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Abstract—Due to its environmental, economical and safety
implications, methane leak detection is a crucial task to address
in the biogas production industry. In this paper, we introduce
Gasbot, a robotic platform that aims to automatize methane
emission monitoring in landfills and biogas production sites. The
distinctive characteristic of the Gasbot platform is the use of a
Tunable Laser Absorption Spectroscopy (TDLAS) sensor, along
with a novel gas distribution algorithm to generate methane
concentration maps of indoor and outdoor exploration areas.
The Gasbot platform has been tested in two different scenarios:
an underground corridor, where a pipeline leak was simulated
and in a decommissioned landfill site, where an artificial methane
emission source was introduced.

I. INTRODUCTION

Leak detection and emission monitoring in biogas facilities,
more specifically landfill sites, are of critical importance
and are gaining particular interest among EU authorities [1].
Landfill emissions account for 2% of the total Green House
Gases (GHG) released by human activity [2]. GHG are mostly
composed by methane (C'H,4) and carbon dioxide (CO5). In
addition to GHG, poisonous gases like hydrogen sulphide
(H>S) can be released from biogas production sites. A landfill
operator is required to issue monthly reports of methane emis-
sions and usually, methane measurements are taken manually
at a few predefined locations (such as bore holes or at the
borders of the landfill). This spatial and temporal sparsity
in the measurements complicates the detection of leaks and
ultimately, it causes a waste of resources and in a substantial
emission of GHG.

Landfill monitoring with static grids of sensors has been
proposed as a solution. In [3], the authors developed a sensor
module able to monitor methane and send reports to a central
station. The authors validated their system by placing several
sensor modules near the bode wells of a landfill site. While this
approach copes with the temporal sparsity, the measurements
are still restricted to a few specific locations, which need to
be determined during deployment.

Mobile robotics can contribute to mitigate the spatial spar-
sity of the measurement by providing a versatile system that is
able to adaptively collect measurement at different locations on
a landfill site. Mobile robots can outperform human operators
since, they are able to conduct repetitive measurements without
suffering from fatigue and they can be exposed to hazardous

conditions, for example areas with high H»S concentrations
[4].

Additional challenges arise due the limitation of current
sensing technologies. Traditional sensors (such as metal oxide
sensors) require a physical interaction between its sensitive
layer and the gaseous substance. This means that the sensor
has to be moved to the area of interest in order to collect
measurements that cover a few centimetres. In addition, metal
oxide sensors are partially selective. For real world applica-
tions, the presence of more than one type of gaseous com-
pound should be taken in consideration [5]. Alternative sens-
ing technologies emerged in the 90’s when TDLAS devices
became available. A TDLAS sensor can remotely measure
concentration of gases and, by tuning its emitting beam, a
TDLAS sensor can become highly selective to a specific
gas, for example methane [6]. Instead of reporting point
measurements, TDLAS devices report concentration values as
an integral measurement over the path of the laser beam.

The working principle behind TDLAS sensors is that, gas
molecules absorb energy in narrow bands of the electromag-
netic spectrum around specific wavelengths. Outside these
bands, there is no absorption. TDLAS sensors emit laser beams
tuned at the absorption band of the target gas. The laser diodes
are modulated in a way that, the emitted beam is driven on
and off of the wavelength of interest. During this process,
the power of the beam is measured continuously and, by
comparing the measurements when the beam is on the target
wavelength against the measurements when the beam is off,
it is possible to determine, with high degree of selectivity,
whether the emitted beam has traversed a concentration patch
or not.

Previous works have attempted to detect C' H4 using TDLAS
sensors. In [6], a TDLAS sensor was mounted on a car
and on an air plane in order to demonstrate the feasibility
of using TDLAS sensors for identifying areas with C'Hy
concentration. However, no further processing of the integral
concentrations was proposed. In [7], the authors proposed the
use of a TDLAS sensor, mounted on a pan-tilt unit, and an
array of reflective surfaces to estimate the C'H, concentrations
from an agricultural site. The focus of this work was in the
estimation of the total amount of emitted C'H, per unit of
time. Using an Optical Methane Detector (OMD), Grinham et



al. [8] proposed a system to improve the quantification of C'Hy
released rates from a water storage site. The authors mounted
a single-path OMD to an autonomous vessel in order to collect
C H, measurements over a prolonged period of time. The data
collected by the robotic vessel allowed the authors to identify
areas of high C'Hy ebullition as well as to estimate release
rates.

In this paper, we present Gasbot, a robotic platform aimed at
the landfill monitoring tasks. The Gasbot platform is equipped
with a TDLAS sensor and, by combining different sensing
modalities, it creates C'H, distribution maps of a given explo-
ration area using a novel gas distribution modelling algorithm.
The Gasbot project is being funded by Robotdalen' and it
is currently under development in cooperation between the
Orebro University and Atleverket AB?, the agency in charge
of waste management and biogas production in the province
of Orebro, Sweden.

The remainder of this paper is structured as follows: Section
IT describes the components of the Gasbot platform. In Section
II, we explain the algorithm to generate gas distribution
maps from integral concentration measurements. In Section
IV, the testing scenarios are described. Results are presented
in Section V, followed by conclusions and suggestions for
future work in Section VI.

II. THE GASBOT PLATFORM

The prototype version of the Gasbot platform is shown in
Figure 1. It comprises an ATRV-JR all terrain wheeled robot
equipped with a pan-tilt unit (PTU-D46-70), two laser scanners
of the same model (LMS200), a TDLAS sensor (Sewerin’s
RMLD) and a GPS unit (MTi-G). All sensors and software
modules work under the Robot Operating System (ROS) [9].
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Fig. 1.

Gasbot robotic platform
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To sense C'H, concentrations, the robotic platform was
equipped with a Remote Methane Leak Detector (RMLD)
manufactured by Sewerin. The RMLD belongs to the family
of TDLAS sensors which, compared to traditional gas sensing
mechanisms, do not require a direct interaction between the
sensor’s surface and the target compound. Instead, gas sens-
ing is performed remotely and concentrations are reported
as integral measurements (in ppm - m). According to the
manufacturer’s data sheets, the RMLD is able to measure
CH, in concentrations as low as 5 ppm - m at distances
up to 15 m, and 10 ppm - m at distances up to 30 m. The
upper detection limit of the RMLD is 99999 ppm - m [10]. In
comparison, a calibrated TGS2611 metal oxide (MOX) sensor
from Figaro engineering can measure C'H, concentrations in
a range between 500 ppm and 10000 ppm [11]. Figure 2
exemplifies the measurement principle of the RMLD where,
an operator aims a 500 ppm CH} patch.
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Fig. 2. Measurement principle of the RMLD. In this example, the device
reports an integral concentration measurement of 590 ppm-m when the infra-
red beams travels a 10 m path in which, a background concentration level of
10 ppm and a C'Hy4 patch of 500 ppm are present.

An sensor unit comprising a Pan-Tilt Unit (PTU), the
RMLD and a laser scanner, allows the Gasbot platform to
create C' H, measurement scans of the exploration area. Gasbot
is equipped with a PTU-D46-70, which is a PTU that can
support payloads up to 4.06 kg with pan and tilt ranges of
(78°,180°) at a 0.003° resolution. On top of the PTU, a laser
scanner SICK LM200 is mounted along with the RMLD. The
purpose of the laser scanner mounted on top of the PTU
is to collect range information that allows to create three
dimensional representations of the exploration scene. Inside
these scene models it is possible to project the RMLD rays and
thus estimate their starting and ending points inside the robot’s
coordinate frame. These coordinate points are used by the gas
distribution mapping algorithm as later explained in Section
III. The 3-D scene models were created using Octomap [12],
which is a probabilistic 3-D modelling library implemented in
ROS.

While the ATRV-JR has encoders to provide odometry
readings, one typical problem with odometry localization is
that errors in position quickly accumulate over time [13].
This is particularly critical in scenarios where the robot is
expected to explore large areas. A common solution to improve



the localization performance is to fuse sensing modalities,
along with the robot’s odometry readings. Indoor and outdoor
localization was performed separately using different sensing
modalities fused with the robot’s odometry information. For
outdoor localization, a MTi-G sensor is used. The MTi-G is a
GPS-aided Inertial Measurement Unit (IMU) manufactured by
Xsens [14]. In indoors, a second LMS200 laser scanner was
mounted near the frontal bumper of the robot, which provides
2D scans with a field of view of 180° at a resolution of 1° to
a range up to 80 m.

Laser scans and odometry were fused using AMCL, which
is a ROS package that implements an adaptive Montecarlo
localization algorithm [15]. AMCL tracks the robot’s pose
inside a known grid map using a particle cloud filter.

The absence of natural landmarks and the uneven terrain
conditions in outdoor scenarios, such as a landfill site, prevents
the use of a Montecarlo localization approach. Instead, we
opted for the MTi-G module to localize the robot. A limitation
of this device is that, as the velocity of the robot decreases, the
output position increasingly drifts. Therefore we implemented
an ad-hoc solution to filter the GPS position and orientation
readings. The position (x4, y;) at time ¢ is iteratively computed
as:

y=x 1 +w-ASTS 4 (1 —w) . A%dom

(1a)

Yo =yi1 +w- AT 4 (1 —w) - Agdem, (1b)

where (z;_1,y:—1) are the filtered coordinates at the previous
iteration and w is a weighting function that depends on the
robot’s velocity. In a systematic way, we selected w as a
step function that switches between 0 and 1 when the robot’s
velocity is below a threshold of 0.15 m/s. This means that,
when the velocity of the robot falls below the threshold, the
filter will solely rely on the odometry readings to update the
position estimate.

III. GAS DISTRIBUTION MAPPING ALGORITHM

As previously stated, TDLAS sensors report concentration
values as integral measurements. Therefore, gas distribution
algorithms that use point measurements as inputs [16], [17]
are not a viable solution. We opted for a novel approach
proposed in [18] by Trincavelli et al. where the problem of gas
distribution modelling is framed as an optimization problem
and the integral measurements from TDLAS sensors are used
to update a grid model in an analogous way as in Computer
Assisted Tomography, where body images are reconstructed
from a set of attenuation measurements of e.g. X-rays.

The algorithm in [18] decomposes the integral concentration
measurements y reported by a TDLAS as follows:

M
y=> Li+e, 2)
i=1

where M is the number of cells traversed by the TDLAS
beam, [; is the distance travelled by the beam in cell ¢,
x; is the concentration in cell 7 and € is the measurement

noise term. An example of the decomposition of the integral
concentration measurements can be seen in Figure 3. The
task of gas distribution mapping is then formulated as the
problem of estimating the vector of concentrations x which
best explains a set of N measurements. Thus, the measurement
dataset becomes an N x M matrix described by the following
equation:

y = Lx + €l. 3)

In the above equation, L is an N x M matrix that contains the
traversed distances for each measurement, x is an M column
vector that contains the concentration values for the traversed
cells and 1 is a column vector of ones of length N. In order
to compute the likelihood of the measurements, a Gaussian
distribution is assumed for e. This means that the noise in
the TDLAS sensor is unbiased. In addition, a Gaussian prior
distribution over x is defined to limit the number of solutions.
In this way, the gas distribution problem can be framed as the
following optimization problem:

ILx = yll2 + Allx|2 @

x>0,

minimize
X
subject to

where A\ is a parameter that determines the strength of the
prior and the constraint x > 0 is added to discard negative
gas concentrations.
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Fig. 3. Integral measurement decomposition. In this example, a TDLAS

beam (denoted by a dashed line) travels inside a 4 x 6 lattice. The integral
measurement is decomposed as y = lg X g + l10 X 10 + 111 X 11 +
l15 X 215 + l1g X 16 + l2g X T20 + €, where € is the measurement noise.

IV. EXPERIMENTAL SCENARIOS

The Gasbot platform was tested both, indoors and outdoors
locations. In the first scenario, the aim is to simulate an
indoor facility where a transport pipe is leaking C'Hy. This
scenario was simulated in an underground corridor (Figure
4(a)) located in Orebro University’s main campus. Due to
safety concerns, the leak was simulated by placing a set of
sealed transparent flasks filled with natural gas (90% C H4) on
the floor. While this set-up does not capture the complexities
of a gas leak, since the C'Hy is kept isolated from the
testing environment inside the flasks, it allows nevertheless to



evaluate the gas distribution map by locating the area of high
CH, concentration where the flasks are located. The Gasbot
platform was commanded to autonomously patrol an area of
15 m x 2.5 m following a pre-defined exploration path where
data was collected at four different way-points

For the second scenario (Figure 4(b)), the Gasbot platform
was deployed in Atleverket’s decommissioned landfill in Ryn-
ningeviken, Orebro. An artificial, controlled C'H, concentra-
tion was generated by releasing natural gas (90% CH,) from
a tube ring connected to a cylindrical container. The release
rate was not recorded during the experiments. The robot was
remotely operated to explore an area of 18 m x 11 m and
measurements were taken at three different locations. Please
note that no reflectors need to be installed in the environment,
since the TDLAS beam was reflected by either the ground or
the walls.

_ . Methane source

(b)

Fig. 4. Experimental scenarios. (a) Indoors. (b) Outdoors.

V. RESULTS

In figures 5(a) and 5(b) the generated gas distribution maps
are shown. Since the cell size of the distribution maps was
set to 1 m and the RMLD was mounted slightly over 1 m up
from the ground, the distribution models are approximated as
2D structures by showing only one layer of the 3D map. In
the figures, the yellow cylinders denote the actual location of
the C H, source. The blue/red squares denote the position of
the robot and the blue lines are the ray projections from the
RMLD.

In the indoor experiment, the PTU was programmed to
perform a sweeping movement from (—17.76°,11.46°) in pan
and (—13.70°,0.15°) in tilt. The PTU stopped for 2 s at each
of the 144 measurement points in the sweeping trajectory.
In the outdoor scenario, the PTU panned from (—60°,60°)
and tilted (—14°,—3°). The PTU stopped for 1 s at each
of the 240 measurement points in the sweeping trajectory.
It can be noticed that, in both maps, high concentrations
(denoted by darker shades) are predicted at locations near

the gas sources. In the underground experiment, the highest
concentration cell matches the actual gas source position and
cells with concentrations above 0 ppm are predicted only near
the gas source. This is an expected result since the C'Hy
concentrations are enclosed inside the flasks and it is never
let to evaporate thus, a plume is never formed.

At the landfill site, C'H,4 is constantly released at uncon-
trolled rates. The interaction between the released C'H, and
the environment creates complex structures where turbulence
can mender the plume while airflows can move the C'H,
patches away from the source. This is reflected in the generated
gas distribution map of Figure 5(b), where it can be noticed
that high concentration cells are spread all over the exploration
area.
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Fig. 5. Generated gas distribution maps. (a) Indoors. (b) Outdoors. The grid
cell size was set to 1 m.

VI. CONCLUSIONS

In this paper we presented a mobile robotic platform for
the monitoring and inspection of landfill areas. The Gasbot
platform is equipped with a state-of-the art TDLAS sensor
to monitor C'Hy concentrations. Since TDLAS sensors report
integral instead of point measurements, a novel gas distribution
modelling novel approach, analogous to CAT imaging was
used.

The Gasbot platform was tested indoors and outdoors and,
while no quantitative or ground truth evaluation was possible,
the spatial distribution of the produced C'H, concentration
maps showed to be consistent with the actual location of



the gas sources. The results demonstrate that mobile robots
can contribute to the task of landfill monitoring, not only
by automating measurements, but also by providing gas dis-
tribution maps, that highlight areas where where high C Hy
concentrations can be found. This information can be useful
to the landfill operator to detect C'H, leaks.

Future work will aim to improve the localization of the
robot in outdoor environments. The current implementation is
more prone to errors than its indoors counterpart. Errors in
localization translate in misalignments in the gas concentra-
tion predictions. The distribution modelling algorithm can be
improved, e.g. by integrating the localization uncertainty in
the computation of the gas distribution maps.

Integration of wind measurements in the computation of
the gas distribution model is not straightforward using the
current mapping algorithm. This is due to the measurement
principle of the TDLAS, which returns integral concentration
measurements of the path travelled by the sensor beams. In
contrast, wind measurements with e.g. ultrasonic anemome-
ters, provide point measurements of the wind conditions at the
current location of the robot. However, wind information could
be used for a sensor planning algorithm, to estimate plausible
exploration paths for the task of C'H, leak localization.

The gas distribution maps generated in this work represent
a snapshot of the gas distribution taken during the exploration
time. As future work, the data collected by the robotic platform
can be used to create a model that predicts the methane
emission rates of a given landfill site at different temporal
resolutions. The creation of such models is of high interest
for biogas producers and the waste management industry.
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