
Selecting Software Component Sourcing Options:
Detailed Survey Description and Analysis

RISE Report 2018:71
ISBN: 978-91-88907-15-8

Markus Borga,∗, Panagiota Chatzipetroub,c, Krzysztof Wnukb, Emil Alegrothb
Tony Gorschekb, Efi Papatheocharousa, Syed Muhammad Ali Shahd, Jakob Axelssona

aRISE Research Institutes of Sweden AB, Lund, Sweden
bBlekinge Institute of Technology, Karlskrona, Sweden
cÖrebro University, Örebro, Sweden
diZettle, Stockholm, Sweden

∗Corresponding author: markus.borg@ri.se

December 13, 2018



i

Abstract

Component-based software engineering (CBSE) is a common approach to develop and evolve
contemporary software systems. When evolving a system based on components, make-or-buy
decisions are frequent, i.e., whether to develop components internally or to acquire them from
external sources. In CBSE, several different sourcing options are available: 1) developing software
in-house, 2) outsourcing development, 3) buying commercial-off-the-shelf software, and 4) inte-
grating open source software components. Unfortunately, there is little available research on how
organizations select component sourcing options (CSO) in industry practice. In this work, we seek
to contribute empirical evidence to CSO selection. Method: We conduct a cross-domain survey
on CSO selection in industry, implemented as an online questionnaire. Based on 188 responses,
we find that most organizations consider multiple CSOs during software evolution, and that the
CSO decisions in industry are dominated by expert judgment. When choosing between candidate
components, functional suitability acts as an initial filter, then reliability is the most important
quality. We stress that future solution-oriented work on decision support has to account for the
dominance of expert judgment in industry. Moreover, we identify considerable variation in CSO
decision processes in industry. Finally, we encourage software development organizations to reflect
on their decision processes when choosing whether to make or buy components, and we recommend
using our survey for a first benchmarking.

Keywords: component-based software engineering, sourcing, software architecture, decision
making, survey



CONTENTS ii

Contents

1 Introduction 1

2 Related work 2

2.1 CSO selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Component selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Research Methodology 5

3.1 Survey Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Survey Instrument Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.4 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.5 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.5.1 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.6 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Results – From a Bird’s Eye View 12

4.1 Demographics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Which CSOs are typically considered in industry? (RQ1) . . . . . . . . . . . . . . 14

4.3 What is the nature of the decision process when selecting CSOs and components?
(RQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.4 What qualities are the most important when selecting components? (RQ3) . . . . 21

5 Results – Statistical Analysis and Discussion 21

5.1 Which CSOs are typically considered in industry? (RQ1) . . . . . . . . . . . . . . 23

5.2 What is the nature of the decision process when selecting CSOs and components?
(RQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 What qualities are the most important input to the decision process? (RQ3) . . . 24

6 Conclusion and Future Work 25



1 INTRODUCTION 1

1 Introduction

Component-based software engineering (CBSE) is an established approach to enable large-scale
code reuse and rapid development. By turning systems into assemblies of components, CBSE
supports software evolution by simplifying component replacement[69]. However, in contemporary
software engineering, the best option might not be to internally develop the new component.
For example, buying commodity software components off-the-shelf might enable a faster time
to market [68]. Furthermore, outsourcing development of less critical components could save the
most knowledgeable internal development resources for differentiating features [62]. Moreover, it is
increasingly common that software components can be reused within software ecosystems [50]. In
this work, our interpretation of the term component is inclusive, i.e., a component is any separable
software part of a system, from the database to “traditional” components as usually considered in
CBSE, e.g., a software package, a web service, a web resource, or a module that encapsulates a
set of related functions.

A recurring strategic consideration for organizations evolving component-based systems is the
make-or-buy decision, i.e., whether to develop the components internally or to acquire them from
external sources. Numerous studies from decisions in the manufacturing sector exist, e.g., Kraljic,
providing support for cost identification and break-even analysis [40], as well as bringing structure
to the overall decision process. However, research on strategic decision making conducted in
“traditional” manufacturing contexts does not necessarily apply to R&D projects, e.g., development
of software-intensive systems. Kurokawa points out two main reasons [41]: First, as opposed to
manufacturing projects, not only costs calculations are required for R&D projects, but also benefit
calculations, i.e., an R&D organization can use acquired knowledge to generate revenue later.
Second, in comparison to manufacturing, analyses of R&D make-or-buy options are subject to
higher degrees of uncertainty, i.e., decisions must be made with less accurate estimates of costs
and benefits.

In software engineering, the make-or-buy decisions are more complex as both making and buying
are represented by several sourcing options [74]. “Making” a software component can be inter-
preted as traditional in-house software development. However, making can also mean developing
the component as part of an open source software (OSS) strategy, making the source code available
from the start with the goal to establish a community. An alternative is to carefully specify require-
ments and to outsource the development of the source code to an external organization, i.e., an
option between “make” and “buy”. Finally, strict “buying” means purchasing a commercial-off-the-
shelf (COTS) software component [71]. However, an increasingly common alternative to buying
a COTS component is to instead integrate an existing OSS component [58], e.g., in operating
systems [2], mobile applications [31], and even in safety-critical development contexts [64].

Deciding which component sourcing option (CSO) to use when evolving a software-intensive sys-
tem is difficult. Often several stakeholders are involved in the decision making, and they might
represent conflicting viewpoints [72]. Several highly advanced decision support systems have been
proposed in software engineering research, e.g., Bayesian networks [23], formalism through mod-
eling languages [13], and process simulation models [59]. Unfortunately, there is little available
research on how practitioners make software engineering decisions, and even less on how sourcing
decisions are made [10]. To address this, we present an industrial survey on practitioners’ decision
making in relation to choosing between CSOs when integrating components in evolving software-
intensive systems. Analogous to the case survey reported by Petersen et al. [56], we simplify CSO
decisions to selecting one of the four alternatives:

� In-house: The company develops the component internally. In line with the work by
Badampudi et al. [10], in-house includes any distributed development (incl. offshoring)
and internal development by external consultants.

� Outsource: The company acquires the component from an external development organi-
zation, e.g., after bilateral contract negotiation or procurement via a competitive bidding



2 RELATED WORK 2

process. Often the source code is part of the deal.

� COTS: The company buys an existing component from a software vendor or publisher.
Typically the source code is not included in the deal.

� OSS: The company integrates an existing component that has been developed as open source
software, possibly by a community. The source code is publicly available and the company
might have to adapt it to fit the rest of the system.

We obtained 188 responses from various roles, across different domains, confirming that the phe-
nomenon under study indeed exists in industry, i.e., CSO selection is a recurring decision point in
software engineering. Furthermore, we show that CSO decisions are dominated by expert judg-
ment, both in the actual decision making and in the assessment of component qualities. Finally,
regarding component selection, we identified that functional suitability acts as an initial filter
among candidate components, then reliability is the most important quality. Our main recom-
mendation for industry practitioners is to increase awareness of how decisions are made internally
in their organizations. Hopefully, our survey can let organizations to benchmark against the state-
of-practice in CSO decisions – thus enabling identification of improvements in the internal decision
making processes. Finally, to meet the needs of industry practice, we call for academic researchers
to focus efforts on how to support decision making that is mainly driven by expert judgment,
rather than developing decision support of esoteric nature with limited practical value.

The rest of the paper is structured as follows: Section 2 presents related work on decision making
in software engineering. Section 3 describes how we conducted the industrial survey, including
a discussion of the main threats to validity. In Section 4, we present an overview of the results.
Section 5 answers the research questions, reports from a more thorough analysis, and provides a
discussion in the light of the related work. Finally, Section 6 concludes our paper and presents
our plans for future work.

2 Related work

This section reviews related work on two types of decision making in software engineering: CSOs
selection and component selection.

2.1 CSO selection

Badampudi et al. [10] conducted a systematic literature review on approaches to choose between
architectural assets, i.e., how to make trade-offs between different sourcing options. The inves-
tigation covered decision criteria, methods for decision making, and evaluations of the decision
result. Through snowballing and systematic literature search, three types of solutions were iden-
tified to support the selection: 1) usage of decision methods, e.g., simulation models, analysis
of requirements dependencies, components clustering, and decision tables, 2) usage of alternative
criteria such as quality criteria, and 3) usage of alternative CSOs. The review highlighted that no
systematic reviews exist on the topic of CSO selection whereas the CSOs compared were mainly
focused on In-house vs. COTS and COTS vs. OSS. Furthermore, Badampudi et al. [10] analyzed
the factors that are used in CSO selection, but they did not discuss the decision process involved –
motivate by the limited number of case studies identified in the literature. In contrast, our survey
captures a broad picture of decision making and we explicitly target the decision process in one
of the research questions (cf. RQ2 in Section 3.2).

As only a limited number of reported case studies exist, Petersen et al. recently presented a
case survey studying 22 case studies of how practitioners choose between CSOs [56]. The CSOs
identified were: 1) in-house: development is carried out within a company, 2) COTS: development



2 RELATED WORK 3

is based on integrating “commercial-off-the-shelf” components, which are already pre-built and
source code is not open to the buyer for modification, 3) OSS: development is based on open source
components, also already pre-built, but the source code is publicly available, 4) services: making
use of services that are again pre-built and can be invoked over a network, e.g., web services,
and 5) outsource: development is carried out by a different company than the one owning the
product. One of the conclusions was that the most frequent trade-offs are carried out between in-
house vs. COTS, in-house vs. outsource, and COTS vs. OSS, partly confirming the result of the
Badampudi et al. study [10], and bringing forward the in-house vs. outsource option. Based on the
outcome of the decisions made in Petersen et al. [56], the CSO in-house was the favorable decision
option, however, the evaluation of the decision showed that many of the decisions were perceived
as suboptimal, indicating the need for optimizing the decision making process and outcomes. This
survey has been designed to partly overlap Petersen et al.’s case survey. The two studies differ
in scope and detail, and enable both method and data triangulation – a recommended basis for
knowledge discovery in software engineering [52]. The case survey discusses 22 decision cases in
detail, whereas this survey collects high-level empirical data from a broad variety of respondents.
Still, the RQs are similar enough to allow direct comparisons, and generalization from the 22 cases.

Several primary studies explored in-house vs. COTS CSO decisions, e.g., Brownsworth at al. [12],
discussed the changes resulting from introducing COTS into the development process and pre-
sented a new process framework. These changes occur through simultaneous definition and in-
evitable trade-offs considering the requirements, marketplace, as well as architecture and design.
The changes require not just an engineering or technical change to the typical (in-house) devel-
opment process of requirements, architecture, and implementation, but also a business, organiza-
tional, and cultural change. Many new activities need to be carried out, e.g., vendor relationships
establishment, COTS cost estimation, and license negotiation to leverage the benefits of a COTS
marketplace. Li et al. [43] empirically identified new COTS-specific activities and roles integrated
to traditional development to reduce risks and provide assistance. Two CSO processes were found
popular in practice: 1) familiarity-based selection, and 2) Internet-based search with hands-on
trials. In Cortellessa et al. [15], a framework was presented to support the decision to buy com-
ponents or build them in-house for software architects. The framework presented is based on a
non-linear cost/quality optimization model. A set of quality constraints related to delivery time
and product reliability are used to estimate the amount of unit testing to be performed to build
components. The main limitations of the approach were the non-straightforward instantiation
of the general model to specific cases, due to the inexistent inherent analytical formulations of
the non-functional aspects of the software systems, as well as the non-linearity of the variables
relations in real cases.

Li et al. [45] studied decisions made during integration of COTS vs. OSS and showed significant
differences and commonalities. The main rationale was to obtain shorter time to market and
reduced development effort. COTS were expected to have higher quality and vendor support than
OSS, whereas the no-cost needed for the source code was the main motivation for choosing OSS,
as well as the open-access source code benefit. On the other hand, maintenance costs were higher
for COTS, as well as the estimation of the selection effort. For OSS the level of support was found
questionable. The results reported were obtained from a survey covering only 3 countries, i.e.,
Norway, Italy and Germany.

Considering in-house vs. outsource, Daneshgar et al. [16] discussed the factors affecting the de-
cision process for CSOs for both SMEs and large organizations: requirements fit, cost, scale and
complexity, commoditization/flexibility, time, in-house experts, support structure, and operational
factors. The study further distinguished the factors for SMEs (ubiquitous systems, availability of
free download, and customizable to specific government/tax regulations) and large organizations
(strategic role of the software, intellectual property concerns, and risk). However, the small sam-
ple of companies investigated in the study (8 companies), limits the generalizability. Wider-scope
studies are needed, including SMEs across various industries and countries. The authors also high-
lighted the need for associating the factors identified with appropriate KPI measures. The survey
presented in this paper aims to collect data from more practitioners and companies, i.e., direct



2 RELATED WORK 4

data that are current rather than based on historical cases, to attempt confirmation of recent work
by Badampudi et al. [10] and Petersen et al. [56] as well as older studies by other researchers.

2.2 Component selection

Once a component sourcing strategy has been selected, the organization needs to concretize the
particular component to use. If the strategy is to do new development (either in-house or out-
sourcing), this will be handled in the development process chosen. However, in the case of OSS or
COTS, there could be several different concrete alternatives to choose from. In practice, a partic-
ular component could fit more or less well into the overall system architecture, and hence there is
also an element of architecture decision making in this. In this section, we cover first results about
architecture decisions with relevance to component selection. Then, the two particular cases of
choosing OSS and COTS will be detailed.

Architectural decision making contains many challenges, as discussed by Tofan et al. [65]. Based on
a survey with architects in industry, they identified that dependencies between different decisions
and the large business impact are major difficulties. Decisions are often unique, and the analysis
requires a large effort. van Vliet and Tang [70] collected literature related to the actual decision
process that architects use, and they put perspectives on the rationality of that decision making,
contrasting it with naturalistic decisions that are more contextually embedded, and they conclude
that the strategy chosen depends on how well-structured the problem is. They also identified
sources of bias in the decision making, and discussed the phases of architectural decision making,
including problem framing, design exploration, and solution identification. Axelsson [6] described
a case study from the automotive industry, where the evolution of the system architecture was
investigated as a result of a number of change requests. It shows how two processes interact,
namely the revolutionary architecting of a brand new solution for future product lines, and the
evolutionary architecting that handles smaller adaptations. The inclusion of a component into an
existing architecture would be an example of an evolutionary step, which has a strong focus on
interface alignment.

Relating to component selection, Ayala et al. [8] and Gerea [27] found that common steps are iden-
tification, evaluation, learning and knowledge management, use of the component, and choosing.
Gerea also found that the process of selection is impacted by the component size. Larger com-
ponents were selected earlier in the development life-cycle. For OSS, identification is a challenge,
since there is a multitude of different places to look. Kokkoras et al. [38] attacked this problem
using a federated search engine that queries a number of existing open source search facilities and
aggregates the result. Once an OSS candidate has been identified, one type of analysis is to look at
the business value [51]. In this approach, the net present value of the component can be compared
to the discounted costs, where the value is based on the assessment of a number of non-functional
properties relevant to the situation. However, this does not take into account the uncertainties
that result from the ecosystem nature of OSS development, and therefore the approach is ex-
tended with a real-options analysis. Hauge et al. [29] interviewed software companies about the
integration of OSS into systems. They concluded that project specific factors are more decisive
than general evaluation criteria, thereby emphasizing the relation to architecture described in the
previous paragraph. Also, the decisions tend to be satisficing rather than optimizing.

For COTS, Ayala et al. [8] found a gap in the processes for component selection proposed in the
literature versus what is used in practice. For example, component repositories are proposed, but
not often used. The process used for selection is rarely formal and rather ad-hoc in nature, which
has been reported by multiple authors (cf. Ayala et al. [8]; Li et al. [44]; and Torchiano and
Morisio [66]). For COTS selection Li et al. [44] found that companies use prototyping to learn
about COTS. In line with Tofan et al. [65], our survey reports the major challenges practitioners
face when making architectural decisions, and, similar to Ayala et al. [8] and Gerea [27], we also
attempt to capture the nature of the decision process. However, our work is primarily targeting
CSO selection rather than component selection.



3 RESEARCH METHODOLOGY 5

3 Research Methodology

This section describes the design of the survey, the instrument evaluation, the data collection, the
data analysis, and the main threats to validity.

3.1 Survey Design

We designed a structured cross-sectional web-based survey [37] and implemented it using the
Querous Survey Platform1. A survey method allows for reaching a large number of respondents
from geographically diverse locations [61] and enables both automation in data collection and
flexibility in analysis [22]. We selected the Querous Survey Platform because it supports a more
advanced question control flow compared to what is offered by simpler solutions such as Google
Forms and SurveyMonkey.

The questionnaire consisted of a mix of closed-end and open-end (free-text) questions. The closed-
end questions were of the following types: 1) select one option, 2) select multiple options (any
number, up to three options, or up to five options), and 3) Likert scales. Definitions and clari-
fications were provided for those parts of the questionnaire for which there was a risk of misin-
terpretations. All questions included either an “Other” option with a free-text field or an “N/A”
option. The final version of the questionnaire, containing 26 questions referred to as Q1-Q26, is
available in the Appendix. Note that we designed the survey to allow also partial answers, i.e.,
any dropouts that at least answered Q9 contributed data to the subsequent data analysis phase.

Figure 1 shows an overview of the questionnaire. Our target respondents were practitioners in-
volved in CSO decision making in industry, including roles in strategic management (e.g., CTOs),
product planning (e.g., product managers), operational management (e.g., project manager), and
software architecture. As the target population is large and highly heterogeneous, we included a
relatively large demographics section (Q1-Q8) to enable a detailed characterization of the respon-
dents. We collected 1) the role, 2) working experience, and 3) level of education of the individual
respondents, and 1) domain, 2) maturity and 3) size of the respondents’ organizations, as well as
the nature of their software development processes, i.e., whether they are traditional plan-driven
processes or rather adhering to agile practices.

The demographics section was followed by a pivotal question on which CSOs respondents con-
sider (Q9), i.e., which of the four CSOs (In-house, outsource, COTS, and OSS). The subsequent
questions Q10-Q13 only appeared to the respondent as a clarifying free-text question if the corre-
sponding CSO was not selected, e.g., “What is the main reason for you not to consider the option
OSS?” (cf. “optional path” in Figure 1).

The next section of the questionnaire (Q14-Q22) collected the backbone data of the study. Q14
is a closed-end question for which any number of options could be selected. Q15 and Q16 are not
part of the analysis in this paper, but for transparency and completeness they can be found in
the appendix. Q17-Q19 are closed-end questions with up to three, any, and one possible selec-
tion, respectively. Q20 is a mandatory free-text question regarding the most important challenge
involved in CSO decisions. Finally, Q21 is a single Likert item followed by Q22 as a free-text
clarification if (and only if) “Strongly agree” or “Strongly disagree” is selected (i.e., an “optional
path” in Figure 1). Finally, the questionnaire concluded by a section of closing questions related
to contact information and follow-up studies (Q23-Q25).

3.2 Research Questions

The goal of our survey is to understand how CSOs and individual components are selected in
industry. More specifically, we contribute knowledge to architectural decision making [65], by

1http://www.querous.com/



3 RESEARCH METHODOLOGY 6

Figure 1: Overview of the questionnaire. The numbers under the closed questions show whether
one, three, or any number of options could be selected. Note that Q15-Q16 are not part of the
analysis in this paper.



3 RESEARCH METHODOLOGY 7

Table 1: Mapping between research questions and questionnaire questions.

Research Ques-
tion

Mapping to
Questionnaire
Questions

Designed based on previous
work

RQ1 Which CSOs are
typically considered
in industry?

Q9-Q13 Badampudi et al. [10], Petersen
et al. [56]

RQ2 What is the nature
of the decision pro-
cess when selecting
CSOs and compo-
nents?

Q14, Q17, Q20-Q2 Wnuk [72], Papatheocharous et
al. [55]

RQ3 What component
qualities are the
most important in-
put to the decision
process?

Q18-Q19 ISO/IEC 25010 [32]

decomposing the goal into three specific Research Questions (RQs). Table 1 lists the RQs and
which questions in the questionnaire that address them. The questions were designed taking
related work on decision making into consideration. We adopted and adapted information from
prior work as follows:

RQ1 The main CSOs considered in industry [10, 56] are used in Q9-Q13.

RQ2 The roles involved in decision making [72, 55] are used in Q14 and the nature of the decision
process [9] influenced the Likert scale in Q17 and questions Q20-Q23.

RQ3 We used the classification of software quality from the international standard ISO/IEC
25010 [32] in Q18.

3.3 Survey Instrument Evaluation

We evaluated the questionnaire in two stages. In the first stage, the entire Orion research team2

reviewed the questions. In addition, we invited an external senior software engineering researcher,
a native English speaker, to particularly review the questions from a language perspective. We
refined the survey instrument based on the feedback, covering wording, readability, understand-
ability, and potential ambiguities. After the first stage, the questionnaire was implemented in the
Querous survey platform.

In the second evaluation stage, we invited 15 colleagues from our partner networks to act as
test pilots. We asked these pilot respondents, of which a handful had worked as senior product
developers or managers in industry, to measure the time needed to complete the questionnaire,
and to provide feedback on any unclear questions. The feedback from the pilot respondents led
to the removal of 2 questions to ensure that 10-15 min would be sufficient to complete the survey.
Moreover, some of the replies entered in “Other” categories by the pilot respondents were used
to refine the answer options. The final version of the questionnaire consisted of 26 questions,
organized according to Figure 1.

2http://orion-research.se/participants.html



3 RESEARCH METHODOLOGY 8

3.4 Data Collection

We opted for an inclusive approach and used convenience sampling [57] to elicit as much informa-
tion from industry practitioners as possible in relation to CSO and component selection. Previous
empirical studies have suggested that both technical and management roles are involved in the
decisions under study [56, 72, 55]. The roles identified in our previous work include: software
management, software development, external support, software testing or quality control, cus-
tomers, experts, legal, sales, software design and architecture, and subcontractors (component
providers). The multitude of roles confirms that an inclusive approach is the most suitable for this
survey, as our aim is to collect opinions from a broad spectrum of decision makers and industry
representatives, i.e., the target population [18].

Data collection started on January 14th of 2016 and finished on August 31st of 2016. The majority
of the responses was collected during January and February. The main source of population and
the support for recruitment strategy [18] was the Orion project team that was tasked to send direct
invitations to industry partners, focusing on software architects and product managers, but we
also asked those industry partners to circulate invitations within their organizations. Moreover,
we advertised the survey on social media, e.g., Twitter and several LinkedIn and Facebook groups
related to software engineering and in particular software architecture.

We kept track of the origin of the responses by sharing five separate invitation links, i.e., one
per academic partner in the Orion project: Blekinge Institute of Technology, RISE SICS AB,
and Mälardalen University, one for the pilot responses, and one link for open invitations, e.g.,
LinkedIn, Twitter, and Facebook. The advantages of using LinkedIn in software engineering
surveys have been discussed in the literature, e.g., Galster and Tofan [25], and include increased
subject heterogeneity and the possibility to reach a population for which no centralized bodies of
professionals exist. In total we collected 353 responses; 296 responses through direct invitations
and 39 through open invitations, 15 pilot responses, and three undefined responses, i.e., responses
that the Querous platform failed to track.

3.5 Data Analysis

We started the analysis by filtering out invalid answers, i.e., nonsense or careless responses. All
filtering steps were done by the first author and validated by the third author. In total we obtained
353 responses, of which 152 were complete (152 out of 353, 43%). As most of the responses from
the test pilots were collected from respondents belonging to the target population, we agreed to
keep all but two (collected from test pilots mainly inspecting the language). Regarding the partial
responses, we decided to keep all that at least completed Q9, i.e., the question on which CSOs are
considered, resulting in 188 remaining responses. The average completion time for respondents
that completed the whole questionnaire, and that did not make any interruptions (less than 30
min completion time, 130 out of 150, 87%), was 13 minutes and 31 seconds.

After the filtering, we analyzed all “Other” answers from closed-end questions, i.e., answers con-
taining free-text, to investigate whether any answers should be consolidated with the existing
possible options for the questions (i.e., Q1-Q4, Q9, Q14 and Q18-Q20). We decided to consolidate
13 answers for Q1 (respondents’ roles), three answers for Q4 (respondents’ domains), and two
answers for Q18 (quality attributes), but this did not introduce any new answer options. As for
the filtering steps, all merging operations were suggested by the first author and validated by the
third author.

We conducted a number of statistical analyses within this study to answer the RQs. For the
demographics section (Q1-Q8) contingency tables were used to explore frequency data [24]. All the
results from the tables were depicted with bar charts. Chi-square of independence was performed
to test the variety of the sizes of the different contingency tables, as well as more than one type
of null or alternative hypotheses. The threshold value for p was 0.05 [3].



3 RESEARCH METHODOLOGY 9

Figure 2: Overview of the qualitative analysis.

3.5.1 Qualitative Analysis

For the free-text survey results (Q10-Q13, Q21, and Q23), coding analysis was performed, in-
spired by grounded theory [63] through the five step process depicted in Figure 2. Step 1 was
an exploratory analysis of collected quotes performed by one researcher. From the analysis, 125
quotes were extracted containing information that could help us draw conclusions about CSO and
component decisions.

Step 2 was coding of the extracted quotes from the dataset, which we denote D = P(q’) where q’
is a subset of quotes in the dataset. The coding was performed by one researcher incrementally
by formulating representative codes (c) from the quotes (Q2D). Each code was formulated based
on the semantics of the quotes and aimed to summarize/synthesize key concepts of the results
such that a code c could be added to the set of codes C (c2C). The codes were then applied to
the quotes and documented, for traceability, as pairs (c,q), in a spreadsheet together with the
following information:

1. The name of the code (cf. Figure 3).

2. A rationale for the code to motivate its value for the study.

3. Which quotes, associated with respondents and identified by line numbers, the code was
applied to in the dataset.

4. How many times the code was applied to quotes.

5. An example quote from the dataset.

The distribution of applied codes to quotes ranged from a minimum of 1 to 23 (average 4.92)
codes. Codes that were only applied once were primarily used in the grounded theory analysis to
support higher level conclusions. In contrast, codes that were applied often were rather considered
key results from the study.

Figure 3 shows all codes identified in the study. The greater-than sign (>) represents that the
code to the right is subsumed under the code to the left, i.e., we introduce hierarchical sub-codes.
For example, learnability is considered a sub-code of usability, but we still represent the concepts
with separate codes.

Step 3 involved result verification, aiming at evaluating the correctness of the extracted codes
(c2C) and evaluate the completeness of P(c) = C. This was achieved by two authors, other than
the original creator of the codes, analyzing a set of quotes (q�Q2D) that encapsulated the original



3 RESEARCH METHODOLOGY 10

Figure 3: Frequency distribution of all 36 codes.

set of codes (8c2C). The two authors’ codes C1 and C2 were then compared against the original set
of codes C ((C1[C2) = C) based on their semantic equivalence. Semantic analysis was required,
instead of syntactical analysis, as the detailed wording used by each author differed. For instance,
the two authors denoted the original code “politics” as “politics/people” and “bureaucracy”, re-
spectively – but referred to the same phenomenon, i.e., the internal politics associated with the
asset origin selection. Step 3 verified 36 out of the 37 original codes, but “branding/marketing”
was removed since it was only extracted by the original author. We refer to these 36 verified codes
as the “final codes”.

Step 4 was a semantic analysis of the application of the final codes. Two authors selected any
number of appropriate codes among the final codes for a set of 36 well chosen quotes from the
paper. The motivation behind this step was that there would be a considerable overlap between
the original creator of the codes and the two authors if the codes were suitably and properly
defined. We found that this overlap (i.e., identical coding) was 54% and 52% for the two authors,
respectively when compared to the original author’s coding. As the number of possible combina-
tions for 36 quotes and 36 codes is very high, we considered this a successful verification step of
the codes representativeness. Further, it showed support for the original author’s coding as it was
similar to how the other authors coded the quotes.

Step 5 was to verify the correctness of the original application of the final codes, i.e., the pairing of
codes and quotes (c,q) in the final analysis. The original creator of the codes and another author,
not involved in the previous verification steps, both applied the final and verified codes (C) on a
subset of 10 quotes (q10�Q2D) from the dataset. The results of the coding, i.e., pairing of C on
q10 by the two authors, resulted in two paired sets A1 = (C, q1’) and A2 = (C, q2’), for which
we calculated interrater agreement using Cohen’s Kappa. Step 4 was successful, as we obtained
an acceptable Kappa value of 0.62 where 0.5-0.7 is considered good, whilst greater than 0.7 is
considered excellent. This result indicated that the coding scheme was suitable and usable for
further grounded theory analysis, i.e., to join codes on a higher level of abstraction to draw more
general conclusions.



3 RESEARCH METHODOLOGY 11

3.6 Threats to Validity

The population under study, i.e., practitioners involved in architectural decision making in component-
based software evolution, is large and highly heterogeneous. For a start, a frequently used estimate
of the number of software developers is 21 million, originating in the Global Developer Population
and Demographic Study by the Evans Data Corporation3. However, GitHub recently presented
data that suggest this number to be a considerable underestimate4. Moreover, not only software
developers are involved in software engineering decision making (cf. Fig 8), but a mix of perspec-
tives representing management, testing, business, legal etc. Consequently, we assume that the size
of the population under study is in the magnitude of 100s of millions, i.e., any practical compu-
tations of sample sizes could regard the population as infinite. Under these circumstances, the
importance of determining the appropriate sample size is dwarfed by the importance of selecting
a representative sample.

Our survey was not designed to make strong quantitative conclusions about the general population
of practitioners involved in CSO decisions, but rather to identify larger trends. We relied on a non-
probabilistic method referred to as accidental sampling [47], i.e., we recruited respondents based
on convenience – in line with most software engineering surveys [17]. Surveys based on convenience
should be used to explore relationships between categories of respondents and their corresponding
development contexts. Although our survey uses accidental sampling, we introduced additional
structure by distributing separate links to the questionnaire among our invitees, e.g., to track the
number of respondents personally invited vs. social media invitees. The demographics reported in
Section 4.1, in particular related to Q2 and Q3, suggests that the convenience sampling we applied
was successful.

We continue by discussing the four types of survey validity presented by Kitchenham and Pfleger [37].
Face validity is an estimate of whether a survey appears to measure a certain criterion, typically
established by lightweight reviews. We achieved this by developing the questionnaire in a joint
effort, including reviews by all participants in the ORION research project5. Face validity is a
starting point, an initial sanity check, that should be met before the more comprehensive content
validity is targeted.

Content validity concerns how much a measure represents every single element of a construct.
In our case, we needed to ensure that our questionnaire covered all aspects of CSO decisions in
industry. However, there is a trade-off between the length of the questionnaire and the coverage.
We used an instrument evaluation with pilot runs, as described in Section 3.2, to find a feasible
right balance. As a consequence, some aspects related to CSO decisions were intentionally left out,
as well as combinations of the four options (i.e., in-house, outsource, COTS, and OSS). We list
three aspects that could be further explored in future work. First, offshoring is not considered at
all, a phenomenon that in many cases directly influence both in-house development and outsourcing
alternatives. Second, our study does not attempt to cover any aspects of product-line engineering
approaches, although such strategies might clearly affect CSO decisions and component selection.
Third, we did not include any explicit questions related to software ecosystems, which could be
major driving factors in decisions regarding OSS.

Construct validity refers to how an operational definition of a variable actually reflects the true
theoretical meaning of a concept. The major threat to our study is whether our inquiry about
previously experienced CSO decisions truly reflects a phenomenon in industry. We addressed this
by developing the questionnaire in a joint research effort with several senior researchers followed by
a pilot run with a handful of selected respondents. Our initial construct captured CSO decisions
and component selection as two separate activities, but our construct evolved during the study.
Our data analysis suggested that the respondents interpreted the questions somewhat differently.
In many cases, the two decisions are intertwined; the most appropriate component is selected

3https://evansdata.com/reports/viewRelease.php?reportID=9
4http://bit.ly/2hD76go
5http://orion-research.se/



4 RESULTS – FROM A BIRD’S EYE VIEW 12

regardless of its CSO. To mitigate this threat, we let RQ1 address CSO decisions and we opened
up RQ2 and RQ3 to instead discuss component selection in more general terms. Another threat
to construct validity is our simplified description of the OSS option, i.e., integrating an existing
OSS component. It could be argued that this reflects a naïve and immature view on open source
development, as it is increasingly common for organizations to develop new components in-house,
but under an OSS license from the start [4] – such development would qualify as both in-house
and OSS in our questionnaire. However, we believe that we captured all such examples through
the mix of closed and open questions. We observed that several respondents appeared proud of
the OSS strategies of their organizations, and thus more eager to explain the details in free text.

Finally, criterion validity deals with the ability of a measurement instrument to distinguish re-
spondents belonging to different groups. Our questionnaire collected self-reported assessments and
opinions, an approach that might introduce certain biases. Respondents may exaggerate issues
in their organizations to make their situation seem worse, or they may under-report the severity
to minimize their problems. Furthermore, respondents might provide answers that are incorrect,
especially regarding questions with limited subjectivity. In our questionnaire, we believe that the
biggest threat is related to the self-assessment of agility, a phenomenon that is known to be hard
to evaluate [34]. We use the statement in Q8 (“My organization is more agile than plan-driven”)
to distinguish respondents, but we did not triangulate this self-reported agility assessment beyond
analyzing the respondents’ open question replies.

4 Results – From a Bird’s Eye View

This section presents the results from our survey, and an analysis of the 188 responses.

4.1 Demographics

Figure 4 shows the roles of the individual respondents. Roughly a third of the respondents primar-
ily associate themselves as product developers (62 out of 188, 33.0%), reflecting that the number
of developers outnumbers other roles in industry. The second largest group of respondents are
software architects (39 out of 188, 20.7%), which appears promising given our goal to better un-
derstand architectural decision making. Other roles represented by ten or more respondents are
strategic management, product planning, quality assurance, and end-user perspective. Overall,
the respondents represent a wide variety of roles involved in decision making.

Figures 5 and 6 show the respondents’ working experience and education level, respectively. A
majority of the respondents reported 10 or more years of working experience (136 out of 188,
72.3%). Twenty-six respondents had more than 25 years of working experience (26 out of 188,
13.8%), and 20 respondents can be considered juniors with 0-4 years of working experience (20
out of 188, 10.6%). Most of the respondents had received Master degrees (98 out of 188, 52.1%),
followed by PhD degrees (37 out of 188, 19.7%), and Bachelor degrees (31 out of 188, 16.5%).
We conclude that our survey covers the viewpoints of senior engineers in the software engineering
industry, i.e., Q2 and Q3 confirm that our sampling strategy was successful.

Figure 7 illustrates the wide variety of domains covered by the survey (note, however, that re-
spondents could select any number of domains). The domain selected most frequently is by far
“Computer [Software]”. Other well-represented domains include telecommunications, engineer-
ing/architecture, automotive, mobile application, consulting, finance, and Internet/eCommerce.

The final part of the demographics section addressed the respondents’ organizations. As a proxy
for the maturity, Q6 asked for how many years the respondents’ companies had offered products
or services to the market. Figure 8 shows that sixty out of 188 respondents (31.9%) stated “25
years or over”. On the other side of the scale, 44 respondents answered “0-4 years” (44 out of 188,
23.4%), representing companies new to the market. The median answer was “10-14 years”. Figure 9



4 RESULTS – FROM A BIRD’S EYE VIEW 13

Figure 4: Roles of the respondents.

Figure 5: Working experience of the respondents.

Figure 6: Education level of the respondents.



4 RESULTS – FROM A BIRD’S EYE VIEW 14

Figure 7: Overview of the respondents’ domains.

depicts the size of the business units in which the respondents work. The most common size of
the respondents’ units is 5-19 co-workers (54 out of 188, 28.7%), but as many as 39 respondents
(39 out of 188, 20.7%) work in companies that do not appear to break down to smaller business
units, instead they have more than 500 co-workers.

Finally, our questionnaire gauged whether the respondents’ development organizations adhere to
an agile development methodology or rather traditional process models, e.g., waterfall develop-
ment. As reported in Figure 10, Q8 requested the respondents to select the level of agreement to
the statement “my organization is more agile than plan-driven”. A majority of the respondents
(109 out of 188, 58.0%) agreed or strongly agreed to the statement, while 26 out of 188 (26.6%)
disagreed or strongly disagreed. However, note that only 10 respondents strongly disagreed com-
pared to 43 that strongly agreed. While our survey covers all levels of agility, we acknowledge that
a larger fraction of the respondents adhere to agile practices.

4.2 Which CSOs are typically considered in industry? (RQ1)

Figure 11 shows which CSOs are typically considered in industry, i.e., the answers to the branching
question Q9. A strong majority of the respondents (164 out of 188, 87.2%) consider in-house
development when choosing between CSOs. The second and third most common CSOs are OSS
(113 out of 188, 60.2%) and COTS (99 out of 188, 52.7%), respectively. We note that both
OSS and COTS are considered in more than half of the responses. Outsourcing is the least
commonly considered CSO, but still frequently considered as a viable option (68 out of 188,
36.2%). In contrast to the case survey by Petersen et al. [56], our study suggests that OSS often is
considered when practitioners compare CSOs when evolving a software-intensive system, i.e., we
report 60.2% whereas Petersen et al. reported 11.3%. A possible explanation is that our sample
has a larger representation from the domains mobile applications and Internet/e-commerce, which
are known to frequently use OSS [53, 11]. Another explanation, partly related, is that the case
survey by Petersen et al. [56] draws conclusions on older decision cases, whereas OSS has matured
considerably in the last decade.

A majority of the respondents report that they typically consider two or more CSOs when adding



4 RESULTS – FROM A BIRD’S EYE VIEW 15

Figure 8: Organizations’ time on the market.

Figure 9: Number of co-workers in the respondents’ business unit.



4 RESULTS – FROM A BIRD’S EYE VIEW 16

Figure 10: Self-reported agility of the respondents’ development organizations.

Figure 11: The CSOs considered by the respondents. Number of CSOs selected by the respondents:
One CSO = 51, Two CSOs = 51, Three CSOs = 53, and Four CSOs = 33.



4 RESULTS – FROM A BIRD’S EYE VIEW 17

new components (137 out of 188, 72.9%). This confirms that the decision scenario pictured in
the Orion research project6 indeed is relevant to industry practitioners. The two CSOs that
most frequently co-occur in decisions are in-house and OSS (97 times) and in-house and COTS
(92 times), followed by in-house and outsource (59 times). However, roughly a quarter of the
respondents typically consider only one CSO (51 out of 188, 27.1%), i.e., fifty-one respondents
state that there is no comparing of CSOs in their organizations. Among these, 33 out of 51
(64.7%) respond only in-house development, 12 out of 51 respond only OSS components (23.5%),
five respond only outsourcing, and one respondent answered only COTS.

Each time a respondent did not select one of the CSOs, the questionnaire proceeded with a free-text
question on why the CSO was not considered. Results showed a variety of different reasons that
could be divided into three key aspects: 1) management, 2) functional, and 3) quality-oriented,
i.e., aspects that affect the feasibility of the candidate components, and in turn what CSOs were
considered. Aspects associated with management included the cost of the component, the cost of
its adoption and cost of component management, but also political factors, e.g., that OSS may not
be allowed due to licensing issues. This conclusion is supported by statements like: “Mostly legal
issues regarding contracts, sourcing partners and SLA”, “We don’t know quality of complex open
source. We don’t know how long open source will be maintained” and “It can be hard to compare
the time and costs in developing something of our own with the monetary costs in purchasing a
finished product. Open source software is often the best of both worlds since you get something
working but can still add features yourself”. These answers also suggest that many companies are
not aware what parts of their product are commodity and therefore can be obtained from OSS
source and what parts should be kept proprietary and therefore internally developed [46].

Next, the functional aspects of a component seem to be particularly important aspects for a
decision maker to consider. This analysis varies from component to component and can prohibit
the use of a certain CSO if the functionality is not good enough or if the component is not
open source. This conclusion is supported by statements such as: “Our key factor is to correctly
determine the strategic importance of the component, e.g., deciding where in the life-cycle it is
and how quickly we believe the functionality will be commodity vs. differentiating” as well as the
following statement; “Acquiring technical knowledge needed to evaluate alternatives, and allocate
resources to prototype concept proofs of concept or prototypes to test alternatives.”, which refers
to the technical knowledge required to understand the viability of a certain asset.

Finally, the qualities are crucial since they are used to determine which component that is chosen
in the end, mentioned explicitly by 40 out of 188 of the respondents (21.3%). Hence, in the
selection process, components of similar functionality are first identified and then the qualities
of these components are weighed against one another to determine which one to select in the
end. As expected, the functionality is considered first to ensure that the component at all can
fulfill the decision maker’s needs. This conclusion is supported by statements like: “We test the
product (asset) by integrating it with our product and calculate different function points and check
performance. On the basis of the data collected from such tests a decision is made.” and “Is it
reliable and compatible with our product or not?”

As such, a general chain of decision making steps can be inferred, namely: 1) identification of
components that follow the managerial and political guidelines of the organization, 2) identifi-
cation of components of suitable functionality to fulfill the organization’s needs, and, finally, 3)
comparison of the quality aspects of the candidate components to acquire the one with the best
fit for the organizational needs. Our results suggest that the component selection and the CSO
selection are intertwined, i.e., any candidate component that is identified through the three steps
can be selected, regardless of its CSO.

6www.orion-research.se




