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Abstract. Robots in human co-habited environments need human-aware task and 
motion planning, ideally responding to people’s motion intentions as soon as they 

can be inferred from human cues. Eye gaze can convey information about 

intentions beyond trajectory and head pose of a person. Hence, we propose eye-
tracking glasses as safety equipment in industrial environments shared by humans 

and robots. This paper investigates the possibility of human-to-robot implicit 

intention transference solely from eye gaze data.  We present experiments in which 
humans wearing eye-tracking glasses encountered a small forklift truck under 

various conditions. We evaluate how the observed eye gaze patterns of the 

participants related to their navigation decisions. Our analysis shows that people 
primarily gazed on that side of the robot they ultimately decided to pass by. We 

discuss implications of these results and relate to a control approach that uses 

human eye gaze for early obstacle avoidance. 

Keywords. Human-Robot Interaction (HRI), Eye-tracking, Eye-Tracking Glasses, 
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1. Introduction 

During human-human interaction, humans rely on implicit and explicit, verbal and 

non-verbal cues to communicate [1], [2]: for mutual understanding, predicting future 

actions, and decision making. Similarly, robots operating in human co-habited environ-

ments should be capable of human-aware task and motion planning, ideally responding 

to expressions of human motion intentions as soon as they can be inferred from human 

cues. In public spaces, for instance an airport, a robot can typically deduce human 

intentions only with its onboard sensors, e.g., by using RGB-D cameras for trajectory 

and human head pose estimation [3]. In industrial environments, however, it is possible 

to issue regulations that require human workers to wear special safety equipment, e.g., 

safety vests or, as we suggest in this paper, safety eye-tracking glasses. Eye gaze can 

convey information about intentions beyond trajectory and head pose of a person [4]. 

Thus, we propose eye-tracking glasses as safety equipment in environments shared by 

humans and robots, eye-tracking glasses that are accessed wirelessly by a robot for 

implicit human intention transference. Especially in safety-critical, co-habited work 

places, e.g., warehouses or distribution centers with autonomous forklift trucks, this 

could reduce the number of accidents and enable more efficient operation.  



This work presents an investigation of the possibility to recognize human navigation 

intent implicitly expressed through gaze patterns. We set out with the hypothesis that 

navigational intent can be identified at least to some extent and in some situations from 

gaze patterns. In this paper, we use data collected for a previous study on 

‘Communicating Motion Intentions in Human Robot Interaction (HRI)’ [5], [6]. During 

the experiments, participants encountered a robot while wearing eye-tracking glasses, 

which recorded eye gaze patterns and a video of the participants’ view on the scene. 

We analyzed gaze patterns in relation to navigational decisions during human-robot 

encounters and found that people primarily gazed on that side of the robot they 

ultimately decided to pass by.  

It was demonstrated that eye gaze is linked, in time and location, to momentary task 

requirements, e.g., [7]–[10]. Patla and Vikers [8], [10] report that people fixate points 

on which they will step approximately one second before reaching them. In addition to 

this “footprint fixation”, the dominant pattern found was gaze being stable and travel-

ling at the speed of the body of the person (“travel fixation”) [8]. These findings 

support our hypothesis that navigational intent can be inferred from gaze patterns. 

Gaze points and fixations are measures routinely used in eye-tracking studies. Gaze 

points are identified by an eye-tracker through back-projection of light hitting the fovea 

from the surrounding scenery, thus identifying areas a person looks at with acute 

vision. Fixations are detected as spatiotemporal clusters of gaze points and typically 

represented by the cluster center. Essentially, during fixations the eyes stop scanning 

and focus on one part of the scene so that the visual system can collect detailed infor-

mation about what is being looked at [11]. Since fixations are typically detected in 

image space, however, standard fixation detectors do not work well in dynamic settings 

where the eye-tracker is generally in motion. We thus investigate the distribution of 

gaze points instead of fixations. This is different to the works of Huang et al. [12], 

Admoni et al. [13], Li and Zhang [14], [15] and Castellanos et al. [16], who also 

address the problem of recognizing implicit human intent, however in static settings. 

2. Setup and proposed approach 

 
Figure 1.  (Left) Robot platform used for the experiments and the pre-defined Areas of Interest (AOI): AOI-

left (Orange) and AOI-right (Blue). (Right) Experimental layout design: During the experiment, the humans 

(denoted by Hi) moved from Hi→Ri and the small forklift robot (denoted by Ri) moved from Ri→Hi.  

The experiments took place in the basement of a university building using the robotic 

platform shown in Fig.1 (left). The experimental layout displayed in Fig.1 (right) was 

designed to reproduce different real-life encounters – from right, frontal, and from left 



– in narrow situations. During the experiments, the participants wore eye-tracking 

glasses, which recorded gaze-overlaid videos of the participants’ perspective while 

encountering the robot. Each participant had 12 encounters with the robot, correspon-

ding to 12 decisions whether to pass the robot to the left or the right. During the 

encounters, the robot projected its navigational intent on the shared floor space in four 

patterns: Line, Arrow, Blinking Arrow and No Projection. We investigated the suita-

bility of these different robot-to-human intention projection patterns in our previous 

work [5], [6]. For this paper we analyze whether the projected robot intention had a 

significant influence on the observed gaze patterns but do not investigate further 

reciprocations between human and robot intentions. Every participant encountered each 

pattern an equal number of times and the order in which the participants encountered 

the different patterns was randomized to compensate for learning effects.  

2.1. Robotic Platform 

The mobile base, see Fig.1 (left), was built upon a model of a manually operated 

forklift equipped with motorized forks. The forklift has been retrofitted with a steering 

mechanism and a commercial AGV control system. The latter is used to interface the 

drive mechanism, as well as the steering servo. To assure safe operation, the vehicle is 

equipped with two SICK S300 safety laser scanners facing in forward and backward 

directions. During the experiments, the robot followed predefined paths at 0.6m/s, 

which were generated by using a two-step approach which combines a lattice based 

motion planner and a smoothing operation [17].  

2.2. Eye Tracker 

For acquiring gaze data, Pupil eye-tracking glasses [18] were used. The world camera 

resolution was 1920x1080 pixels (at 30 fps) and the resolution of the two infrared 

spectrum eye cameras was 640x480 (at 120 fps). Scene capturing was done using the 

open source software Pupil Capture. The Pupil Player software was used for catego-

rization and analysis. As can be seen in Fig.1 (left), fiducial markers were attached to 

the robot to define the areas of interest, thus, enabling an automatic categorization of 

the detected gaze points. We conducted manual marker calibration [18], where parti-

cipants focus on a printed marker at different positions in the their field of view. With 

this calibration method, it was possible to cover a greater field of view and to 

calibrate on greater distances (2 meters) than with a screen-based calibration. 

2.2.1. Areas of Interest (AOI) 

In this work, we are primarily interested in finding how the gaze pattern of the 

participants was distributed on the left and right side of the robot in relation to their 

navigation decisions. Hence, two areas of interest (AOI): AOI-left and AOI-right were 

defined as shown in Fig.1 (left). The dimensions of AOI-left and AOI-right were 

chosen after manually checking the gaze-overlaid videos so that the defined AOIs 

captured most of the relevant gaze points around the robot at the encountered distances.  

2.3. Experimental Procedure 

The participants were greeted, introduced to the experiments, asked to fill a general 

questionnaire and to sign a consent form. The robot was then shown in a stationary 

position to familiarize with the platform. The path the participants had to take during 



the experiment (see Fig.1, right) was then shown and the participants were informed 

about safety considerations. Finally, the eye-tracking glasses were calibrated, see 

Sec. 2.2, and the trials were started. The experiments took about 20-30 min.  

3. Results 

During the encounters, the number of gaze points on AOI-left and AOI-right were 

extracted and used to compute GazePtleft and GazePtright, denoting the relative percen-

tage of gazes on AOI-left and AOI-right, respectively. For each encounter those gaze 

points were considered that fall into the time span where the fiducial markers could be 

tracked. For 22 participants (1:1 gender ratio with an age of 28.5±6.5 years and various 

backgrounds) and 12 encounters per participant, there were 264 decisions, which we all 

use in our analysis. The decisions of the participants to go left or right were identified 

manually from the recorded video and assigned to categorical numbers: decision = 0 

for left, decision = 1 for right. Gaze support, denoting the percentage of gaze points on 

the AOI corresponding to the decision taken, was then computed as follows: 

Gaze support = GazePtleft  (1 – decision) + GazePtright  decision (1) 

The distribution of Gaze support over all decisions is shown in Fig. 3 by two histo-

grams, one with 20 bins (dark red/green bars) and one with 2 bins (light red/green bars). 

Overall, gaze support was in agreement with the navigation decision in 72.3% of the 

encounters, i.e. people moved in 191 out of the 264 encounters to the side they were 

looking at more often before passing the robot (they evaded the robot 106 times to the 

left and 85 times to the right). In 27.7% of the encounters gaze support was not in 

agreement with the navigation decision, i.e. people decided to move to the side they 

gazed at less frequently. Out of 73 such instances people passed by 43 times to the left 

and 30 times to the right. 

 

Figure 3. Histograms showing the distribution of Gaze support over all participants, all patterns, and all types 

of encounters. Red bars represent cases where people predominantly looked on one side and still moved to 

the other side. Green bars represent encounters where gaze was predominantly on the side chosen. Dark bars 

show a histogram with 20 bins. Light bars show another histogram of the same distribution with two bins. 

Next, we evaluated the influence of the projected robot intention on the observed gaze 

patterns. As mentioned above, the robot used four different projection patterns: Line, 

Arrow, Blinking Arrow and No Projection. The leftmost four bar pairs in Fig. 4, show 

the distribution of Gaze support over all participants and all types of encounters, 

separately for each of those patterns. The red and green bars in Fig. 4 correspond to the 

light red and green bins in Fig. 3. The 2-bin histogram in Fig. 3 is reproduced for 

comparison in Fig. 4 (labelled “All Cases”). We observed more encounters with 

agreeing gaze support when a line was projected to communicate the navigation intent 



of the robot. It is subject to further investigations to validate whether these differences 

are statistically significant and, if so, to identify possible reasons for this. 

Finally, we analyze whether the type of encounter had a significant influence on the 

observed gaze patterns and counted cases of agreeing and non-agreeing gaze support 

over all participants, all projections but for the different types of encounters separately. 

The corresponding results are shown in the three rightmost bar pairs in Fig. 4. We 

observed that most cases with agreeing gaze support occurred during frontal 

encounters. Again, further work is required to validate whether the observed 

differences are statistically significant and, if so, to identify possible reasons for this. 

 

 
Figure 4. Percentage of encounters in which non-agreeing (red) and agreeing (green) gaze support was 

observed. Leftmost four bar pairs: all participants and all types of encounters, separated by robot-to-human 

projection pattern (Line, Arrow, Blinking Arrow, and No Projection). Fifth bar pair: all participants, all tasks, 
and all projections (corresponding to the 2-bin histogram in Fig. 3). Rightmost three bar pairs: all participants, 

all projections, separated by types of encounters. 

4. Discussion  

This work investigates the possibility of human-to-robot implicit intention transference 

through recognition of implicitly expressed navigation intentions solely from eye gaze 

data. We presented experiments in which humans wearing eye-tracking glasses 

encountered a robot in different situations and evaluated how the observed gaze 

patterns of the participants related to their navigation decisions. Our results show that, 

in the given scenario, a navigation intent predictor based on the simple rule, “If people 

look more often to one side of the robot they intend to go to that side”, would have 

predicted the correct navigation intention in 72.3% of the encounters.  

This result is encouraging and a springboard for further research. More experiments in 

different scenarios are needed to establish stronger statistical evidence of the findings 

in this paper. Further studies in varied settings are needed to reach general conclusions 

(independent of our particular setting) about differences with respect to the projection 

pattern of the robot or the type of encounter and to find out about possible reasons for 

these differences. Finally, future research should address the question at which distance 

to a robot navigation intent shows most strongly in the gaze of humans. 

Gaze is not the only modality from which navigation intent can be inferred. Head and 

body pose and a person’s recent trajectory also allow inference of navigation intent. 

Future research should aim to find confidence models for predictors based on different 

modalities with the goal to derive more reliable joint predictors. Finally, navigation 



intent prediction needs to be integrated into human-aware motion planning. A suitable 

control approach based on implicit intention transference using eye-tracking, conside-

ring transmission to the robot, computation of states of human and robot and planning 

of the next motion step based on the velocity obstacles method is described in [19]. 
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