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Abstract— Voxel volumes are simple to implement and lend
themselves to many of the tools and algorithms available for
2D images. However, the additional dimension of voxels may
be costly to manage in memory when mapping large spaces
at high resolutions. While lowering the resolution and using
interpolation is common work-around, in the literature we often
find that authors either use trilinear interpolation or nearest
neighbors and rarely any of the intermediate options. This
paper presents a survey of geometric interpolation methods
for voxel-based map representations. In particular we study
the truncated signed distance field (TSDF) and the impact of
using fewer than 8 samples to perform interpolation within a
depth-camera pose tracking and mapping scenario. We find
that lowering the number of samples fetched to perform the
interpolation results in performance similar to the commonly
used trilinear interpolation method, but leads to higher frame-
rates. We also report that lower bit-depth generally leads to
performance degradation, though not as much as may be
expected, with voxels containing as few as 3 bits sometimes
resulting in adequate estimation of camera trajectories.

I. INTRODUCTION

There are several options when choosing a map repre-
sentation. A truncated signed distance field (TSDF) is one
option that has proven to be useful for several tasks relevant
to robotics, e.g. accurate real-time dense surface reconstruc-
tion [1], robust ego-motion estimation [2][3], SLAM [4][5],
feature detection and description [6][7]. The TSDF is a
voxel-based representation of 3D space that encodes surfaces
implicitly by storing, at each voxel, the distance to the nearest
surface. A sign is used to disambiguate between distances
measured relative to the front and the back side of surfaces,
with a distance of zero corresponding to the actual surface
position.

Although using a TSDF as a common frame of reference
for obtaining de-noised depth maps is a well-established
method for accurate frame-to-model registration, direct align-
ment of depth maps against the full volumetric TSDF is a
less common approach [2], [8]. The direct alignment method
is often regarded as too costly to be used in real-time set-
tings, partly due to its unpredictable memory-access pattern
compounded by the assumed need for expensive tri-linear
interpolation for numerical gradients and function values [9].
More generally, the large memory requirements of TSDFs
(and other voxel-based maps) may be prohibitive. However,
in the context of robot mapping and pose estimation, memory
constraints may potentially be relaxed simply by using fewer
bits per voxel. In this paper we attempt to quantify the
memory requirement more precisely by evaluating how many
bits per voxel are required for accurate pose estimation.

Experimental evidence presented in this paper also supports
the claim that the latency associated with memory access for
interpolation can be reduced relative to that of the standard
trilinear method. Our results are based on from surveying the
different methods of voxel-based interpolation, from nearest-
neighbor extrapolation to standard trilinear interpolatiorﬂ in
the context of the pose estimation problem by direct scan
alignment to a volumetric map.

Deciding on what interpolation method to use is not
a straightforward task, as it involves considering several
application dependent criteria. For example, the run-time
performance cost of querying a large number of voxel
locations during e.g. scan-registration, rendering [10] or
collision-free grasp planning [11] is generally dominated by
the time taken to access the memory in which the voxels are
stored, suggesting that the choice of interpolation method
has a significant influence on performance. In one scenario,
one may consider using trilinear interpolation to avoid the
blocky artifacts caused by nearest neighbor extrapolation.
Similarly, in another scenario one may needlessly accept
low-quality nearest-neighbor extrapolation, because trilinear
interpolation is deemed too expensive. One contribution of
the present work is a survey of linear interpolation methods
that lie in between these two extremes. We describe the
methods in sufficient detail to enable a straightforward im-
plementation of each. Another contribution is a set of perfor-
mance evaluations of the SDF-Tracker algorithm, comparing
trilinear, tetrahedral and nearest neighbor access, as well as
experiments reducing the number of bits per voxel.

A. Organization of topics

In section [[I} we will review the prerequisite geometrical
concepts that will provide us with a common notation for
expressing different interpolation methods. In section [II|
we describe the interpolation methods in detail and briefly
discuss low-bit voxel representations. In section we de-
scribe the experimental set-up, followed by empirical results
(in section with respect to tracking accuracy and run-
time performance. Lastly, in section we present our
conclusions.

II. BACKGROUND
Consider the line segment joining nodes a and b in Fig.

assumed to be of unit length.

Higher-order methods involving additional samples exist, but we will
restrict our survey to linear methods with 8 samples or less in this work.
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Fig. 1: Line segment a b, with an intermediate point z.

The value of some function ¢(x) at an arbitrary point, x,
along the line can be estimated via linear interpolation as:

¢(x) = d(a) - (b—2) +6(b) - (z — a) (1

In essence, the weight given to the function value at point a
is proportional to the length of the segment on the opposite
side of the query point i.e, (b — z), and vice-versa. For
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Fig. 2: bilinear interpolation offers the choice of linearly
interpolating in x; first, yielding ¢(cd,,) and ¢(ab,, ), and
then obtaining ¢(x) or, alternatively starting with xs.

interpolation in a square, the bilinear approach is simply
an extension of this logic into two dimensions. In other
words, for a given query point x, shown in Fig. [2[to be in a
unit square defined by vertices a,b,c,d € R?, the function
é(x) : R? — R can be approximated as:

P(cdy,) = ¢(c) - (d — cdy,) + ¢(d) - (cday —¢) (D)
¢(abw1) ~ (b(a) ' (b - abﬂh) + ¢(b) : (abl‘l - CL) (3)
(b((l?) ~ (b(abfbl) ’ (Cdfvl - ‘r) + (b(CdIl) : (27 - abl’l) “)

as long as the query point is within the domain defined by
the vertices. Bilinear interpolation scales the contribution of
the value at each vertex by the area of the rectangle formed
between the query point and the diagonally opposite vertex.
As a general rule, linear interpolation in any number of
dimensions can be performed by scaling the contribution of
each vertex by the size of the simplex formed between the
query point and the other vertices. A square is not a simplex
in R2, though; a triangle is. In the example shown in Fig
we see that the point z falls inside both triangles Aadc and
Aabe. If we denote the areas of a generic triangle formed
by vertices x,y, z as A2xyz we can compactly represent the
2-Simplex interpolated value of ¢(z) as:

$@) = ¢(a)-(A%bex)+¢(b)-(A%azxc)+¢(c)-(A%abz). (5)
Alternatively, using triangle Aadc:
¢(x) = ¢(a)-(A*cxd)+¢(d)-(A*azc)+¢(c)-(A%adz). (6)

The volume of any simplex (including the area of a
triangle) with vertices vg,v1,vs,...,v, can be computed

a b

Fig. 3: 2-simplex interpolation offers the choice of linearly
interpolating the value of ¢(z) from one of two triangles.
Since z is furthest from d, one may prefer the triangle Aabc
over Aadc

using the following expression [12]:

UH_UO]”

)

with n indicating the dimensionality i.e. 1 for a line, 2 for a
triangle, 3 for a tetrahedron, and so on. By det() we denote
the determinant of the n X n matrix formed by concatenating
the vertex differences as its columns. We now have the basic
maths required to understand how the simplex interpolation
and orthogonal interpolation options can be combined to
produce several different ways of estimating the value of
a function in between the discrete samples of a voxel grid.

1
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III. INTERPOLATION METHODS AND THEIR RELATION TO
TSDF RECONSTRUCTION

In the following sections we will assume that we have a
discrete lattice in 3D, with values sampled at the nodes as
shown in Fig. @] The node labels correspond to the following
coordinates:

01
[abcdefgh]: 00
00

o = O

00111
01011 (8)
11101

and we are interested in estimating the value of the under-
lying function at the real-valued 3D query point z whose
components lie in the interval [0, 1].

Fig. 4: A cube formed by 8 adjacent vertices, each containing
a discrete sample of a real-valued field or function, e.g. a
TSDF. The x indicates a point within the cube for which we
desire an interpolated value



A. Trilinear Interpolation

Trilinear interpolation is done by first performing four
linear interpolations between the eight vertices of the cube,
as shown in Fig. One then ends up with a square slice
that embeds the query point. The subsequent steps, illustrated
in Figs. 5(b)l are identical to the bilinear interpolation.
The order in which the axes for interpolation are chosen is
arbitrary. Formally, the interpolation for f(x) is expressed
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Fig. 5: Trilinear interpolation proceeds along each orthogonal
axis in turn, first reducing the cube to a plane, then reducing
the plane to a line, and lastly reducing the line to a single
point.

by the steps:

o(p) = ¢(a) - (b1 — x1) + (b)21 ©)
o(q) = ¢(c) - (e1 — x1) + ¢(e)zy (10)
o(r) = ¢(d) - (f1 — 1) + o(f)z1 (11
#(s) = ¢(g) - (h1 — 1) + ¢(h)z1 (12)

abusing the notation somewhat to simultaneously define the
interpolated locations as p, ¢, 7, s and the estimated value of
the function ¢() at these locations. This step is followed by,

o(t) = o(p) - (g2 — x2) + d(q)x2 (13)
d(u) = ¢(r) - (s2 — w2) + ¢(8) 72 (14)

defining ¢, u as the interpolated points between p, q and 7, s,
respectively. Lastly,

p(x) = o(t) - (us — 3) + d(u)ws

Although this process seems to collapse the dimensions of
the problem one at a time, down to a point, it is mathemati-
cally equivalent to scaling the contribution of each vertex by
the volume of the parallelepiped formed between the query
point and the vertex diametrically opposed to the vertex in
question. Graphics Processing Units (GPUs) that support 3D
textures generally implement this process in hardware.

15)

B. Prismatic Interpolation

Relative to trilinear interpolation, prismatic interpola-
tion [13] reduces the number of necessary samples to six
instead of eight. This method results from splitting the cube
into two triangular prisms with right-angled triangles and
selecting the prism containing the query point. The first step
is to interpolate the function value on each of the triangular
faces, e.g using the 2-simplex method detailed in the intro-
duction (or other methods [14], [15]). The second step is

a simple linear interpolation between the resulting values.
In Fig. [6] we have assumed that 2-simplex interpolation is
used and color-coded the vertices and triangles such that
the contribution of each vertex is proportional to the area
of the triangle with the same color. Since the equations are
identical to those described in the introduction, we will omit
the formalism here. Because the interpolation method chosen
may be of higher order within the triangle, the ordering may
play a role in the result. For instance, in applications where
the function varies less in one dimension, it may be wise to
leave it for the final step.

(b)

Fig. 6: Prismatic interpolation is a combination of 2-simplex
interpolation, followed by linear interpolation.

C. Pyramidal Interpolation

When we remove another vertex: picking four on one face
plus an additional vertex on the opposite face; we obtain a
pyramid with a square base and four triangular sides [16].
Although the pyramid will need to be oriented in different
ways to encompass the query point, we will refer to the
single point on the non-basal face as the apex. In Fig. [7| we
illustrate selecting the topmost four vertices as the base, and
the bottom as the “apex”. There are several options for how
to obtain the interpolated value at the query point. Making
reference to Fig. [/| (best viewed in color), these are:

« Find the line from the apex that intersects the base while
passing through the query point (pink line). Perform
bilinear interpolation on the square base to get the
value at the intersection point, then linearly interpolate
between the intersection and the apex for the final value.

« interpolate along each of the four edges connecting the
apex to the base, to get a square slice (green edges)
through the pyramid that embeds the query point. Then
interpolate on the plane bilinearly for the final value.

Fig. 7: Pyramidal interpolation can be done by reducing the
cube to a line, square or triangle, and applying one of the
2D interpolation methods of choice



« Interpolate along two edges in the pyramid base, along a
chosen dimension. This results in a line segment across
the square base of the pyramid. Form a triangle with
this line segment and the apex to get a triangle (drawn
in purple) containing the query point. Interpolate for the
final value using any choice of triangular interpolation
method.

While pyramidal interpolation does result in one less
memory look-up than the prismatic method, it leaves many
options for the choice of which face to pick as the pyramid
base and apex. Given that there are six different faces, and
four possible apexes for each face, the number of cases are
24. Since this method samples a large proportion of vertices
from a single side of the cube, it may result in more apparent
discontinuities in the approximation of the function when
transitioning from one pyramid to another.

D. Tetrahedral Interpolation

When memory access is expensive relative to computation
it might be reasonable to look for methods that require
as few samples as possible. Tetrahedral interpolation is the
interpolation method that requires fewest samples [17].
With an additional check, it is also possible to identify
the near-degenerate cases, in which a query point is very
close to a face, edge or vertex of the tetrahedron. These
checks can be done analytically, or by discretizing the sub-
voxel space to some arbitrary level of precision to determine
how many samples are needed to accurately estimate the
value. For example, a query point exactly at the center of
the cube could potentially be interpolated by picking any
pair of diametrally opposed vertices and doing a single
linear interpolation. Checking for near-degeneracy allows for
accurate interpolation with even fewer than 4 samples, on
average [18].

There are exactly thirteen ways to split a cube into
tetrahedra, without counting reflections and rotations as
unique cases [19]. Twelve of the splittings result in six
rather thin and irregular shapes but a thirteenth, depicted
in Fig. results in only five, four of which are right-
angled and the last being a regular tetrahedron. This last
splitting is especially interesting for interpolation purposes,
since determining which of the tetrahedra contains the query
point is quite straightforward, so we will look at it a little
closer. To construct the tetrahedral splitting of the cube, we
will use the labels defined in Eq. (8) and define the tetrahedra
using the following sets of vertices:

Ty ={a,b,c,d}, (16)
T> ={e,b,c, h}, (17)
T35 ={g,c, h,d}, (18)
Ty ={f,b,d,h}, (19)
Ts = {b,c,d,h} (20)

Essentially, it picks a subset of four of the cube’s vertices
that are separated by diagonals of the faces of the cube,
along with the three vertices joined to them, by edges of the
cube. These form the first four ’corner’ tetrahedra (17 4).

Fig. 8: Tetrahedral interpolation - the value at the query point
marked by “X” is found by taking the sum of the values at
each vertex in proportion to the volume of the tetrahedron
formed by the remaining vertices and the query point itself.
The value is normalized by dividing the result by the volume
of the tetrahedron formed by the four vertices. Drawn in bold
is tetrahedron T5

The remaining volume is a central tetrahedron (75) with
equilateral triangular faces of edge lengths equal to v/2. This
central remaining tetrahedron is composed of the vertices that
were not part of the initial selection of four.

Determining into which tetrahedron a given query point x
is found can be done by checking if the distance between the
query point and any of the corners a, f, g, e is less than unit
(by the Li-norm). If not, the query point is found inside 75.
The interpolated value for z, when « falls into 75 is given
by:

N hA3bdex + bA3hedx + cAPhdbx + dA3bhex

#(x) A3bdch

ey

This refers back to Eq. for the general formula for the
volume of a simplex and is analogous for interpolation in
Ty. 4. However, it is worth noting that the equations for the
volumes in these tetrahedra simplify greatly, due to their axis-
aligned faces.

E. Nearest Neighbor

The last interpolation method that we will discuss is,
strictly speaking, an extrapolation method. It entails to
simply check which octant of the cube the query point is in
and return the voxel value stored in that octant. It requires a
single memory lookup.

o(z) = ¢( |2 +0.5] )
I_Z‘g + 0.5J

(22)

F. A note on gradient estimation

In applications such as pose estimation, we are often
interested not just in the function value ¢(x) but also
the gradient, V¢(x). In TSDFs, the gradient provides an
estimate for the orientation of surfaces. The most straight-
forward method of numerically obtaining gradients is by
finite differences. In this work we evaluate the performance
of the SDF-Tracker algorithm by computing the gradients
using central differences with the interpolation being tested.
One exception is made for nearest neighbor extrapolation,



where we additionally evaluate the performance obtained by
alternating between forward or backward differences. This is
done by fetching the three values connected to the nearest
neighbor to the query point x, without leaving the bounding
cube of eight. To exemplify, if xz is nearest to a, we set

¢(z) = ¢(a) and estimate the gradient Vo(x) ~ Egg% - ZEZ%l
however, if z is instead nearest to e.g. g, we set ¢(z) = ¢(g
and estimate the gradient Vo(x) ~ E%Eg; - Eggﬂ. While this
represents forward differencing in the first dimension, it

results in backward differencing in the second and third.

G. Varying the bit-depth in Voxel representations

The TSDF representation used by the SDF-Tracker uses
the incremental update method of Curless et al [20] which
requires storing a signed distance value D along with a
weight W that represents the confidence regarding the value
in each voxel. As an additional experiment in resource
limitation, D and W can be represented with a reduced
number of bits relative to e.g. a 32-bit representation, leading
to increasing quantization.

IV. EXPERIMENTAL SET-UP

For our evaluations, we used a publicly available data-set
published by the Computer Vision group at the Technical
University of Munich (TUM) [21] consisting of recordings
made with a hand-held depth-sensing camera that is tracked
by an external motion capturing system to provide ground-
truth poses with each image frame. The first frame is used
to approximate a TSDF using line-of-sight distances and is
incrementally updated by fusing further depth images into
the volume. The pose of the camera is estimated by directly
aligning the depth image vertices to obtain the least-squares
sum of signed distances. This corresponds to the predicted
surface location, implied by the TSDF.

Since we are interested in the lower limits of interpola-
tion quality, we compare the trilinear interpolation scheme
directly with the tetrahedral and nearest neighbor methods
using both central differences and the alternating forward and
backward differences for gradients, as described in Sec.

For each method under evaluation, we report the mean,
median and variance for pose errors, relative to ground truth
for each of 8 different depth image sequences in different
categories. The error metrics used are the relative pose errors
(RPE), measured between consecutive frames, as well as
the absolute trajectory error (ATE). We also investigate the
performance relative to the number of bits used to store the
TSDF, using the same metrics.

Finally, we also report the run-time in terms of frames per
second, using the SDF-tracker at different voxel volume sizes
and input depth image resolutions for both nearest-neighbor
and trilinear interpolation, running on an Intel i7-4770K CPU
at 3.50GHz, without GPU acceleration.

V. EMPIRICAL RESULTS
A. Interpolation

Since all the interpolation methods here are linear meth-
ods; as long as the underlying function is also linear, the in-

terpolation is expected to be exact. For indoor environments,
maps tend to be largely dominated by planar structures result-
ing in a TSDF that is, at least piecewise, well-approximated
by linear functions. From the absolute trajectory error (ATE)
in Table |} we see that there is some apparent degradation
in performance when using lower-quality interpolation and
gradients, but looking at the relative pose errors (RPE) for
translation and rotation, shown in Table [[IT| and Table [[] it is
unclear where the differences are. In fact, under a pairwise
Mann-Whitney U test [22], we find no statistically significant
difference in performance between any of them, even though
the mean for the nearest neighbor methods are clearly higher
than the interpolation methods, in several cases. Due to the
observed similarity in the performance between the trilinear
and tetrahedral methods, we have omitted the methods with
intermediate number of samples from the evaluation although
we include their descriptions for the completeness of the
survey section of this paper.

B. Bit Depth

Absolute Trajectory Error for tracking and mapping, using
different numbers of bits per voxel to represent the TSDF
shows more obvious differences. We see a general trend
towards greater errors and variances as the number of bits is
reduced, however this progression is not always monotonic
for all depth image sequences. Failures to track the camera
may lead to gross misalignments from which the tracking is
unable to recover. The large errors are generally indicative
of the severity or frequency of such failures. However, the
progression in relative pose errors seen in Table and
Table is more gradual, with errors becoming, on average,
slightly larger as the number of bits is reduced.

Nonetheless, it is interesting that tracking the camera is
still possible with with some errors as far as down to a 3-
bit representation. At that level of quantization, the number
of distinct values used to represent the distance field from
Dpyin 10 Dypyq, are only 7. Given that the distance field
was truncated at the fixed values of +0.30m, and the voxel
size was of 0.02m, this results in severe stair-casing artifacts
in the distance field, since several adjacent voxels take on
the same value. We find that the tracking fails more often
with fewer bits, leading to significantly lower performance
in trajectory estimation. However, we note that the relative
error between consecutive frames does not increase as much.
This indicates that reducing the number of bits leads to an
increased brittleness, causing few but devastating failures.

There is little difference in performance, from a reliability
standpoint, when using more than 4 bits for representing
the distance, and tracking will succeed and fail to similar
extents. However, we can see that the average relative errors
and variance of the error increase slightly each time one
reduces the number of bits per voxel.

C. Run-time

What these tests do not reveal, since they process an offline
data-set, is the impact that these lower-fidelity methods have



TABLE I: Absolute Trajectory Errors - (Rotation and Translation, combined)

Method Sequence || 4ok desk2 teddy plant Xyz
tri32 0.056 £ 0.059 | 0.171 £0.117 | 0.150 + 0.076 | 0.089 + 0.043 | 0.015 £ 0.008
tet32 0.058 £0.062 | 0.152 4 0.096 | 0.158 + 0.079 | 0.088 £ 0.042 | 0.016 £ 0.009
nn32c 0.048 £0.041 | 0.324 £ 0.154 | 0.186 £+ 0.082 | 0.093 4+ 0.038 |0.016 %+ 0.009
nn32fb 0.225 £+ 0.085| 0.234 +0.130 | 0.199 £ 0.101 | 0.107 £ 0.048 |0.019 £+ 0.011
tril6 0.045+£0.049 | 0.130 +0.104 | 0.387 £ 0.297 | 0.110 & 0.075 |0.016 % 0.009
tri8 0.041 £0.038 | 0.233 £ 0.184 | 0.399 + 0.307 | 0.104 £ 0.090 | 0.017 £ 0.009
tri4 0.142 £ 0.112| 0.443 £ 0.202| 0.428 +0.243 | 0.177 £ 0.052 |0.017 4+ 0.010
tri3 0.292 £ 0.167| 0.227 £ 0.164 | 2.173 £ 0.993| 0.976 £ 0.431 | 0.014 £ 0.008
TABLE II: Relative Pose Error (Rotation, in degrees)
Method Sequence desk desk2 teddy plant XyzZ

tri32 0.516 + 0.427{0.652 4+ 0.507 | 0.644 4 0.526 | 0.548 £+ 0.353|0.274 4+ 0.204

tet32 0.516 £ 0.427{0.643 4+ 0.490 | 0.649 4+ 0.560 | 0.548 + 0.353|0.274 4+ 0.205

nn32c 0.509 + 0.400|0.627 £ 0.448| 0.620 £ 0.530 [0.545 + 0.348 |0.274 + 0.202

nn32fb 0.489 + 0.368 [0.630 4= 0.468 | 0.631 4= 0.497 | 0.540 £+ 0.346 |0.272 4+ 0.199

trilé6 0.527 £+ 0.498(0.676 4+ 0.582| 0.670 + 0.737 |0.561 £+ 0.418|0.275 4+ 0.204

tri8 0.531 £ 0.493]0.674 £+ 0.577| 0.659 £ 0.590 [0.564 4+ 0.430[0.276 4+ 0.208

tri4 0.535 + 0.445[0.695 4 0.598 | 0.693 4+ 0.646 | 0.575 £+ 0.412]0.280 4+ 0.215

tri3 0.549 + 0.465(0.713 4+ 0.604 | 1.008 £ 2.254|0.608 £ 0.586 |0.280 4+ 0.216

TABLE III: Relative Pose Error (Translation, in meters)
Method Sequence desk desk2 teddy plant Xyz

tri32 0.007 4+ 0.007 | 0.008 4+ 0.010 | 0.007 £ 0.011 |{0.006 % 0.005 [0.004 £ 0.003

tet32 0.007 4+ 0.007 {0.008 = 0.010| 0.007 £ 0.011 |{0.006 % 0.005 [0.004 4 0.003

nn32c 0.007 4+ 0.006 | 0.009 + 0.010 | 0.007 £ 0.010 |0.006 + 0.005 [0.005 4 0.003

nn32fb 0.007 4+ 0.006 | 0.009 4+ 0.010 | 0.007 £ 0.010 |0.006 % 0.005 [0.005 £ 0.003

tril6 0.007 4+ 0.007 | 0.008 + 0.010 | 0.008 4 0.017 {0.007 4 0.006 [ 0.005 4 0.003

tri8 0.007 4+ 0.006 | 0.009 + 0.012 | 0.008 £ 0.016 |0.007 + 0.007 | 0.005 4 0.003

tri4 0.008 + 0.007| 0.010 £ 0.012 | 0.012 + 0.023 |0.007 £ 0.008|0.005 £ 0.003

tri3 0.008 +0.009 | 0.011 +0.014 | 0.029 £ 0.113{0.010 %+ 0.016 {0.004 4 0.003

In all tables the results are reported as mean & standard deviation, using metrics described in [21]. The labels denote the
following: triX — X-bit trilinear interpolation, using central differences for gradients; tet32 — 32-bit tetrahedral interpolation
using central differences for gradients; nn32c — 32-bit nearest-neighbor extrapolation using central differences for gradients;
nn32fb — 32-bit nearest-neighbor extrapolation using alternating forward and backward differences for gradients. Notable
errors are highlighted in gray, but the reader is advised to be conservative in drawing conclusions about them due to the

large variance.

on run-time efficiency. In Fig. 0] we can see that the SDF-
tracker is bound by memory access latency, and that reducing
the number of voxels that have to be retrieved has an impact
on the frame-rate. In spite of the lower-quality estimate of
the distances, due to the fact that direct image alignment is a
dense method, the combined effect of evaluating thousands
of samples and gradients evidently results in a reasonably
accurate pose estimation. Since frame-rates can be increased
if we accept lower-quality estimates of the TSDF, higher
resolution depth images or frame-rates [23] are possible
for the same number of voxels. On the machine used for
testing, there were negligible performance gains in using
the tetrahedral method compared to the trilinear approach.
The lack in performance increase may be due to the way

memory is fetched, incurring similar latency costs, even if
fewer values are effectively used. Another possible culprit
may be the branching used to determine which tetrahedron
to use for evaluation. Since the tetrahedral method already
had similar run-time performance to the trilinear approach,
we saw no utility in evaluating additional solutions for this
particular use-case.

VI. CONCLUSIONS

In this paper we have surveyed several interpolation meth-
ods that employ fewer than 8 samples to interpolate a value in
a voxel grid. We have applied the cheapest of these to robot
mapping, using the SDF-Tracker algorithm for rigid-body
pose estimating of the sensor and incremental map building.
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Fig. 9: Frame-rate plotted as a function of interpolation
method, number of voxels and image sizes (VGA: 640x480
pixels, QVGA: 320x240 pixels).

Experiments showed that there is little loss in quality, but a
noticeable gain in processing speed. We also evaluated the
impact of reducing the number of bits stored in each voxel,
to represent the distance field. Here, the results were clearer:
fewer bits lead to poorer pose estimates.

Although the interaction between number of bits and
interpolation scheme may be used in tandem, we chose to
quantify each effect separately. Whether they are additive or
multiplicative in terms of their adverse effects is an open
question. However, an effort to extend this work further
may instead proceed in a different direction, towards more
sophisticated interpolation methods or more efficient mem-
ory layouts such as Z-order curves [24] to optimize cache
coherence.

There are other volumetric representations that are not
commonly used with interpolation between voxels, such as
Occupancy grids [25], and others where trilinear interpola-
tion tends to be applied, such as 3D-Normal Distributions
Transforms [26]. In either case, we hope that this work has
shown that there are viable alternatives in between expen-
sive trilinear interpolation and low-quality nearest-neighbor
extrapolation that may be worth investigating.
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