directly Rasmussen and Williams [14], em-
ploying the prediction using noise-free observations. The
observations in this case are the estimated output weights of
the ESN, which are, according to the network training pro-
cedure, the optimal choice in a least-squares sense. Hence,
the assumption of noise would change the weights at these
known observation positions. This undesired effect is also the
reason, why other regression techniques that do not exactly
pass through the observations, like e.g. Nadaraya-Watson
[15], which is often used in mobile robot olfaction scenarios
[6], are unsuitable choices.

The predictive mean of the GP model is defined as:

W out
∗ := k(P∗, P )[k(P, P )]

−1W out. (4)

W out is the vector of a single trained output weight at
different positions, while P encodes the 2D position of
places with robot measurements, and by extension trained
output weights. P∗ is the list of query positions where W out

∗
is to be estimated. k is the covariance function, which defines
a similarity between the measurement places. We are using
the squared exponential covariance function:

k(pi, pj) = exp
(
−1

2

|pi − pj |2

h2

)
. (5)

h is the length-scale, a free parameter, changing the
smoothness of the regression. It can be estimated automati-
cally using log-likelihood maximization. Technically, Eq. 4
has to be evaluated for each output weight from the reservoir.
Yet, the computational expensive part k(P∗, P )[k(P, P )]

−1

has to be computed only once. Therefore, this does not
introduce a major computational burden for the method.

We currently do not use the predictive variance estimate
provided by the GP framework, but it should be used as



(a) (b)

Fig. 4. Core concepts of Echo State Maps. (a) Learning the interpolation model for a robot measurement position. Sensor readings are fed into the ESN
and propagated through the reservoir. With the training data provided by robot measurements the output weights are learned. (b) Interpolation of a single
output weight of the Echo State Network. For each of the four robot measurement positions an independent estimate for the output weights is learned and
then each weight individually is interpolated with a Gaussian Process.

additional information when interpreting Echo State Maps.
Furthermore, it could be used as input for a robot exploration
strategy, selecting the next measurement position of the robot
based on the the predictive variance values.

Due to the random structure and possibly redundant dy-
namics inside the ESN, it is possible that very similar time
series in neighboring positions will yield very different out-
put weights. Since the weights are just a linear combination
of the ESN state and the interpolation result is just another
linear combination, they are all part of a linear manifold in
the weight space. Hence, the transition of the interpolated
output values will be smooth (and will change very little
despite very different weights). Furthermore, this weight
approach allows to interpolate spatial and temporal patterns
in the map, compared to a output value interpolation which
is purely spatial.

C. Simpler approaches to the problem
The Echo State Map approach will be compared against

two other approaches. First, a simple GP interpolation be-
tween the sensing nodes (also known as kriging in spatial
statistics) disregarding the robot measurements is used. The
sensor readings are corrected with a linear calibration model.
Here the dust readings are interpolated directly, compared to
interpolating the model parameter in Echo State Maps.

Second, we solve a system of linear equations (SEQ) in-
stead of using an ESN to build a model of linear combination
of the sensor readings. For each of the robot’s measurements
at a single location an equation is formed as:

dtn = αs1tn + βs2tn + · · ·+ ωsitn + C (6)

With enough measurements this becomes an overdeter-
mined system of equations and the parameters α, β, . . . , ω, C

are computed with a least squares method. We then inter-
polate the SEQ parameters between measurement positions
with a GP as described in section IV-B. This represents a
pure spatial interpolation disregarding temporal patterns.

V. EXPERIMENTAL COMPARISON

First, in order to evaluate the proposed method properly,
experiments in simulation with complete ground truth infor-
mation were conducted. Afterwards we will present results
obtained in a real foundry which captures the full complexity
of the problem. However, due to the lack of ground truth in
the foundries, quantitative evaluation is difficult.

A. Simulation

The used simulation is a very simplified industrial envi-
ronment shown in Fig 5(a), yet it reflects major challenges
encountered in real environments. It consists of two parts:
the state/environment model and the sensor model. The envi-
ronment model includes possible dust sources (representing
workplaces that can produce a high dust concentration as
well as ambient pollution), dust sinks (representing the place,
where the air and dust leaves the area) and a simple airflow
model (simulating the effects of the active ventilation used
in foundries).

The environment model is organized as a grid map and
for each simulation step for each cell the following steps are
executed:

1) Introduce new dust particles at dust sources with a
predefined activity pattern and high variance (represent-
ing work areas) and very low intensity, low variance
everywhere else (ambient dust).

2) Remove dust particles at the dust sinks.
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Fig. 5. An example for the simulated environment. (a) Shows the
position of the dust sources, the dust sink and the main airflow as a coarse
visualization. The actual airflow model used for the simulation is of three
times higher resolution compared to the depicted one. (b) One scenario for
acquiring test data, showing the positions of the stationary sensor nodes,
the robot measurement positions and grid cells used in the simulation.

3) Propagate particles according to the airflow model. Each
cells contains its primary airflow direction, which a
particle will follow with a probability of 0.6. In the
other cases the particle will stay in its current cell or
move to a random adjacent cell.

4) Apply the sensor model to simulate the readings of the
stationary sensor nodes.

The sensor model applies all the observations mentioned
in Sect. III. The underlying dust concetration value of the
environment model is scaled and translated, before white
noise is added, using the observed signal-to-noise ratio from
Sect. III, and a cutoff is applied, in order to mimic the
saturation effect observed with the real sensors at 800mV. For
the measurements of the robot the unperturbed values of the
simulation where used, reflecting the fact that the expensive
sensor is the only ground truth available.

With a predefined pattern of source activity (no dust
sources active, single sources active with varying dust inten-
sity, multiple sources active, etc.) a sequence of dust readings
for all cells is created, which subsequently were used as
training and test data. Within such a scenario, we investigated
the performance of the the proposed method, while testing
different configurations. Changes included sensor location,
robot measurement positions and length of the robot mea-
surement steps. One such test configuration is shown in Fig.
5(b).

B. Results

With the part of data designated as training data set (mea-
surements at specified locations and time intervals imitating
robot operation), the output weights of the ESN and the
parameters of the SEQ are computed as explained above
and then interpolated using the Gaussian Process to build
a complete model.

1) Simulator example: We are considering the exact con-
figuration shown in Fig. 5(b). One sensors is placed in the
middle of each outer wall, and training data is acquired with
the robot at seven measurement positions for 4 minutes each.
Afterwards the dust distribution is estimated by the different

Fig. 6. From left to right: (1) Ground truth of the dust distribution. The
situation includes high activity at dust source 2, and low activities at source
1 and 3. The effect of this configuration is a strong dust flow from lower
left corner to the upper right corner via the upper half of the map. (2) Result
of simple GP interpolation based on four sensors. (3) Estimate via system
of equations. (4) Estimate by the Echo State Map.

approaches using only the current sensor readings of the four
sensors. A snapshot of a single time step is shown in Fig. 6.
In this case the sensor readings are high for S1 and S4 and
low for S2 and S3. The simple GP based interpolation not
only fails to capture the structure of the dust distribution, but
as a results of the missing implicit calibration and a lower
dust concentration along the wall, the estimated values are
far too low. Both, the SEQ approach and the Echo State Map
show structures more similar to the ground truth. The system
of equations shows some false estimates in the lower right
corner.

For a numerical evaluation of the model prediction quality
at each grid cell of the simulator the quadratic difference
between the estimated number of particles and the ground
truth is computed and summed for the whole map. We then
compute the mean and variance over the whole evaluation
part of the data set (40 minutes). The numbers2 in Table
I show the best mean performance by the Echo State Map
followed by the SEQ. Interestingly, for the shown example
scenario the variance of the error of the SEQ estimate is even
higher than for the simple GP interpolation. The second set of
numbers is the average over 22 different experiments using
the same environment, but different sensing configurations
(varying the number of sensors, the number of robot mea-
surements, the position of robot measurements and length of
robot measurements).

TABLE I
MEAN AND VARIANCE OF THE SUMMED QUADRATIC DIFFERENCE OVER

TIME FOR THE SCENARIO OF FIG. 5(B) AND THE AVERAGE FOR ALL

SIMULATED EXPERIMENTS.

Method Simple GP SEQ Echo State Map
mean (example) 9.6 6.7 3.7
variance (example) 8.6 10.9 7.2
mean (all) 12.4 8.7 5.3
variance (all) 11.6 10.3 7.9

The high variances observed are mainly caused by the sim-
ulated casting events, where huge numbers of dust particles
are introduced. They accumulate a very high error until the
dust plume reaches one of the sensors, resulting in a skewed
distribtion.

2The unit is 108 particles, but this arbitrary and subject to the amount of
particles used in the simulator.



(a) (b)

Fig. 7. Foundry environment. (a) Operation environment in the foundry. Furnaces are situated in the left part of the map, while sand casting and centrifuge
casting facilities are situated in the right part of the map. Seven stationary sensor nodes are installed in the area. The robot was performing two measurement
tours on the same day, one in the morning (red) and the other in the afternoon (blue). (b) Picture of the environment with the robot at the lower-left
position of the blue path.

2) General Observations: Unsuprisingly, the simple dis-
tance based interpolation approach is consistently producing
the highest deviations from the underlying dust distribution.
The method lacks information to differentiate the dust expo-
sure patterns that are created by the airflow.

Most of the time, the ESN approach is outperforming the
SEQ approach, especially in situations with a lot of changes
in the source activity patterns. As expected, the capabilty to
process the data in non-linear fashion as a times series puts
the ESN ahead of the SEQ, which just considers each time
step individually.

Yet there are scenarios in which both methods produce
very similar results. First, with very limited training data
per location (often containing only a single source activ-
ity change) the SEQ estimate generalizes better, while the
ESN overfits to the observed change and deviates in other
conditions. Second, the further away from the source the
sensors are positioned the smaller the difference between
both approaches becomes. Part of the issue is also the
applied airflow model, which over distance averages the dust
concentration and removes temporal variances. Third, the
more robot measurement positions are used the bigger the
advantage of the ESN becomes. With very few measurement
positions, the only benefit of using an ESN is the local signal
processing capability. Adding further measurement positions
allows the ESN to propagate temporal patterns through the
map.

Regarding internal parameters of the employed ESN, we
investigated the influence of the size of the reservoir (from
20 to 2000 neurons) and sparsity of connections therein
(from fully connected to 20% connectivity). While there was
no clear result regarding sparsity, we observed a distinct
response to changes in the size of the reservoir. The mean
error was not effected significantly, yet the variance increased
with increased size of the reservoir. This behaviour can
be reduced by increasing the number of training data (i.e.
lengthing the observation time), yet this is undesireable for

most applications. In ESN applications it is often favourable
to use large reservoirs in order to create rich dynamics, but
this leads to another potential issue for very large maps
and reservoirs. Since the number of output weights in an
Echo State Map is number of cells × number of neurons,
there might be a limitation concerning available memory.
Therefore, we prefer smaller reservoirs.

Since the sampling rate of the employed sensors is rather
high (1Hz) compared to the phenomena observed, we kept
the spectral radius of the reservoir (highest eigenvalue of
the weight matrix W) close to 1. Changing this parameter
towards values closer to 0 causes the ESN to perform more
like the SEQ, since this parameter controls time constant
of the system (i.e. the lifespan of the ’echos’ inside the
reservoir).

C. Echo State Map from a foundry

In order to test the proposed approach in a real world
scenario, we built a dust distribution model in a 300m2 area
of a foundry shop-floor. A map of the environment with
sensor nodes and the robot’s exploration paths for two tours
are shown in Fig. 7. The length of each tour was slightly over
an hour each. The robot stopped for two to three minutes to
collect data at several waypoints (denoted by circular markers
in Fig 7).

Normal distribution transform (NDT) maps [16] of the
environment were built to localize the robot via NDT-MCL
[17]. We assume that the uncertainty introduced by errors in
the localization system does not significantly influence the
results, since they are much smaller compared to uncertainty
introduced by turbulent airflow regimes and the chaotic
nature of dust emitting processes in a foundry.

The main challenge in the foundry is the absence of
ground truth data for evaluation. Instead, we consider the
scenario of one robot measurement tour executed to build
the exposure model. The data collected during a second
measurement tour is used to evaluate the previously built
model. It is therefore not possible to evaluate the complete



map, but only the positions the robot stopped at during the
second tour. During the first tour mutiple dust producing
activities with low-medium intensity where ongoing, while
during the second one it was mostly quiet with one casting
(medium-high intensity) being performed. The root mean
square error of the second measurement tour was 693µg/m3

for the purely sensor based interpolation with GP, 459µg/m3

using the SEQ approach and 322µg/m3 using an Echo State
Map.

During the uneventful parts of the second tour all three
models could model the low dust conditions. The casting
event, in which dust concentrations raise significantly, threw
the sensor-based interpolation far off, while the other two
approaches gave reasonable results. The observed effects
are very similar to those in simulation. One of the issues
encountered here was the previously discussed effect with
the stationary sensors being further away from the casting
event than the robot, and the resulting delay before the sensor
measure the changes and the models update accordingly.

VI. CONCLUSIONS

We introduced Echo State Maps as a methodology to
combine a wireless sensor network with localized robot
measurements in order to create a dense interpolation model.
Exploiting robot advantages like flexibility in movements,
mapping and localization capabilities and combining them
with stationary sensor readings allows to build improved en-
vironment models. The used Echo State Network additionally
provides intrinsic signal processing capabilities.

The initial application of the method in a foundry showed
promising results. Currently, we are investigating how to
bring these results to, e.g. occupational health studies. This
ongoing work requires additional ground truth data, collected
during longer periods of time and with additional high quality
stationary sensors.

If dependency between the temperature and dust con-
centration holds (see Sec. III), it would be preferable to
integrate this additional variable into the estimation model.
This is rather easy to achieve, since it only requires to add
additional inputs, one per temperature sensor, to the network
of the Echo State Map. Extensions to include further different
variables are easy to implement in the presented framework,
but have to be balanced against the increased danger for
overfitting the model.

Another issue to be explored is the long-term use of Echo
State Maps. Here we presented the initial construction of
the exposure model, yet the data collected in further robot
measurement tours should be used to update the existing
Echo State Map. The quick training algorithm makes this
certainly feasible, yet this includes interesting research ques-
tions regarding knowledge management (i.e. what to forget,
what to replace and what to keep or whether to learn a new
Echo State Map from scratch), robot exploration strategies in
order to identify interesting areas that are volatile and there-
fore interesting to observe, as well as planning and executing
regular autonomous inspection tours with the robot.
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