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Abstract�Accurate long-term prediction of human motion in
populated spaces is an important but di�cult task for mobile
robots and intelligent vehicles. What makes this task challenging
is that human motion is in�uenced by a large variety of
factors including the person’s intention, the presence, attributes,
actions, social relations and social norms of other surrounding
agents, and the geometry and semantics of the environment.
In this paper, we consider the problem of computing human
motion predictions that account for such factors. We formulate
the task as an MDP planning problem with stochastic policies
and propose a weighted random walk algorithm in which each
agent is locally in�uenced by social forces from other nearby
agents. The novelty of this paper is that we incorporate social
grouping information into the prediction process re�ecting
the soft formation constraints that groups typically impose
to their members’ motion. We show that our method makes
more accurate predictions than three state-of-the-art methods
in terms of probabilistic and geometrical performance metrics.

I. Introduction

Long-term prediction of human motion is an important
task for applications such as robot navigation in crowded
environments, autonomous driving, video surveillance or
human-robot collaboration. Particularly for service robots,
operating amidst humans, predicting future trajectories of
surrounding people over longer periods of time has the
potential to considerably enhance service quality and e�-
ciency of human-robot interaction. Accurate, well-informed
forecast of future positions of nearby humans, that goes
beyond simple projection of observed velocities, allows for
reasoning of the robot’s global trajectory and assessing the
high-level task planning more e�ciently. Active anticipation
of the environment’s dynamics improves navigation in safety-
critical scenarios, minimizing the risk of excessively reactive,
overly conservative or otherwise aggressive behavior.

Making accurate predictions of future human trajectory is
not a trivial task due to a number of factors. Human motion,
complex and loosely constrained by nature, is furthermore
in�uenced by the surrounding people, by the environment,
its a�ordances and semantics, or by social rules and norms.
Moreover, social and group relations among the observed
people often dominate other in�uences on the trajectory of
an individual person. Prior art has addressed this challenging
task using model-based, learning-based and planning-based

1A. Rudenko, L. Palmieri and K.O. Arras are with Bosch Corpo-
rate Research, Stuttgart, Germany. {andrey.rudenko, luigi.palmieri,
kaioliver.arras} @de.bosch.com.

2A. Rudenko and A.J. Lilienthal are with the Center of Ap-
plied Autonomous Sensor Systems (AASS), Örebro University, Sweden.
achim.lilienthal@oru.se

This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement No 732737
(ILIAD).

Fig. 1. Human motion in a social scenario that includes groups. Positions
of several people from the ATC dataset are shown with di�erent colors for
four time instances. This part of the map includes a corridor with black
obstacles and white free space. Each group is encircled with a colored line.

approaches, considering the single-agent case, ignoring other
agents, or the multi-agent case, in which predictions are made
jointly. However, group information is often not considered
by state-of-the-art prediction algorithms.

In this paper we present a novel planning-based approach
for long-term motion prediction that accounts for social
interactions and grouping of the observed agents. Following
our previous work [1], the presented method formulates
the long-term planning problem as set of Markov Decision
Processes (MDP) to produce the goal-directed global motion
strategies. During online prediction, those strategies are
locally modi�ed given the soft formation constraints imposed
by the group social forces [2] to account for available social
information. Experiments on real-world datasets show that
our method can accurately predict long-term trajectories of
people involved in socially interactive tasks in real-time,
outperforming three relevant state-of-the-art methods. To the
best of our knowledge, this is the �rst attempt to bring
semantic group knowledge into the long-term human motion
prediction algorithm.

The paper is structured as follows: in Sec. II we discuss
the related work and in Sec. III we describe our approach.
Experiments and results are presented in Sec. IV and Sec. V,
respectively, and Sec. VI concludes the paper.



II. Related Work
In the following we give a brief review of human motion

prediction methods in Sec. II-A and group motion modeling
approaches in Sec. II-B. We summarize the contribution of
our paper in Sec. II-C.

A. Motion Prediction Approaches
Physics-based approaches [3], [4] forward-simulate a set

of dynamics equations to compute pedestrian motion. To this
class belongs the popular social force model [5] which is
used for motion prediction by Elfring et al. [4] and in the
context of tracking by Luber et al. [6].

Other common techniques for motion prediction include
learning-based and planning-based methods. Learning-based
methods comprise various data-driven approaches to long-
term motion prediction. There are methods that learn proto-
typical trajectories, �motion patterns", in a particular envi-
ronment [7]. Other approaches learn typical spatial behaviors
of humans navigating in social spaces [8], [9], [10]. Planning-
based methods are based on the assumption that humans
follow paths through the environment in an optimal, goal-
directed manner. Such methods use a cost function to model
navigation through the known environment [11], [1] or
recover costs from observed trajectories [12].

B. Group Detection, Modeling and Prediction
Groups have a signi�cant in�uence on motion of people

and crowds in public spaces, such as shopping malls or
airports. According to recent studies, up to 70% of people
move in groups of two and more members [2], [13]. There
are many methods for modeling human navigation in social
scenes (e.g. the social force model [5] or cellular automaton
model [14]). These models however cannot explain, realisti-
cally simulate and con�dently predict human motion in social
scenarios where groups are present.

The problem of formally modeling motion of people
walking in groups has received increasing attention in recent
years, especially for developing crowd simulation tools [15],
[16], [17] and mass event planning [18], [19]. Detecting
groups of people is a common task in video surveillance [20]
and tracking [21], [3], [22] applications. Group detection is
typically achieved through clustering of geometrically close
trajectories or estimating inter- and intra-group forces among
the members of the crowd. Considering group information
in the motion model is known to improve the quality of
people tracking [3], [22]. Common techniques for modeling
group motion include imposing attraction forces to other
group members [16], [22], [19], to the geometrical center
of the group [2] or to the group’s leader [18], or imposing a
certain relative formation in which members of the group are
assumed to be moving [15], [17]. An extension of the social
force model that uses group information was proposed by
Moussaïd et al. [2].

Methods for human motion prediction have mostly ignored
group information, predicting isolated pedestrians [12], [7],
[11] or considering joint predictions in a homogeneous crowd
[8], [9], [10]. Existing methods for pedestrian trajectory

prediction that consider social groups usually do not assume
availability of the environment’s map, and model the global
intention of the person simply as attraction to the goal point
[22], [3]. A few methods for crowd simulation assume a bet-
ter understanding of the map, e.g. using gradients indicating
the most direct way towards the point of interest [19], or
simply use a wave-front method to determine the shortest
path to the goal [18]. These methods however operate on a
per-cell basis, following certain update rules for translating
the pedestrians to neighboring cells, and therefore lack the
expressive representation of continuous position and velocity
of agents in the social force-based models.

C. Comparison to Our Approach
In this paper we present a global planning-based approach

for predicting human motion that explicitly models local
collision avoidance behavior of humans. Building on our
previous implementation of an MDP-based joint random
walk sampling predictor [1], we augment it with the Group
Social Force Model, introduced by Moussaïd et al. [2].
Unlike the learning-based techniques [7], [9], our method
does not require a large training set to infer common patterns
of motion behavior. It is implicitly environment-aware, does
not get stuck in local minima and handles complex obstacles,
contrary to physics based approaches [3], [4]. Similarly to
[8], [9], [10], we jointly predict motion of multiple agents.
Consideration of group information, also in the long-term
perspective, is the key novelty of our approach.

III. Joint Sampling MDP for Motion Prediction
In this section we present our approach. After introducing

the MDP formulation in Sec. III-A, we describe our method
to generate predictions from the global motion policies in
Sec. III-B with a random sampling-based algorithm, that is
biased by group social forces. In Sec. III-C we analyze the
complexity of our algorithm.

A. MDP For Global Motion Prediction
In this section we brie�y detail the model of pedestrian’s

global motion towards a goal, originally presented in [1].
We use the MDP-based formulation of the optimal path
planning problem in a known environment. Given a 2D
static map M of the environment representing occupied and
free space, and a set of goal states G, we formulate a
separate MDP path �nding problem for each goal g 2 G
to obtain the cost-to-go state values V �g (s) as well as the
optimal policy ��g (s) in each state s = (sx; sy ) 2 M . Each
MDP is constructed with the absorbing zero state in the goal
position. We describe actions as orientation-velocity pairs:
a = h�; �i; � 2 [0;2�); � 2 [0; �max]. An action a = h�; �i de�nes
the deterministic transition between states s

a
! s0, calculated

as s0x = sx + � cos(�); s0y = sy + � sin(�). The reward function
Rg (s;a) is constructed as a weighted sum of Euclidean
distance covered by a, and the unitary cost of the target state
C(s0), provided by the optional input semantic map C(s).

To predict also alternative paths to the goal and allow
deviations from the optimal policy, we relax the obtained



��g with the stochastic Boltzmann policy that assigns to each
action a probability to be executed in state s proportional to
its value Q̂�g (s;a). Temperature parameter � controls the level
of stochasticity, i.e. the probability that sub-optimal actions
are chosen by the agent. We denote the stochastic policy as
�g and compute it as in Eq. 1, where Q̂�g (s;a) is the value
of action a, and V �g (s) is the value of the optimal action.

a � �g (s) with prob. / exp(�(Q̂�g (s;a)�V �g (s))) (1)

The obtained policy �g allows actions up to a pre-de�ned
very large velocity �max. For handling individual observed
velocities �obs < �max, we use a simple policy cutting
technique that incorporates information about �obs into the
obtained policy. For each person i, the action space is
rede�ned with � 2 [0;2 �i

obs]. The individual stochastic policy
�̂i

g is then computed as in Eq. 2. In �̂i
g the probability of

faster actions a = h�; �i with � > �i
obs is set the same as for

the symmetrically slower actions with � < �i
obs.

p(a) in �̂i
g /

8><
>
:

p(h�; �i) in �g; if � � �i
obs;

p(h�;2 �i
obs� �i) in �g; if � > �i

obs
(2)

B. Joint Human Motion Prediction with Group Social Forces
In this section we present our method for jointly predicting

trajectories of all agents in the scene. A people tracking
system [23] is assumed to provide us short sequences of
estimated positions, also called tracklets. The tracking system
also estimates group information among the observed tracks
by constructing a social network graph whose edges denote
pairwise group relation probabilities.

Assume, there are N people in the scene. The observed
track of length l (i), associated with the person i, is denoted
as T i = hsi

1; s
i
2; :::; s

i
l(i)i, where si

t = (si
x;t; si

y;t ) is the state
where the person was observed at time t, and i 2 [1; : : :;N].
The tracklet’s end si

l(i) = si (t0) is the position of person i at
the current time t0 and T is the set of all observed tracks.
Membership in one and only one of the groups Grh 2 Gr
is assigned to each person: i 2 Grh; Grh \Grh0 = ; 8h0 ,
h; [h Grh = f1; : : :;N g.
From each tracklet we derive the observed speed �i

obs, ori-
entation �i

obs and the discrete probability distribution pi (G)
over destinations G. For each goal g 2 G we estimate the
gradient of the cost-to-go V �g (s) along T i as the di�erence
between the costs at si

1 and si
l(i) using a softmax function:

p(g) / exp
�
�
�
V �g (si

l(i))�V �g (si
1)

��
: (3)

Temperature parameter � de�nes to what extent alternative
goals are considered. Members of the same group Grh share
the goal probabilities vector, computed as the average of
individual vectors: ph

Gr (G) = jGrh j�1 P
i pi (G); i 2 Grh .

1) Local Interaction and Group Motion Modeling: the
social force model [5] describes how the intended motion of a
person changes according to the in�uence the repulsive forces
from other people. Formally, the social force fsoci;k , emitted by
person k in the direction of person i is de�ned as

fsoci;k = ake
�

ri;k�di;k
bk

�
ni;k

 
� + (1� �)

1+ cos(’i;k )
2

!
; (4)
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Fig. 2. Left: illustration of the group social force parameters. Right: in this
example, three people a, b and c in the bottom are walking upwards as a
group Grh . Three individual pedestrians i, j and k are opposing them from
di�erent directions. Intended directions Fpers are shown with red arrows,
omitted for the group members for the sake of clarity. Person i is in�uenced
by a strong social force Fsoc, depicted in blue, and has to halt and adjust
the motion trajectory, shown as a gray dotted line. Person k stops and lets
the group pass, while j attempts to cross in front of the group. Resulting
motion directions F are shown in green. Intra-group social forces Fvis and
Fatt are shown in blue and orange respectively.

where ak � 0 speci�es the magnitude and bk > 0 the range
of the force, di;k is the distance between people and ri;k is
the sum of their radii. The normalized vector ni;k pointing
from k to i de�nes the direction of the repulsive force. An
anisotropic factor � 2 [0;1] scales the force in the person’s
direction of motion: the force reaches its full magnitude
when the angle ’i;k between the intended motion direction
of person i and nk;i is zero, and has minimal e�ect when
’i;k = �. Social forces, cast on the person i by the surrounding
people, are accumulated and used to change the desired
direction of motion Fpers

i , which in our case is the action
a = h�; �i sampled from the stochastic policy.
An extension of the social force model to include group

interaction was proposed by Moussaïd et al. [2]. Several new
forces are de�ning attraction of people walking in groups to
other members of the group (attraction term) and imposing
soft constraints on the walking formation that resembles
typical patterns of humans in groups (visibility term). For
each member i of the group Grh , the visibility term fvisi is
de�ned as

fvisi = ��1�iVi; (5)

where �1 is a model parameter describing the strength of
the social interaction between group members, and Vi is
the current velocity vector of person i. This deceleration
component fvisi is oriented in the opposite direction of current
movement Vi , and it is proportional to the angle �i between
the gazing direction Hi of person i and the group center of
mass ch , given the person’s �eld of view �. An illustration
of the parameters is given in Fig. 2, left.

Formulation of fvisi imposes a line formation, perpendic-
ular to the direction of motion, as the preferred walking
pattern of a group. However, in order to facilitate intra-group
social interactions, members of larger groups of 4 or more
people often switch to the more compact V-formation. The
same happens in cluttered spaces, as well as in crowded
environments, where the members have to balance between
comfortable interaction and e�cient movement. To model
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Fig. 3. Summary of the prediction work�ow. Taking as input the observed tracklets and group information, out predictor samples K joint trajectories,
each time drawing a random goal for the people and groups. The Joint Random Walk Stochastic Policy Sampling function estimates the social interactions
and forward simulates the agents positions for T steps. Joint trajectories are then saved onto the future occupancy map.

this behavior, the attraction term fatti to the geometrical center
of the group is introduced as

fatti = �2qAUi; (6)

where �2 is the strength of the group attraction e�ect, and
Ui is the unit vector pointing from pedestrian i to the center
of masses ch of Grh . This force is only activated if the
distance between person i and ch exceeds a certain threshold
qA, otherwise the attraction force is zero.
The added intra-group forces fvisi and fatti yield a decelerat-

ing e�ect on pedestrians, whose stochastic motions often lead
them in front of the group. In reality this e�ect is not present
as humans by nature are able to better coordinate their motion
within the group. To counterbalance the deceleration e�ect
and get more precise predictions on average, we simply scale
the observed speed �i

obs of each human i by a factor qS > 1.
The �nal direction of motion for person i is computed as

Fi = Fpers
i +Fsoc

i +Fgroup
i = Fpers

i +
NX

k,i

fsoci;k + fvisi + fatti : (7)

An example of the social forces a�ecting the motion of
people in a social scenario is given in Fig. 2, right.

2) Stochastic Policy Sampling Using Random Walks: To
make predictions using the stochastic policy �g, we utilize
the random walk algorithm from our prior work [1] that
samples K joint paths for all people in the scene. Each
joint path is representing a possible future interaction given
the observed tracklets and available social information. In
each of the K samples we randomly draw a goal g(i) for
person i from the distribution pi (G) and randomly generate
actions ai = (�i; �i) from the policy corresponding to g(i).
Group members share the same goal, sampled from ph

Gr (G).
During the random walk, we evaluate the social interactions
among the agents that a�ect each agent’s instantaneous
stochastic policy according to the group social force model.
The position of each person at time t is then saved in the
corresponding layer Li

t of the probabilistic occupancy map

L, that is shared among the K samples. Each layer Li
t is

normalized to represent the probability distribution of the
person’s location.
The inputs of our algorithm are the map M , goals G,

tracklets T , groups Gr and the prediction horizon T . The
algorithm has the following parameters: stochasticity level
�, goal uncertainty �, human motion inertia coe�cients
I� and I� , social force parameters SFp = (ak;bk; �), group
social force parameters GSFp = (�1; �2;qA; �;qS ) and K joint
trajectory samples. Summary of the prediction work�ow is
presented in Fig. 3. More information on the algorithm’s
parameters and implementation details is available in [1].

C. Complexity Analysis

Pseudocode in Alg. 1 summarizes the operations required
to obtain predictions with our algorithm. We assume that
K joint random paths are requested, N people are in the
scene and T prediction steps are made. Complexity of the
goal sampling operation for every human (line 2) depends
on the number of goals jGj. Group center calculation is
done only once for each time step (line 4). Random action
sampling procedure (line 6) depends on the action space
discretization (A angles and V velocities) and has the worst-
case complexity of O(AV ). This happens when the agent
is moving with velocity close to �max. Social force in the
direction of agent i (line 7) is computed for each surrounding
agent within a certain radius. In the worst-case, when all
agents are densely located, the complexity is O(N ). Group
social force computation (line 8) is a constant time operation.
Therefore, the overall complexity of our prediction algo-

rithm is O(K (N jGj+T (N (AV + N )))). Measurements of the
runtime and comparison to the baselines are presented in
Sec. V.

IV. Experiments

In this section we present several experiments conducted
to evaluate qualitatively and quantitatively our Group Social



Algorithm 1 Joint Random Walk Stochastic Policy Sampling
1: for k = 1; : : :;K do
2: Sample a goal for each person: O(N jG j)
3: for t = 1; : : :;T do
4: Calculate group center for each group: O(N )
5: for i = 1; : : :; N do
6: Sample a random action: O(AV )
7: Calculate social force: O(N )
8: Calculate group social force: O(1)

Force MDP (GSF-MDP) approach and compare its predic-
tive capabilities with several baselines. All algorithms are
implemented in C++ and running on a laptop with a 2.8
GHz Xeon processor and 32 GB RAM. The action space of
the MDP is discretized with �=20 increments of �; 0.1 m=s
increments of �, � 2 [0;3] m=s. Cell sizes of the grid maps
are 0.05 m in Experiment 1 and 0.15 m in Experiment 2.
The frequency of prediction is 4 Hz, the number of random
walk samples K = 200.

A. Experiment 1: Predicting Social Interactions
This experiment includes several qualitative demonstra-

tions of the predicted group collision avoidance behavior of
people. To this end we use de�ne maps of two environments
and simulate observed trajectories in those maps to see
the predicted development of interactive scenarios. The �rst
scenario (Fig. 4) stages an experiment with 5 people in a
narrow corridor. The second scenario (Fig. 5) sets up a
challenging crowded environment with multiple non-convex
obstacles and 21 people walking in 7 groups.

B. Experiment 2: Prediction Evaluation
Quantitative evaluation of GSF-MDP is conducted using

the ATC dataset1 recorded in a shopping center with 15
most common goals. We extract 21 social scenarios with
trajectories of 172 people, including 90 pedestrians walking
in groups, observed for long periods of time (see Fig. 1 for
an example scenario). Static obstacles, motion stochasticity,
observation noise and extensive social interaction involving
many groups makes this dataset a challenging one, partic-
ularly for methods that do not model group motion. As a
baseline for predictive performance evaluation, we compare
GSF-MDP to a planning-based method by Karasev et al. [11]
and the social force-based approach by Elfring et al. [4].
For the sake of a fair comparison, our own goal estimation
technique, that requires no training data, is applied to both
baselines. Finally, we include our previous Joint Sampling
MDP (JS-MDP) method from [1] in the comparison to
heuristically evaluate the bene�t from considering group
information.

We evaluate the predictions provided by all methods based
on the NLP and MHD metrics. Negative Log-Probability
(NLP) is a probabilistic measure, that computes the aver-
age predicted probability, measured at each point i of the
ground truth path T for T steps into the future: NLP(T ) =
� 1

T
PT

i=1 log p(Ti jti). Modi�ed Hausdor� Distance (MHD)

1http://www.irc.atr.jp/crest2010_HRI/ATC_dataset/

Fig. 4. Prediction results in a simulated scenario. Predicted distributions are
color-coded. At t = 1:15 seconds a group of three people, depicted in blue,
cyan and purple is walking up and then turning into a narrow corridor on
the right, without losing its group formation. At t = 3; t = 4:25 seconds the
group is handling a hindrance with the green pedestrian. At t = 5:75; t = 7
seconds the group is handling the another hindrance with the red pedestrian.

is a geometric measure of distance between the ground truth
path and the most probable path in the predicted probability
distribution. For both metrics, lower values corresponds to
better prediction accuracy or smaller geometric deviation,
respectively. Metric values are calculated for each trajec-
tory in the 21 interactive scenarios and averaged across
20 experiments for each scenario. We use 1.5 seconds as
observation period, and predictions are obtained for T =
2:5�12:5 seconds ahead. We also measure the average time
to compute predictions using our algorithm and the baselines.

Prior to the main experiment, we perform hyperpa-
rameter optimization using the SMAC3 optimization tool-
box [24] for each algorithm. Optimization criteria is to
minimize the sum of NLP and MHD values. The op-
timal parameters are found to be as follows: � = 4:64,
� = 18:65, I = (0:09; 0:02), (ak;bk; �) = (0:09; 0:32; 0),
(�1; �2; qA; �; qS ) = (0:05; 1:18; 2:93; 0:38; 1:49) for GSF-
MDP; � = 13:26, � = 9:12, I = (0:01; 0:19), (ak;bk; �) =
(1:46; 0:11; 0) for JS-MDP; (wg;t;ws;t ) = (0:03; 0:14), � =
21:31, � = 18:68 for [11]; (qw; fw;cw ) = (1:44; 0:23; 3:1),
�� = 83:74 for [4].

V. Results

Fig. 4 and Fig. 5 show the results of Experiment 1.
The �rst simulated scenario (Fig. 4) demonstrates a colli-
sion avoidance maneuver, performed by a group of three
pedestrians in a narrow corridor. The group is able to keep
its �social� linear walking formation that facilitates intra-
group interaction. In the end, however, spreading of samples
indicates the predicted possibility of re-grouping into a more
compact V-formation � a behavioral pattern observed in real
crowds [2]. In the second scenario (Fig. 5) our method
predicts realistic behavior of group members. In particular,
they are able to wait for the passage to clear before continuing
their motion as a group, keeping the broad V-shape walking
pattern when the available space allows it, and not lose its
members behind in the dense crowd. Predicted results are
visually compared with a baseline, where the group motion
is not modeled.



Fig. 5. Prediction results in a crowded simulated scenario with multiple obstacles and 21 people walking in 7 groups. Goals are placed in the four corners
of the map. Left: initial positions of people are shown in colored circles, each color corresponds to one group. Right, top row: predicted positions with
GSF-MDP for several time instances. The green group waits for the passage to clear without losing its formation. Then it gives way for the faster orange
group. People in the red group are walking side by side. Right, bottom row: predicted positions with the JS-MDP baseline, where group motion is not
modeled. The green group performs unnecessary maneuvers, then gets separated. The same happens with the red and the orange groups, who lose their
members in the crowd.

Fig. 6. Left: Mean of the Negative Log-Probability (NLP) metric in
the ATC dataset. Our approach outperforms the baselines along the entire
prediction horizon of up to 12.5 seconds. Right: Mean of the Modi�ed
Hausdor� Distance (MHD) metric. Our approach delivers more precise
results on both short and long prediction horizons.

Fig. 6 presents the quantitative results of Experiment 2,
displaying the mean of the NLP and MHD metrics over
the prediction horizon of 2.5�12.5 seconds. The NLP re-
sults suggest that our algorithm assigns higher probabilities
to the ground truth states of the person’s future location,
outperforming all the baselines. The planning-based method
of Karasev et al. [11] accumulates errors from non-predicted
social interactions over the growing prediction horizon, while
JS-MDP [1] su�ers from the lack of the group awareness.
The social force-based method of Elfring et al. [4] generates
worse results due to the lack of global knowledge of the envi-
ronment’s structure. MHD evaluation results further con�rm
the improvement of our method over the state-of-the-art on
both short and long-term prediction horizons.

Additionally, in Fig. 7 we specify the prediction runtime
of GSF-MDP, compared to the baselines. For example, our
method is capable of computing 2.5 seconds of predictions
for 5 people in less than 0.1 seconds, or predict 7.5 seconds
of 10 people motion in 0.4 seconds. On average, our method
performs on par with the state-of-the-art. Given that the
range of the social force is not large, and people are not
agglomerated in a single region, the method scales linearly

Fig. 7. Average runtime of our algorithm for prediction horizons T = 2.5,
7.5 and 12.5 seconds ahead in the ATC scenarios with various numbers
of people. With respect to runtime, our method performs on par with the
baselines.

with the number of people, and not quadratically as in the
worst-case, described in Section III-C.

A. Discussion

The evaluation results, presented above, are encouraging.
Performing at similar runtime with the state-of-the-art, our
method is capable of delivering more accurate predictions.
Still, during our experiments we have encountered situations,
generally challenging for long-term predictors. One of them
is related to overall unpredictability of human motion in
the long-term perspective. A predictor should �nd the right
uncertainty balance, similarly to precision and recall, in order



Fig. 8. Challenging observed paths from the ATC dataset. Measurements
of the pedestrian’s position are made at constant frequency of 4 Hz and
plotted in red. Change of intention (top, at t = 9:5 seconds) and motion
velocity (bottom, at t = 5:5 seconds) are present in these paths. In both
cases there were no other people or group members nearby to explain the
pedestrian’s behavior.

to foresee possible unlikely events, but still stay within rea-
sonable bounds on precision. Our stochastic policy accounts
for variations in paths and homotopy classes, but does not
handle sudden velocity or intention changes � this limitation
in the long-term setting is a common unexplored aspect
of many prediction algorithms. Predicting paths, such as in
Fig. 8, is a challenging example. A possible solution may be
to use a dynamic � value, which increases uncertainty for
more distant points in time. Learning potential cues in the
environment and incorporating them into the local behavior
model is another possibility to better foresee some of the
sudden intention or velocity changes.

VI. Conclusions
In this work we present a novel planning-based algorithm

for predicting motion of humans, navigating in social envi-
ronments. To this end we infer the long-term global inten-
tionality by solving an MDP planning problem, and model
local collision avoidance behavior of people using group
social forces. We use joint sampling of the individual global
motion policies by a weighted random walk process in which
each person is in�uenced by social forces from other nearby
agents and group members. Our method outperforms several
baselines in terms of probabilistic and geometric measures
in a real-world recorded dataset. Qualitative experiments
demonstrate the ability of the method to generate realistic
distributions of future motion trajectories in several inter-
active multi-agent scenarios. Future work will aim at more
realistic, dynamic environment aware planning capabilities
of predicted humans. We are also interested in comparing
several group motion models, summarized in the related
work section.
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