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Abstract—In order to better handle the coupling effects when 

controlling multiple-input multiple-output (MIMO) systems, 

taking the decentralized control structure as the basis, this paper 

proposes a sparse control strategy and a decoupling control 

strategy. Type-1 and type-2 Takagi-Sugeno (T-S) fuzzy models are 

used to describe the MIMO system, and the relative normalized 

gain array (RNGA) based criterion is employed to measure the 

coupling effects. The main contributions include: i). compared to 

the previous studies, a manner with less computational cost to 

build fuzzy models for the MIMO systems is provided, and a more 

accurate method to construct the so-called effective T-S fuzzy 

model (ETSM) to express the coupling effects is developed; ii). for 

the sparse control strategy, four indexes are defined in order to 

extend a decentralized control structure to a sparse one. 

Afterwards, an ETSM-based method is presented that a sparse 

control system can be realized by designing multiple independent 

single-input single-output (SISO) control-loops; iii). for the 

decoupling control strategy, a novel and simple ETSM-based 

decoupling compensator is developed that can effectively 

compensate for both steady and dynamic coupling effects. As a 

result, the MIMO controller design can be transformed to multiple 

non-interacting SISO controller designs. Both of the sparse and 

decoupling strategies allow to use linear SISO control algorithms 

to regulate a closely coupled nonlinear MIMO system without 

knowing its exact mathematical functions. Two examples are used 

to show the effectiveness of the proposed strategies. 

 

Index Terms—effective fuzzy model, T-S fuzzy model, sparse 

control, decoupling control, type-2 fuzzy logic.  

 

I. INTRODUCTION 

UE to the existence of coupling effects, the controller 

design for multiple-input multiple-output (MIMO) system 

is generally of much more complexity when compared to its 

single-input single-output (SISO) counterpart. In the area of 

MIMO control, although different sophisticated schemes have 

been proposed, decentralized control remains popular since it 

employs the simplest control structure that one manipulated 

variable (system input) regulates only one controlled variable 

(system output), which is convenient to tune, maintain and 

implement [1]-[3]. In general, there are two steps for 

decentralized control to handle coupling effects: first, the inputs 

and outputs are carefully paired that the resulting one-for-one 

control structure is of minimum coupling effects among the 

pairs; second, proper algorithms are used to design and tune the 

sub-controllers of the paired input-output channels to eliminate 

the coupling effects and achieve desired performance. For the 

first step, different interaction measures are available for 

pairing, such as the controllability and observability gramians 

[4]-[7], and the relative gain array (RGA) family [1]-[3],[8]-

[12]. For the second step, a challenge exists that the sub-

controller design generally requires to know the coupling 

information [12]. In many existing studies of the model-based 

decentralized control, extra terms are added to the model of 

isolated paired channel to characterize the coupling effects for 

sub-controller design [3]. These extra terms may not be always 

obtainable, especially in a complex MIMO system. An 

alternative, called “effective model” [12]-[15], is proposed that 

the coefficients of the isolated paired channels’ models are 

revised to express the coupled results. In [15], the effective 

Takagi-Sugeno (T-S) fuzzy models (ETSMs) is presented, 

where the coefficients of the T-S fuzzy model are revised 

according to the coupling effects measured by the relative 

normalized gain array (RNGA) based criterion [2]. Unlike the 

effective transfer functions in [12]-[14], ETSM [15] can be used 

when the exact mathematical system functions are not available, 

and is more robust against the uncertainties. In addition, it 

allows to apply linear SISO control algorithms on the 

decentralized controller design for nonlinear MIMO systems 

thanks to the fact that T-S fuzzy model is composed of a group 

of linear local models [16].  

However, when there are strong coupling effects among the 

paired input-output channels, it is possible that no decentralized 

control yields a satisfactory performance due to the limited 

flexibility of control structure. On the other hand, centralized 

controller using full-dimensional control structure that each 

output is regulated by all inputs can handle the strong coupling 

effects, but can result in greatly increased complexity and cost 

in controller design and tuning, especially when the MIMO 

system is of high dimension. For this problem, one solution is 

to increase the flexibility of the control structure, beyond the 

one-for-one, to the extent that a satisfactory result can be 

achieved without necessarily using full-dimensional control 

structure. Sparse control, which is a compromise between 

decentralized and centralized control, is introduced as this 

solution [5]-[7],[11],[14]. In sparse control, part of the outputs 

are regulated by more than one inputs, thus it has extra design 

degree of freedom to manage the coupling effects compared to 

the decentralized control, and requires less computational cost 

compared to the centralized control. In [5]-[7], the methods to 

select sparse control structure using gramian-based interaction 

measure and based on linear/bilinear/nonlinear mathematical 

models are given. These methods have not referred to sparse 

controller design and not shown any sparse control performance. 

In [14], a scheme using RNGA and effective transfer function 

to determine sparse control structure and design sparse 
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controller is presented. This scheme is based on linear transfer 

functions and may not work for nonlinear systems. In [11], a 

method based on T-S fuzzy model to select sparse control 

structure is proposed. This method works for both linear and 

nonlinear systems, and does not require to know the exact 

mathematical system functions. However, it does not 

investigate detailed sparse control strategy.  

Another solution to handle the closely coupled pairs is to 

insert a decoupling compensator into the control-loop to 

compensate for the coupling effects and subsequently decouple 

the paired channels, such that the decentralized controller can 

be decomposed to multiple non-interacting SISO controllers. 

Different methods have been proposed in this area. A static 

decoupling compensator in [17] is given for decoupling at low 

frequencies, and the dynamic decoupling compensator in [18]-

[23] can work in a wider range of frequency. However, the 

dynamic compensators may result in greatly increased 

complexity in the compensator itself or in the decoupled MIMO 

system. The methods in [17]-[23] are designed for linear 

systems. For nonlinear systems, several intelligent decoupling 

schemes can be found. In [24], a static neural network is used 

to construct an inverse system for decoupling, and then the 

controller is designed based on the pseudo linear transfer 

functions. In [25], a hybrid fuzzy decoupling method is 

developed based on the linearized systems and using the fuzzy 

logic to approximate the nonlinear coupling effects. In [26], by 

using RGA to select the pairs, a decoupling control law is 

proposed for a 2 × 2 system expressed by a linear function with 

nonlinear terms, and the adaptive neural-fuzzy inference system 

is used to estimate the nonlinear term. RGA only uses the 

steady-state gains for interaction measure and may give 

incorrect results because of lacking dynamic information. It is 

worth noting that the implement of these methods requires the 

knowledge of the systems’ mathematical functions to a certain 

extent. In [27], a fuzzy decoupling control system is presented 

where Mamdani fuzzy logic is used. Mamdani fuzzy logic may 

not be sufficient to describe the system dynamics and generally 

needs more fuzzy rules when compared to T-S fuzzy logic [28].  

Given the aforementioned condition, for a MIMO nonlinear 

system with closely coupled input-output channels and without 

knowing its exact mathematical functions, in order to achieve 

desired performance without applying full centralized control, 

practical strategies are needed to provide further improvement 

based on decentralized controllers. In this paper, using T-S 

fuzzy models to describe the MIMO system, and using RNGA 

which considers both steady and dynamic information to 

measure the coupling effects, a sparse control strategy and a 

decoupling control strategy are developed. Both type-1 and 

type-2 fuzzy logic are investigated for the proposed strategies. 

Compared to the type-1 (traditional) fuzzy model using crisp 

fuzzy membership grades, type-2 fuzzy model possesses 

increased fuzziness in the fuzzy membership grades. As a result, 

it has additional power to describe the uncertainties and can be 

more robust against the noise and disturbance [29]-[33]. The 

contributions of this paper are summarized as follows. 

 Compared to the previous studies in [3],[11],[15], 

improvement is made in terms of fuzzy model construction. 

Subsequently, the cost for MIMO system modeling and the 

online computational complexity for the fuzzy model 

based controllers can be reduced. In addition, compared to 

the study in [15], a more accurate ETSM calculation is 

developed to provide a better expression for the coupled 

results on both steady and dynamic properties.  

 For the sparse control strategy, four indexes are defined 

from the RNGA based interaction measure to select the 

sparse control structure, and an ETSM-based method is 

presented that the sparse controller for a nonlinear MIMO 

system can be achieved by designing multiple independent 

SISO controllers using linear algorithms. 

 For the decoupling control strategy, using the information 

provided by RNGA, a T-S fuzzy model based decoupling 

compensator is proposed which can effectively compensate 

for both steady and dynamic coupling effects to decouple 

the paired channels, and subsequently offload the burden 

on decentralized control. Unlike the existing methods [24]-

[26], this decoupling compensator can be derived and 

implemented without the priori-knowledge of exact 

mathematical functions or linearized functions of the 

system. While compared to the Mamdani fuzzy logic based 

decoupling method in [27], the proposed method is based 

on T-S fuzzy model that can better describe the system 

dynamics, and provides a platform to apply linear SISO 

control algorithms on the regulation of strongly coupled 

nonlinear MIMO systems. 

Two nonlinear multivariable systems are employed to show 

and compare the performances of the proposed strategies, as 

well as that of type-1 and type-2 fuzzy models. The results 

demonstrate that by using the same SISO control algorithm in 

the sub-controller designs, both sparse and decoupling control 

outperform their decentralized counterpart, and the decoupling 

control achieves better output responses than the sparse control 

does. In addition, type-2 fuzzy system achieves more robust 

performance compared to its type-1 counterpart, which is more 

evident when larger uncertainty appears.   

Notations: 𝐼𝑚×𝑛 and 0𝑚×𝑛 denote the 𝑚 × 𝑛 identity matrix 

and 𝑚 × 𝑛  zero matrix, respectively; ‖∙‖  means Euclidean 

norm; 𝐴 = [𝑎(𝑖, 𝑗)]𝑛×𝑛  is an 𝑛 × 𝑛  matrix, where 𝑎(𝑖, 𝑗) , a 

variable or a function with the subscripts composed by “𝑖” 

or/and “ 𝑗 ”,  denotes the element in 𝐴 . The subscript 

combinations indicate the positions of the elements in the 𝑛 × 𝑛 

matrix as follows: i). ∗𝑖𝑗  and ∗𝑗𝑖 mean the elements in 𝑖th row 

and 𝑗th column; ii). ∗𝑖𝑖  or ∗𝑗𝑗 means the elements in 𝑖th or 𝑗th 

row and 𝑖th or 𝑗th  column; iii). ∗𝑖 or ∗𝑗 means it exists in all the 

elements of 𝑖th row or 𝑗th column.   

II. PRELIMINARIES 

In this section, some preliminary works, including the RNGA 

based criterion and the ETSM based decentralized control 

strategy, are introduced. These works are the basis of our study. 

The following assumption is applied throughout this paper. 

Assumption 1: The MIMO systems considered in this paper 

are square in dimension, open-loop stable, and non-singular in 

steady-state conditions. The time delays between inputs and 
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outputs are constant and measurable, and for each input, the 

delays between it and all outputs are considered to be identical. 

 
Fig. 1.  T-S fuzzy model based control-loop for a MIMO system 

A T-S fuzzy model based control-loop for an 𝑛 × 𝑛 MIMO 

system is shown in Fig. 1, where 𝑟𝑣 = [𝑟𝑣1  ⋯ 𝑟𝑣𝑛]
𝑇 ∈ ℝ𝑛 

stand for reference values, 𝑢 = [𝑢1  ⋯ 𝑢𝑛]
𝑇 ∈ ℝ𝑛  are system 

inputs, 𝑦 = [𝑦1  ⋯ 𝑦𝑛]
𝑇 ∈ ℝ𝑛  are system outputs, and  𝑑 =

𝑟𝑣 − 𝑦; 𝐹𝑇𝑆 = [𝑓𝑇𝑆,𝑖𝑗]𝑛×𝑛 is a 𝑛 × 𝑛 T-S fuzzy model matrix to 

describe the MIMO system, 𝑓𝑇𝑆,𝑖𝑗  is the T-S fuzzy model 

(SISO) for isolated channel 𝑦𝑖 − 𝑢𝑗  ( 𝑖, 𝑗 = 1,⋯ , 𝑛 ); 𝐺𝐶 =

[𝑔𝐶,𝑖𝑗]𝑛×𝑛 is the MIMO controller.  

When designing a decentralized controller 𝐺𝐶, the primary 

step is to select the dominant input-output pairs to form a 

decentralized control structure. For this issue, the RNGA based 

criterion is a helpful means [2],[3],[11],[15]. For a MIMO 

system represented by 𝐹𝑇𝑆 , RNGA based criterion uses the 

steady-state gain, 𝓀𝑖𝑗, and the normalized integrated error, ℯ𝑖𝑗 , 

of each 𝑓𝑇𝑆,𝑖𝑗 to evaluate the coupling effects and then pick out 

the dominant elements [3],[11],[15]. Collecting 𝓀𝑖𝑗s and ℯ𝑖𝑗s of 

all elements in 𝐹𝑇𝑆, we can have two matrices, 𝒦 = [𝓀𝑖𝑗]𝑛×𝑛 

and ℰ = [ℯ𝑖𝑗]𝑛×𝑛. Afterwards, the RGA and RNGA for 𝐹𝑇𝑆 can 

be calculated by the following equations [2],[3],[11],[15]: 

𝑅𝐺𝐴 = [𝜆𝑖𝑗]𝑛×𝑛 = 𝒦⨂(𝒦)
−𝑇           (1) 

𝑅𝑁𝐺𝐴 = [𝜙𝑖𝑗]𝑛×𝑛 = (𝒦⨀ℰ)⨂(𝒦⨀ℰ)−𝑇       (2) 

where ⨂ and ⨀ are element-by-element product and division, 

respectively, (∙)−𝑇  means inverse and transpose matrix. Note 

that the sum of the elements in each row/column of RGA or 

RNGA is 1. The definitions of the relative gain 𝜆𝑖𝑗  and the 

relative normalized gains 𝜙𝑖𝑗 are [1]-[3]:  

{
𝜆𝑖𝑗 = 𝓀𝑖𝑗 𝓀̂𝑖𝑗⁄

𝜙𝑖𝑗 =
𝓀𝑖𝑗 ℯ𝑖𝑗⁄

𝓀̂𝑖𝑗 ℯ̂𝑖𝑗⁄
=

𝓀𝑖𝑗

𝓀̂𝑖𝑗
∙
ℯ̂𝑖𝑗

ℯ𝑖𝑗
= 𝜆𝑖𝑗 ∙ 𝛾𝑖𝑗

           (3) 

 where 𝛾𝑖𝑗 = ℯ̂𝑖𝑗 ℯ𝑖𝑗⁄  is called relative normalized integrated 

error, 𝓀̂𝑖𝑗  and ℯ̂𝑖𝑗  are the apparent steady-state gain and 

normalized integrated error of 𝑦𝑖 − 𝑢𝑗  when other loops are 

closed (the closure of other loops can cause the coupling effects 

on 𝑦𝑖 − 𝑢𝑗). From (3), we can know that when 𝜆𝑖𝑗 and 𝜙𝑖𝑗 are 

close to 1 (i.e., the values of 𝓀̂𝑖𝑗 and ℯ̂𝑖𝑗 are close to 𝓀𝑖𝑗 and ℯ𝑖𝑗 , 

respectively), the channel 𝑦𝑖 − 𝑢𝑗  is highly independent 

(dominant) and robust to the coupling effects caused by other 

channels. Subsequently, 𝑦𝑖 − 𝑢𝑗  is likely to be selected as a 

pair. The pairing rules of the RNGA based criterion are 

presented as follows [2],[3],[11],[15]: 

i). 𝜆𝑖𝑗s and 𝜙𝑖𝑗s of the paired channels should be positive; 

ii). 𝜙𝑖𝑗s of the paired channels should be closest to 1; 

iii). 𝑁𝐼 =
𝑑𝑒𝑡(𝒦)

∏ 𝓀𝑖𝑖
𝑛
𝑖=1

> 0, 𝑁𝐼 is the Niederlinski index [34]. 

where det(𝒦) is the determinant of 𝒦 after column swapping 

to place the paired elements in the diagonal positions if 

necessary, and ∏ 𝓀𝑖𝑖
𝑛
𝑖=1  is the product of steady-state gains of 

the paired channels. A positive NI is a necessary condition for 

a stable control system [1]-[3],[11]-[15].  

In [15], a decentralized control strategy based on RNGA 

criterion and T-S fuzzy model is proposed. We briefly introduce 

it as follows: 

i). By using RNGA based criterion, the inputs and outputs 

are paired to determine a nominal fuzzy model matrix, denoted 

by 𝐹̅𝑇𝑆, which keeps the paired elements of 𝐹𝑇𝑆 and discards the 

rest. For instance, a 3 × 3 system with pairing structure 𝑦1 −
𝑢3/𝑦2 − 𝑢1/𝑦3 − 𝑢2 has the nominal fuzzy model matrix as: 

𝐹̅𝑇𝑆 = [

0 0 𝑓𝑇𝑆,13
𝑓𝑇𝑆,21 0 0

0 𝑓𝑇𝑆,32 0
]            (4) 

ii). Based on 𝐹̅𝑇𝑆, the control structure for the decentralized 

controller 𝐺𝐶 is determined by the principle that each non-zero 

element 𝑓𝑇𝑆,𝑖𝑗  in 𝐹̅𝑇𝑆 is related to a sub-controller 𝑔𝐶,𝑗𝑖 which is 

in the transposed position [11]-[15]. Taking the system in (4) as 

an example, its decentralized controller is: 

𝐺𝐶 = [

0 𝑔𝐶,12 0

0 0 𝑔𝐶,23
𝑔𝐶,31 0 0

]             (5) 

iii). Based on 𝑓𝑇𝑆,𝑖𝑗 s of the 𝑛  paired channels and the 

information provided by RNGA based criterion, 𝑛  ETSMs, 

denoted by 𝑓𝑇𝑆,𝑖𝑗s, can be constructed to represent the paired 

channels with coupling effects such that each non-zero element 

𝑔𝐶,𝑖𝑗 in 𝐺𝐶 can be independently designed based on the 𝑓𝑇𝑆,𝑗𝑖. 

Taking (4) and (5) as an example, the decentralized control in 

Fig. 2(a) can be equivalently converted to three independent 

single control-loops in Fig. 2(b). 

  
(a)           (b) 

Fig. 2.  (a). a MIMO control-loop; (b). ETSM-based SISO control-loops 

The ETSM based decentralized control strategy is a practical 

method that can be implemented without knowing the exact 

mathematical functions of the MIMO systems, and allows to 

directly apply the well-developed linear SISO control 

algorithms to regulate nonlinear multivariable systems. 

However, when there exists strong coupling effects among the 

paired channels, the decentralized control may not provide 

satisfactory performance due to the limited flexibility of its one-

for-one control structure. In this paper, taking the decentralized 

control strategy in [15] as the basis, at first, improvements are 

made with respect to MIMO fuzzy modeling and ETSM 
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calculation. Afterwards, the sparse and decoupling control 

strategies that can improve the control system in terms of 

suppressing the coupling effects are developed. 

III. FUZZY MODELING AND EFFECTIVE T-S FUZZY MODEL 

CALCULATION FOR MIMO SYSTEM 

A. Fuzzy modeling for MIMO systems 

In the previous studies [3],[11],[15], each 𝑓𝑇𝑆,𝑖𝑗  in 𝐹𝑇𝑆  is 

independently identified based on the input-output data 

sampled from the isolated 𝑦𝑖 − 𝑢𝑗. This manner may not work 

for some complex MIMO systems where the data of the isolated 

channels cannot be derived. On the other hand, the 

computational cost can become a problem especially for the 

large-scale systems since 𝑛2 fuzzy models need to be identified 

for an 𝑛 × 𝑛 system. To overcome these limits, this paper uses 

a different manner to derive 𝐹𝑇𝑆 that only constructs one MIMO 

T-S fuzzy model for the 𝑛 × 𝑛 system based on the input-output 

data sampled from the overall system instead of that from 

isolated channels.   

For an 𝑛 × 𝑛 system in Fig. 1, collect the input-output data 

samples as 𝓏(𝑘) = [𝑥(𝑘)𝑇 𝑦(𝑘 + 1)𝑇]𝑇 ∈ ℝ4𝑛, where 𝑥(𝑘) =
[𝑦(𝑘)𝑇  𝑦(𝑘 − 1)𝑇 𝑢(𝑘 − 𝜏)𝑇]𝑇 = [𝑦1(𝑘)  ⋯ 𝑦𝑛(𝑘) 𝑦1(𝑘 −

1) ⋯ 𝑦𝑛(𝑘 − 1) 𝑢1(𝑘 − 𝜏1) ⋯ 𝑢𝑛(𝑘 − 𝜏𝑛)]
𝑇 ∈ ℝ3𝑛 , 𝜏𝑗 ≥ 0 

is the delays of 𝑢𝑗  to the outputs, 𝑘 = 1,⋯ ,𝑁𝓏 , 𝑁𝓏  is the 

number of data samples.  Based on 𝓏(𝑘), a type-1/type-2 T-S 

fuzzy model, which is composed of the following “If-Then” 

fuzzy rules and maps the relationship between 𝑥(𝑘) and 𝑦(𝑘 +
1), can be built to describe the MIMO system:  

𝑅𝑢𝑙𝑒 𝑙: If  𝑥(𝑘) is 𝒳𝑙, Then 

𝑦1
𝑙(𝑘 + 1) = 𝑎1,1

𝑙 𝑦1(𝑘) + 𝑎1,2
𝑙 𝑦1(𝑘 − 1)  

+𝑏11
𝑙 𝑢1(𝑘 − 𝜏1) + 𝑏12

𝑙 𝑢2(𝑘 − 𝜏2) + ⋯+ 𝑏1𝑛
𝑙 𝑢𝑛(𝑘 − 𝜏𝑛)  

𝑦2
𝑙 (𝑘 + 1) = 𝑎2,1

𝑙 𝑦2(𝑘) + 𝑎2,2
𝑙 𝑦2(𝑘 − 1)  

+𝑏21
𝑙 𝑢1(𝑘 − 𝜏1) + 𝑏22

𝑙 𝑢2(𝑘 − 𝜏2) + ⋯+ 𝑏2𝑛
𝑙 𝑢𝑛(𝑘 − 𝜏𝑛)  

⋮ 
𝑦𝑛
𝑙 (𝑘 + 1) = 𝑎𝑛,1

𝑙 𝑦𝑛(𝑘) + 𝑎𝑛,2
𝑙 𝑦𝑛(𝑘 − 1)  

+𝑏𝑛1
𝑙 𝑢1(𝑘 − 𝜏1) + 𝑏𝑛2

𝑙 𝑢2(𝑘 − 𝜏2) + ⋯+ 𝑏𝑛𝑛
𝑙 𝑢𝑛(𝑘 − 𝜏𝑛)  

                       (6) 

where 𝑙 = 1,⋯ , 𝐿, 𝐿 is the number of fuzzy rules; 𝒳𝑙 is a type-

1 or type-2 fuzzy set to characterize 𝑥(𝑘) , the type of 𝒳𝑙 

determines the type of the fuzzy model; the local models of a 

fuzzy rule are a batch of multiple-input single-output linear 

polynomials, 𝑎𝑖,1
𝑙 , 𝑎𝑖,2

𝑙  and 𝑏𝑖𝑗
𝑙  (𝑖, 𝑗 = 1,⋯ , 𝑛) are coefficients; 

𝑦𝑖
𝑙(𝑘 + 1)  is the 𝑙 th local output of 𝑦𝑖 . The total output 

𝑦𝑖(𝑘 + 1), 𝑖 = 1,⋯ , 𝑛, is expressed by: 

𝑦𝑖(𝑘 + 1) = 𝑎𝑖,1(𝑘)𝑦𝑖(𝑘) + 𝑎𝑖,2(𝑘)𝑦𝑖(𝑘 − 1) + 𝑏𝑖1(𝑘)𝑢1(𝑘 −

𝜏1) + 𝑏𝑖2(𝑘)𝑢2(𝑘 − 𝜏2) + ⋯+ 𝑏𝑖𝑛(𝑘)𝑢𝑛(𝑘 − 𝜏𝑛)    (7) 

where 𝑎𝑖,1(𝑘), 𝑎𝑖,2(𝑘) and 𝑏𝑖𝑗(𝑘) (𝑖, 𝑗 = 1,⋯ , 𝑛) are weighted 

sums of 𝑎𝑖,1
𝑙 , 𝑎𝑖,2

𝑙  and 𝑏𝑖𝑗
𝑙  (𝑖, 𝑗 = 1,⋯ , 𝑛) respectively, and the 

weights are the fuzzy membership grades of 𝑥(𝑘) in 𝒳𝑙s. When 

𝒳𝑙s are type-1 fuzzy sets, the fuzzy membership grade of 𝑥(𝑘) 

in 𝒳𝑙 is a crisp number denoted by 𝜇𝑙(𝑥(𝑘)), which satisfies 

0 ≤ 𝜇𝑙(𝑥(𝑘)) ≤ 1 and ∑ 𝜇𝑙(𝑥(𝑘)) = 1𝐿
𝑙=1 , and is calculated by 

the following equation [3],[11],[15]:   

𝜇𝑙(𝑥(𝑘)) =

{
 
 

 
 

1, 𝑖𝑓 ‖𝑥(𝑘) − 𝑥𝑐
𝑙‖ = 0 

0, 𝑖𝑓 ∀𝑣≠𝑙
𝑣=1,⋯,𝐿 ‖𝑥(𝑘) − 𝑥𝑐

𝑣‖ = 0
1

∑
‖𝑥(𝑘)−𝑥𝑐

𝑙 ‖
2

‖𝑥(𝑘)−𝑥𝑐
𝑣‖
2

𝐿
𝑣=1

, 𝑒𝑙𝑠𝑒
   

                       (8) 

where 𝑥𝑐
𝑙 ∈ ℝ3𝑛, 𝑙 = 1,⋯ , 𝐿 are centers of the fuzzy sets. Then 

the coefficients in (7) for a type-1 fuzzy model are:   

{
𝑎𝑖,𝑝(𝑘) = ∑ 𝜇𝑙(𝑥(𝑘))𝑎𝑖,𝑝

𝑙𝐿
𝑙=1 ,

𝑏𝑖𝑗(𝑘) = ∑ 𝜇𝑙(𝑥(𝑘))𝑏𝑖𝑗
𝑙𝐿

𝑙=1 ,

𝑝 = 1,2
𝑗 = 1,⋯ , 𝑛

       (9) 

When 𝒳𝑙s are type-2 fuzzy sets, the fuzzy membership grade 

of 𝑥(𝑘) in 𝒳𝑙 is an interval denoted by 𝜇̃𝑙(𝑥(𝑘)) = [𝜇𝑙(𝑥(𝑘)),

𝜇
𝑙
(𝑥(𝑘))] , where 𝜇𝑙(𝑥(𝑘))  and 𝜇

𝑙
(𝑥(𝑘))  are the lower and 

upper bounds respectively that satisfy 0 ≤ 𝜇𝑙(𝑥(𝑘)) ≤

𝜇
𝑙
(𝑥(𝑘)) ≤ 1. In this paper, the bounds are calculated by: 

 {
 𝜇𝑙(𝑥(𝑘)) = max{0, 𝜇𝑙(𝑥(𝑘)) − ∆𝜇𝑙}

𝜇
𝑙
(𝑥(𝑘)) = min{1, 𝜇𝑙(𝑥(𝑘)) + ∆𝜇𝑙}

        (10) 

where 0 ≤ ∆𝜇𝑙 < 1 denotes the varying range of the interval 

fuzzy membership grade 𝜇̃𝑙(𝑥(𝑘)) centered by 𝜇𝑙(𝑥(𝑘)). Then 

the coefficients in (7) for a type-2 fuzzy model are [11]: 

{
 
 

 
 𝑎𝑖,𝑝(𝑘) =

1

2
(
∑ 𝜇𝑙(𝑥(𝑘))𝑎𝑖,𝑝

𝑙𝐿
𝑙=1

∑ 𝜇𝑙(𝑥(𝑘))𝐿
𝑙=1

+
∑ 𝜇

𝑙
(𝑥(𝑘))𝑎𝑖,𝑝

𝑙𝐿
𝑙=1

∑ 𝜇
𝑙
(𝑥(𝑘))𝐿

𝑙=1

) ,

𝑏𝑖𝑗(𝑘) =
1

2
(
∑ 𝜇𝑙(𝑥(𝑘))𝑏𝑖𝑗

𝑙𝐿
𝑙=1

∑ 𝜇𝑙(𝑥(𝑘))𝐿
𝑙=1

+
∑ 𝜇

𝑙
(𝑥(𝑘))𝑏𝑖𝑗

𝑙𝐿
𝑙=1

∑ 𝜇
𝑙
(𝑥(𝑘))𝐿

𝑙=1

) ,

𝑝 = 1,2
𝑗 = 1,⋯ , 𝑛

(11) 

The detailed steps to identify the type-1 and type-2 T-S fuzzy 

models can be found in [11],[15]. In order to make the 

development of sparse and decoupling control strategies more 

straightforward and understandable, we rewrite the 𝑛  total 

outputs in (7) in a form similar to the discrete transfer function 

matrix as follows:  

𝑦(𝑘) = 𝐺(𝑘, 𝑧−1) ∙ 𝑢(𝑘) = [𝑔𝑖𝑗(𝑘, 𝑧
−1)]

𝑛×𝑛
∙ 𝑢(𝑘)  

= [
𝑏𝑖𝑗(𝑘)𝑧

−(𝜏𝑗+1)

1−𝑎𝑖,1(𝑘)𝑧
−1−𝑎𝑖,2(𝑘)𝑧

−2]
𝑛×𝑛

∙ 𝑢(𝑘)         (12) 

where 𝑧−1 is a backshift operator. From (12), we can know that 

𝐹𝑇𝑆 = 𝐹𝑇𝑆(𝑘, 𝑧
−1) = 𝐺(𝑘, 𝑧−1)  and 𝑓𝑇𝑆,𝑖𝑗 = 𝑓𝑇𝑆,𝑖𝑗(𝑘, 𝑧

−1) =

𝑔𝑖𝑗(𝑘, 𝑧
−1).  

Remark 2.1: Compared to the fuzzy modeling in [3],[11],[15] 

that independently identifies each 𝑓𝑇𝑆,𝑖𝑗  based on the data of 

isolated 𝑦𝑖 − 𝑢𝑗 , the manner developed in this paper is more 

practical and feasible since the input-output data of the overall 

system are more obtainable than that of the isolated channels. 

In addition, the time-varying coefficients 𝑎𝑖,1(𝑘), 𝑎𝑖,2(𝑘) and 

𝑏𝑖𝑗(𝑘)  of all elements in 𝐺(𝑘, 𝑧−1)  share the same fuzzy 

membership grades. Hence, the computational complexity and 

cost on both modeling and online calculation for the fuzzy 

model based control can be greatly reduced.   
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B. Effective T-S fuzzy model calculation 

Based on the matrix 𝐺(𝑘, 𝑧−1) in (12), at each sampling time, 

the 𝓀𝑖𝑗 and ℯ𝑖𝑗  of each 𝑓𝑇𝑆,𝑖𝑗 can be calculated by [3]:   

{
𝓀𝑖𝑗(𝑘) =

𝑏𝑖𝑗(𝑘)

1−𝑎𝑖,1(𝑘)−𝑎𝑖,2(𝑘)

ℯ𝑖𝑗(𝑘) =
1+𝑎𝑖,2(𝑘)

1−𝑎𝑖,1(𝑘)−𝑎𝑖,2(𝑘)
∙ 𝛥𝑇 + 𝜏𝑗 ∙ 𝛥𝑇

        (13) 

Then the RGA and RNGA can be derived using (1) and (2), and 

the input-output pairs with minimum coupling effects can be 

selected according to the pairing rules. In order to achieve the 

desired performance, the sub-controller design needs to know 

and consider these “minimum coupling effects”. ETSM is an 

effective tool to describe the coupling effects. In the 

decentralized control strategy [15], for each paired channel, an 

ETSM can be derived by merging the coupling information 

given from the interaction measure into the coefficients of its 

original fuzzy model. Afterwards, the 𝑛  ETSMs which are 

regarded as 𝑛  non-interacting SISO systems can be used to 

approximately represent the 𝑛 × 𝑛 MIMO system, and then the 

decentralized controller design can be equivalently transformed 

to multiple independent single-loop controller designs. Since 

the ETSM has same structure but different coefficients 

compared to its original T-S fuzzy model, according to (12), for 

a pair 𝑦𝑖 − 𝑢𝑗, its ETSM 𝑓𝑇𝑆,𝑖𝑗 can be expressed as: 

𝑓𝑇𝑆,𝑖𝑗(𝑘, 𝑧
−1) =

𝑏̂𝑖𝑗(𝑘)𝑧
−(𝜏̂𝑖𝑗(𝑘)+1)

1−𝑎̂𝑖𝑗,1(𝑘)𝑧
−1−𝑎̂𝑖𝑗,2(𝑘)𝑧

−2     (14) 

where 𝑎̂𝑖𝑗,1(𝑘) , 𝑎̂𝑖𝑗,2(𝑘) , 𝑏̂𝑖𝑗(𝑘)  and 𝜏̂𝑖𝑗(𝑘)  are the revised 

coefficients. Similar as (13), the steady-state gain and 

normalized integrated error of 𝑓𝑇𝑆,𝑖𝑗, which are 𝓀̂𝑖𝑗 and ℯ̂𝑖𝑗, can 

be calculated by:  

 {
𝓀̂𝑖𝑗(𝑘) =

𝑏̂𝑖𝑗(𝑘)

1−𝑎̂𝑖𝑗,1(𝑘)−𝑎̂𝑖𝑗,2(𝑘)

ℯ̂𝑖𝑗 =
1+𝑎̂𝑖𝑗,2(𝑘)

1−𝑎̂𝑖𝑗,1(𝑘)−𝑎̂𝑖𝑗,2(𝑘)
∙ 𝛥𝑇 + 𝜏̂𝑖𝑗(𝑘) ∙ 𝛥𝑇

      (15) 

By considering (3), (13), and (15), we have the following 

equations to calculate the ETSM’s coefficients in (14): 

{
 
 

 
 𝑏̂𝑖𝑗(𝑘) = 𝑏𝑖𝑗(𝑘) 𝜆𝑖𝑗(𝑘)⁄

𝑎̂𝑖𝑗,1(𝑘) = 𝑎𝑖,1(𝑘) + (1 − 𝛾𝑖𝑗(𝑘))𝑎𝑖,2(𝑘) − 𝛾𝑖𝑗(𝑘) + 1

𝑎̂𝑖𝑗,2(𝑘) = 𝛾𝑖𝑗(𝑘)𝑎𝑖,2(𝑘) + 𝛾𝑖𝑗(𝑘) − 1

𝜏̂𝑖𝑗(𝑘) = 𝛾𝑖𝑗(𝑘) ∙ 𝜏𝑗

 (16) 

Note that the values of 𝛾𝑖𝑗 = 𝜙𝑖𝑗 𝜆𝑖𝑗⁄  of the paired channels are 

positive according to the pairing rules of the RNGA based 

criterion, which can guarantee the causality that 𝜏̂𝑖𝑗 ≥ 0.  

In addition, it is important for the closed-loop control system 

to possess the integrity [13]-[15], which means the control 

system should remain stable whether any sub-control loops are 

removed or kept. Therefore, 𝑓𝑇𝑆,𝑖𝑗  should reflect the “worse” 

condition between the original coefficients of 𝑓𝑇𝑆,𝑖𝑗 and those 

revised by (16) to serve the controller design. It is a common 

sense that larger |𝑏̂𝑖𝑗|  and 𝜏̂𝑖𝑗  imply a more challenging 

condition for the control system’s stability. Thus, the values of 

𝜆𝑖𝑗 and 𝛾𝑖𝑗 used in (16) to calculate 𝑓𝑇𝑆,𝑖𝑗 are determined by:  

{
𝜆𝑖𝑗 = min{1, 𝜆𝑖𝑗}

𝛾𝑖𝑗 = max{1, 𝛾𝑖𝑗}
       (17) 

Remark 2.2: For the ETSM calculation in [15], only 𝑏𝑖𝑗  and 

𝜏𝑗  of 𝑓𝑇𝑆,𝑖𝑗  are revised to derive 𝑓𝑇𝑆,𝑖𝑗  through 𝑏̂𝑖𝑗 = 𝑏𝑖𝑗 𝜆𝑖𝑗⁄  

and 𝜏̂𝑖𝑗 = 𝛾𝑖𝑗 ∙ 𝜏𝑗. In a well-paired system, 𝜆𝑖𝑗s and 𝜙𝑖𝑗s of the 

paired elements are close to 1, and consequently 𝛾𝑖𝑗 s (𝛾𝑖𝑗 =

𝜙𝑖𝑗 𝜆𝑖𝑗⁄ ) of the paired elements are close to 1. In this case, 

according to (16), 𝑎̂𝑖𝑗,𝑝  is approximately equal to 𝑎𝑖,𝑝  (𝑝 =

1,2). Thus, it is acceptable to keep 𝑎𝑖,1s and 𝑎𝑖,2s unchanged in 

𝑓𝑇𝑆,𝑖𝑗 for the decentralized controller design. However, for the 

sparse and decoupling control strategies presented in the next 

section where the ETSMs for unpaired elements need to be 

calculated, only revising 𝑏𝑖𝑗  and 𝜏𝑗  cannot reflect the correct 

coupling effects since the 𝛾𝑖𝑗s of those unpaired elements may 

not be close to 1. In this paper, all the coefficients of 𝑓𝑇𝑆,𝑖𝑗  are 

revised to derive a 𝑓𝑇𝑆,𝑖𝑗  by (16), which can offer a more 

accurate result to ensure that the desired performance can be 

achieved in decentralized, sparse and decoupling control. 

IV. SPARSE AND DECOUPLING CONTROL STRATEGIES 

A. Sparse control strategy 

Compared to decentralized control, sparse control utilizes a 

richer control structure that is determined by a nominal fuzzy 

model 𝐹̅𝑇𝑆  adding several unpaired elements with relatively 

large dominance to the paired structure. Taking (4) and (5) as 

an example, suppose the unpaired channels 𝑦2 − 𝑢3 and 𝑦3 −

𝑢3 are added, then 𝐹̅𝑇𝑆 and 𝐺𝐶 for sparse control are:   

𝐹̅𝑇𝑆 = [

0 0 𝑓𝑇𝑆,13
𝑓𝑇𝑆,21 0 𝑓𝑇𝑆,23
0 𝑓𝑇𝑆,32 𝑓𝑇𝑆,33

], 𝐺𝐶 = [

0 𝑔𝐶,12 0

0 0 𝑔𝐶,23
𝑔𝐶,31 𝑔𝐶,32 𝑔𝐶,33

] 

RNGA based interaction measure can be used to assess the 

relative dominance of the unpaired elements. Swapping the 

columns of an 𝑛 × 𝑛 𝐹𝑇𝑆  to place the paired elements in the 

diagonal positions if necessary, 𝐹̅𝑇𝑆 for sparse control becomes: 

𝐹̅𝑇𝑆 = [𝜗𝑖𝑗 ∙ 𝑓𝑇𝑆,𝑖𝑗]𝑛×𝑛               (18) 

where 𝜗𝑖𝑖 = 1  and 𝜗𝑖𝑗 = {0,1}  for 𝑖 ≠ 𝑗 . In this study, four 

interaction indexes, 𝒜𝑅𝑜𝑤 = [𝛼𝑅𝑜𝑤,𝑖𝑗]𝑛×𝑛 , 𝒜𝐶𝑜𝑙 =

[𝛼𝐶𝑜𝑙,𝑖𝑗]𝑛×𝑛 , ℬ𝑅𝑜𝑤 = [𝛽𝑅𝑜𝑤,𝑖𝑗]𝑛×𝑛  and ℬ𝐶𝑜𝑙 = [𝛽𝐶𝑜𝑙,𝑖𝑗]𝑛×𝑛 

defined as follows, are used to determine the values of 𝜗𝑖𝑗s: 

{
𝛼𝑅𝑜𝑤,𝑖𝑗 = |𝜆𝑖𝑗 𝜆𝑖𝑖⁄ |

𝛼𝐶𝑜𝑙,𝑖𝑗 = |𝜆𝑖𝑗 𝜆𝑗𝑗⁄ |
                (19) 

{
𝛽𝑅𝑜𝑤,𝑖𝑗 = |𝜙𝑖𝑗 𝜙𝑖𝑖⁄ | = (|𝜆𝑖𝑗 𝜆𝑖𝑖⁄ |) ∙ (|𝛾𝑖𝑗 𝛾𝑖𝑖⁄ |)

𝛽𝐶𝑜𝑙,𝑖𝑗 = |𝜙𝑖𝑗 𝜙𝑗𝑗⁄ | = (|𝜆𝑖𝑗 𝜆𝑗𝑗⁄ |) ∙ (|𝛾𝑖𝑗 𝛾𝑗𝑗⁄ |)
     (20) 

𝛼𝑅𝑜𝑤,𝑖𝑗  (or 𝛼𝐶𝑜𝑙,𝑖𝑗) and 𝛽𝑅𝑜𝑤,𝑖𝑗  (or 𝛽𝐶𝑜𝑙,𝑖𝑗) compare the degree 

of independence of the unpaired element 𝑦𝑖 − 𝑢𝑗 with that of 

the paired element 𝑦𝑖 − 𝑢𝑖 (or 𝑦𝑗 − 𝑢𝑗) in terms of steady and 

dynamic properties. Equations (19) and (20) imply that when 
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𝛼𝑅𝑜𝑤,𝑖𝑗,  𝛼𝐶𝑜𝑙,𝑖𝑗, 𝛽𝑅𝑜𝑤,𝑖𝑗 and 𝛽𝐶𝑜𝑙,𝑖𝑗 are close to 1, the degree of 

independence of 𝑦𝑖 − 𝑢𝑗  is similar to that of the paired 

elements. Accordingly, it has a relatively large dominance and 

is likely to be included into 𝐹̅𝑇𝑆 for sparse control. Given 𝜀𝛼 and 

𝜀𝛽 satisfying 0 < 𝜀𝛼 , 𝜀𝛽 ≤ 1, 𝜗𝑖𝑗 is determined by:   

𝜗𝑖𝑗 = {
1,

𝜀𝛼 ≤ 𝛼𝑅𝑜𝑤,𝑖𝑗 , 𝛼𝐶𝑜𝑙,𝑖𝑗 ≤ 1 𝜀𝛼⁄ ,

𝑎𝑛𝑑 𝜀𝛽 ≤ 𝛽𝑅𝑜𝑤,𝑖𝑗 , 𝛽𝐶𝑜𝑙,𝑖𝑗 ≤ 1/𝜀𝛽
0, 𝑒𝑙𝑠𝑒

      (21) 

Note that small/large 𝜀𝛼  and 𝜀𝛽  select a rich/simple sparse 

control structure. Empirically, the values of 𝜀𝛼  and 𝜀𝛽  are 

chosen from [0,1, 0.3] [11]. 

Remark 3.1: in [14], only the value of |𝜙𝑖𝑗| |𝜙𝑖𝑖|⁄ =

(|𝜆𝑖𝑗| |𝜆𝑖𝑖|⁄ ) ∙ (|𝛾𝑖𝑗| |𝛾𝑖𝑖|⁄ )  is used to assess the relative 

dominance. It states that |𝜆𝑖𝑗| |𝜆𝑖𝑖|⁄  and |𝛾𝑖𝑗| |𝛾𝑖𝑖|⁄  of a selected 

unpaired element should not be very large or very small, and 

consequently it uses a criterion that an unpaired element 𝑦𝑖 −
𝑢𝑗 is qualified to be added to the sparse control structure when 

|𝜙𝑖𝑗| |𝜙𝑖𝑖|⁄  is a moderate value which is in [0.15, 8]. However, 

a moderate |𝜙𝑖𝑗| |𝜙𝑖𝑖|⁄  may contain a very large |𝜆𝑖𝑗| |𝜆𝑖𝑖|⁄  and 

a very small |𝛾𝑖𝑗| |𝛾𝑖𝑖|⁄ , or a very small |𝜆𝑖𝑗| |𝜆𝑖𝑖|⁄  and a very 

large |𝛾𝑖𝑗| |𝛾𝑖𝑖|⁄ , and then the selection criterion given in [14] 

can lead to incorrect results. While in [11], improvements are 

made that two indexes, 𝛼𝑖𝑗 = 0.5 × (|𝜆𝑖𝑗| |𝜆𝑖𝑖| + |𝜆𝑖𝑗| |𝜆𝑗𝑗|)⁄⁄  

and 𝛽𝑖𝑗 = 0.5 × (|𝜙𝑖𝑗| |𝜙𝑖𝑖|⁄ + |𝜙𝑖𝑗| |𝜙𝑗𝑗|⁄ ) = 0.5 ×

[(|𝜆𝑖𝑗| ∙ |𝛾𝑖𝑗|) (|𝜆𝑖𝑖| ∙ |𝛾𝑖𝑖|)⁄ + (|𝜆𝑖𝑗| ∙ |𝛾𝑖𝑗|) (|𝜆𝑗𝑗| ∙ |𝛾𝑗𝑗|)⁄ ]  are 

used to select the unpaired elements which satisfies 𝜀𝛼 ≤ 𝛼𝑖𝑗 ≤

1/𝜀𝛼  and 𝜀𝛽 ≤ 𝛽𝑖𝑗 ≤ 1/𝜀𝛽 . In this study, a further detailed 

selection criterion with four indexes as (19)-(20) is employed 

to guarantee that the selected 𝑦𝑖 − 𝑢𝑗 possesses relatively large 

dominance in terms of both steady and dynamic properties 

when compared to the paired elements 𝑦𝑖 − 𝑢𝑖 and 𝑦𝑗 − 𝑢𝑗.    

Using the nominal fuzzy model 𝐹̅𝑇𝑆 in (18) to represent the 

MIMO system for sparse controller design, for a closed-loop 

control system in Fig. 1, an ideal design is that the forward path 

satisfies the following equation: 

𝐹̅𝑇𝑆(𝑧
−1) ∙ 𝐺𝐶(𝑧

−1)  

= 𝑑𝑖𝑎𝑔 {
∆𝑇

1−𝑧−1
,

∆𝑇

1−𝑧−1
, ⋯ ,

∆𝑇

1−𝑧−1
} ∈ ℝ𝑛×𝑛       (22) 

Then the controller 𝐺𝐶 is obtained by: 

𝐺𝐶(𝑧
−1) = 𝐹̅𝑇𝑆 (𝑧

−1)−1 ∙ 𝑑𝑖𝑎𝑔 {
∆𝑇

1−𝑧−1
,

∆𝑇

1−𝑧−1
, ⋯ ,

∆𝑇

1−𝑧−1
} (23) 

It is generally difficult to directly obtain 𝐹̅𝑇𝑆 (𝑧
−1)−1. In this 

study, we use an ETSM-based manner to solve this problem. 

According to the definition of the dynamic RGA (DRGA) 

[10],[14], we have the following equation: 

𝐷𝑅𝐺𝐴 = [𝐷𝜆𝑖𝑗(𝑧
−1)]

𝑛×𝑛
= 𝐹̅𝑇𝑆 (𝑧

−1) ⊗ 𝐹̂̅𝑇𝑆
∗ (𝑧−1)   (24) 

where 𝐷𝜆𝑖𝑗 = 𝜗𝑖𝑗 ∙ 𝑓𝑇𝑆,𝑖𝑗 𝑓𝑇𝑆,𝑖𝑗⁄ , and 𝐹̂̅𝑇𝑆
∗  is defined as: 

𝐹̂̅𝑇𝑆
∗ (𝑧−1) = [𝜗𝑖𝑗/𝑓𝑇𝑆,𝑖𝑗]𝑛×𝑛             (25) 

Similar to RGA in (1), DRGA can be calculated by [10],[14]: 

𝐷𝑅𝐺𝐴 = 𝐹̅𝑇𝑆 (𝑧
−1) ⊗ 𝐹̅𝑇𝑆(𝑧

−1)−𝑇          (26) 

Equations (24) and (26) reveal an important relationship: 

𝐹̅𝑇𝑆(𝑧
−1)−1 = 𝐹̂̅𝑇𝑆

∗ (𝑧−1)𝑇 = [𝜗𝑗𝑖/𝑓𝑇𝑆,𝑗𝑖]𝑛×𝑛      (27) 

Submitting (27) to (23), we can have: 

𝐺𝐶(𝑧
−1) = 𝐹̂̅𝑇𝑆

∗ (𝑧−1)𝑇 ∙ 𝑑𝑖𝑎𝑔 {
∆𝑇

1−𝑧−1
,

∆𝑇

1−𝑧−1
, ⋯ ,

∆𝑇

1−𝑧−1
} =  

 [
𝜗𝑗𝑖∙∆𝑇

𝑓̂𝑇𝑆,𝑗𝑖∙(1−𝑧
−1)
]
𝑛×𝑛

                (28) 

Therefore, the non-zero elements in 𝐺𝐶 are derived by:  

𝑔𝐶,𝑖𝑗 =
∆𝑇

𝑓̂𝑇𝑆,𝑗𝑖∙(1−𝑧
−1)

⇒ 𝑓𝑇𝑆,𝑗𝑖 ∙ 𝑔𝐶,𝑖𝑗 =
∆𝑇

1−𝑧−1
      (29) 

The term  𝑓𝑇𝑆,𝑗𝑖 ∙ 𝑔𝐶,𝑖𝑗 in (29) can be regarded as the forward 

path of a closed-loop SISO control system as illustrated in Fig. 

2(b), and the controller satisfying (29) is an ideal design for this 

single loop. By considering the delays, (29) is rewritten as 

𝑓𝑇𝑆,𝑗𝑖(𝑘, 𝑧
−1) ∙ 𝑔𝐶,𝑖𝑗(𝑘, 𝑧

−1) =
𝑧
−𝜏̂𝑗𝑖(𝑘)∙∆𝑇

1−𝑧−1
        (30) 

Note that when all 𝜗𝑖𝑗s (𝑖 ≠ 𝑗) are 0, (29) tallies with the theory 

of ETSM-based decentralized control strategy in [15]. 

Therefore, both decentralized and sparse controllers can be 

realized by devising multiple independent single-loop 

controllers based on ETSMs. In order to maintain the integrity 

of the control system, 𝑓𝑇𝑆,𝑖𝑗s are calculated by (16) with 𝜆𝑖𝑗s 

and 𝛾𝑖𝑗s determined by (17).  

Theoretically, any linear SISO control algorithms can be 

applied to design the sub-controllers based on their associated 

ETSMs. We leave the choice of linear SISO control algorithms 

to users. The stability of the sparse control strategy can be 

evaluated through the following procedure: 

 The sparse controller can be expressed by: 

Δ𝑢(𝑘) = 𝔎̅(𝑘) ∙ Δ𝑋̅(𝑘) =

[
 
 
 
𝔎̅11(𝑘) 𝜗21𝔎̅21(𝑘)

𝜗12𝔎̅12(𝑘) 𝔎̅22(𝑘)

⋯ 𝜗𝑛1𝔎̅𝑛1(𝑘)

⋯ 𝜗𝑛2𝔎̅𝑛2(𝑘)
⋮ ⋮

𝜗1𝑛𝔎̅1𝑛(𝑘) 𝜗2𝑛𝔎̅2𝑛(𝑘)
⋱ ⋮
⋯ 𝔎̅𝑛𝑛(𝑘) ]

 
 
 

Δ𝑋̅(𝑘)  (31) 

where Δ𝑢(𝑘) = 𝑢(𝑘) − 𝑢(𝑘 − 1)  is the increment of the 

manipulated variable, Δ𝑋̅(𝑘) =

[Δ𝑋̅1(𝑘)
𝑇 Δ𝑋̅2(𝑘)

𝑇  ⋯ Δ𝑋̅𝑛(𝑘)
𝑇]𝑇 , Δ𝑋̅𝑖(𝑘) = [𝑑𝑖(𝑘 −

𝑚𝑖) ⋯ 𝑑𝑖(𝑘 − 1) 𝑑𝑖(𝑘)]
𝑇 ∈ ℝ𝑚𝑖+1, where 𝑚𝑖 (𝑖 = 1,⋯ , 𝑛) 

is a integer, 𝑑𝑖(𝑘) = 𝑟𝑣𝑖(𝑘) − 𝑦𝑖(𝑘) ;  𝔎̅𝑖𝑗(𝑘) =

[𝔎̅𝑖𝑗,𝑚𝑖
(𝑘)  𝔎̅𝑖𝑗,𝑚𝑖−1

(𝑘) ⋯ 𝔎̅𝑖𝑗,1(𝑘) 𝔎̅𝑖𝑗,0(𝑘)] ∈ ℝ
1×(𝑚𝑖+1) 

consists of the control gains of 𝑔𝐶,𝑗𝑖  calculated based on 

𝑓𝑇𝑆,𝑖𝑗 and Δ𝑋̅𝑖(𝑘) using the selected linear control algorithm. 

 The fuzzy model (7) or (12) for the MIMO system can be 

rewritten as:  

Δ𝑋̅(𝑘 + 1) = 𝐴̅(𝑘)Δ𝑋̅(𝑘) + 𝐵̅(𝑘)Δ𝑢(𝑘)      (32) 

where 𝐴̅(𝑘) = 𝑑𝑖𝑎𝑔{𝐴̅1(𝑘),⋯ , 𝐴̅𝑛(𝑘)} , 𝐴̅𝑖(𝑘) =
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[
0𝑚𝑖×1

𝐼𝑚𝑖×𝑚𝑖

0 𝑎̅𝑖(𝑘)
] ∈ ℝ(𝑚𝑖+1)×(𝑚𝑖+1) , 𝑎̅𝑖(𝑘) =

[0 ⋯0 𝑎𝑖,2(𝑘) 𝑎𝑖,1(𝑘)] ∈ ℝ
1×𝑚𝑖  ; 𝐵̅(𝑘) =

[𝐵̅1(𝑘)
𝑇  ⋯ 𝐵̅𝑛(𝑘)

𝑇]𝑇 ∈ ℝ(𝑛+∑ 𝑚𝑖
𝑛
𝑖=1 )×𝑛 , 𝐵̅𝑖(𝑘) = [

0𝑚𝑖×𝑛

𝑏̅𝑖(𝑘)
] , 

𝑏̅𝑖(𝑘) = [𝑏𝑖1(𝑘) 𝑏𝑖2(𝑘)  ⋯ 𝑏𝑖𝑛(𝑘)] ∈ ℝ
1×𝑛. 

 Submitting (31) to (32), we can have: 

Δ𝑋̅(𝑘 + 1) = 𝐴̅(𝑘)Δ𝑋̅(𝑘) + 𝐵̅(𝑘)𝔎̅(𝑘)Δ𝑋̅(𝑘)  

= [𝐴̅(𝑘) + 𝐵̅(𝑘)𝔎̅(𝑘)]Δ𝑋̅(𝑘)           (33) 

The control-loop using the proposed sparse control strategy 

is stable if all the eigenvalues of  𝐴̅(𝑘) + 𝐵̅(𝑘)𝔎̅(𝑘)  lie 

inside the unit cycle. 

B. Decoupling control strategy 

 
Fig. 3.  Fuzzy model based decoupling control system 

Decoupling control strategy is to insert a decoupling 

compensator between the decentralized controller and the 

MIMO system in order to compensate for the coupling effects 

among the pairs. In Fig. 3, 𝐺𝐷 = [𝑔𝐷,𝑖𝑗]𝑛×𝑛 denotes the fuzzy 

model based decoupling compensator, and 𝑢𝐷 ∈ ℝ
𝑛  is the 

output of 𝐺𝐷 . Suppose the paired elements are placed in the 

diagonal positions, a perfect decoupling compensator can 

eliminate all the off-diagonal elements and only leave the 

diagonal elements for decentralized controller design. Using 

𝐹𝑇𝑆(𝑧
−1)  to represent the MIMO system, the compensator 

𝐺𝐷(𝑧
−1)  is required to satisfy:  

𝐹𝑇𝑆,𝐷(𝑧
−1) = 𝐹𝑇𝑆(𝑧

−1) ∙ 𝐺𝐷(𝑧
−1) =

𝑑𝑖𝑎𝑔{𝑓𝑇𝑆,11
(0) 𝑧−𝛵1 , 𝑓𝑇𝑆,22

(0) 𝑧−𝛵2 , ⋯ , 𝑓𝑇𝑆,𝑛𝑛
(0)

𝑧−𝛵𝑛  }       (34) 

where 𝐹𝑇𝑆,𝐷  denotes the decoupled MIMO fuzzy model, in 

which 𝑓𝑇𝑆,𝑗𝑗
(0) (𝑘, 𝑧−1) =

𝑏𝑗𝑗(𝑘)𝑧
−1

1−𝑎𝑗,1(𝑘)𝑧
−1−𝑎𝑗,2(𝑘)𝑧

−2  is equal to the 

𝑓𝑇𝑆,𝑗𝑗(𝑘, 𝑧
−1)  in (12) with 𝑧−𝜏𝑗  removed, and 𝑧−𝛵𝑗 , 𝑗 =

1,⋯ , 𝑛, is the delay used to guarantee the causality of 𝐺𝐷(𝑧
−1). 

According to (34), 𝐺𝐷(𝑧
−1) is derived by: 

𝐺𝐷(𝑧
−1) = 𝐹𝑇𝑆(𝑧

−1)−1 ∙ 𝐹𝑇𝑆,𝐷(𝑧
−1)         (35) 

In (35), 𝐹𝑇𝑆(𝑧
−1)−1 is generally difficult to derive. Inspired by 

(27), ETSMs can be employed to solve this problem:  

𝐹𝑇𝑆(𝑧
−1)−1 = 𝐹̂𝑇𝑆

∗ (𝑧−1)𝑇 = [1/𝑓𝑇𝑆,𝑗𝑖]𝑛×𝑛       (36) 

Submitting (36) to (35), 𝐺𝐷(𝑧
−1) can be derived by:  

𝐺𝐷(𝑧
−1) = 𝐹̂𝑇𝑆

∗ (𝑧−1)𝑇 ∙ 𝐹𝑇𝑆,𝐷(𝑧
−1) = [

𝑓𝑇𝑆,𝑗𝑗
(0)

𝑧
−𝛵𝑗

𝑓̂𝑇𝑆,𝑗𝑖
]
𝑛×𝑛

   (37) 

By submitting (12) and (14) into (37), the decoupling 

compensator can be further expressed as:  

𝐺𝐷(𝑘, 𝑧
−1) = [𝑔𝐷,𝑖𝑗(𝑘, 𝑧

−1)]
𝑛×𝑛

=

[
(1−𝑎̂𝑗𝑖,1(𝑘)𝑧

−1−𝑎̂𝑗𝑖,2(𝑘)𝑧
−2)𝑏𝑗𝑗(𝑘)

(1−𝑎𝑗,1(𝑘)𝑧
−1−𝑎𝑗,2(𝑘)𝑧

−2)𝑏̂𝑗𝑖(𝑘)
𝑧−(𝛵𝑗(𝑘)−𝜏̂𝑗𝑖(𝑘))]

𝑛×𝑛

     (38) 

Note that in (38), the coefficients of 𝑓𝑇𝑆,𝑖𝑗s calculated by (16) 

use the original values of 𝜆𝑖𝑗  and 𝛾𝑖𝑗  derived from (3) rather 

than the revised ones in (17) since it is used to obtain a 

decoupling compensator instead of being a virtual model 

reflecting the “worse” condition for controller design.  

Compared with (27), equation (36) contains no 𝜗𝑖𝑗 s and 

leaves no “blank” for its elements. Hence, according to (34)-

(38), 𝐺𝐷  in (38) uses a full-dimensional structure that can 

compensate for the coupling effects caused by all unpaired 

elements. To ensure 𝐺𝐷 to be physically realizable, the analysis 

is presented as follows:  

 Stability: the elements of 𝐺𝐷 in (38) have the denominators 

same as that in the original fuzzy model 𝐹𝑇𝑆 in (12), which 

implies 𝐺𝐷  is a stable system. 

 Properness: each element of 𝐺𝐷  satisfies that the 

numerator’s degree does not exceed the denominator’s. In 

order to guarantee the properness of the decoupling 

compensator that each element satisfies 

lim
𝑧→∞

|𝑔𝐷,𝑖𝑗(𝑘, 𝑧
−1)| < ∞, for the 𝑔𝐷,𝑖𝑗 , when the 𝑏̂𝑗𝑖(𝑘) = 0 

(𝑖, 𝑗 = 1,⋯ , 𝑛), let it be a small value close to 0, such as let 

𝑏̂𝑗𝑖(𝑘) = 10−6.  

 Causality: in order to guarantee 𝐺𝐷 to be a casual system, the 

delays 𝑧−𝛵𝑗(𝑘) (𝑗 = 1,⋯ , 𝑛) in (38) are determined by:  

𝛵𝑗(𝑘) = max{𝜏̂𝑗1(𝑘), 𝜏̂𝑗2(𝑘),⋯ , 𝜏̂𝑗𝑛(𝑘)} 

With the decoupling compensator in (38) inserted into the 

control-loop, in theory, each non-zero element of the 

decentralized controller 𝐺𝐶 can be independently design based 

on a SISO T-S fuzzy model 𝑓𝑇𝑆,𝑗𝑗
(0)

𝑧−𝛵𝑗  using suitable linear 

control algorithms. The choice of SISO linear control algorithm 

is determined by users. The stability of the decoupling control 

strategy can be evaluated through the following procedure: 

 The controller (decentralized) can be expressed by:  

Δ𝖚(𝑘) = 𝕶̅(𝑘)Δ𝖃̅(𝑘)              (39) 

where Δ𝖚(𝑘) = [Δ𝑢(𝑘 − 2)𝑇  Δ𝑢(𝑘 − 1)𝑇 Δ𝑢(𝑘)𝑇]𝑇 , 

Δ𝖃̅(𝑘) = [Δ𝑋̅(𝑘 − 2)𝑇 Δ𝑋̅(𝑘 − 1)𝑇 Δ𝑋̅(𝑘)𝑇]𝑇 , and 𝕶̅(𝑘) =

𝑑𝑖𝑎𝑔{𝔎̅(𝑘 − 2), 𝔎̅(𝑘 − 1), 𝔎̅(𝑘)} ∈ ℝ3𝑛×3(𝑛+∑ 𝑚𝑖
𝑛
𝑖=1 ) , the 

Δ𝑢(𝑘), Δ𝑋̅(𝑘) and 𝔎̅(𝑘) are same as that in (31) with all 𝜗𝑖𝑗s 

(𝑖 ≠ 𝑗) are 0 because it is a decentralized controller. 

 The decoupling compensator in (38) can be rewritten as:   

Δ𝑢̅𝐷(𝑘 + 1) = 𝐴𝐷(𝑘)Δ𝑢̅𝐷(𝑘) + 𝐵𝐷(𝑘)Δ𝖚(𝑘)  
Δ𝑢𝐷(𝑘) = 𝐶𝐷Δ𝑢̅𝐷(𝑘)              (40) 

where Δ𝑢̅𝐷(𝑘) = [Δ𝑢̅𝐷,1(𝑘)
𝑇  Δ𝑢̅𝐷,2(𝑘)

𝑇⋯ Δ𝑢̅𝐷,𝑛(𝑘)
𝑇]𝑇 ∈

ℝ2𝑛
2

, Δ𝑢̅𝐷,𝑖(𝑘) = [Δ𝑢̅𝐷,𝑖,1(𝑘 − 1)  Δ𝑢̅𝐷,𝑖,1(𝑘)  Δ𝑢̅𝐷,𝑖,2(𝑘 −

1)  Δ𝑢̅𝐷,𝑖,2(𝑘) ⋯  Δ𝑢̅𝐷,𝑖,𝑛(𝑘 − 1)  Δ𝑢̅𝐷,𝑖,𝑛(𝑘)]
𝑇 ∈ ℝ2𝑛 , 

Δ𝑢̅𝐷,𝑖,𝑗(𝑘) is the incremental output of the element in row 𝑖 

and column 𝑗  of the matrix 𝐺𝐷(𝑘, 𝑧
−1)  in (38); 𝐴𝐷(𝑘) =

𝑑𝑖𝑎𝑔{𝐴𝐷,1(𝑘),⋯ , 𝐴𝐷,𝑛(𝑘)} ∈ ℝ
2𝑛2×2𝑛2 , where 𝐴𝐷,𝑖(𝑘) =
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𝑑𝑖𝑎𝑔{𝐴𝐷,𝑖,1(𝑘),⋯ , 𝐴𝐷,𝑖,𝑛(𝑘)} , and in which 𝐴𝐷,𝑖,𝑗(𝑘) =

[
0 1

𝑎𝑗,2(𝑘) 𝑎𝑗,1(𝑘)
] ; 𝐵𝐷(𝑘) = [𝐵𝐷,1(𝑘)

𝑇  ⋯ 𝐵𝐷,𝑛(𝑘)
𝑇]𝑇} ∈

ℝ2𝑛
2×3𝑛 , where 𝐵𝐷,𝑖(𝑘) = [𝐵𝐷,𝑖,1(𝑘)

𝑇  ⋯ 𝐵𝐷,𝑖,𝑛(𝑘)
𝑇]𝑇 , and 

𝐵𝐷,𝑖,𝑗(𝑘) = [

01×3𝑛

−
𝑏𝑗𝑗(𝑘)𝑎̂𝑗𝑖,2(𝑘)

𝑏̂𝑗𝑖(𝑘)
𝐼𝑗
𝑇 −

𝑏𝑗𝑗(𝑘)𝑎̂𝑗𝑖,1(𝑘)

𝑏̂𝑗𝑖(𝑘)
𝐼𝑗
𝑇 𝑏𝑗𝑗(𝑘)

𝑏̂𝑗𝑖(𝑘)
𝐼𝑗
𝑇] , 

in which 𝐼𝑗 ∈ ℝ
𝑛 is a vector where the 𝑗th element is 1 and 

others are 0; 𝐶𝐷 = 𝑑𝑖𝑎𝑔{𝐶𝐷,1, ⋯ , 𝐶𝐷,𝑛} ∈ ℝ
𝑛×2𝑛2 , 𝐶𝐷,𝑖 =

[𝐶𝐷,𝑖,1  ⋯ 𝐶𝐷,𝑖,𝑛], and 𝐶𝐷,𝑖,𝑗 = [0 1], 𝑖, 𝑗 = 1,⋯ , 𝑛.  

 The fuzzy model (7) or (12) for the MIMO system can be 

rewritten as:   

Δ𝖃̅(𝑘 + 1) = 𝕬̅(𝑘)Δ𝖃̅(𝑘) + 𝕭̅(𝑘)Δ𝑢𝐷(𝑘)     (41) 

where 𝕬̅(𝑘) = 𝑑𝑖𝑎𝑔{𝐴̅(𝑘 − 2), 𝐴̅(𝑘 − 1), 𝐴̅(𝑘)} , and 

𝕭̅(𝑘) = [𝐵̅(𝑘 − 2)𝑇 𝐵̅(𝑘 − 1)𝑇 𝐵̅(𝑘)𝑇]𝑇 , the 𝐴̅(𝑘)  and 

𝐵̅(𝑘) are same as that in (32). 

 The decoupling compensator (40) and the MIMO system 

(41) are connected in series, they constitute an augmented 

system expressed as: 

[
Δ𝑢̅𝐷(𝑘 + 1)

Δ𝖃̅(𝑘 + 1)
] = [

𝐴𝐷(𝑘) 02𝑛2×3(𝑛+∑ 𝑚𝑖
𝑛
𝑖=1 )

𝕭̅(𝑘)𝐶𝐷 𝕬̅(𝑘)
] [
Δ𝑢̅𝐷(𝑘)

Δ𝖃̅(𝑘)
] +

[
𝐵𝐷(𝑘)

03(𝑛+∑ 𝑚𝑖
𝑛
𝑖=1 )×3𝑛

] Δ𝖚(𝑘)             (42) 

The equation (39) can be revised as:  

Δ𝖚(𝑘) = [03𝑛×2𝑛2 𝕶̅(𝑘)] [
Δ𝑢̅𝐷(𝑘)

Δ𝖃̅(𝑘)
]        (43) 

 Submitting (43) to (42), we have 

[
Δ𝑢̅𝐷(𝑘 + 1)

Δ𝖃̅(𝑘 + 1)
] = [

𝐴𝐷(𝑘) 𝐵𝐷(𝑘)𝕶̅(𝑘)

𝕭̅(𝑘)𝐶𝐷 𝕬̅(𝑘)
] [
Δ𝑢̅𝐷(𝑘)

Δ𝖃̅(𝑘)
]  (44) 

The decoupling control-loop can be considered to be stable 

if all the eigenvalues of  [
𝐴𝐷(𝑘) 𝐵𝐷(𝑘)𝕶̅(𝑘)

𝕭̅(𝑘)𝐶𝐷 𝕬̅(𝑘)
] lie inside 

the unit cycle. 

C. Discussion 

This section presents a sparse control strategy and a 

decoupling control strategy to enhance the capability of the 

decentralized control strategy in [15] with respect to 

suppressing the strong coupling effects among the paired 

channels in a MIMO system. The main contribution of this 

paper is that it develops the frameworks where conventional 

linear SISO control algorithms can be directly used to design 

controllers for the non-linear MIMO systems with closely 

coupled channels and without knowing accurate mathematical 

functions.  

Sparse control is an intermediate between decentralized and 

centralized control. Compared to decentralized control, sparse 

control has more sub-controllers 𝑔𝐶,𝑖𝑗s in 𝐺𝐶 and thus provides 

increased design degree of freedom to handle the coupling 

effects. While compared to centralized control, sparse control 

is “economical” that leaves the sub-controllers related to the 

non-significant channels to be blank in 𝐺𝐶, and uses the sub-

controllers related to the dominant channels to conquer all the 

interactions. 

Decoupling control employs a decoupling compensator to 

offset the coupling effects caused by the unpaired elements, and 

then the paired channels are decoupled to the extent that the 

MIMO system can be regarded as multiple non-interacting 

SISO systems to facilitate decentralized controller design. The 

decoupling compensator in (38) avoids the complex 

calculations to derive the inverse of the MIMO system 

dynamics, and can be easily realized in real applications since 

its elements have very simple structures and the coefficients are 

easy to compute. 

The indexes proposed in (19) and (20) to select sparse control 

structure need to properly predefine a 𝜀𝛼 and a 𝜀𝛽 which have 

marked impacts on the sparse control performance, and the 

sparse control requires a control algorithm to have a certain 

degree of margin to be tolerant for the coupling effects from the 

unselected elements. While the decoupling control strategy 

does not require any predefined coefficients for control 

structure selection, and its controller design is not required to 

reach the level of robustness as that of the sparse control since 

the decoupling compensator is a qualified assistant to clean the 

coupling effects. In theory, the decoupling control using a full-

dimensional compensator can achieve better performance than 

the sparse control. However, the cost to achieve this full-

dimensional compensator may be higher than that of the sparse 

control strategy, especially for large-scale MIMO systems and 

when the sparse control structure is “sparse” and the algorithms 

to design and tune the sub-controllers are computationally 

inexpensive. In addition, one thing needs to be noted that the 

delays of the output responses under the sparse control will not 

exceed those under the decoupling control.  

According to the characteristics of the two proposed control 

strategies, in the case that when decentralized control cannot 

fully handle the channel interactions, if a small part of the 

unpaired elements has the relatively large dominance, the 

sparse control strategy can be applied to improve the 

performance instead of using the full-dimensional decoupling 

compensator. If a large part of the unpaired elements is selected, 

which means a “dense” instead of a “sparse” control structure 

is required for regulating the MIMO system, it will be better to 

employ the decoupling control strategy to save the cost in 

design and tuning for the sub-controllers. 

V. CASE STUDIES 

A. Example-I 

Consider the following nonlinear 3 × 3 system from [15]: 

𝕩̇1 = 𝕩2 + 5𝕩1
2𝕩2 + 6𝕩2

2  

𝕩̇2 = −4𝕩1 − 5𝕩2 + 8𝕩1𝕩2 + 𝑢1  

𝕩̇3 = 𝕩4  

𝕩̇4 = −6𝕩3 − 5𝕩4 + 3𝕩3
3 + 10𝕩3𝕩4𝕩5 + 𝑢2  

𝕩̇5 = 𝕩6 + 4𝕩7
2  

𝕩̇6 = 𝕩7 + 5𝕩5𝕩6
2𝕩7  

𝕩̇7 = −14𝕩5 − 23𝕩6 − 10𝕩7 + 7𝕩5𝕩6𝕩7 + 𝑢3  

𝑦1 = 5𝕩1 + 5𝕩2 + 6𝕩3 + 2𝕩4 + 14𝕩5 + 9𝕩6 + 𝕩7  
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𝑦2 = 8𝕩1 + 2𝕩2 + 3𝕩3 + 4𝕩5 + 6𝕩6 + 2𝕩7  

𝑦3 = 𝕩1 + 𝕩2 + 4𝕩3 + 2𝕩4 + 1.4𝕩5 + 0.2𝕩6       (45) 

where 𝕩𝑟s (𝑟 = 1,⋯ ,7) are states. Suppose the mathematical 

function of the system in (45) is unknown to the controller 

designer, and there exists noise in the sampled inputs random 

but bounded in [−0.1, 0.1]. The sampling time is ∆𝑇 = 0.1𝑠, 
and the delays are 𝜏𝑖1 = 𝜏𝑖2 = 20  and 𝜏𝑖3 = 10 , 𝑖 = 1,2,3 . 

Given the number of fuzzy rules as 𝐿 = 6, the type-1 and type-

2 T-S fuzzy models with the structure in (6) can be identified 

based on the input-output data using the method introduced in 

[11]. Due to the limited space, we only present the first rule:   

𝑅𝑢𝑙𝑒 1: If  𝑥(𝑘) is 𝒳1, Then 
𝑦1
1(𝑘 + 1) = 1.1546𝑦1(𝑘) − 0.3536𝑦1(𝑘 − 1)  

 +0.2684𝑢1(𝑘 − 20) + 0.2012𝑢2(𝑘 − 20) + 0.2233𝑢3(𝑘 − 10)  
𝑦2
1(𝑘 + 1) = 1.3306𝑦2(𝑘) − 0.4080𝑦2(𝑘 − 1)  
 +0.1578𝑢1(𝑘 − 20) + 0.0343𝑢2(𝑘 − 20) + 0.0213𝑢3(𝑘 − 10)  
𝑦3
1(𝑘 + 1) = 1.0136𝑦3(𝑘) − 0.2437𝑦3(𝑘 − 1)  
 +0.0616𝑢1(𝑘 − 20) + 0.1554𝑢2(𝑘 − 20) + 0.0284𝑢3(𝑘 − 10)  

where the center of 𝒳1  is 𝑥𝑐
1 =

[1.2601  1.8746  0.2419  1.2593  1.8536  0.2411  1.0000  −
0.0245  −0.0504]𝑇 , and  ∆𝜇1 = 0.5057  for the first type-2 

fuzzy set. The comparisons between real outputs and fuzzy 

models’ outputs with the root-mean-square-errors (RMSEs) are 

shown in Fig. 4. The type-2 fuzzy model achieves higher 

accuracy when compared to its type-1 counterpart. 

 
Fig. 4.  Comparisons of real outputs and fuzzy models’ outputs for (45) 

The elements in 𝒦 = [𝓀𝑖𝑗]𝑛×𝑛 , ℰ = [ℯ𝑖𝑗]𝑛×𝑛 , RGA and 

RNGA calculated from the fuzzy models are time-varying. 

Using the results derived from the type-2 T-S fuzzy model and 

calculated at the operating point 𝑥(𝑘) = [0 ⋯ 0]𝑇 ∈ ℝ9 as an 

example, the matrices are: 

𝒦 = [
1.2784 0.9791 0.9808
1.8811 0.4818 0.2734
0.2563 0.6742 0.0839

] , ℰ = [
2.4464 2.4464 1.4464
3.0917 3.0917 2.0917
2.3912 2.3912 1.3912

] 

𝑅𝐺𝐴 = [
−0.2157 −0.1006 1.3164
1.2773 −0.0814 −0.1959
−0.0616 1.1821 −0.1205

] 

𝑅𝑁𝐺𝐴 = [
−0.1759 −0.1112 1.2871
1.2460 −0.0787 −0.1673
−0.0701 1.1898 −0.1197

]   

The pairing structure determined by the above RGA and 

RNGA is 𝑦1 − 𝑢3/𝑦2 − 𝑢1/𝑦3 − 𝑢2, which is same to that in 

[15]. From the RGA and RNGA, we have: 

𝒜𝑅𝑜𝑤 = [
0.1639 0.0764 1
1 0.0638 0.1533

0.0521 1 0.1019
] ,𝒜𝐶𝑜𝑙 = [

0.1689 0.0851 1
1 0.0689 0.1488

0.0482 1 0.0915
] 

ℬ𝑅𝑜𝑤 = [
0.1367 0.0864 1
1 0.0631 0.1343

0.0589 1 0.1006
] , ℬ𝐶𝑜𝑙 = [

0.1412 0.0934 1
1 0.0661 0.1300

0.0563 1 0.0930
] 

Choosing 𝜀𝛼 = 𝜀𝛽 = 0.1 , the selected unpaired elements for 

sparse control are 𝑦1 − 𝑢1  and 𝑦2 − 𝑢3 . Note that the results 

calculated from the type-1 fuzzy model give the same pairing 

structure and select same unpaired elements. During the whole 

control period, the pairing structure and sparse control structure 

for this MIMO system remain unchanged.  

 
Fig. 5.  The step responses of the three paired channels of (45) 

A decoupling compensator is calculated using (38) for this 

MIMO system. In order to exhibit its performance, the 

comparisons of the step responses of isolated paired channels 

(for example, for the pair 𝑦1 − 𝑢3, set 𝑢3 = 1 and 𝑢1 = 𝑢2 = 0 

to have the step response of isolated 𝑦1 − 𝑢3) and the decoupled 

responses (for instance, for the pair 𝑦1 − 𝑢3, keep 𝑢3 = 1 and 

randomly choose the values for the other two inputs) are shown 

in Fig. 5. From Fig. 5, for each pair, when other two inputs are 

with different values, the changes in its step response are very 

small, which demonstrates that the compensator can reduce the 

coupling effects to a great extent. 

The ETSM-based decentralized, sparse and decoupling 

controllers can all be realized by designing multiple 

independent single control-loops. The gain and phase margins 

based SISO control algorithm used in [15] is selected to design 

each sub-controllers with the gain and phase margins set as 3 

and 𝜋/3 , respectively. Given the references as 𝑟𝑣1 = 0.3 , 

𝑟𝑣2 = 1 and 𝑟𝑣3 = 0, the performances of the three control 

strategies, as well as the type-2 fuzzy model based 

decentralized control of [15] are shown in Fig. 6. Besides, the 

integrated absolute errors (IAEs) of these control performances 

are presented in Table 1. The decentralized control of [15] gives 

the longest settling time for three outputs, and the decentralized 

control in this paper gives largest overshoots in 𝑦1 and 𝑦3, the 

performance of the decentralized control in this paper is better 

than that of [15] for 𝑦2. The outputs under the sparse control go 

to the direction opposite to the references at the beginning, and 

return to the right direction after a while, thus they have large 

IAEs. The decoupling control achieves the minimum values in 

overshoots and settling time as well as IAEs among the three 
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control strategies. Note that the control performances can be 

improved by further tuning the gain and phase margins, or using 

a different SISO control algorithm. From Fig. 6 and Table 1, 

type-1 and type-2 fuzzy models have comparable performance. 

 
Fig. 6.  Comparisons of different control strategies for the original system (45) 

Table 1.  The IAEs of the control performances in Fig. 6 

Controllers         𝑦1    𝑦2    𝑦3 

Type-1 decentralized      1.9902  5.7633  0.6571 
Type-2 decentralized      1.9827  5.7302  0.6569 

Type-2 decentralized [15]     2.2155  9.6638  0.4615 

Type-1 sparse        5.7565  8.0116  0.6693  
Type-2 sparse        5.5517  7.8596  0.6683 

Type-1 decoupling      1.7491  3.9753  0.1982 

Type-2 decoupling      1.7262  3.9222  0.1903  

 
Fig. 7.  Comparisons of three control strategies for Case-I of (45) 

In order to test the robustness of the three control strategies, 

we suppose the gains of the system inputs in (45), which 

originally are 1, are enlarged to the following two cases due to 

the uncertainties: 

Case-I: the gains of inputs become 2.7 

Case-II: the gains of inputs become 3 

The controllers designed for the original system are used to 

manipulate the revised systems of Case-I and Case-II. The 

results are shown in Figs. 7 and 8. From Fig. 7 for Case-I, the 

decentralized control leads to oscillations in the responses, and 

the outputs under the sparse control can finally reach their 

references after a period of time. The decoupling control offers 

the best performance among the three control strategies in terms 

of overshoot and settling time. The IAEs in Table 2 also 

demonstrate this fact. From Fig. 8 for Case-II where the 

uncertainty is further enlarged, the system becomes divergent 

under the decentralized control, and is oscillating under the 

sparse control. While under the decoupling control, the outputs 

of the system can stably reach their references. In both Case-I 

and Case-II, type-2 fuzzy model outperforms its type-1 

counterpart with respect to overshoot, oscillating amplitude and 

IAE, which is more apparent under larger uncertainties. 

 
Fig. 8.  Comparisons of three control strategies for Case-II of (45) 

Table 2.  The IAEs of the control performances in Figs. 7 and 8 

Cases   Controllers     𝑦1    𝑦2    𝑦3 

Case-I  Type-1 sparse    31.5770  33.5127  5.0966 

    Type-2 sparse    25.0187  27.5825  4.3525 

    Type-1 decoupling  10.2197  7.1979  1.9773 

    Type-2 decoupling  9.5811  6.9971  1.7333 
Case-II  Type-1 decoupling  33.6333  12.3352  6.8939 

    Type-2 decoupling  30.9843  11.5228  5.7087 

The results in Figs. 7 and 8 demonstrate that sparse control 

with extra sub-controllers is more robust than its decentralized 

counterpart, and decoupling control outperforms both 

decentralized and sparse counterparts, especially when the 

uncertainties are enlarged and strong coupling effects appear, 

which validates the discussion in Section III.  

B. Example-II 

Consider a system of two continuous stirred-tank reactor [35] 

as shown in Fig. 9, where 𝐹∗, 𝑇∗, 𝐶∗, and 𝑉∗/𝑉 denote flow rate, 

temperature, concentration, and volume, respectively. 𝑇𝑗10 , 

𝑇𝑗20, and 𝐶𝐴0 are used to regulate 𝑇1, 𝑇2, and 𝐶𝐴2. This system 

can be expressed by the following six nonlinear ordinary 

differential equations with the parameters given in Table 3:  

𝕩̇11 = (𝑇1
𝑑 − 𝕩11 + 𝕩31 + 𝑇2

𝑑)(𝐹 + 𝐹𝑅)/𝑉 − (𝕩11 + 𝕩12 + 𝑇2
𝑑 −

𝑇𝑗2
𝑑)𝑈𝐴/(𝜌𝑐𝑝𝑉) − (𝐶𝐴2

𝑑 + 𝕩21)𝑒
−𝐸 𝑅⁄ (𝕩11+𝑇2

𝑑)𝜃𝛿/(𝜌𝑐𝑝)  

𝕩̇12 = (𝕩11 + 𝑇2
𝑑 − 𝕩12 − 𝑇𝑗2

𝑑)𝑈𝐴/(𝜌𝑗𝑐𝑗𝑉𝑗) + (𝑢1 + 𝑇𝑗20
𝑑 − 𝕩12 −

𝑇𝑗2
𝑑)𝐹𝑗2/𝑉𝑗  

𝕩̇21 = (𝐶𝐴1
𝑑 + 𝕩22)(𝐹 + 𝐹𝑅)/𝑉 − ((𝐹 + 𝐹𝑅)/𝑉 +

𝜃𝑒−𝐸 𝑅⁄ (𝕩11+𝑇2
𝑑)) (𝕩21 + 𝐶𝐴2

𝑑 )  



 

 

11 

𝕩̇22 = (𝐶𝐴2
𝑑 + 𝕩21)𝐹𝑅/𝑉 − ((𝐹 + 𝐹𝑅)/𝑉 + 𝜃𝑒

−𝐸 𝑅⁄ (𝕩31+𝑇1
𝑑)) (𝕩22 +

𝐶𝐴1
𝑑 ) + (𝑢2 + 𝐶𝐴0

𝑑 )𝐹0/𝑉   

𝕩̇31 = (𝑇2
𝑑 + 𝕩11)𝐹𝑅/𝑉 − (𝕩31 + 𝑇1

𝑑)(𝐹 + 𝐹𝑅)/𝑉 −

𝑒−𝐸 𝑅⁄ (𝕩31+𝑇1
𝑑)(𝕩22 + 𝐶𝐴1

𝑑 )𝜃𝛿/(𝜌𝑐𝑝) − (𝕩31 + 𝕩32+𝑇1
𝑑 −

𝑇𝑗1
𝑑)𝑈𝐴/(𝜌𝑐𝑝𝑉) + 𝑇0

𝑑𝐹0/𝑉  

𝕩̇32 = (𝕩31 − 𝕩32 + 𝑇1
𝑑 − 𝑇𝑗1

𝑑)𝑈𝐴/(𝜌𝑗𝑐𝑗𝑉𝑗) + (𝑢3 + 𝑇𝑗10
𝑑 − 𝕩32 −

𝑇𝑗1
𝑑)𝐹𝑗1/𝑉𝑗                  (46) 

where 𝕩11 = 𝑇2 − 𝑇2
𝑑 , 𝕩12 = 𝑇𝑗2 − 𝑇𝑗2

𝑑 , 𝕩21 = 𝐶𝐴2 − 𝐶𝐴2
𝑑 , 

𝕩22 = 𝐶𝐴1 − 𝐶𝐴1
𝑑 , 𝕩31 = 𝑇1 − 𝑇1

𝑑  and 𝕩32 = 𝑇𝑗1 − 𝑇𝑗1
𝑑 . A 

MIMO system can be formed with three inputs: 𝑢1 = 𝑇𝑗20 −

𝑇𝑗20
𝑑 , 𝑢2 = 𝐶𝐴0 − 𝐶𝐴0

𝑑 , and 𝑢3 = 𝑇𝑗10 − 𝑇𝑗10
𝑑 , and three outputs: 

𝑦1 = 𝕩11, 𝑦2 = 𝕩21 and 𝑦3 = 𝕩31. Same as that for Example-I, 

we suppose the mathematical function in (46) is unknown to the 

designer, and noise exists in the sampled inputs random but 

bounded in [−0.1, 0.1]. The sampling time is Δ𝑇 = 0.1𝑠, and 

the delays are 𝜏𝑖1 = 𝜏𝑖2 = 𝜏𝑖3 = 20, 𝑖 = 1,2,3.  

 
Fig. 9.  Two continuous stirred-tank reactor 

Table 3.  Parameters of the continuous stirred-tank reactor in (46) 

𝜃 = 7.08 × 1010 ℎ−1    𝜌 = 800.9189 𝑘𝑔/𝑚3   𝑇0
𝑑 = 703.31 ℃ 

𝐸 = 3.1644 × 107 𝐽/𝑚𝑜𝑙  𝜌𝑗 = 997.9450 𝑘𝑔/𝑚3   𝑇1
𝑑 = 665.9263 ℃ 

𝑅 = 1679.2 𝐽/𝑚𝑜𝑙℃    𝑐𝑝 = 1395.3 𝐽/𝑘𝑔℃    𝑇2
𝑑 = 646.4508 ℃ 

𝛿 = −3.1644 × 107 𝐽/𝑚𝑜𝑙  𝑐𝑗 = 1860.3 𝐽/𝑘𝑔℃    𝑇𝑗1
𝑑 = 740.8 ℃ 

𝑈 = 1.3652 × 106 𝐽/ℎ𝑚2℃ 𝐹 = 2.8317 𝑚3/ℎ    𝑇𝑗2
𝑑 = 727.61 ℃ 

𝐶𝐴0
𝑑 = 18.368 𝑚𝑜𝑙/𝑚3   𝐹𝑗1 = 1.4130 𝑚3/ℎ    𝑉𝑗 = 0.1090 𝑚3 

𝐶𝐴1
𝑑 = 12.305 𝑚𝑜𝑙/𝑚3   𝐹𝑗2 = 1.4130 𝑚3/ℎ    𝑉 = 1.3592 𝑚3 

𝐶𝐴2
𝑑 = 18.3679 𝑚𝑜𝑙/𝑚3   𝐹𝑅 = 1.4158 𝑚3/ℎ    𝐴 = 23.226 𝑚2 

𝑇𝑗10
𝑑 = 629.81 ℃     𝑇𝑗20

𝑑 = 608.29 ℃     𝐹0 = 2.8317 𝑚3/ℎ 

Given the number of fuzzy rules as 𝐿 = 6, the type-1 and 

type-2 T-S fuzzy models can be identified. Only the first rule is 

presented due to the limited pages:   

𝑅𝑢𝑙𝑒 1: If  𝑥(𝑘) is 𝒳1, Then 
𝑦1
1(𝑘 + 1) = 0.7116𝑦1(𝑘) + 0.0171𝑦1(𝑘 − 1) + 0.1078𝑢1(𝑘 −
20) − 3 × 10−4𝑢2(𝑘 − 20) + 0.0676𝑢3(𝑘 − 20)  
𝑦2
1(𝑘 + 1) = 1.6455𝑦2(𝑘) − 0.6786𝑦2(𝑘 − 1) + 0.0000 ×
𝑢1(𝑘 − 20) + 0.0329𝑢2(𝑘 − 20) + 0.0000 × 𝑢3(𝑘 − 20)  
𝑦3
1(𝑘 + 1) = 0.9728𝑦3(𝑘) − 0.1697𝑦3(𝑘 − 1) + 0.0160 𝑢1(𝑘 −
20) − 2 × 10−5𝑢2(𝑘 − 20) + 0.0802𝑢3(𝑘 − 20)  

where the center of 𝒳1  is 𝑥𝑐
1 = [−5.2542  0.4564  − 1.8258  −

5.1538  0.4025  − 1.7947  − 12.7902  0.9987  − 2.1975]𝑇 , and 

∆𝜇1 = 0.4966 for the first type-2 fuzzy set. The comparisons 

between real outputs and fuzzy models’ outputs with the 

RMSEs are shown in Fig. 10. The type-2 fuzzy model still gives 

smaller errors than its type-1 counterpart does. 

During the data collection, 𝑢2 has quite small impacts on 𝑦1 

and 𝑦3, and the changes of 𝑢1 or 𝑢3 hardly influence 𝑦2. These 

facts are also reflected by the coefficients of the fuzzy model 

that in the local models to calculate 𝑦1
𝑙(𝑘 + 1) and 𝑦3

𝑙 (𝑘 + 1), 

the gains of 𝑢2 are much smaller than that of 𝑢1 and 𝑢3, and in 

the local models to calculate 𝑦2
𝑙 (𝑘 + 1), the gains of 𝑢1 and 𝑢3 

are neighboring 0. Therefore, the channel 𝑦2 − 𝑢2  is of an 

extremely high degree of independence. 

 
Fig. 10.  Comparisons of real outputs and fuzzy models’ outputs for (46) 

 
Fig. 11.  The step responses of the three paired channels of (46) 

We present 𝒦, ℰ, RGA, and RNGA calculated from type-2 

fuzzy model at 𝑥(𝑘) = [0 ⋯0]𝑇 ∈ ℝ9 as an example:  

𝒦 = [
0.3995 0.0001 0.2534
0 0.9902 0.0047

0.0847 −0.0009 0.3954
] , ℰ = [

2.3950 2.3950 2.3950
2.9740 2.9740 2.9740
2.3932 2.3932 2.3932

] 

𝑅𝐺𝐴 = [
1.1573 0.0000 −0.1573
0.0000 1.0000 0.0000
−0.1573 0.0000 1.1573

] 

𝑅𝑁𝐺𝐴 = [
1.1573 0.0000 −0.1573
0.0000 1.0000 0.0000
−0.1573 0.0000 1.1573

] 

The pairing structure is formed by the diagonal elements: 𝑦1 −
𝑢1/𝑦2 − 𝑢2/𝑦3 − 𝑢3, and then we have the following arrays:  

𝒜𝑅𝑜𝑤 = 𝒜𝐶𝑜𝑙 = ℬ𝑅𝑜𝑤 = ℬ𝐶𝑜𝑙 = [
1.0000 0.0000 0.1359
0.0000 1.0000 0.0000
0.1359 0.0000 1.0000

] 

Choosing 𝜀𝛼 = 𝜀𝛽 = 0.1 , the selected unpaired elements for 

sparse control are 𝑦1 − 𝑢3 and 𝑦3 − 𝑢1. Note that the calculated 

results from type-1 fuzzy model give the same pairing structure 

and select same unpaired elements. During the whole control 



 

 

12 

period, the pairing structure and sparse control structure for this 

MIMO system are unchanged. 

A decoupling compensator is calculated using (38) for this 

MIMO system. Similar to that in Example-I, the step responses 

of isolated paired channels and the decoupled responses are 

compared and shown in Fig. 11. The decoupling compensator 

can largely reduce the coupling effects.  

 
Fig. 12.  Comparisons of three control strategies for the original system (46) 

Table 4.  The IAEs of the control performances in Fig. 12 

Controllers         𝑦1    𝑦2    𝑦3 

Type-1 decentralized      34.1509  4.4643  19.4694 

Type-2 decentralized      34.0791  4.4647  19.4163 

Type-1 sparse        24.1940  4.4646  14.0118  
Type-2 sparse        24.0616  4.4645  13.9777 

Type-1 decoupling      22.3149  4.4644  13.2597 

Type-2 decoupling      22.1747  4.4648  13.2253  

 
Fig. 13.  Comparisons of three control strategies for Case-I of (46) 

Given the references as 𝑟𝑣1 = 5, 𝑟𝑣2 = −1 and 𝑟𝑣3 = −3, 

the gain and phase margins based control algorithm using the 

same settings as that used in Example-I is applied to design the 

sub-controllers for decentralized, sparse and decoupling control 

systems. The performances of these control strategies for (46) 

are shown in Fig. 12 and Table 4. From Fig. 12, no evident 

overshoots can be found in the output responses. For 𝑦1 and 𝑦3, 

decoupling control achieves smallest setting time, which can be 

proved by the IAEs in Table 4.  In this case, type-1 and type-2 

fuzzy models have comparable performances. 

Suppose the gains of the system inputs in (46) are enlarged 

due to the uncertainties to have the following two cases: 

Case-I: the gains of three inputs become 3; 

Case-II: the gains of 𝑢1 and 𝑢3 become 3.6, and the gain of 

𝑢2 is 3. 

 
Fig. 14.  Comparisons of three control strategies for Case-II of (46) 

Table 5.  The IAEs of the control performances in Figs. 13 and 14 

Cases   Controllers     𝑦1    𝑦2    𝑦3 

Case-I  Type-1 sparse    51.5843  20.0265  40.7279 

    Type-2 sparse    50.1289  19.9535  39.8654 
    Type-1 decoupling  37.3054  20.0340  34.4712 

    Type-2 decoupling  36.4807  20.0182  33.4763 

Case-II  Type-1 sparse    859.3205  26.9938  671.8514 
    Type-2 sparse    646.9325  26.8606  521.7338 

    Type-1 decoupling  259.4291  20.9326  378.0959 

    Type-2 decoupling  221.9645  20.9291  305.0214 

The three controllers designed for the original MIMO system 

are applied to the revised systems of Case-I and Case-II to test 

their robustness as shown in Figs. 13-14 and Table 5. In Fig. 13 

for Case-I, under the decentralized control, all the outputs, 

including 𝑦2  become instable. The reason is that all the sub-

controllers share the same fuzzy membership grades. Although 

𝑦2 − 𝑢2 has a high degree of independence, the sub-controller 

for 𝑦2 − 𝑢2 using the fuzzy membership grades calculated from 

other instable outputs can cause 𝑦2 to be divergent. Whereas the 

system is stable under both sparse and decoupling control. For 

𝑦1 and 𝑦3, the decoupling control achieves better performance 

than the sparse control does in terms of overshoot, settling time 

and IAE. In Fig. 14 for Case-II, the decoupling control still 

achieves better results than the sparse control does. For the 𝑦2 

in Case-II, even the gain of 𝑢2  is same as that in Case-I, its 

settling time under the sparse control is longer than that in Case-

I because of the same reason mentioned before that all sub-

controllers share the same fuzzy membership grades. From 

Figs. 13-14 and Table 5, type-2 fuzzy model results in smaller 

oscillation, settling period and IAE than its type-1 counterpart, 

which is more evident when the uncertainties become larger. 
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VI. CONCLUSION 

This paper presents a sparse control strategy and a decoupling 

control strategy based on type-1 and type-2 T-S fuzzy models 

to deal with the closely coupled effects in MIMO systems. 

Compared to the decentralized control strategy in [15], 

improvements are made on fuzzy modeling and ETSM 

calculation, such that the MIMO system dynamics can be 

expressed better and the coupling effects can be described more 

accurately. For the sparse control strategy, four indexes are 

defined from RNGA based criterion to select the sparse control 

structure, and an ETSM based approach is developed to convert 

the sparse controller design to a group of independent SISO 

controller designs. For the decoupling control strategy, a fuzzy 

model based decoupling compensator is proposed which is 

simple in calculation and easy to implement, and its stability, 

properness and causality can be guaranteed. The decoupling 

compensator can effectively reduce the steady and dynamic 

coupling effects such that the MIMO system can be regarded as 

multiple non-interacting SISO systems, which greatly offload 

the burden on decentralized controller design. The proposed 

two strategies offer the frameworks where linear SISO control 

algorithms can be directly utilized to manipulate the nonlinear 

MIMO systems with strongly coupled channels and without 

knowing the mathematical functions. The case studies 

demonstrate that both sparse and decoupling control outperform 

their decentralized counterpart, and decoupling control achieve 

better results than sparse control does. In addition, type-2 fuzzy 

model is more robust compared to its type-1 counterpart. 
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