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Abstract�² In order to better handle the coupling effects when 
controlling  multi ple-input multi ple-output (MIMO) systems, 
taking the decentralized control structure as the basis, this paper 
proposes a sparse control strategy and a decoupling control 
strategy. Type-1 and type-2 Takagi-Sugeno (T-S) fuzzy models are 
used to describe the MIMO system, and the relative normalized 
gain array (RNGA) based criterion is employed to measure the 
coupling effects. The main contributions include: i). compared to 
the previous studies, a manner with less computational cost to 
build fuzzy models for the MIMO systems is provided, and a more 
accurate method to construct the so-called effective T-S fuzzy 
model (ETSM) to express the coupling effects is developed; ii). for 
the sparse control strategy, four indexes are defined in order to 
extend a decentralized control structure to a sparse one. 
Afterwards, an ETSM-based method is presented that a sparse 
control system can be realized by designing multiple independent 
single-input single-output (SISO) control-loops; iii). for the 
decoupling control strategy, a novel and simple ETSM-based 
decoupling compensator is developed that can effectively 
compensate for both steady and dynamic coupling effects. As a 
result, the MIMO controller design can be transformed to multiple 
non-interacting SISO controller designs. Both of the sparse and 
decoupling strategies allow to use linear SISO control algorithms 
to regulate a closely coupled nonlinear MIMO  system without 
knowing its exact mathematical functions. Two examples are used 
to show the effectiveness of the proposed strategies. 
 

Index Terms�² effective fuzzy model, T-S fuzzy model, sparse 
control, decoupling control, type-2 fuzzy logic.  
 

I. INTRODUCTION 

UE to the existence of coupling effects, the controller 
design for multiple-input multiple-output (MIMO) system 

is generally of much more complexity when compared to its 
single-input single-output (SISO) counterpart. In the area of 
MIMO control, although different sophisticated schemes have 
been proposed, decentralized control remains popular since it 
employs the simplest control structure that one manipulated 
variable (system input) regulates only one controlled variable 
(system output), which is convenient to tune, maintain and 
implement [1]-[3]. In general, there are two steps for 
decentralized control to handle coupling effects: first, the inputs 
and outputs are carefully paired that the resulting one-for-one 
control structure is of minimum coupling effects among the 
pairs; second, proper algorithms are used to design and tune the 
sub-controllers of the paired input-output channels to eliminate 
the coupling effects and achieve desired performance. For the 

first step, different interaction measures are available for 
pairing, such as the controllability and observability gramians 
[4]-[7], and the relative gain array (RGA) family [1]-[3],[8]-
[12]. For the second step, a challenge exists that the sub-
controller design generally requires to know the coupling 
information [12]. In many existing studies of the model-based 
decentralized control, extra terms are added to the model of 
isolated paired channel to characterize the coupling effects for 
sub-controller design [3]. These extra terms may not be always 
obtainable, especially in a complex MIMO system. An 
�D�O�W�H�U�Q�D�W�L�Y�H�����F�D�O�O�H�G���³�H�I�I�H�F�W�L�Y�H���P�R�G�H�O�´���>�����@-[15], is proposed that 
the coefficients of the �L�V�R�O�D�W�H�G�� �S�D�L�U�H�G�� �F�K�D�Q�Q�H�O�V�¶��models are 
revised to express the coupled results. In [15], the effective 
Takagi-Sugeno (T-S) fuzzy models (ETSMs) is presented, 
where the coefficients of the T-S fuzzy model are revised 
according to the coupling effects measured by the relative 
normalized gain array (RNGA) based criterion [2]. Unlike the 
effective transfer functions in [12]-[14], ETSM [15] can be used 
when the exact mathematical system functions are not available, 
and is more robust against the uncertainties. In addition, it 
allows to apply linear SISO control algorithms on the 
decentralized controller design for nonlinear MIMO systems 
thanks to the fact that T-S fuzzy model is composed of a group 
of linear local models [16].  

However, when there are strong coupling effects among the 
paired input-output channels, it is possible that no decentralized 
control yields a satisfactory performance due to the limited 
flexibility of control structure. On the other hand, centralized 
controller using full-dimensional control structure that each 
output is regulated by all inputs can handle the strong coupling 
effects, but can result in greatly increased complexity and cost 
in controller design and tuning, especially when the MIMO 
system is of high dimension. For this problem, one solution is 
to increase the flexibility of the control structure, beyond the 
one-for-one, to the extent that a satisfactory result can be 
achieved without necessarily using full -dimensional control 
structure. Sparse control, which is a compromise between 
decentralized and centralized control, is introduced as this 
solution [5]-[7],[11],[14]. In sparse control, part of the outputs 
are regulated by more than one inputs, thus it has extra design 
degree of freedom to manage the coupling effects compared to 
the decentralized control, and requires less computational cost 
compared to the centralized control. In [5]-[7], the methods to 
select sparse control structure using gramian-based interaction 
measure and based on linear/bilinear/nonlinear mathematical 
models are given. These methods have not referred to sparse 
controller design and not shown any sparse control performance. 
In [14], a scheme using RNGA and effective transfer function 
to determine sparse control structure and design sparse 

�6�S�D�U�V�H���D�Q�G���'�H�F�R�X�S�O�L�Q�J���&�R�Q�W�U�R�O���6�W�U�D�W�H�J�L�H�V 
�E�D�V�H�G���R�Q���7�D�N�D�J�L���6�X�J�H�Q�R���)�X�]�]�\���0�R�G�H�O�V�� 
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controller is presented. This scheme is based on linear transfer 
functions and may not work for nonlinear systems. In [11], a 
method based on T-S fuzzy model to select sparse control 
structure is proposed. This method works for both linear and 
nonlinear systems, and does not require to know the exact 
mathematical system functions. However, it does not 
investigate detailed sparse control strategy.  

Another solution to handle the closely coupled pairs is to 
insert a decoupling compensator into the control-loop to 
compensate for the coupling effects and subsequently decouple 
the paired channels, such that the decentralized controller can 
be decomposed to multiple non-interacting SISO controllers. 
Different methods have been proposed in this area. A static 
decoupling compensator in [17] is given for decoupling at low 
frequencies, and the dynamic decoupling compensator in [18]-
[23] can work in a wider range of frequency. However, the 
dynamic compensators may result in greatly increased 
complexity in the compensator itself or in the decoupled MIMO 
system. The methods in [17]-[23] are designed for linear 
systems. For nonlinear systems, several intelligent decoupling 
schemes can be found. In [24], a static neural network is used 
to construct an inverse system for decoupling, and then the 
controller is designed based on the pseudo linear transfer 
functions. In [25], a hybrid fuzzy decoupling method is 
developed based on the linearized systems and using the fuzzy 
logic to approximate the nonlinear coupling effects. In [26], by 
using RGA to select the pairs, a decoupling control law is 
proposed for a �t 
H�t system expressed by a linear function with 
nonlinear terms, and the adaptive neural-fuzzy inference system 
is used to estimate the nonlinear term. RGA only uses the 
steady-state gains for interaction measure and may give 
incorrect results because of lacking dynamic information. It is 
worth noting that the implement of these methods requires the 
�N�Q�R�Z�O�H�G�J�H���R�I���W�K�H���V�\�V�W�H�P�V�¶���P�D�W�K�H�P�D�W�L�F�D�O���I�X�Q�F�W�L�R�Q�V��to a certain 
extent. In [27], a fuzzy decoupling control system is presented 
where Mamdani fuzzy logic is used. Mamdani fuzzy logic may 
not be sufficient to describe the system dynamics and generally 
needs more fuzzy rules when compared to T-S fuzzy logic [28].  

Given the aforementioned condition, for a MIMO nonlinear 
system with closely coupled input-output channels and without 
knowing its exact mathematical functions, in order to achieve 
desired performance without applying full centralized control, 
practical strategies are needed to provide further improvement 
based on decentralized controllers. In this paper, using T-S 
fuzzy models to describe the MIMO system, and using RNGA 
which considers both steady and dynamic information to 
measure the coupling effects, a sparse control strategy and a 
decoupling control strategy are developed. Both type-1 and 
type-2 fuzzy logic are investigated for the proposed strategies. 
Compared to the type-1 (traditional) fuzzy model using crisp 
fuzzy membership grades, type-2 fuzzy model possesses 
increased fuzziness in the fuzzy membership grades. As a result, 
it has additional power to describe the uncertainties and can be 
more robust against the noise and disturbance [29]-[33]. The 
contributions of this paper are summarized as follows. 
�x Compared to the previous studies in [3],[11],[15], 

improvement is made in terms of fuzzy model construction. 

Subsequently, the cost for MIMO system modeling and the 
online computational complexity for the fuzzy model 
based controllers can be reduced. In addition, compared to 
the study in [15], a more accurate ETSM calculation is 
developed to provide a better expression for the coupled 
results on both steady and dynamic properties.  

�x For the sparse control strategy, four indexes are defined 
from the RNGA based interaction measure to select the 
sparse control structure, and an ETSM-based method is 
presented that the sparse controller for a nonlinear MIMO 
system can be achieved by designing multiple independent 
SISO controllers using linear algorithms. 

�x For the decoupling control strategy, using the information 
provided by RNGA, a T-S fuzzy model based decoupling 
compensator is proposed which can effectively compensate 
for both steady and dynamic coupling effects to decouple 
the paired channels, and subsequently offload the burden 
on decentralized control. Unlike the existing methods [24]-
[26], this decoupling compensator can be derived and 
implemented without the priori-knowledge of exact 
mathematical functions or linearized functions of the 
system. While compared to the Mamdani fuzzy logic based 
decoupling method in [27], the proposed method is based 
on T-S fuzzy model that can better describe the system 
dynamics, and provides a platform to apply linear SISO 
control algorithms on the regulation of strongly coupled 
nonlinear MIMO systems. 

Two nonlinear multivariable systems are employed to show 
and compare the performances of the proposed strategies, as 
well as that of type-1 and type-2 fuzzy models. The results 
demonstrate that by using the same SISO control algorithm in 
the sub-controller designs, both sparse and decoupling control 
outperform their decentralized counterpart, and the decoupling 
control achieves better output responses than the sparse control 
does. In addition, type-2 fuzzy system achieves more robust 
performance compared to its type-1 counterpart, which is more 
evident when larger uncertainty appears.   

Notations: �+�à 
H�á and �r�à 
H�á denote the �I 
H�J identity matrix 
and �I 
H�J zero matrix, respectively; �!�®�!  means Euclidean 
norm; �# 
L �>�=�:�E�á�F�;�?�á
H�á  is an �J
H�J matrix, where �=�:�E�á�F�;, a 
variable or a function with the subscripts composed by �³�E�´��
or/and �³ �F�´���� denotes the element in �# . The subscript 
combinations indicate the positions of the elements in the �J
H�J 
matrix as follows: i). �Û�Ü�Ý and �Û�Ý�Ü mean the elements in �Eth row 
and �Fth column; ii). �Û�Ü�Ü or �Û�Ý�Ý means the elements in �Eth or���Fth 
row and �Eth or���Fth  column; iii). �Û�Ü or �Û�Ý means it exists in all the 
elements of �Eth row or �Fth column.   

II. PRELIMINARIES 

In this section, some preliminary works, including the RNGA 
based criterion and the ETSM based decentralized control 
strategy, are introduced. These works are the basis of our study. 
The following assumption is applied throughout this paper. 

Assumption 1: The MIMO systems considered in this paper 
are square in dimension, open-loop stable, and non-singular in 
steady-state conditions. The time delays between inputs and 
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outputs are constant and measurable, and for each input, the 
delays between it and all outputs are considered to be identical. 

 
Fig. 1.  T-S fuzzy model based control-loop for a MIMO system 

A T-S fuzzy model based control-loop for an �J
H�J MIMO 
system is shown in Fig. 1, where �N�R
L �>�N�R�5���®���N�R�á�?

�Í �Ð�9�á 
stand for reference values, �Q
L �>�Q�5���®���Q�á�?

�Í �Ð�9�á are system 
inputs, �U
L �>�U�5���®���U�á�?

�Í �Ð�9�á  are system outputs, and���@
L
�N�R
F �U; �(�Í�Ì 
L 
c�B�Í�Ì �á�Ü�Ý
g�á
H�á

 is a �J
H�J T-S fuzzy model matrix to 

describe the MIMO system, �B�Í�Ì �á�Ü�Ý is the T-S fuzzy model 
(SISO) for isolated channel �U�Ü
F �Q�Ý ( �E�á�F
L �s�á�®�á�J); �)�¼
L


c�C�¼�á�Ü�Ý
g�á
H�á
 is the MIMO controller.  

When designing a decentralized controller �)�¼, the primary 
step is to select the dominant input-output pairs to form a 
decentralized control structure. For this issue, the RNGA based 
criterion is a helpful means [2],[3],[11],[15]. For a MIMO 
system represented by �(�Í�Ì , RNGA based criterion uses the 
steady-state gain, �ý�Ü�Ý, and the normalized integrated error, �B�Ü�Ý, 
of each �B�Í�Ì �á�Ü�Ý to evaluate the coupling effects and then pick out 
the dominant elements [3],[11],[15]. Collecting �ý�Ü�Ýs and �B�Ü�Ýs of 
all elements in �(�Í�Ì , we can have two matrices, �å 
L 
c�ý�Ü�Ý
g�á
H�á

 

and �ß
L 
c�B�Ü�Ý
g�á
H�á
. Afterwards, the RGA and RNGA for �(�Í�Ì  can 

be calculated by the following equations [2],[3],[11],[15]: 

�4�)�#
L 
c�ã�Ü�Ý
g�á
H�á

L �å �ê�:�å �;�?�Í            (1) 

�4�0�)�#
L 
c�ö�Ü�Ý
g�á
H�á

L �:�å �è�ß�;�ê�:�å �è�ß�;�?�Í        (2) 

where �ê and �è are element-by-element product and division, 
respectively, �:�®�;�?�Í  means inverse and transpose matrix. Note 
that the sum of the elements in each row/column of RGA or 
RNGA is 1. The definitions of the relative gain �ã�Ü�Ý and the 
relative normalized gains �ö�Ü�Ý are [1]-[3]:  

�P
�ã�Ü�Ý
L �ý�Ü�Ý�ý
à�Ü�Ý�¤

�ö�Ü�Ý
L
�ý�Ô�Õ�B�Ô�Õ�¤

�ý
à�Ô�Õ�B
Ü�Ô�Õ
W

L

�ý�Ô�Õ

�ý
à�Ô�Õ
�®

�B
Ü�Ô�Õ

�B�Ô�Õ

L �ã�Ü�Ý�®�Û�Ü�Ý

           (3) 

 where �Û�Ü�Ý
L �B
Ü�Ü�Ý�B�Ü�Ý�¤  is called relative normalized integrated 

error, �ý
à�Ü�Ý and �B
Ü�Ü�Ý are the apparent steady-state gain and 
normalized integrated error of �U�Ü
F �Q�Ý when other loops are 
closed (the closure of other loops can cause the coupling effects 
on �U�Ü
F �Q�Ý). From (3), we can know that when �ã�Ü�Ý and �ö�Ü�Ý are 

close to 1 (i.e., the values of �ý
à�Ü�Ý and �B
Ü�Ü�Ý are close to �ý�Ü�Ý and �B�Ü�Ý, 
respectively), the channel �U�Ü
F �Q�Ý  is highly independent 
(dominant) and robust to the coupling effects caused by other 
channels. Subsequently, �U�Ü
F �Q�Ý is likely to be selected as a 
pair. The pairing rules of the RNGA based criterion are 
presented as follows [2],[3],[11],[15]: 

i). �ã�Ü�Ýs and �ö�Ü�Ýs of the paired channels should be positive; 

ii). �ö�Ü�Ýs of the paired channels should be closest to 1; 

iii) . �0�+
L
�×�Ø�ç�:�å�;

�Â �ý�Ô�Ô
�Ù
�Ô�8�-


P �r, �0�+ is the Niederlinski index [34]. 

where �†�‡�–�:�å �; is the determinant of �å  after column swapping 
to place the paired elements in the diagonal positions if 
necessary, and �Â �ý�Ü�Ü

�á
�Ü�@�5  is the product of steady-state gains of 

the paired channels. A positive NI is a necessary condition for 
a stable control system [1]-[3],[11]-[15].  

In [15], a decentralized control strategy based on RNGA 
criterion and T-S fuzzy model is proposed. We briefly introduce 
it as follows: 

i). By using RNGA based criterion, the inputs and outputs 
are paired to determine a nominal fuzzy model matrix, denoted 
by �(
$�Í�Ì , which keeps the paired elements of �(�Í�Ì  and discards the 
rest. For instance, a �u
H�u system with pairing structure �U�5 
F
�Q�7���U�6 
F �Q�5���U�7 
F �Q�6 has the nominal fuzzy model matrix as: 

�(
$�Í�Ì 
L �N
�r �r �B�Í�Ì �á�5�7

�B�Í�Ì �á�6�5 �r �r
�r �B�Í�Ì �á�7�6 �r

�O            (4) 

ii). Based on �(
$�Í�Ì , the control structure for the decentralized 
controller �)�¼ is determined by the principle that each non-zero 
element �B�Í�Ì �á�Ü�Ý in �(
$�Í�Ì  is related to a sub-controller �C�¼�á�Ý�Ü which is 
in the transposed position [11]-[15]. Taking the system in (4) as 
an example, its decentralized controller is: 

�)�¼
L �N
�r �C�¼�á�5�6 �r
�r �r �C�¼�á�6�7

�C�¼�á�7�5 �r �r
�O             (5) 

ii i). Based on �B�Í�Ì �á�Ü�Ýs of the �J paired channels and the 
information provided by RNGA based criterion, �J ETSMs, 
denoted by �B���Í�Ì �á�Ü�Ýs, can be constructed to represent the paired 
channels with coupling effects such that each non-zero element 
�C�¼�á�Ü�Ý in �)�¼ can be independently designed based on the �B���Í�Ì �á�Ý�Ü. 
Taking (4) and (5) as an example, the decentralized control in 
Fig. 2(a) can be equivalently converted to three independent 
single control-loops in Fig. 2(b). 

  
(a)           (b) 

Fig. 2.  (a). a MIMO control-loop; (b). ETSM-based SISO control-loops 

The ETSM based decentralized control strategy is a practical 
method that can be implemented without knowing the exact 
mathematical functions of the MIMO systems, and allows to 
directly apply the well-developed linear SISO control 
algorithms to regulate nonlinear multivariable systems. 
However, when there exists strong coupling effects among the 
paired channels, the decentralized control may not provide 
satisfactory performance due to the limited flexibil ity of its one-
for-one control structure. In this paper, taking the decentralized 
control strategy in [15] as the basis, at first, improvements are 
made with respect to MIMO fuzzy modeling and ETSM 
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calculation. Afterwards, the sparse and decoupling control 
strategies that can improve the control system in terms of 
suppressing the coupling effects are developed. 

III.  FUZZY MODELING AND EFFECTIVE T-S FUZZY MODEL 
CALCULATION FOR MIMO  SYSTEM 

A. Fuzzy modeling for MIMO systems 

In the previous studies [3],[11],[15], each �B�Í�Ì �á�Ü�Ý in �(�Í�Ì  is 
independently identified based on the input-output data 
sampled from the isolated �U�Ü
F �Q�Ý. This manner may not work 
for some complex MIMO systems where the data of the isolated 
channels cannot be derived. On the other hand, the 
computational cost can become a problem especially for the 
large-scale systems since �J�6 fuzzy models need to be identified 
for an �J
H�J system. To overcome these limits, this paper uses 
a different manner to derive �(�Í�Ì  that only constructs one MIMO 
T-S fuzzy model for the �J
H�J system based on the input-output 
data sampled from the overall system instead of that from 
isolated channels.   

For an �J
H�J system in Fig. 1, collect the input-output data 
samples as 	
 �:�G�; 
L �>�T�:�G�;�Í ���U�:�G
E�s�;�Í �?�Í �Ð�9�8�á, where �T�:�G�; 
L
�>�U�:�G�;�Í �����U�:�G
F �s�;�Í ���Q�:�G
F�ì�;�Í �?�Í 
L �>�U�5�:�G�;���®���U�á�:�G�;���U�5�:�G
F
�s�;���®���U�á�:�G
F �s�;���Q�5�:�G
F �ì�5�;���®���Q�á�:�G
F �ì�á�;�?

�Í �Ð�9�7�á , �ì�Ý
R�r 
is the delays of �Q�Ý to the outputs, �G
L �s�á�®�á�0	
 , �0	
  is the 
number of data samples.  Based on 	
 �:�G�;, a type-1/type-2 T-S 
fuzzy model, which is composed of the following �³�,�I-�7�K�H�Q�´��
fuzzy rules and maps the relationship between �T�:�G�; and �U�:�G
E
�s�;, can be built to describe the MIMO system:  

�4�Q�H�A���H: If  �T�:�G�; is �ò �ß, Then 
�U�5

�ß�:�G
E�s�; 
L �=�5�á�5
�ß �U�5�:�G�; 
E�=�5�á�6

�ß �U�5�:�G
F �s�;  

E�>�5�5

�ß �Q�5�:�G
F�ì�5�; 
E�>�5�6
�ß �Q�6�:�G
F�ì�6�; 
E�®
E�>�5�á

�ß �Q�á�:�G
F �ì�á�;  
�U�6

�ß�:�G
E�s�; 
L �=�6�á�5
�ß �U�6�:�G�; 
E�=�6�á�6

�ß �U�6�:�G
F�s�;  

E�>�6�5

�ß �Q�5�:�G
F �ì�5�; 
E�>�6�6
�ß �Q�6�:�G
F �ì�6�; 
E�®
E�>�6�á

�ß �Q�á�:�G
F�ì�á�;  
�­ 

�U�á
�ß�:�G
E�s�; 
L �=�á�á�5

�ß �U�á�:�G�; 
E�=�á�á�6
�ß �U�á�:�G
F �s�;  


E�>�á�5
�ß �Q�5�:�G
F �ì�5�; 
E�>�á�6

�ß �Q�6�:�G
F�ì�6�; 
E�®
E�>�á�á
�ß �Q�á�:�G
F �ì�á�;  

                       (6) 

where �H
L �s�á�®�á�., �. is the number of fuzzy rules; �ò �ß is a type-
1 or type-2 fuzzy set to characterize �T�:�G�;, the type of �ò �ß 
determines the type of the fuzzy model; the local models of a 
fuzzy rule are a batch of multiple-input single-output linear 
polynomials, �=�Ü�á�5

�ß , �=�Ü�á�6
�ß  and �>�Ü�Ý

�ß (�E�á�F
L �s�á�®�á�J) are coefficients; 

�U�Ü
�ß�:�G
E�s�;  is the �Hth local output of �U�Ü. The total output 

�U�Ü�:�G
E�s�;, �E
L �s�á�®�á�J, is expressed by: 

�U�Ü�:�G
E�s�; 
L �=�Ü�á�5�:�G�;�U�Ü�:�G�; 
E�=�Ü�á�6�:�G�;�U�Ü�:�G
F �s�; 
E�>�Ü�5�:�G�;�Q�5�:�G
F
�ì�5�; 
E�>�Ü�6�:�G�;�Q�6�:�G
F�ì�6�; 
E�®
E�>�Ü�á�:�G�;�Q�á�:�G
F �ì�á�;    (7) 

where �=�Ü�á�5�:�G�;, �=�Ü�á�6�:�G�; and �>�Ü�Ý�:�G�; (�E�á�F
L �s�á�®�á�J) are weighted 
sums of �=�Ü�á�5

�ß , �=�Ü�á�6
�ß  and �>�Ü�Ý

�ß (�E�á�F
L �s�á�®�á�J) respectively, and the 
weights are the fuzzy membership grades of �T�:�G�; in �ò �ßs. When 
�ò �ßs are type-1 fuzzy sets, the fuzzy membership grade of �T�:�G�; 
in �ò �ß is a crisp number denoted by �ä�ß�:�T�:�G�;�;, which satisfies 
�r 
Q�ä�ß�:�T�:�G�;�; 
Q�s and �Ã �ä�ß�:�T�:�G�;�; 
L �s�Å

�ß�@�5 , and is calculated by 

the following equation [3],[11],[15]:   

�ä�ß
k�T�:�G�;
o
L

�Õ
�Ö
�Ô

�Ö
�Ó

�s�á �E�B���!�T�:�G�; 
F�T�Ö
�ß�! 
L �r��

�r�á �E�B�� �Ê�é�· �ß
�é�@�5�á�®�á�Å �!�T�:�G�; 
F �T�Ö

�é�! 
L �r
�5

�Ã
�[ �ã�:�Ö�;�7�ã�Î

�×�[
�.

�.�ã�:�Ö�;�7�ã�Î
�á�.

�.
�½
�á�8�-

�á �A�H�O�A
   

                       (8) 

where �T�Ö
�ß�Ð�9�u�J, �H
L �s�á�®�á�. are centers of the fuzzy sets. Then 

the coefficients in (7) for a type-1 fuzzy model are:   

�J
�=�Ü�á�ã�:�G�; 
L �Ã �ä�ß�:�T�:�G�;�;�=�Ü�á�ã

�ß�Å
�ß�@�5 �á

�>�Ü�Ý�:�G�; 
L �Ã �ä�ß�:�T�:�G�;�;�>�Ü�Ý
�ß�Å

�ß�@�5 �á
�L
L �s�á�t

�F
L �s�á�®�á�J       (9) 

When �ò �ßs are type-2 fuzzy sets, the fuzzy membership grade 
of �T�:�G�; in �ò �ß is an interval denoted by �ä
ä�ß�:�T�:�G�;�; 
L �>�ä�ß�:�T�:�G�;�;�á

�ä�ß�:�T�:�G�;�;�?, where �ä�ß�:�T�:�G�;�; and �ä�ß�:�T�:�G�;�; are the lower and 

upper bounds respectively that satisfy �r 
Q�ä�ß�:�T�:�G�;�; 
Q

�ä�ß�:�T�:�G�;�; 
Q�s. In this paper, the bounds are calculated by: 

 
]
���ä�ß
k�T�:�G�;
o
L �•�ƒ�š
[�r�á �ä�ß
k�T�:�G�;
o
F �¿�ä�ß
_

�ä�ß
k�T�:�G�;
o
L �•�‹�•
[�s�á �ä�ß
k�T�:�G�;
o
E�¿�ä�ß
_
        (10) 

where �r 
Q�¿�ä�ß
O�s denotes the varying range of the interval 
fuzzy membership grade �ä
ä�ß�:�T�:�G�;�; centered by �ä�ß�:�T�:�G�;�;. Then 
the coefficients in (7) for a type-2 fuzzy model are [11]: 

�Õ
�Ö
�Ô

�Ö
�Ó�=�E�á�L�:�G�; 
L

�5

�6
�F

�Ã �� �×
k�ë�:�Þ�;
o�Ô�Ô�á�Û
�×�½

�×�8�-

�Ã �� �×
k�ë�:�Þ�;
o�½
�×�8�-


E
�Ã �� �×
k�ë�:�Þ�;
o�Ô�Ô�á�Û

�×�½
�×�8�-

�Ã �� �×
k�ë�:�Þ�;
o�½
�×�8�-

�G�á

�>�E�F�:�G�; 
L
�5

�6
�F

�Ã �� �×
k�ë�:�Þ�;
o�Õ�Ô�Õ
�×�½

�×�8�-

�Ã �� �×
k�ë�:�Þ�;
o�½
�×�8�-


E
�Ã �� �×
k�ë�:�Þ�;
o�Õ�Ô�Õ

�×�½
�×�8�-

�Ã �� �×
k�ë�:�Þ�;
o�½
�×�8�-

�G�á

�L
L �s�á�t
�F
L �s�á�®�á�J(11) 

The detailed steps to identify the type-1 and type-2 T-S fuzzy 
models can be found in [11],[15]. In order to make the 
development of sparse and decoupling control strategies more 
straightforward and understandable, we rewrite the �J total 
outputs in (7) in a form similar to the discrete transfer function 
matrix as follows:  

�U�:�G�; 
L �) �:�G�á�V�?�5�; �®�Q�:�G�; 
L 
c�C�Ü�Ý�:�G�á�V
�?�5�;
g

�á
H�á
�®�Q�:�G�;  


L �H
�Õ�Ô�Õ�:�Þ�;�í

�7�:
��Õ�6�-�;

�5�?�Ô�Ô�á�-�:�Þ�;�í�7�-�?�Ô�Ô�á�. �:�Þ�;�í�7�.�I
�á
H�á

�®�Q�:�G�;         (12) 

where �V�?�5 is a backshift operator. From (12), we can know that 
�(�Í�Ì 
L �(�Í�Ì �:�G�á�V

�?�5�; 
L �) �:�G�á�V�?�5�;  and �B�Í�Ì �á�Ü�Ý
L �B�Í�Ì �á�Ü�Ý�:�G�á�V
�?�5�; 
L

�C�Ü�Ý�:�G�á�V
�?�5�;.  

Remark 2.1: Compared to the fuzzy modeling in [3],[11],[15] 
that independently identifies each �B�Í�Ì �á�Ü�Ý based on the data of 
isolated �U�Ü
F �Q�Ý, the manner developed in this paper is more 
practical and feasible since the input-output data of the overall 
system are more obtainable than that of the isolated channels. 
In addition, the time-varying coefficients �=�Ü�á�5�:�G�;, �=�Ü�á�6�:�G�; and 
�>�Ü�Ý�:�G�;  of all elements in �) �:�G�á�V�?�5�;  share the same fuzzy 
membership grades. Hence, the computational complexity and 
cost on both modeling and online calculation for the fuzzy 
model based control can be greatly reduced.   
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B. Effective T-S fuzzy model calculation 

Based on the matrix �) �:�G�á�V�?�5�; in (12), at each sampling time, 
the �ý�Ü�Ý and �B�Ü�Ý of each �B�Í�Ì �á�Ü�Ý can be calculated by [3]:   


^
�ý�Ü�Ý�:�G�; 
L

�Õ�Ô�Õ�:�Þ�;

�5�?�Ô�Ô�á�-�:�Þ�;�?�Ô�Ô�á�. �:�Þ�;

�B�Ü�Ý�:�G�; 
L
�5�>�Ô�Ô�á�. �:�Þ�;

�5�?�Ô�Ô�á�-�:�Þ�;�?�Ô�Ô�á�. �:�Þ�;
�®�Â�6
E�ì�Ý�®�Â�6

        (13) 

Then the RGA and RNGA can be derived using (1) and (2), and 
the input-output pairs with minimum coupling effects can be 
selected according to the pairing rules. In order to achieve the 
desired performance, the sub-controller design needs to know 
and consider these �³�P�L�Q�L�P�X�P��coupling �H�I�I�H�F�W�V�´���� �(�7�6�0�� �L�V�� �D�Q��
effective tool to describe the coupling effects. In the 
decentralized control strategy [15], for each paired channel, an 
ETSM can be derived by merging the coupling information 
given from the interaction measure into the coefficients of its 
original fuzzy model. Afterwards, the �J ETSMs which are 
regarded as �J non-interacting SISO systems can be used to 
approximately represent the �J
H�J MIMO system, and then the 
decentralized controller design can be equivalently transformed 
to multiple independent single-loop controller designs. Since 
the ETSM has same structure but different coefficients 
compared to its original T-S fuzzy model, according to (12), for 
a pair �U�Ü
F �Q�Ý, its ETSM �B���Í�Ì �á�Ü�Ý can be expressed as: 

�B���Í�Ì �á�Ü�Ý�:�G�á�V
�?�5�; 
L

�Õ
à�Ô�Õ�:�Þ�;�í
�7�:
�
Ü�Ô�Õ�:�Ö�;�6�-�;

�5�?�Ô
Ü�Ô�Õ�á�-�:�Þ�;�í�7�-�?�Ô
Ü�Ô�Õ�á�. �:�Þ�;�í�7�.     (14) 

where �=
Ü�Ü�Ý�á�5�:�G�;, �=
Ü�Ü�Ý�á�6�:�G�;, �>
à�Ü�Ý�:�G�; and �ì�¸�Ü�Ý�:�G�; are the revised 
coefficients. Similar as (13), the steady-state gain and 
normalized integrated error of �B���Í�Ì �á�Ü�Ý, which are �ý
à�Ü�Ý and �B
Ü�Ü�Ý, can 
be calculated by:  

 
^
�ý
à�Ü�Ý�:�G�; 
L

�Õ
à�Ô�Õ�:�Þ�;

�5�?�Ô
Ü�Ô�Õ�á�-�:�Þ�;�?�Ô
Ü�Ô�Õ�á�. �:�Þ�;

�B
Ü�Ü�Ý
L
�5�>�Ô
Ü�Ô�Õ�á�. �:�Þ�;

�5�?�Ô
Ü�Ô�Õ�á�-�:�Þ�;�?�Ô
Ü�Ô�Õ�á�. �:�Þ�;
�®�Â�6
E�ì�¸�Ü�Ý�:�G�; �®�Â�6

      (15) 

By considering (3), (13), and (15), we have the following 
equations to calculate the ETSM�¶�V��coefficients in (14): 

�Õ
�Ö
�Ô

�Ö
�Ó �>
à�Ü�Ý�:�G�; 
L �>�Ü�Ý�:�G�; �ã�Ü�Ý�:�G�;�¤

�=
Ü�Ü�Ý�á�5�:�G�; 
L �=�Ü�á�5�:�G�; 
E
k�s
F�Û�Ü�Ý�:�G�;
o�=�Ü�á�6�:�G�; 
F �Û�Ü�Ý�:�G�; 
E�s
�=
Ü�Ü�Ý�á�6�:�G�; 
L �Û�Ü�Ý�:�G�;�=�Ü�á�6�:�G�; 
E�Û�Ü�Ý�:�G�; 
F �s

�ì�¸�Ü�Ý�:�G�; 
L �Û�Ü�Ý�:�G�; �®�ì�Ý

 (16) 

Note that the values of �Û�Ü�Ý
L �ö�Ü�Ý�ã�Ü�Ý�¤  of the paired channels are 
positive according to the pairing rules of the RNGA based 
criterion, which can guarantee the causality that �ì�¸�Ü�Ý
R�r.  

In addition, it is important for the closed-loop control system 
to possess the integrity [13]-[15], which means the control 
system should remain stable whether any sub-control loops are 
removed or kept. Therefore, �B���Í�Ì �á�Ü�Ý �V�K�R�X�O�G�� �U�H�I�O�H�F�W�� �W�K�H�� �³�Z�R�U�V�H�´��
condition between the original coefficients of �B�Í�Ì �á�Ü�Ý and those 
revised by (16) to serve the controller design. It is a common 
sense that larger �+�>
à�Ü�Ý�+ and �ì�¸�Ü�Ý imply a more challenging 
condition for the control system�¶�V��stability. Thus, the values of 

�ã�Ü�Ý and �Û�Ü�Ý used in (16) to calculate �B���Í�Ì �á�Ü�Ý are determined by:  

�J
�ã�Ü�Ý
L �•�‹�•�<�s�á �ã�Ü�Ý�=

�Û�Ü�Ý
L �•�ƒ�š�<�s�á �Û�Ü�Ý�=
       (17) 

Remark 2.2: For the ETSM calculation in [15], only �>�Ü�Ý and 

�ì�Ý of �B�Í�Ì �á�Ü�Ý are revised to derive �B���Í�Ì �á�Ü�Ý through �>
à�Ü�Ý
L �>�Ü�Ý�ã�Ü�Ý�¤  
and �ì�¸�Ü�Ý
L �Û�Ü�Ý�®�ì�Ý. In a well-paired system, �ã�Ü�Ýs and �ö�Ü�Ýs of the 
paired elements are close to 1, and consequently �Û�Ü�Ýs (�Û�Ü�Ý
L
�ö�Ü�Ý�ã�Ü�Ý�¤ ) of the paired elements are close to 1. In this case, 
according to (16), �=
Ü�Ü�Ý�á�ã is approximately equal to �=�Ü�á�ã ( �L
L
�s�á�t). Thus, it is acceptable to keep �=�Ü�á�5s and �=�Ü�á�6s unchanged in 
�B���Í�Ì �á�Ü�Ý for the decentralized controller design. However, for the 
sparse and decoupling control strategies presented in the next 
section where the ETSMs for unpaired elements need to be 
calculated, only revising �>�Ü�Ý and �ì�Ý cannot reflect the correct 
coupling effects since the �Û�Ü�Ýs of those unpaired elements may 
not be close to 1. In this paper, all the coefficients of �B�Í�Ì �á�Ü�Ý are 

revised to derive a �B���Í�Ì �á�Ü�Ý by (16), which can offer a more 
accurate result to ensure that the desired performance can be 
achieved in decentralized, sparse and decoupling control. 

IV. SPARSE AND DECOUPLING CONTROL STRATEGIES 

A. Sparse control strategy 

Compared to decentralized control, sparse control utilizes a 
richer control structure that is determined by a nominal fuzzy 
model �(
$�Í�Ì  adding several unpaired elements with relatively 
large dominance to the paired structure. Taking (4) and (5) as 
an example, suppose the unpaired channels �U�6 
F �Q�7 and �U�7 
F
�Q�7 are added, then �(
$�Í�Ì  and �)�¼ for sparse control are:   

�(
$�Í�Ì 
L �N
�r �r �B�Í�Ì �á�5�7

�B�Í�Ì �á�6�5 �r �B�Í�Ì �á�6�7

�r �B�Í�Ì �á�7�6 �B�Í�Ì �á�7�7

�O, �)�¼
L �N
�r �C�¼�á�5�6 �r
�r �r �C�¼�á�6�7

�C�¼�á�7�5 �C�¼�á�7�6 �C�¼�á�7�7

�O 

RNGA based interaction measure can be used to assess the 
relative dominance of the unpaired elements. Swapping the 
columns of an �J
H�J �(�Í�Ì  to place the paired elements in the 
diagonal positions if necessary, �(
$�Í�Ì  for sparse control becomes: 

�(
$�Í�Ì 
L 
c�ô�Ü�Ý�®�B�Í�Ì �á�Ü�Ý
g�á
H�á
               (18) 

where �ô�Ü�Ü
L �s and �ô�Ü�Ý
L �<�r�á�s�= for �E
M�F. In this study, four 
interaction indexes, �Û�Ë�â�ê
L 
c�Ù�Ë�â�ê�á�Ü�Ý
g�á
H�á

, �Û�¼�â�ß
L


c�Ù�¼�â�ß�á�Ü�Ý
g�á
H�á
, �Ü�Ë�â�ê
L 
c�Ú�Ë�â�ê�á�Ü�Ý
g�á
H�á

 and �Ü�¼�â�ß
L 
c�Ú�¼�â�ß�á�Ü�Ý
g�á
H�á
 

defined as follows, are used to determine the values of �ô�Ü�Ýs: 

�J
�Ù�Ë�â�ê�á�Ü�Ý
L �+�ã�Ü�Ý�ã�Ü�Ü�¤ �+

�Ù�¼�â�ß�á�Ü�Ý
L �+�ã�Ü�Ý�ã�Ý�Ý�¤ �+
                (19) 

�J
�Ú�Ë�â�ê�á�Ü�Ý
L �+�ö�Ü�Ý�ö�Ü�Ü�¤ �+
L �:�+�ã�Ü�Ý�ã�Ü�Ü�¤ �+�; �®�:�+�Û�Ü�Ý�Û�Ü�Ü�¤ �+�;

�Ú�¼�â�ß�á�Ü�Ý
L �+�ö�Ü�Ý�ö�Ý�Ý�¤ �+
L �:�+�ã�Ü�Ý�ã�Ý�Ý�¤ �+�; �®�:�+�Û�Ü�Ý�Û�Ý�Ý�¤ �+�;
     (20) 

�Ù�Ë�â�ê�á�Ü�Ý (or �Ù�¼�â�ß�á�Ü�Ý) and �Ú�Ë�â�ê�á�Ü�Ý (or �Ú�¼�â�ß�á�Ü�Ý) compare the degree 
of independence of the unpaired element �U�Ü
F �Q�Ý with that of 
the paired element �U�Ü
F �Q�Ü (or �U�Ý
F �Q�Ý) in terms of steady and 
dynamic properties. Equations (19) and (20) imply that when 
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�Ù�Ë�â�ê�á�Ü�Ý,  �Ù�¼�â�ß�á�Ü�Ý, �Ú�Ë�â�ê�á�Ü�Ý and �Ú�¼�â�ß�á�Ü�Ý are close to 1, the degree of 
independence of �U�Ü
F �Q�Ý is similar to that of the paired 
elements. Accordingly, it has a relatively large dominance and 
is likely to be included into �(
$�Í�Ì  for sparse control. Given �Ý��  and 
�Ý�	  satisfying �r 
O�Ý�� �á�Ý�	 
Q�s, �ô�Ü�Ý is determined by:   

�ô�Ü�Ý
L �P
�s�á

�Ý�� 
Q�Ù�Ë�â�ê�á�Ü�Ý�á�Ù�¼�â�ß�á�Ü�Ý
Q�s �Ý���¤ �á
�=�J�@���Ý�	 
Q�Ú�Ë�â�ê�á�Ü�Ý�á�Ú�¼�â�ß�á�Ü�Ý
Q�s���Ý�	

�r�á �A�H�O�A
      (21) 

Note that small/large �Ý��  and �Ý�	  select a rich/simple sparse 
control structure. Empirically, the values of �Ý��  and �Ý�	  are 
chosen from �>�r�á�s�á�r�ä�u�? [11]. 

Remark 3.1: in [14], only the value of �+�ö�Ü�Ý�+���ö�Ü�Ü���¤ 
L
�:�+�ã�Ü�Ý�+���ã�Ü�Ü���¤ �; �®�:�+�Û�Ü�Ý�+���Û�Ü�Ü���¤ �;  is used to assess the relative 

dominance. It states that �+�ã�Ü�Ý�+���ã�Ü�Ü���¤  and �+�Û�Ü�Ý�+���Û�Ü�Ü���¤  of a selected 
unpaired element should not be very large or very small, and 
consequently it uses a criterion that an unpaired element �U�Ü
F
�Q�Ý is qualified to be added to the sparse control structure when 

�+�ö�Ü�Ý�+���ö�Ü�Ü���¤  is a moderate value which is in �>�r�ä�s�w�á�z�?. However, 

a moderate �+�ö�Ü�Ý�+���ö�Ü�Ü���¤  may contain a very large �+�ã�Ü�Ý�+���ã�Ü�Ü���¤  and 
a very small �+�Û�Ü�Ý�+���Û�Ü�Ü���¤ , or a very small �+�ã�Ü�Ý�+���ã�Ü�Ü���¤  and a very 

large �+�Û�Ü�Ý�+���Û�Ü�Ü���¤ , and then the selection criterion given in [14] 
can lead to incorrect results. While in [11], improvements are 
made that two indexes, �Ù�Ü�Ý
L �r�ä�w
H�:�+�ã�Ü�Ý�+���ã�Ü�Ü��
E�+�ã�Ü�Ý�+�+�ã�Ý�Ý�+�;
W
W  

and �Ú�Ü�Ý
L �r�ä�w
H
k�+�ö�Ü�Ý�+���ö�Ü�Ü���¤ 
E�+�ö�Ü�Ý�+�+�ö�Ý�Ý�+
W 
o
L �r�ä�w
H

c
k�+�ã�Ü�Ý�+�®�+�Û�Ü�Ý�+
o �:���ã�Ü�Ü���®���Û�Ü�Ü���;�¤ 
E
k�+�ã�Ü�Ý�+�®�+�Û�Ü�Ý�+
o 
k�+�ã�Ý�Ý�+�®�+�Û�Ý�Ý�+
o
W 
g are 
used to select the unpaired elements which satisfies �Ý�� 
Q�Ù�Ü�Ý
Q
�s���Ý�� ��and �Ý�	 
Q�Ú�Ü�Ý
Q�s���Ý�	 . In this study, a further detailed 
selection criterion with four indexes as (19)-(20) is employed 
to guarantee that the selected �U�Ü
F �Q�Ý possesses relatively large 
dominance in terms of both steady and dynamic properties 
when compared to the paired elements �U�Ü
F �Q�Ü and �U�Ý
F �Q�Ý.    

Using the nominal fuzzy model �(
$�Í�Ì  in (18) to represent the 
MIMO system for sparse controller design, for a closed-loop 
control system in Fig. 1, an ideal design is that the forward path 
satisfies the following equation: 

�(
$�Í�Ì �:�V
�?�5�; �®�)�¼�:�V

�?�5�;  


L �@�E�=�C�D
�¿�Í

�5�?�í�7�- �á
�¿�Í

�5�?�í�7�- �á�®�á
�¿�Í

�5�?�í�7�-�E�Ð�9�á
H�á       (22) 

Then the controller �)�¼ is obtained by: 

�)�¼�:�V
�?�5�; 
L �(
$�Í�Ì ���:�V

�?�5�;�?�5 �®�@�E�=�C�D
�¿�Í

�5�?�í�7�- �á
�¿�Í

�5�?�í�7�- �á�®�á
�¿�Í

�5�?�í�7�-�E (23) 

It is generally difficult to directly obtain �(
$�Í�Ì ���:�V
�?�5�;�?�5. In this 

study, we use an ETSM-based manner to solve this problem. 
According to the definition of the dynamic RGA (DRGA) 
[10],[14], we have the following equation: 

�&�4�)�#
L 
c�&�ã�Ü�Ý�:�V
�?�5�;
g

�á
H�á

L �(
$�Í�Ì ���:�V

�?�5�; �T �(
$
à�Í�Ì
�Û �:�V�?�5�;   (24) 

where �&�ã�Ü�Ý
L �ô�Ü�Ý�®�B�Í�Ì �á�Ü�Ý�B���Í�Ì �á�Ü�Ý�¤ , and �(
$
à�Í�Ì
�Û is defined as: 

�(
$
à�Í�Ì
�Û �:�V�?�5�; 
L 
c�ô�Ü�Ý���B���Í�Ì �á�Ü�Ý
g�á
H�á

             (25) 

Similar to RGA in (1), DRGA can be calculated by [10],[14]: 

�&�4�)�#
L �(
$�Í�Ì ���:�V
�?�5�; �T �(
$�Í�Ì �:�V

�?�5�;�?�Í           (26) 

Equations (24) and (26) reveal an important relationship: 

�(
$�Í�Ì �:�V
�?�5�;�?�5 
L �(
$
à�Í�Ì

�Û �:�V�?�5�;�Í 
L 
c�ô�Ý�Ü���B���Í�Ì �á�Ý�Ü
g�á
H�á
      (27) 

Submitting (27) to (23), we can have: 

�)�¼�:�V
�?�5�; 
L �(
$
à�Í�Ì

�Û �:�V�?�5�;�Í �®�@�E�=�C�D
�¿�Í

�5�?�í�7�- �á
�¿�Í

�5�?�í�7�- �á�®�á
�¿�Í

�5�?�í�7�-�E
L  

 
d
�#�Õ�Ô�®�¿�Í

�Ù���Å�Ä�á�Õ�Ô�®�:�5�?�í�7�-�;

h
�á
H�á

                (28) 

Therefore, the non-zero elements in �)�¼ are derived by:  

�C�¼�á�Ü�Ý
L
�¿�Í

�Ù���Å�Ä�á�Õ�Ô�®�:�5�?�í�7�-�;
�œ�B���Í�Ì �á�Ý�Ü�®�C�¼�á�Ü�Ý
L

�¿�Í

�5�?�í�7�-      (29) 

The term  �B���Í�Ì �á�Ý�Ü�®�C�¼�á�Ü�Ý in (29) can be regarded as the forward 
path of a closed-loop SISO control system as illustrated in Fig. 
2(b), and the controller satisfying (29) is an ideal design for this 
single loop. By considering the delays, (29) is rewritten as 

�B���Í�Ì �á�Ý�Ü�:�G�á�V
�?�5�; �®�C�¼�á�Ü�Ý�:�G�á�V

�?�5�; 
L
�í

�7
�
Ü�Õ�Ô�:�Ö�;�®�¿�Í

�5�?�í�7�-         (30) 

Note that when all �ô�Ü�Ýs (�E
M�F) are 0, (29) tallies with the theory 
of ETSM-based decentralized control strategy in [15]. 
Therefore, both decentralized and sparse controllers can be 
realized by devising multiple independent single-loop 
controllers based on ETSMs. In order to maintain the integrity 
of the control system, �B���Í�Ì �á�Ü�Ýs are calculated by (16) with �ã�Ü�Ýs 
and �Û�Ü�Ýs determined by (17).  

Theoretically, any linear SISO control algorithms can be 
applied to design the sub-controllers based on their associated 
ETSMs. We leave the choice of linear SISO control algorithms 
to users. The stability of the sparse control strategy can be 
evaluated through the following procedure: 
�x The sparse controller can be expressed by: 

�� �Q�:�G�; 
L 	F
%�:�G�; �®�� �:
$�:�G�; 
L

�Ï
�Î
�Î
�Í 	F
%�5�5�:�G�; �ô�6�5	F
%�6�5�:�G�;
�ô�5�6	F
%�5�6�:�G�; 	F
%�6�6�:�G�;

�® �ô�á�5	F
%�á�5�:�G�;
�® �ô�á�6	F
%�á�6�:�G�;

�­ �­
�ô�5�á	F
%�5�á�:�G�; �ô�6�á	F
%�6�á�:�G�;

�° �­
�® 	F
%�á�á�:�G�; �Ò

�Ñ
�Ñ
�Ð
�� �:
$�:�G�;  (31) 

where �� �Q�:�G�; 
L �Q�:�G�; 
F �Q�:�G
F �s�; is the increment of the 
manipulated variable, �� �:
$�:�G�; 
L
�>�� �:
$�5�:�G�;

�Í ���� �:
$�6�:�G�;
�Í ���®���� �:
$�á�:�G�;

�Í �?�Í , �� �:
$�Ü�:�G�; 
L �>�@�Ü�:�G
F
�I �Ü�;���®���@�Ü�:�G
F �s�;���@�Ü�:�G�;�?

�Í �Ð�9�à �Ô�>�5, where �I �Ü (�E
L �s�á�®�á�J) 
is a integer, �@�Ü�:�G�; 
L �N�R�Ü�:�G�; 
F �U�Ü�:�G�; ;  	F
%�Ü�Ý�:�G�; 
L
�>	F
%�Ü�Ý�á�à �Ô

�:�G�;����	F
%�Ü�Ý�á�à �Ô�?�5�:�G�;���®��	F
%�Ü�Ý�á�5�:�G�;��	F
%�Ü�Ý�á�4�:�G�;�?�Ð�9�5
H�:�à �Ô�>�5�; 
consists of the control gains of �C�¼�á�Ý�Ü calculated based on 

�B���Í�Ì �á�Ü�Ý and �� �:
$�Ü�:�G�; using the selected linear control algorithm. 
�x The fuzzy model (7) or (12) for the MIMO system can be 

rewritten as:  

�� �:
$�:�G
E�s�; 
L �#�§�:�G�;�� �:
$�:�G�; 
E�$
$�:�G�;�� �Q�:�G�;      (32) 

where �#�§�:�G�; 
L �@�E�=�C�<�#�§�5�:�G�;�á�®�á�#�§�á�:�G�;�= , �#�§�Ü�:�G�; 
L
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d
�r�à �Ô
H�5 �+�à �Ô
H�à �Ô

�r �=
$�Ü�:�G�;

h�Ð�9�:�à �Ô�>�5�;
H�:�à �Ô�>�5�; , �=
$�Ü�:�G�; 
L

�>�r���®�r���=�Ü�á�6�:�G�;���=�Ü�á�5�:�G�;�?�Ð�9�5
H�à �Ô  ; �$
$�:�G�; 
L

�>�$
$�5�:�G�;
�Í ���®���$
$�á�:�G�;

�Í �?�Í �Ð�9�:�á�>�Ã �à �Ô
�Ù
�Ô�8�- �;
H�á , �$
$�Ü�:�G�; 
L �H

�r�à �Ô
H�á

�>
$�Ü�:�G�;
�I , 

�>
$�Ü�:�G�; 
L �>�>�Ü�5�:�G�;���>�Ü�6�:�G�;���®���>�Ü�á�:�G�;�?�Ð�9�5
H�á. 
�x Submitting (31) to (32), we can have: 

�� �:
$�:�G
E�s�; 
L �#�§�:�G�;�� �:
$�:�G�; 
E�$
$�:�G�;	F
%�:�G�;�� �:
$�:�G�;  

L �>�#�§�:�G�; 
E�$
$�:�G�;	F
%�:�G�;�?�� �:
$�:�G�;           (33) 

The control-loop using the proposed sparse control strategy 
is stable if all the eigenvalues of  �#�§�:�G�; 
E�$
$�:�G�;	F
%�:�G�; lie 
inside the unit cycle. 

B. Decoupling control strategy 

 
Fig. 3.  Fuzzy model based decoupling control system 

Decoupling control strategy is to insert a decoupling 
compensator between the decentralized controller and the 
MIMO system in order to compensate for the coupling effects 
among the pairs. In Fig. 3, �)�½ 
L 
c�C�½�á�Ü�Ý
g�á
H�á

 denotes the fuzzy 

model based decoupling compensator, and �Q�½ �Ð�9�á  is the 
output of �)�½. Suppose the paired elements are placed in the 
diagonal positions, a perfect decoupling compensator can 
eliminate all the off-diagonal elements and only leave the 
diagonal elements for decentralized controller design. Using 
�(�Í�Ì �:�V

�?�5�; to represent the MIMO system, the compensator 
�)�½�:�V

�?�5�;  is required to satisfy:  

�(�Í�Ì �á�½�:�V
�?�5�; 
L �(�Í�Ì �:�V

�?�5�; �®�)�½�:�V
�?�5�; 
L

�@�E�=�C�D�B�Í�Ì �á�5�5
�:�4�; �V�?���-�á�B�Í�Ì �á�6�6

�:�4�; �V�?���. �á�®�á�B�Í�Ì �á�á�á
�:�4�; �V�?���Ù���E       (34) 

where �(�Í�Ì �á�½ denotes the decoupled MIMO fuzzy model, in 

which �B�Í�Ì �á�Ý�Ý
�:�4�; �:�G�á�V�?�5�; 
L

�Õ�Õ�Õ�:�Þ�;�í
�7�-

�5�?�Ô�Õ�á�-�:�Þ�;�í�7�-�?�Ô�Õ�á�. �:�Þ�;�í�7�.  is equal to the 

�B�Í�Ì �á�Ý�Ý�:�G�á�V
�?�5�;  in (12) with �V�?���Õ removed, and �V�?���Õ, �F
L

�s�á�®�á�J, is the delay used to guarantee the causality of �)�½�:�V
�?�5�;. 

According to (34), �)�½�:�V
�?�5�; is derived by: 

�)�½�:�V
�?�5�; 
L �(�Í�Ì �:�V

�?�5�;�?�5 �®�(�Í�Ì �á�½�:�V
�?�5�;         (35) 

In (35), �(�Í�Ì �:�V
�?�5�;�?�5 is generally difficult to derive. Inspired by 

(27), ETSMs can be employed to solve this problem:  

�(�Í�Ì �:�V
�?�5�;�?�5 
L �(
à�Í�Ì

�Û �:�V�?�5�;�Í 
L 
c�s���B���Í�Ì �á�Ý�Ü
g�á
H�á
       (36) 

Submitting (36) to (35), �)�½�:�V
�?�5�; can be derived by:  

�)�½�:�V�?�5�; 
L �(
à�Í�Ì
�Û �:�V�?�5�;�Í �®�(�Í�Ì �á�½�:�V�?�5�; 
L �H

�Ù�Å�Ä�á�Õ�Õ
�:�,�; �í

�7�ù�Õ

�Ù���Å�Ä�á�Õ�Ô
�I
�á
H�á

   (37) 

By submitting (12) and (14) into (37), the decoupling 
compensator can be further expressed as:  

�)�½�:�G�á�V
�?�5�; 
L 
c�C�½�á�Ü�Ý�:�G�á�V

�?�5�;
g
�á
H�á


L


d
�:�5�?�Ô
Ü�Õ�Ô�á�-�:�Þ�;�í

�7�-�?�Ô
Ü�Õ�Ô�á�. �:�Þ�;�í
�7�. �;�Õ�Õ�Õ�:�Þ�;

�:�5�?�Ô�Õ�á�-�:�Þ�;�í�7�-�?�Ô�Õ�á�. �:�Þ�;�í�7�. �;�Õ
à�Õ�Ô�:�Þ�;
�V�?�:���Õ�:�Þ�;�?��
Ü�Õ�Ô�:�Þ�;�;
h

�á
H�á
     (38) 

Note that in (38), the coefficients of �B���Í�Ì �á�Ü�Ýs calculated by (16) 
use the original values of �ã�Ü�Ý and �Û�Ü�Ý derived from (3) rather 
than the revised ones in (17) since it is used to obtain a 
decoupling compensator instead of being a virtual model 
�U�H�I�O�H�F�W�L�Q�J���W�K�H���³�Z�R�U�V�H�´���F�R�Q�G�L�W�L�R�Q���I�R�U��controller design.  

Compared with (27), equation (36) contains no �ô�Ü�Ýs and 
�O�H�D�Y�H�V�� �Q�R�� �³�E�O�D�Q�N�´�� �I�R�U�� �L�W�V�� �H�O�H�P�H�Q�W�V���� �+�H�Q�F�H���� �D�F�F�R�U�G�L�Q�J�� �W�R�� ��������-
(38), �)�½ in (38) uses a full-dimensional structure that can 
compensate for the coupling effects caused by all unpaired 
elements. To ensure �)�½ to be physically realizable, the analysis 
is presented as follows:  
�x Stability: the elements of �)�½ in (38) have the denominators 

same as that in the original fuzzy model �(�Í�Ì  in (12), which 
implies �)�½  is a stable system. 

�x Properness: each element of �)�½  satisfies that the 
�Q�X�P�H�U�D�W�R�U�¶�V�� �G�H�J�U�H�H��does �Q�R�W�� �H�[�F�H�H�G�� �W�K�H�� �G�H�Q�R�P�L�Q�D�W�R�U�¶�V���� �,�Q 
order to guarantee the properness of the decoupling 
compensator that each element satisfies 
�Ž�‹�•
�í�\ �¶

�+�C�½�á�Ü�Ý�:�G�á�V
�?�5�;�+
O�», for the �C�½�á�Ü�Ý, when the �>
à�Ý�Ü�:�G�; 
L �r 

(�E�á�F
L �s�á�®�á�J), let it be a small value close to 0, such as let 
�>
à�Ý�Ü�:�G�; 
L �s�r�?�: .  

�x Causality: in order to guarantee �)�½ to be a casual system, the 
delays �V�?���Õ�:�Þ�; (�F
L �s�á�®�á�J) in (38) are determined by:  

�Ò�Ý�:�G�; 
L �•�ƒ�š
[�ì�¸�Ý�5�:�G�;�á�ì�¸�Ý�6�:�G�;�á�®�á�ì�¸�Ý�á�:�G�;
_ 

With the decoupling compensator in (38) inserted into the 
control-loop, in theory, each non-zero element of the 
decentralized controller �)�¼ can be independently design based 

on a SISO T-S fuzzy model �B�Í�Ì �á�Ý�Ý
�:�4�; �V�?���Õ using suitable linear 

control algorithms. The choice of SISO linear control algorithm 
is determined by users. The stability of the decoupling control 
strategy can be evaluated through the following procedure: 
�x The controller (decentralized) can be expressed by:  

�� 	É�:�G�; 
L 	¥
%�:�G�;�� 	²
%�:�G�;              (39) 

where �� 	É�:�G�; 
L �>�� �Q�:�G
F �t�;�Í ���� �Q�:�G
F �s�;�Í ���� �Q�:�G�;�Í �?�Í , 
�� 	²
%�:�G�; 
L �>�� �:
$�:�G
F �t�;�Í ���� �:
$�:�G
F �s�;�Í ���� �:
$�:�G�;�Í �?�Í , and 	¥
%�:�G�; 
L
�@�E�=�C�<	F
%�:�G
F �t�;�á	F
%�:�G
F �s�;�á	F
%�:�G�;�=�Ð�9�7�á
H�7�:�á�>�Ã �à �Ô

�Ù
�Ô�8�- �; , the 

�� �Q�:�G�;, �� �:
$�:�G�; and 	F
%�:�G�; are same as that in (31) with all �ô�Ü�Ýs 
(�E
M�F) are 0 because it is a decentralized controller. 

�x The decoupling compensator in (38) can be rewritten as:   

�� �Q
$�½�:�G
E�s�; 
L �#�½�:�G�;�� �Q
$�½�:�G�; 
E�$�½�:�G�;�� 	É�:�G�;  
�� �Q�½�:�G�; 
L �%�½�� �Q
$�½�:�G�;              (40) 

where �� �Q
$�½�:�G�; 
L �>�� �Q
$�½�á�5�:�G�;
�Í ������ �Q
$�½�á�6�:�G�;

�Í �®���� �Q
$�½�á�á�:�G�;
�Í �?�Í �Ð

�9�6�á�.
, �� �Q
$�½�á�Ü�:�G�; 
L �>�� �Q
$�½�á�Ü�á�5�:�G
F�s�;������ �Q
$�½�á�Ü�á�5�:�G�;������ �Q
$�½�á�Ü�á�6�:�G
F

�s�;������ �Q
$�½�á�Ü�á�6�:�G�;���®���� �Q
$�½�á�Ü�á�á�:�G
F �s�;������ �Q
$�½�á�Ü�á�á�:�G�;�?�Í �Ð�9�6�á , 
�� �Q
$�½�á�Ü�á�Ý�:�G�; is the incremental output of the element in row �E 
and column �F of the matrix �)�½�:�G�á�V

�?�5�; in (38); �#�½�:�G�; 
L
�@�E�=�C�<�#�½�á�5�:�G�;�á�®�á�#�½�á�á�:�G�;�=�Ð�9�6�á�. 
H�6�á�.

, where �#�½�á�Ü�:�G�; 
L
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�@�E�=�C�<�#�½�á�Ü�á�5�:�G�;�á�®�á�#�½�á�Ü�á�á�:�G�;�=, and in which �#�½�á�Ü�á�Ý�:�G�; 
L


d
�r �s

�=�Ý�á�6�:�G�; �=�Ý�á�5�:�G�;

h; �$�½�:�G�; 
L �>�$�½�á�5�:�G�;

�Í ���®���$�½�á�á�:�G�;
�Í �?�Í �=�Ð

�9�6�á�. 
H�7�á, where �$�½�á�Ü�:�G�; 
L �>�$�½�á�Ü�á�5�:�G�;
�Í ���®���$�½�á�Ü�á�á�:�G�;

�Í �?�Í , and 

�$�½�á�Ü�á�Ý�:�G�; 
L 
e
�r�5
H�7�á


F
�Õ�Õ�Õ�:�Þ�;�Ô
Ü�Õ�Ô�á�. �:�Þ�;

�Õ
à�Õ�Ô�:�Þ�;
�+�Ý

�Í 
F
�Õ�Õ�Õ�:�Þ�;�Ô
Ü�Õ�Ô�á�-�:�Þ�;

�Õ
à�Õ�Ô�:�Þ�;
�+�Ý

�Í �Õ�Õ�Õ�:�Þ�;

�Õ
à�Õ�Ô�:�Þ�;
�+�Ý

�Í 
i , 

in which �+�Ý�Ð�9�á is a vector where the �Fth element is 1 and 

others are 0; �%�½
L �@�E�=�C�<�%�½�á�5�á�®�á�%�½�á�á�=�Ð�9�á
H�6�á�.
, �%�½�á�Ü
L

�>�%�½�á�Ü�á�5���®���%�½�á�Ü�á�á�?, and �%�½�á�Ü�á�Ý
L �>�r �s�?, �E�á�F
L �s�á�®�á�J.  
�x The fuzzy model (7) or (12) for the MIMO system can be 

rewritten as:   

�� 	²
%�:�G
E�s�; 
L 	›
%�:�G�;�� 	²
%�:�G�; 
E	œ
%�:�G�;�� �Q�½�:�G�;     (41) 

where 	›
%�:�G�; 
L �@�E�=�C�<�#�§�:�G
F �t�;�á�#�§�:�G
F �s�;�á�#�§�:�G�;�= , and 
	œ
%�:�G�; 
L �>�$
$�:�G
F �t�;�Í ���$
$�:�G
F �s�;�Í ���$
$�:�G�;�Í �?�Í , the �#�§�:�G�;  and 
�$
$�:�G�; are same as that in (32). 

�x The decoupling compensator (40) and the MIMO system 
(41) are connected in series, they constitute an augmented 
system expressed as: 


d
�� �Q
$�½�:�G
E�s�;
�� 	²
%�:�G
E�s�;


h
L �H
�#�½�:�G�; �r�6�á�. 
H�7�:�á�>�Ã �à �Ô

�Ù
�Ô�8�- �;

	œ
%�:�G�;�%�½ 	›
%�:�G�;
�I
d

�� �Q
$�½�:�G�;
�� 	²
%�:�G�;


h
E


d
�$�½�:�G�;

�r�7�:�á�>�Ã �à �Ô
�Ù
�Ô�8�- �;
H�7�á


h�� 	É�:�G�;             (42) 

The equation (39) can be revised as:  

�� 	É�:�G�; 
L �>�r�7�á
H�6�á�. 	¥
%�:�G�;�?
d
�� �Q
$�½�:�G�;
�� 	²
%�:�G�;


h        (43) 

�x Submitting (43) to (42), we have 


d
�� �Q
$�½�:�G
E�s�;
�� 	²
%�:�G
E�s�;


h
L �H
�#�½�:�G�; �$�½�:�G�;	¥
%�:�G�;

	œ
%�:�G�;�%�½ 	›
%�:�G�;
�I
d

�� �Q
$�½�:�G�;
�� 	²
%�:�G�;


h  (44) 

The decoupling control-loop can be considered to be stable 

if all the eigenvalues of  �H
�#�½�:�G�; �$�½�:�G�;	¥
%�:�G�;

	œ
%�:�G�;�%�½ 	›
%�:�G�;
�I lie inside 

the unit cycle. 

C. Discussion 

This section presents a sparse control strategy and a 
decoupling control strategy to enhance the capability of the 
decentralized control strategy in [15] with respect to 
suppressing the strong coupling effects among the paired 
channels in a MIMO system. The main contribution of this 
paper is that it develops the frameworks where conventional 
linear SISO control algorithms can be directly used to design 
controllers for the non-linear MIMO systems with closely 
coupled channels and without knowing accurate mathematical 
functions.  

Sparse control is an intermediate between decentralized and 
centralized control. Compared to decentralized control, sparse 
control has more sub-controllers �C�¼�á�Ü�Ýs in �)�¼ and thus provides 
increased design degree of freedom to handle the coupling 
effects. While compared to centralized control, sparse control 
�L�V�� �³�H�F�R�Q�R�P�L�F�D�O�´ that leaves the sub-controllers related to the 

non-significant channels to be blank in �)�¼, and uses the sub-
controllers related to the dominant channels to conquer all the 
interactions. 

Decoupling control employs a decoupling compensator to 
offset the coupling effects caused by the unpaired elements, and 
then the paired channels are decoupled to the extent that the 
MIMO system can be regarded as multiple non-interacting 
SISO systems to facilitate decentralized controller design. The 
decoupling compensator in (38) avoids the complex 
calculations to derive the inverse of the MIMO system 
dynamics, and can be easily realized in real applications since 
its elements have very simple structures and the coefficients are 
easy to compute. 

The indexes proposed in (19) and (20) to select sparse control 
structure need to properly predefine a �Ý�� ��and a �Ý�	  which have 
marked impacts on the sparse control performance, and the 
sparse control requires a control algorithm to have a certain 
degree of margin to be tolerant for the coupling effects from the 
unselected elements. While the decoupling control strategy 
does not require any predefined coefficients for control 
structure selection, and its controller design is not required to 
reach the level of robustness as that of the sparse control since 
the decoupling compensator is a qualified assistant to clean the 
coupling effects. In theory, the decoupling control using a full-
dimensional compensator can achieve better performance than 
the sparse control. However, the cost to achieve this full-
dimensional compensator may be higher than that of the sparse 
control strategy, especially for large-scale MIMO systems and 
�Z�K�H�Q���W�K�H���V�S�D�U�V�H���F�R�Q�W�U�R�O���V�W�U�X�F�W�X�U�H���L�V���³�V�S�D�U�V�H�´���D�Q�G���W�K�H��algorithms 
to design and tune the sub-controllers are computationally 
inexpensive. In addition, one thing needs to be noted that the 
delays of the output responses under the sparse control will not 
exceed those under the decoupling control.  

According to the characteristics of the two proposed control 
strategies, in the case that when decentralized control cannot 
fully handle the channel interactions, if a small part of the 
unpaired elements has the relatively large dominance, the 
sparse control strategy can be applied to improve the 
performance instead of using the full-dimensional decoupling 
compensator. If a large part of the unpaired elements is selected, 
�Z�K�L�F�K���P�H�D�Q�V���D���³�G�H�Q�V�H�´���L�Q�V�W�H�D�G���R�I a �³�V�S�D�U�V�H�´���F�R�Q�W�U�R�O���V�W�U�X�F�W�X�U�H��
is required for regulating the MIMO system, it will be better to 
employ the decoupling control strategy to save the cost in 
design and tuning for the sub-controllers. 

V. CASE STUDIES 

A. Example-I 

Consider the following nonlinear �u
H�u system from [15]: 

	 �̃6�5 
L 	˜�6 
E�w	 �̃5
�6	˜�6 
E�x	˜�6

�6  
	 �̃6�6 
L 
F�v	 �̃5 
F�w	˜�6 
E�z	 �̃5	˜�6 
E�Q�5  
	 �̃6�7 
L 	˜�8  
	 �̃6�8 
L 
F�x	˜�7 
F �w	˜�8 
E�u	˜�7

�7 
E�s�r	˜�7	˜�8	˜�9 
E�Q�6  
	 �̃6�9 
L 	˜�: 
E�v	˜�;

�6  
	 �̃6�: 
L 	˜�; 
E�w	˜�9	˜�:

�6	˜�;  
	 �̃6�; 
L 
F�s�v	˜�9 
F �t�u	˜�: 
F �s�r	˜�; 
E�y	˜�9	˜�: 	˜�; 
E�Q�7  
�U�5 
L �w	 �̃5 
E�w	˜�6 
E�x	˜�7 
E�t	˜�8 
E�s�v	˜�9 
E�{	˜�: 
E	˜�;  
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�U�6 
L �z	 �̃5 
E�t	˜�6 
E�u	˜�7 
E�v	˜�9 
E�x	˜�: 
E�t	˜�;   
�U�7 
L 	 �̃5 
E	˜�6 
E�v	˜�7 
E�t	˜�8 
E�s�ä�v	˜�9 
E�r�ä�t	˜�:       (45) 

where 	˜�ås (�N
L �s�á�®�á�y) are states. Suppose the mathematical 
function of the system in (45) is unknown to the controller 
designer, and there exists noise in the sampled inputs random 
but bounded in �>
F�r�ä�s�á�r�ä�s�?. The sampling time is �¿�6
L �r�ä�s�O, 
and the delays are �ì�Ü�5 
L �ì�Ü�6 
L �t�r  and �ì�Ü�7 
L �s�r, �E
L �s�á�t�á�u. 
Given the number of fuzzy rules as �. 
L �x, the type-1 and type-
2 T-S fuzzy models with the structure in (6) can be identified 
based on the input-output data using the method introduced in 
[11]. Due to the limited space, we only present the first rule:   

�4�Q�H�A���s: If  �T�:�G�; is �ò�5, Then 
�U�5

�5�:�G
E�s�; 
L �s�ä�s�w�v�x�U�5�:�G�; 
F�r�ä�u�w�u�x�U�5�:�G
F �s�;  
 
E�r�ä�t�x�z�v�Q�5�:�G
F �t�r�; 
E�r�ä�t�r�s�t�Q�6�:�G
F�t�r�; 
E�r�ä�t�t�u�u�Q�7�:�G
F �s�r�;  
�U�6

�5�:�G
E�s�; 
L �s�ä�u�u�r�x�U�6�:�G�; 
F �r�ä�v�r�z�r�U�6�:�G
F�s�;  
��
E�r�ä�s�w�y�z�Q�5�:�G
F �t�r�; 
E�r�ä�r�u�v�u�Q�6�:�G
F �t�r�; 
E�r�ä�r�t�s�u�Q�7�:�G
F �s�r�;  
�U�7

�5�:�G
E�s�; 
L �s�ä�r�s�u�x�U�7�:�G�; 
F �r�ä�t�v�u�y�U�7�:�G
F�s�;  
��
E�r�ä�r�x�s�x�Q�5�:�G
F �t�r�; 
E�r�ä�s�w�w�v�Q�6�:�G
F �t�r�; 
E�r�ä�r�t�z�v�Q�7�:�G
F �s�r�;  

where the center of �ò�5  is �T�Ö
�5 
L

�>�s�ä�t�x�r�s�����s�ä�z�y�v�x�����r�ä�t�v�s�{�����s�ä�t�w�{�u�����s�ä�z�w�u�x�����r�ä�t�v�s�s�����s�ä�r�r�r�r����
F
�r�ä�r�t�v�w����
F�r�ä�r�w�r�v�?�Í , and  �¿�ä�5 
L �r�ä�w�r�w�y for the first type-2 
fuzzy set. The comparisons between real outputs and fuzzy 
models�¶ outputs with the root-mean-square-errors (RMSEs) are 
shown in Fig. 4. The type-2 fuzzy model achieves higher 
accuracy when compared to its type-1 counterpart. 

 
�)�L�J�������������&�R�P�S�D�U�L�V�R�Q�V���R�I���U�H�D�O���R�X�W�S�X�W�V���D�Q�G���I�X�]�]�\���P�R�G�H�O�V�¶���R�X�W�S�X�W�V���I�R�U���������� 

The elements in �å 
L 
c�ý�Ü�Ý
g�á
H�á
, �ß
L 
c�B�Ü�Ý
g�á
H�á

, RGA and 

RNGA calculated from the fuzzy models are time-varying. 
Using the results derived from the type-2 T-S fuzzy model and 
calculated at the operating point �T�:�G�; 
L �>�r���®�r�?�Í �Ð�9�= as an 
example, the matrices are: 

�å 
L 
e
�s�ä�t�y�z�v �r�ä�{�y�{�s �r�ä�{�z�r�z
�s�ä�z�z�s�s �r�ä�v�z�s�z �r�ä�t�y�u�v
�r�ä�t�w�x�u �r�ä�x�y�v�t �r�ä�r�z�u�{


i �á�ß
L 
e
�t�ä�v�v�x�v �t�ä�v�v�x�v �s�ä�v�v�x�v
�u�ä�r�{�s�y �u�ä�r�{�s�y �t�ä�r�{�s�y
�t�ä�u�{�s�t �t�ä�u�{�s�t �s�ä�u�{�s�t


i 

�4�)�#
L 
e

F�r�ä�t�s�w�y 
F�r�ä�s�r�r�x �s�ä�u�s�x�v
�s�ä�t�y�y�u 
F�r�ä�r�z�s�v 
F�r�ä�s�{�w�{


F�r�ä�r�x�s�x �s�ä�s�z�t�s 
F�r�ä�s�t�r�w

i 

�4�0�)�#
L 
e

F�r�ä�s�y�w�{ 
F�r�ä�s�s�s�t �s�ä�t�z�y�s
�s�ä�t�v�x�r 
F�r�ä�r�y�z�y 
F�r�ä�s�x�y�u


F�r�ä�r�y�r�s �s�ä�s�z�{�z 
F�r�ä�s�s�{�y

i   

The pairing structure determined by the above RGA and 
RNGA is �U�5 
F �Q�7���U�6 
F �Q�5���U�7 
F �Q�6, which is same to that in 
[15]. From the RGA and RNGA, we have: 

�Û�Ë�â�ê
L 
e
�r�ä�s�x�u�{ �r�ä�r�y�x�v �s

�s �r�ä�r�x�u�z �r�ä�s�w�u�u
�r�ä�r�w�t�s �s �r�ä�s�r�s�{


i �á�Û�¼�â�ß
L 
e
�r�ä�s�x�z�{ �r�ä�r�z�w�s �s

�s �r�ä�r�x�z�{ �r�ä�s�v�z�z
�r�ä�r�v�z�t �s �r�ä�r�{�s�w


i 

�Ü�Ë�â�ê
L 
e
�r�ä�s�u�x�y �r�ä�r�z�x�v �s

�s �r�ä�r�x�u�s �r�ä�s�u�v�u
�r�ä�r�w�z�{ �s �r�ä�s�r�r�x


i �á�Ü�¼�â�ß
L 
e
�r�ä�s�v�s�t �r�ä�r�{�u�v �s

�s �r�ä�r�x�x�s �r�ä�s�u�r�r
�r�ä�r�w�x�u �s �r�ä�r�{�u�r


i 

Choosing �Ý�� 
L �Ý�	 
L �r�ä�s, the selected unpaired elements for 
sparse control are �U�5 
F �Q�5 and �U�6 
F �Q�7. Note that the results 
calculated from the type-1 fuzzy model give the same pairing 
structure and select same unpaired elements. During the whole 
control period, the pairing structure and sparse control structure 
for this MIMO system remain unchanged.  

 
Fig. 5.  The step responses of the three paired channels of (45) 

A decoupling compensator is calculated using (38) for this 
MIMO system. In order to exhibit its performance, the 
comparisons of the step responses of isolated paired channels 
(for example, for the pair �U�5 
F �Q�7, set �Q�7 
L �s and �Q�5 
L �Q�6 
L �r 
to have the step response of isolated �U�5 
F �Q�7) and the decoupled 
responses (for instance, for the pair �U�5 
F �Q�7, keep �Q�7 
L �s and 
randomly choose the values for the other two inputs) are shown 
in Fig. 5. From Fig. 5, for each pair, when other two inputs are 
with different values, the changes in its step response are very 
small, which demonstrates that the compensator can reduce the 
coupling effects to a great extent. 

The ETSM-based decentralized, sparse and decoupling 
controllers can all be realized by designing multiple 
independent single control-loops. The gain and phase margins 
based SISO control algorithm used in [15] is selected to design 
each sub-controllers with the gain and phase margins set as �u 
and �è���u, respectively. Given the references as �N�R�5 
L �r�ä�u, 
�N�R�6 
L �s and �N�R�7 
L �r, the performances of the three control 
strategies, as well as the type-2 fuzzy model based 
decentralized control of [15] are shown in Fig. 6. Besides, the 
integrated absolute errors (IAEs) of these control performances 
are presented in Table 1. The decentralized control of [15] gives 
the longest settling time for three outputs, and the decentralized 
control in this paper gives largest overshoots in �U�5 and �U�7, the 
performance of the decentralized control in this paper is better 
than that of [15] for �U�6. The outputs under the sparse control go 
to the direction opposite to the references at the beginning, and 
return to the right direction after a while, thus they have large 
IAEs. The decoupling control achieves the minimum values in 
overshoots and settling time as well as IAEs among the three 












