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Abstract

Sampling gas distributions by robotic platforms in order to �nd gas sources
is an appealing approach to alleviate threats for a human operator. Di�erent
sampling strategies for robotic gas exploration exist. In this paper we inves-
tigate the bene�t that could be obtained by incorporating physical knowledge
about the gas dispersion. By exploring a gas di�usion process using a multi-
robot system. The physical behavior of the di�usion process is modeled using
a Partial Di�erential Equation (PDE) which is integrated into the exploration
strategy. It is assumed that the di�usion process is driven by only a few spa-
tial sources at unknown locations with unknown intensity. The objective of
the exploration strategy is to guide the robots to informative measurements
location and by means of concentration measurements estimate the source pa-
rameters, in particular, their number, locations and magnitudes. To this end
we propose a probabilistic approach towards PDE identi�cation under sparsity
constraints using factor graphs and a message passing algorithm. Moreover,
message passing schemes permit e�cient distributed implementation of the al-
gorithm, which makes it suitable for a multi-robot system. We designed a ex-
perimental setup that allows us to evaluate the performance of the exploration
strategy in hardware-in-the-loop experiments as well as in experiments with real
ethanol gas under laboratory conditions. The results indicate that the proposed
exploration approach accelerates the identi�cation of the source parameters and
outperforms systematic sampling.
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1. Introduction

In this paper we consider the task of �nding gas sources, e.g. gas leaks, by
exploring the resulting gas dispersion with autonomous robots. The proposed
approach may be applied in technogenic accidents or during disaster response,
where toxic or explosive material is leaking. In such cases localizing the sources5

is of high interest due to safety concerns. However, for civil protection agencies
searching for toxic gas leaks in an already contaminated environment implies
threats for human operators. Thus, employing robotic platforms in those sce-
narios might be bene�cial with respect to safety aspects. Moreover, robots with
a certain level of autonomy simplify the work of a human operator, as com-10

pared to just teleoperated platforms. For example a robot can instantaneously
interpret the collected data and make appropriate decisions, which otherwise
would require a trained operator or specialist. Following this motivation, we
propose to make use of robotic platforms which { equipped with gas sensors {
can sample the gas concentration in the environment and process the data in15

an automated fashion in order to localize gas sources.

1.1. Background and Related Work
A multi-robot system is capable of taking measurements at di�erent locations

at the same time. In contrast, a single robot is only able to take measurements
serially. To observe the dynamic nature of gas dispersion simultaneous but20

spatially distributed measurements are necessary [1]. This is not possible with
a single robot. Besides, a multi-robot system has additional advantages: i)
multiple robots can perform the exploration task faster; ii) they are more robust
due to natural redundancies; and, �nally, iii) individual robots can make use of
synergies, e.g. share the computational costs of algorithms.25

However, in order to guide the robots to informative measurement locations,
an exploration strategy is needed. The use of robotic platforms for gas source
localization, plume tracking or gas distribution mapping in general is an active
research �eld and a lot of di�erent strategies can be found in the literature. For
an overview of di�erent approaches and terminology we refer the reader to [2],30

[3] and [4]. It is possible to categorize exploration strategies as (i) proactive (or
prede�ned) and (ii) reactive (sometimes also called adaptive) strategies. While
a prede�ned strategy follows a plan or trajectory that was de�ned beforehand,
a reactive strategy reacts to current measurements and adjusts its plans accord-
ingly. Both concepts are investigated in [5]. In our work presented here we35

design a reactive strategy. For gas distribution mapping with the goal to mea-
sure everywhere, a proactive strategy that ensures full coverage of the area may
be the method of choice. However, for gas source localization reactive strategies
are faster, as will be shown in this paper.

Since �nding gas sources is also a challenge for animals like moths, beetles40

or bacteria, exploration strategies are often bio inspired, e.g. [6],[7]. These ex-
ploration strategies rely on local concentration gradients to move towards a gas
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source. Those approaches can be group together under the term chemotaxis.
Unfortunately turbulent air
ow in the environment results in strong local gradi-
ents which do not necessarily point towards the source. Therefore in this paper45

we have chosen a di�erent approach.
More advanced approaches, sometimes referred to as infotaxis, do not purely

rely on concentration gradients, but are more information or entropy driven
[8],[9],[10]. Moreover, additional knowledge about the environment or con-
straints could be utilized for the exploration strategy. For example the search for50

a gas source could be supported by observations of the current wind �eld [11]
(anemotaxis), or information about obstacles could be used, as done in [12].
Another interesting research question is what you gain from sampling in 3D
compared to pure ground base 2D measurements [13]. In general, exploit-
ing model assumptions about the gas dispersion enables the use of higher level55

strategies. Here high level strategy means path planning and way point nav-
igation to control the robot, in contrast to a low level controller coupling the
sensor signals directly to the motors, as in Braitenberg style [3]. In this paper we
also propose to use a model-based approach to design an adaptive exploration
strategy.60

A common way to model the process of a gas dispersion or the plume dynam-
ics is to use PDEs [14],[15]. In this context the exploration or sampling problem
is closely related to optimal sensor placement techniques. In the literature, some
approaches consider this as an observer design problem. In those cases an ob-
server performance is optimized by adapting the sensor location, e.g. in [16]65

or [14] to estimate a distributed process described by a PDE. From another
perspective, the sampling problem could be treated as an optimal experimental
design problem [17]. More details on these topics can be found in [18], where the
author gives an introduction to optimal sensor location and experimental design
problems. To sum up, from our point of view a PDE seems a very useful way to70

put physical knowledge about the gas dispersion into an exploration strategy.
Unfortunately, model-based approaches for designing high level sampling

strategies for gas exploration are mostly evaluated in simulation and not in real
world experiments. So it is unclear if those approaches also work in real world
scenarios where the model assumption may not hold. Therefore, we propose to75

use a probabilistic framework. Our motivation for using a probabilistic formu-
lation of the gas di�usion model is twofold. First, the probabilistic formulation
naturally accounts for a possible model mismatch between the actual gas disper-
sion process and the used model. Second, it allows to quantify the uncertainty
of the explored process, which we use to design an exploration strategy. In80

general, a probabilistic or statistical view is also a contemporary and relevant
research topic in the context of gas distribution mapping [19, 20, 10]. Moreover,
a probabilistic treatment enables to quantify informativeness of possible mea-
surement locations [21]. Based on that we follow the idea of an uncertainty or
entropy driven [22] exploration strategy.85
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1.2. Contribution
The main focus of the presented approach is the gas source localization task.

Our approach does not rely on any assumption about the sources’ strengths, the
sources’ positions or even the exact number of sources. Thus, in contrast to other
work, e.g. [15, 8], we can handle cases with multiple sources where their number90

is unknown. We only assume a sparse distribution of sources. In other words, we
do not know the exact number of sources, but we expect that there are only a few
of them. For the gas source localization task, the presented adaptive exploration
strategy for the multi-robot system is based on a mathematical model of the gas
dispersion. This PDE is described in Section 1.2. By means of the model we can95

infer the location of the gas sources based on gas concentration measurements
taken by multiple robots. Further, the model is transferred into a probabilistic
formulation as discussed in Section 3. The probabilistic framework provides us
with tools (i) to introduce the sparsity assumption about the source distribution
and (ii) to quantify the spatial uncertainty about the gas and source distribution.100

To make use of synergies in the multi-robot-system Section 4 presents a Message
Passing (MP) algorithm to perform all calculations in a distributed fashion. The
actual exploration procedure grounded on the uncertainty quanti�cation in our
probabilistic model is explained in Section 5. This strategy guides the robots to
their measurement locations. In contrast to the greedy algorithm in [23] where105

the robots only consider their direct neighborhood for a new measurement, in
this paper robots possess a global view of the whole environment.

The methods and theory for modeling the PDE in a probabilistic framework
and the algorithms for a distributed implementation were �rstly introduced
in [23]. This article is a substantial extension of a previous conference paper110

[24]. It provides a comprehensive, more detailed description of the approach
described in [24]. Further, compared to our previous work the presented ap-
proach is evaluated in real world experiments. In general, it is di�cult to
evaluate gas distribution exploration in realistic experiments due to the di�-
culty of measuring ground truth gas concentrations. In addition, interesting115

gas distributions for realistic applications may be of toxic nature and dangerous
to handle. To overcome those issues we evaluated the approach in two steps:
First, we tested the exploration strategy in hardware-in-the-loop experiments,
where we employed a real multi-robot system but only virtually simulated the
gas dispersion. This simulation provides us with ground truth data and facili-120

tates reproducibility of the experiments. Compared to pure simulations, in the
hardware-in-the-loop setup we can test our system, how it is e�ected by other
real world constraints. Beside constraints given by the robot dynamics, we are
particular interested in how the distributed algorithm copes with limitations in
a realistic communication system. Parameters like required data rate, commu-125

nication latency etc. could be studied more easily on a real distributed system.
Second, to ensure that the approach is able to cope with model uncertainties
we tested the approach in a real world experiment under lab conditions with
ethanol as a toy gas.
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2. Gas Dispersion Process Model130

In general, true physical mechanisms behind gas propagation are quite com-
plex. Nonetheless, models exists that can \approximate" gas dynamics suf-
�ciently well. Here we make use of such a model that describes spatial gas
dynamics using a PDE of a di�usion equation. Hereby, we neglect other ef-
fects such as advection or turbulence. Further, we consider the problem as135

2-dimensional, although the true gas dispersion is taking place in 3D. These
approximations are necessary to keep the mathematical model feasible for on-
line calculations on our multi-robot system. Besides, in this paper we restrict
ourselves to a scenario with ground based robots and gas heavier than air. Such
a scenario justi�es the 2D approximation.140

Consider now an exploration of a gas di�usion process in a bounded spatial
region 
 � R2 over some time interval T 2 R+. A 2-dimensional gas di�usion
process can be modeled with a linear parabolic PDE as follows

@f(x; t)
@t

� ��f(x; t) = u(x; t); x 2 
; t 2 T; (1)

where f(x; t) : 
� T 7! R is a space- and time-variant function that represents
gas concentration at location x and at time t. Parameter � in (1) is a gas
di�usion coe�cient. The right-hand side u(x; t) : 
�T 7! R of (1) is interpreted
as a gas source distribution. In particular, it describes the source strength (or
intensity) of in
ow at location x and time t. Let us re-iterate that (1) is used as145

an approximation to the macroscopic gas dispersion caused by di�erent complex
physical mechanism.

Both functions f(x; t) and u(x; t) are unknown. Our exploration aims at
estimating both functions from measurements performed by individual robots.
We will assume that measurements are performed according to the following
model

y(x; t) = f(x; t) + �(x; t); (2)

i.e., we measure a value of a gas concentration perturbed by additive Gaus-
sian noise �(x; t) at location x and time t. In the sequel, we will assume that
�(x; t) is spatially and temporally white and normally distributed. Its statistical150

properties will be speci�ed later in more details.
This model re
ects many common gas sensors (e.g., Metal Oxide (MOX)

sensors or Photoionization detectors (PIDs)). As we see, the information about
f(x; t) is acquired directly by means of noisy gas concentration measurements.
In contrast, the source distribution u(x; t) is hidden and must be inferred from155

measurements indirectly using some inference procedure.
To enable numerical treatment of the exploration problem, we approximate

the space- and time-continuous system (1) with a discrete equivalent. Speci�-
cally, we use Finite Di�erence Method (FDM) [25] for this purpose. Although
other, more advanced methods exist for this approximation, the chosen dis-160

cretization method is simple and illustrates well the proposed methodology.
The investigations on the choice of discretization or the use of �nite elements
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instead of �nite di�erences are left outside the scope of this paper, despite the
fact that they do impact the numerical approximation quality (see for example
[26]).165

To discretize the time, we consider the system at discrete time intervals
t = nTs, with n 2 N0 and a sampling period Ts. The discretization in space is
done as follows. The exploration domain 
 is divided into C smaller subdomains

c, c = 1; : : : ; C, which form a grid with I rows and J columns, so that C =
IJ . For simplicity we use quadratic cells. This choice, however, a�ects neither170

our inference approach nor the exploration strategy. The functions f(x; t) and
u(x; t) can then be represented by discrete vectors f [n] 2 RC and u[n] 2 RC
containing the concentration values and source strengths for each grid cell at
time instance n. Note that during a time instance and within a grid cell the
concentration values and source strengths are considered as constant.175

Based on the discretization, the FDM simply replaces the di�erential op-
erators in (1) by appropriate �nite di�erences. Thereby, we obtain a system
of linear equations as a numerical approximation of the PDE (1). More pre-
cisely, we get one equation for each sub-domain 
c, i.e., for each grid cell
c = 1; : : : ; C. These equations de�ne residuals rc that are set to zero. They
represents a relation between the concentration fc[n] of the considered cell
c and its four spatial neighbors: fc�1[n], fc+1[n], fc�J [n], and fc+J [n] as
well as the source strength uc[n] (in
ow) in the cell and the concentration
fc[n � 1] of the previous time stamp. These de�ne an auxiliary state vector
sc[n] = [fc[n]; fc�1[n]; fc+1[n]; fc�J [n]; fc+J [n]; fc[n� 1]; uc[n]]T . The residuals
depend on this state vector:

rc(sc[n]) = 0; c = 1; : : : ; C: (3)

In particular for our problem and a cell c this can be rewritten as
�

4�Ts + d2

�Tsd2 ;
�
d2 ;

�
d2 ;

�
d2 ;

�
d2 ;

1
Ts
; 1
�
sc[n] = 0 (4)

with d denoting the cell width. We would also like to stress that equations in (4)
are speci�c for the used PDE and the FDM approximation. For other PDEs,
these equations need to be appropriately modi�ed following similar discretiza-
tion steps.180

Let us remark that after the discretization, the source distribution u(x; t)
is represented by a vector u[n], with each element corresponding to the source
strength (or intensity) in a particular cell. Thus our assumption that sources
are sparsely distributed in the domain 
 implies that the vector u[n] is sparse in
a sense that most of its entries are zero. The number and the index of nonzero185

entries in u[n] re
ect the number and locations of the active gas sources, which
we are interested to infer from measurements.

Now consider K robots which explore 
 by means of sampling the gas con-
centration process f(x; t) according to (2). By collecting the measurements yk[n]
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of individual robots in a vector y[n] = [y1[n]; : : : ; yK [n]]T , we can represent the
measurement performed by the robots as

y[n] = M [n]f [n] + �[n]: (5)

Here M [n] = [m1[n]; : : : ;mK [n]]T is a spatial K � C sampling matrix. Each
vector mk[n] 2 RC , k = 1; : : : ;K, is de�ned as a zero vector except one element
that equals 1 at an index that corresponds to the spatial cell c measured by190

the robot k at time n. Finally, we state the properties of the additive noise
process �[n] in (5). Speci�cally, we assume �[n] to be spatially and temporally
white, normally distributed random vector with zero mean and precision �m,
i.e., �[n] s N(0; ��1

m I).
We would like to avoid a synchronization of the robots that ensures that195

at each time stamp there is a measurement of each robot. Instead we prefer a
system where we can plug in measurements whenever it is available. This means
there may be a time stamp n without measurements of robot k. In order to
account for this "no measurement available case", we just set the precision of
the corresponding element �k[n] to zero. This causes the line k of the equation200

system (5) to be ignored in the probabilistic formulation, as will become obvious
from the next section section.

3. Probabilistic Inference Framework

Our motivation for using a probabilistic formulation of the gas di�usion
model is twofold. First, the probabilistic formulation naturally permits us to205

account for a possible model mismatch between the actual gas dispersion process
and the used PDE model (1). Second, it will allow us to quantify the uncertainty
of the explored process in di�erent regions of the domain 
. This property forms
the basis for our exploration strategy, as we will show later. In particular, we use
information-theoretic tools to quantify uncertainties (see Section 3.2 for more210

details).
In the probabilistic setting the gas concentration vectors f [n] and source

strength vectors u[n] are modeled as random vectors. The underlying proba-
bilistic structure will be explained in the following.

3.1. Bayesian Formulation215

As a �rst step, we relax equation (3). In particular, we assume that C
equations in (3) are allowed to deviate from zero. This deviation { the residual
of a grid cell{ is a normally distributed random variable with zero mean and
precision �s. These residuals are assumed to be conditionally independent and
identically distributed for all grid cells in 
. The latter assumption is reasonable220

since equations in (3) essentially \act" locally on neighboring cells. The role of �s
is to regulate our trust in the model: with �s !1 we recover the deterministic
case, which encodes the assumption that the dispersion process is accurately
represented by (1). For small �s we allow the dispersion process to deviate from
the model (1) and thus \tolerate" other dynamical e�ects that are not captured225
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with a pure di�usion. This relaxation is an important feature of the presented
approach, since we are able to parametrize our trust in the model by a single
scalar value with a physical interpretation.

Under the above assumptions and using (3), we can now de�ne the condi-
tional Probability Density Function (PDF) of the gas concentration distribution
f [n] at time n as

p(f [n]jf [n�1];u[n]) /
CY

c=1

e�
�s
2 (rc(fc[n];fc�1[n];fc+1[n];fc�J [n];fc+J [n];fc[n�1];uc[n]))2

:

(6)
In a similar way the measurement model is casted in a probabilistic setting.

Based on (5) and the assumed Gaussian noise characteristics we can formulate
the gas concentration likelihood function as follows:

p(y[n]jf [n]) / e�
�m

2 kM [n]f [n]�y[n]k2
/

KY

k=1

e�
�m

2 (mk[n]T f [n]�yk[n])2

: (7)

To complete the probabilistic formulation of our model, we also need to
specify two prior PDFs: an initial gas concentration f [0] and a source prior230

PDF p(u[n]).
The source prior p(u[n]) is a mechanism that we use to incorporate our

assumptions about the source sparsity. To do so we appeal to Sparse Bayesian
Learning (SBL) techniques [27]. This approach we �rst proposed in [23]. In the
following we only give a short summary of the approach and refer the reader to
[23] for more details. We introduce a new hyper-parameters 
c[n] for each cell.
The hyper-parameters 
c[n] represent the parameters of the prior for uc[n]; they
are treated as random variables and are estimated along with the other model
parameters. Sparsity is introduced through construction of a hierarchical prior
p(u[n];
[n]), which is parameterized with hyper-parameters 
[n] as follows:

p(uc[n]
��
c[n]) = N(uc[n]j0; 
�1

c [n])
p(
c[n]) = Ga(
c[n]ja
 ; b
); c = 1; : : : ; C:

(8)

where Ga(�ja; b) is a gamma PDF with parameters a and b. The product
p(u[n]j
[n])p(
[n]) de�nes a so called Gaussian scale mixture [28].1

Here we will make use of a popular version of SBL that uses non-informative
hyper-prior p(
c[n]) / 
c[n]�1 obtained when a
 ! 0 and b
 ! 0 [29, 30, 27].235

This prior can be recognized as a non-informative Je�rey’s prior. The motiva-
tion for this choice is twofold. First, the resulting inference schemes typically
demonstrate superior (or similar) performance as compared to schemes derived
based on other hyper-prior selections [28]. Second, very e�cient inference algo-
rithms can be constructed and studied [31, 32, 33, 34, 35].240

1 A recent work [28] extends the framework by generalizing p(u[n]j
[n]) to be the PDF
of a power exponential distribution, which makes the hierarchical prior a power exponential
scale mixture distribution.
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The �nal ingredient is the prior gas concentration p(f [0]). Since we have no
information about the initial gas concentration distribution, we choose p(f [0])
with zero mean and a very high variance: p(f [0]) =

QC
c=1 N(fc[0]j0; 103).

Now, using Bayes theorem we can construct the desired posterior PDF for
the processes of interest by combining (6), (7), (8) and the prior p(f [0]) as
follows:

p(f [0]:::f [N ];u[1]:::u[N ];
[1]:::
[N ]jy[1]:::y[N ]) =

p(f [0])
NY

n=1

p(y[n]jf [n])p(f [n]jf [n� 1];u[n])

CY

c=1

p(uc[n]
��
c[n])

CY

c=1

p(
c[n]):

(9)

Let us point out that the prior p(u[n];
[n]) not only re
ects the fact that
there are only a few \active" cells with sources, but also plays the role of a245

regularization term in a classical deterministic setting. To be more precise,
inspecting the log of a posterior (9) would reveal that the prior (8) introduces a
penalty term

P
c 
c[n] (uc[n])2, which is a weighted ‘2-norm of the vector u[n].

From a perspective of exploration the regularization is an important part of
the observation procedure. In fact, solving equations arising from the FDM for250

u[n] without the regularization would not be possible at early phases of the
exploration, since there would be too few measurements available.

3.2. Uncertainty Quanti�cation
The key idea of our exploration strategy is to direct robots to regions, where

our knowledge about the explored process is currently low. This requires a255

mechanism for quantifying the information we have about the process itself or
about process parameters. If the uncertainty about the gas concentration value
or source strength in a grid cell is high, then this grid cell is a good candidate for
the next measurement location. In the following we present how the uncertainty
could be quanti�ed based on the developed probabilistic model.260

Indeed, the PDFs of variables associated with a grid cell { gas concentration
or source intensity { can be used to compute the amount of information we
have about these variables. In order to evaluate only a single grid cell, we
calculate the marginal PDF for each cell based on the joint posterior (9) by
integrating over all other variables and parameters. While in simple cases like265

a Gaussian distribution, the marginal PDF could be calculated in closed form,
the introduction of the Gamma distribution in the hierarchical prior prevents
an analytical calculation in our case. Yet as we will show, the marginalization
can be performed e�ciently by representing (9) using a factor graph [36] and
performing inference on this graph using message passing algorithms (see also270

[23]). This algorithm and its implementation is described in more detail in the
next section. As a result we obtain the marginal distribution of the source
strength uc[n] and gas concentration fu[n].
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It has been shown in [23] that the marginal distributions of both gas concen-
tration and source intensity in a grid cell can be approximated with Gaussian275

PDF. As such, the second order moments of these variables can be used as a
gauge of the information content2. Speci�cally, the variance of a cell is used
to quantify the corresponding cell uncertainty; cells with a higher variance are
more uncertain and therefore are more \interesting" as potential location for a
new measurement. In this context \interesting" means that a measurement at280

this location will help to reduce the error in the parameter estimation more, as
compared to other locations.

4. Distributed Inference Algorithm

As described in the previous section, marginal PDFs of the variables can be
used to quantify of the uncertainty of the latter. This is the key to the proposed285

exploration strategy. As closed form solutions are rarely available, a numerical
estimation of the quantities of interest is needed. In this chapter we discuss
how to calculate these PDFs in a distributed fashion based on the graphical
formulation of the posterior (9). This graphical representation is used to derive
a MP algorithm that calculates the marginal PDFs of the required variables in a290

distributed fashion. Further we show how this algorithm is implemented on our
multi-robot system in a distributed fashion. The derivation of the algorithm is
detailed in [23], to which we refer the interested reader for further details. In
the following we will merely summarize the key inference steps and expressions.

4.1. Factor Graph Representation295

Our inference algorithms is based on representation of the posterior PDF (9)
using Factor Graphs (FGs) [36, 37]. A FG is an undirected bipartite Bayesian
network being composed of value nodes, which represent random variables, and
factor nodes, which model functional dependencies between variables according
to the factorized representation of a joint PDF. In our case, the factorized rep-300

resentation of the latter is obtained by inserting equation (6) into (9). Figure 1
depicts the FG for our posterior PDF (9) for a single cell c and a time instance n.
The variable nodes (depicted as spheres) correspond to the random variables of
the concentration fc[n], source strength uc[n] and hyper-parameter 
c[n]. These
variables are related to each other via factor nodes, depicted by cubes in the305

�gure and represented by capital letters. The factor nodes model the depen-
dencies and constraints according to the factorized posterior formulation. Four
types of factors can be identi�ed in the graph. A factor node Yc represents a
measurement taken by an agent at the cell c. This factor formally represents the
likelihood function (7). Clearly, this factor is only present whenever a measure-310

ment at the cell c has been performed; it is absent when no measurement has
been taken at this location. The next factor node Rc represents the PDE model

2Recall that for a Gaussian random variable the entropy is related to the square root of
the variable’s variance.
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Figure 1: Factor Graph: This graph represents the part of the posterior PDF associated with
a single grid cell. It models the relations between variable nodes (spheres) by factor nodes
(cubes).

in (1) and the used discretization the model. According to the used discretiza-
tion, the Rc relates the concentration value fc[n] to that of the neighboring grid
cells together with the source strength uc[n] in this cell according to (6). The315

other two factor nodes Gc and Hc represent the parametric prior p(uc[n]
��
c[n])

and the hyper-prior p(
c[n]) in (9), respectively.

4.2. Message Passing Algorithm
Inference on FGs can be e�ciently implemented using MP algorithms [36,

37]. MP is a powerful tool to calculate marginal distributions of random vari-320

ables given a FG. For the considered problem two algorithms are used: the sum
product algorithm [38] (also called loopy belief propagation) and variational MP
[39]. The latter is particularly handy when approximate inference is desired, as
will be discussed later.

In both cases, the MP algorithms work as follows. Certain messages are ex-325

changed between nodes of the FG along the edges: from factor nodes to variable
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nodes and from variables to factors. The messages represent probabilistic den-
sities functions, or beliefs. By iteratively exchanging messages between nodes,
the outgoing messages of variable nodes converge to the marginal distribution of
the corresponding variables. In the following we will use the following notation330

to denote messages. For a message outgoing from a node A towards a node B
we will use notation mA!B.

The challenge in application of MP algorithms is the computation of the
messages. In our case for the graph Fig. 1 it can be veri�ed that all messages
connected to factors Rc and Yc could be calculated according to the sum product335

algorithm. Moreover, the messages are Gaussian PDFs. As such they can be
presented as mA!B = N(xj�A!B; �A!B

�1) where �A!B is the message mean
and �A!B is the message precision. For our model these can be computed
analytically in closed form. Only these two values have to be communicated
along the edges of the graph to fully communicate the belief. The rules for340

calculating the messages are summarized in Table 1 (see also [23] for a detailed
derivation of the message expressions). Let us also remark, that the message
�Yc!fc[n] corresponds to the actual measured value and N (c) denotes the set of
all neighbored cells of c excluding c itself.

to simplify further notation let us also introduce two auxiliary vectors

sc[n] = [fc[n]; fc�1[n]; fc+1[n]; fc�J [n]; fc+J [n]; fc[n� 1]]T

and
zc[n] = [fc�1[n]; fc+1[n]; fc�J [n]; fc+J [n]; fc[n� 1]; uc[n]]T ;

which aggregate all concentrations fc02N (c) together with fc and the source345

strength uc, respectively.
In contrast to the message listed in the Table 1, the messages related to the

sparsity-inducing source priors for the factor nodes Gc and Hc are not analytical
tractable by the sum-product algorithm. Therefore, we use the Variational
Message Passing (VMP) techniques to compute analytical approximation of350

the messages. Moreover, as we have shown in [23], it is possible to compute
�xed point expressions for the VMP inference expressions and thus accelerate
convergence. Combining this with the other messages computed using the sum-
product algorithm leads to simple update rules for the message muc[n]!Rc as
summarized in Table 1. We would like to stress that the FG in Fig. 1 represents355

only a single cell. The overall graph requires computing the messages for all cells
and factors. Nonetheless, those messages could be calculated in closed form and
in random order or all at once in parallel. This 
exibility makes the algorithm
particularly suitable for a distributed implementation on a multi-robot system.
To this end, we split the overall graph into di�erent parts that correspond to360

di�erent 2D regions of our environment. A simpli�ed version of the overall FG
and the partitioning of this graph are exemplarily shown in Fig. 2. For the
sake of clarity, the connections to nodes of the previous time stamp are not
displayed. Further, the nodes Yc are only exemplarily shown for some cells,
where it is assumed that a measurement was taken. Each region (i.e. sub-365

graph) is assigned to one robot of our multi-robot system and each robot is able
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to calculate all messages related to its own part. The edges crossing the border
of a region are marked as red lines in Fig. 2. These messages communicated
over these edges have to be exchanged between the robots via an communication
link. At the current status of our work we divide the region in rectangular sub-370

regions with equal number of nodes and assign those randomly to the robots.
Of course one can think of more intelligent ways to assign the sub-regions to
robots in order to minimize communication load or allow communications only
between neighboring robots.

Figure 2: Distributed Factor Graph: This �gure illustrates the overall factor graph. This is
a simpli�ed version without time dependencies. The graph is spatially split into four regions.
Big arrows represent messages that are communicated between di�erent agents.

5. Exploration Procedure375

After convergence of the messages, we obtain marginal PDFs of all the vari-
ables in the graph. Our interest is in the posterior variances of source variables
uc[n], c 2 f1; : : : ; Cg, as it can be used to quantify the uncertainty about the
sources at the corresponding cells (see Section 3.2). The latter is used by each
robot to propose potential cells of interest for making new concentration mea-380

surements, as explained in the following.
First, the cells are rated according to the inverse variance, i.e., precision

�c[n], of the source strength marginal p(uc[n]) / N(ûc[n]; �c[n]). Then, a pre-
de�ned number P of cells with the lowest precision is selected as a proposal for a
new measurement locations. These P cells are computed as follows: each robot385

selects K cells with the lowest precision using part of the graph it is responsible
for. These cells are then combined with proposals of the other robots, such that
a total of P cells is obtained. Let us note that although each robot generates
possible way points using only its own part of the factor graph, it uses a global set
of possible measurement positions to make measurements. Once an assignment390

is made, the selected measurement location is removed from the list of potential
way points to avoid inter-agent con
icts. Clearly, this requires a corresponding
coordination protocol to communicate decision to other members in the swarm.
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Figure 3: Exploration Procedure: The exploration is implemented with two main loops. The
right loop solves the PDE and produces new way point proposals, the left one controls the
individual robots.

After the assignment of the measurement location to a robot in the swarm
is made, the robot moves to the selected way point. Despite robots are assigned395

di�erent way points, a collision avoidance mechanism is needed to avoid inter-
robot collisions.

In our work we used a reactive collision avoidance strategy. On its way, the
robot monitors the current distance to all other robots based on received position
information. If the distance reduces below a pre-de�ned safety threshold, i.e.,400

when two robots are getting too close, the robot stops and selects another way
point from the set of available proposals such as to increase the distance itself
and the other robots on a collision course. Finally, when a robot reaches its
goal, it makes a measurement which is then incorporated in the algorithm, after
which the whole exploration cycle is repeated.405

The overall procedure is depicted in Fig. 3. As can be seen, the robotic
navigation and solution of the PDE actually run in two separate loops. These
loops run independent of each other and asynchronously. The loop responsible
for solving the PDE and updating the way point proposals runs with a constant
frequency of 1Hz (Ts = 1s). The navigation loop of the robots is not synchro-410

nized with the calculation loop. It just considers the last available generated
list of way point proposals, but does not wait for an up-to-date list. Further
the navigation loop does not run with a constant frequency, since the time to
reach a new measurement location always di�ers on the distance to the new
location. We would like to stress that the navigation loop of each robot is also415

not synchronized with other robots. Thus no robot has to wait for results of
the other robots. Whenever a measurement becomes available at a time stamp
n, it is directly inserted into the PDE solver. Hence, the two loops are only
connected by the exchange of proposed way points and measurements.

Let us also point out that the presented approach models the source strengths420
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as a time dependent variable, i.e. u[n] is a function of time n. Thus the
algorithm can handle appearing and disappearing sources (see also [40]). Since,
the algorithm is not only supposed to �nd the source but also to monitor the
sources afterwards, it is not possible nor desired to de�ne a clear termination
criterion. However, in the following experimental evaluation, we kept the source425

strengths constant over time. The experiments were stopped by the operator as
soon as no apparent change in the estimates was observable anymore.

6. Experimental Setup

(a)

(b) (c)

Figure 4: Experimental setup: Picture (a) depicts the robotic platform carrying the gas sensor.
The schematic in (b) shows the design of the arti�cial gas source and (c) a picture of the actual
realization, however, on this picture the rovers are not equipped with gas sensors.

Evaluation of gas mapping or gas source localization strategies in realistic
real-world scenarios is in general quite hard [41]. While ground truth data may430

be available for source locations, this is not the case for the gas concentration
distribution. Even though in this work we mainly focus on the gas source local-
ization, for better understanding of the used approach, an accurate estimation
of the gas concentration is also of interest. To address these issues we therefore
analyze our exploration strategy in two di�erent types of experiments.435

First, we carry out hardware-in-the-loop experiments with synthetic gas dis-
persion. This implies that a real robotic system is used, yet the gas dispersion
process is simulated. In this way we obtain ground truth data of the source
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distribution and gas concentration from the simulation. However, the simula-
tion uses the same mathematical model as the model-based exploration strategy.440

This perfect model match is not usually observed in reality. For this reason, we
also carried out experiments with real gas, more speci�cally with ethanol vapor
and a robotic swarm in lab conditions.

For our experiments, small, custom-built ground robots are used. Each robot
is equipped with a Raspberry Pi 2 { a low power single-board computer with445

Linux OS (900MHz quad-core ARM Cortex-A7 CPU, 1GB RAM). From this
computer it is possible to send control commands to a micro-controller that
implements a velocity controller for two motors driving the tracks of the robot
(see Fig. 4a). The experiments are done in a laboratory with a commercial
optical tracking system. Using active infrared LEDs mounted on the robot the450

tracking system is able to compute accurate robot location and orientation in
realtime with an accuracy of � 1cm. This can be considered as an almost
perfect localization with respect to the discretization of the environment with
a cell size larger than 10cm. We used from 3 to 5 robots in the experiments.
Robot are able to exchange data through a WiFi communication link. Also,455

through this link the robots receive their current positions. The interconnection
of all involved components is implemented using the Robot Operating System
(ROS) 3. We now outline the setting for the two experiments.

In the hardware-in-the-loop experiments, the gas di�usion is simulated for
a two dimensional case. The data are generated according to equation (1).460

Whenever a measurement is demanded by the exploration procedure for a robot,
the equation is evaluated at the current position of the robot. Additionally, we
perturb the measurement with an additive white noise �. For the evaluation
of the PDE a Finite Volume Method solver is used [42]. The used spatial
discretization grid has 12 � 30 cells. For our example scenario we have chosen465

Dirichlet boundary conditions f(x; t) = 0, except for the right border, where
we use a Neumann boundary condition @f(x;t)

@x = 0. This would correspond
to an open �eld scenario, where material can 
ow o� at all boarders except
for the right one because of e.g. a wall or a similar obstacle. Note that in
this setting the system will not reach a steady state. Thus, we can be sure to470

observe a dynamic process. For the virtual gas simulation we considered the
concentration and source strengths as unit-less. The discrete grid size, the time
di�erence between two discrete time stamps and the di�usion coe�cient � are
set to 1 in the simulation. However, later the concentration �eld is �tted to
match our laboratory environment with a scale of 6x2:4m.475

For the second experiment with the ethanol gas, the robots are equipped
with a MiCS 5524 metal oxide gas sensor (SGX Sensortech Ltd, Switzerland).
The sensor voltage is measured with an AD-converter of an ESP8266 micro-
controller, which provides the sensor reading to the whole system via wireless
LAN. In order to convert the binary values of the ADC to concentrations, we
used the data sheet of the sensor [43], which speci�es a linear dependency in the

3http://www.ros.org/
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log-log domain between the sensor’s resistor Rs and the ethanol concentration.
Therefore, we model this dependency by an exponential function [44] as follows:

y = � �R�s ; (10)

where y is the measured gas concentration plugged into our Bayesian approach
(i.e. y = �Yc!fc[n]). The parameter � in (10) corresponds to the slope of the
sensor sensitivity in the log-log domain. According to the data sheet it is set
to � = �1:6. The parameter � was chosen in such a way that y is normalized
to be unit-less and roughly in the range of [0; 1]). In this way, we can use
the exact same parametrization of the algorithm as in the hardware-in-the-loop
case, where we considered unit-less concentration and source values in the same
range. Further, the parameter � is individually adjusted for each sensor (or
each robot in our case) so that the sensor responses are roughly the same across
the swarm when exposed to the same constant concentration. In our case � was
chosen to be approximately 10. The resistor Rs was calculated according to the
measured voltage drop U on a load resistance RL of a voltage divider consisting
of Rs and RL as follows:

Rs = RL (5V=U � 1) / (5V=U � 1) : (11)

We would like to remark that we incorporate RL in the constant � when insert-
ing (11) into (10).

As a toy gas source in the experiments we used ethanol evaporating from a
culture dish (8cm diameter) �lled with approximately 5g of 94% ethanol assay.
Above the culture dish we mounted a small fan (see Fig. 4c). The air
ow caused480

by this fan avoids a saturation of ethanol concentration in the layer above the
liquid. Thus, it accelerates the evaporation. Moreover, the air 
ow facilitates
a radial dispersion of the ethanol gas. The whole structure hangs down from
the ceiling, so that the robots are able to drive below the source without any
collision with the dish containing the alcohol solution. Finally, we would like485

to note that the culture dish is relatively small compared to the cell size of 20cm
and its height of 15cm over ground. In this way we make sure that no cell is
shadowed by the dish, and the highest concentration is still below the source.

7. Evaluation

In this section we summarize the results of our experimental studies. We be-490

gin with the analysis of the results for hardware-in-the loop experiment with the
proposed exploration strategy. Then, the second experiment with real ethanol
gas dispersion is discussed.

7.1. Hardware-in-the-loop exploration experiment
As we mentioned, in this experiment we intend to demonstrate the perfor-495

mance of the numerical Bayesian solver and benchmark the proposed exploration
strategy. Speci�cally, we compared the proposed exploration strategy against

18



Figure 5: Lab Environment: The picture shows our lab during an experiment. The simulated
concentration �eld is projected to the ground in a post-processing step.

exploration with a prede�ned sweeping trajectory for the case of 5 robots. The
sweeping trajectories are generated by simply dividing the environment into
�ve equal regions and generating a prede�ned \meander" trajectory for each500

of these regions. In literature this kind of trajectories are also referred to as
\lawn mower" path. In these trajectories the measurements will fully cover the
whole environment after a certain time, i.e. each grid cell is measured at least
once. This strategy is reasonable if no prior knowledge or model assumptions
are available. We compare the performance of the strategies by means of ef-505

�ciency (in terms of the required number of measurement samples needed to
achieve convergence of the source signals) and quality of the estimates in terms
of the achievable estimation error. Note that using the number of measure-
ment instead of using the actual time for the exploration is of an advantage in
our case, since the actual time highly depends on the time spent on making a510

measurement; these are di�erent for hardware-in-the-loop and real gas measure-
ments. Also, in order to see how well the spatially distributed sparse sources
u[n] are identi�ed, we use a so-called Earth Mover’s Distance (EMD) measure,
which is analogous to a Wasserstein metric for discrete distributions [45]. The
use of such distance metric is motivated by the fact that classical Mean Squared515

Error (MSE) does not adequately represent distances between sparse signals.
Instead, sparse signals are treated as distributions, and corresponding metrics
{ Wasserstein metric in a continuous case and Earth Mover’s Distance (EMD)
metric in the discrete case { better re
ect distances between estimated sparse
signals and the \ground truth" signal. In particular, EMD measures the e�ort520

needed to \displace" one distribution onto another one. In our case we use EMD
to compare the estimated vector u[n] with the ground truth vector û with all
elements set to zero except for the three cells containing a source.
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(a) (b)

Figure 6: Hardware-in-the-loop experiments: The �gure compares the meander trajectory
(a) and the proposed exploration strategy (b). The trajectories superimpose the simulated
concentration �eld. Note that the shown concentration �eld is only a snapshot at the cor-
responding time stamp of the trajectories. This �eld is time variant during the exploration
process.

We placed three sources in the environment with the following source am-
plitudes and locations: source 1 with û = 1:0 at x = �0:2m; y = �1:8m,525

source 2 with û = 1:0 at x = �0:6m; y = 1:0m, and source 3 with û3 = 0:8 at
x = 0:4m; y = 1:6m. The sources are placed so as to disclose di�erent aspects
of the source localization problem. One source is isolated in the lower region,
where the other two are more close to each other (see Fig. 6); the latter incurs
some strong spatial correlation between them. Further one of those is placed530

in an area with a generally higher concentration level. For a detailed study on
the e�ect of the number of sources, we refer the reader to [40]. Besides, we use
the Normalized Mean Square Error (NMSE) to quantify the gas concentration
estimation error, de�ned as jjf [n] � f̂ [n]jj2=jjf̂ [n]jj2, where f̂ [n] is a \ground
truth" gas concentration obtained by directly solving the PDE equation, Note535

that since f [n] is not sparse, the use of NMSE is justi�ed. The corresponding
results are shown in Fig. 6 and Fig. 7 for the considered experiment.

Fig. 6a and Fig. 6b present the trajectories of the meander and the proposed
exploration strategy. Let us re-iterate that the very nature of the proposed ex-
ploration strategy is adaptive, i.e., the algorithm will react to the made measure-540

ments. As such, the trajectory is not deterministic. The generated trajectories
are overlaid with the simulated concentration �eld computed at the time when
the sources were correctly identi�ed. It can be seen that the gas distribution is
driven by three sources located at the concentration peaks.
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(a) (b)

Figure 7: Hardware-in-the-loop results: The two plots compare the performance of the me-
ander trajectory and the proposed exploration strategy. In (a) the error is plotted measured
regarding the estimated source distributions by means of the Earth Mover’s Distance (EMD).
In (b) the Normalized Mean Square Error (NMSE) of the estimated concentration �eld com-
pared to the ground truth is shown.

Fig. 7 depicts the estimation performance for both source and concentration545

signals for the evaluated exploration strategies. The curves in Fig. 7a show
the EMD error between the estimated source distribution u[n] and the true
source distribution û in relation to the number of collected measurements. The
curves in Fig. 7b depict the NMSE between the estimated concentration �eld
and the ground truth. As we see, using the meander trajectory the multi-550

robot system is able to identify the source distribution after approximately 340
measurements. This is the location where the EMD drops e�ectively towards
zero. Our results show that measurements very close to the source are needed
to successfully identify it. Unfortunately, this means that the performance of
the meander trajectory highly depends on the position of the sources. If they555

are already covered at the beginning of the trajectory, fewer measurements are
needed. However, to be conservative the worst case has to be considered and this
means a full coverage of the region. In our example, 360 measurements would
be necessary for that. These �ndings question the meander trajectory as a good
reference strategy. For future work we would recommend other benchmark560

algorithms that do not su�er from this property.
In contrast to the meander, the curve for the proposed exploration strategy

converges after only 230 measurements in Fig. 7a. This indicates that robots
were able to identify the sources with fewer measurements. As can be seen
from the trajectory in Fig. 6b the measurements are concentrated around the565

source locations. Obviously, the corresponding measurements contain more in-
formation about the sources, which is the reason for a better performance of
the proposed exploration strategy. Based on Fig. 7b, it can be seen that the
estimated concentration �eld for both strategies reaches a low NMSE. Here
the performance of the proposed strategy is better, too. However subjectively570

speaking the di�erence is relatively small according to Fig. 7b.
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(a) (b) (c)

Figure 8: Meander trajectory: The �gure shows the results of sampling the real ethanol
gas distribution by means of a meander trajectory. Where (a) depicts the estimated gas
concentration �eld based on the PDE model, (b) respectively shows the estimated source
strength distribution. Here a single peak in x=0, y=0 was detected. These two distributions
correspond to the time stamp, when full coverage by the trajectories was reached. Further,
(c) illustrates the raw measurements taken at the location marked by a dot and linearly
interpolated in between. Additionally, the trajectories of the robots are shown in (b).

Additionally, the hardware-in-the-loop experiments enable us to analyze
other performance indicators of our algorithm and system properties. For ex-
ample we can measure the gross data rates containing all overheads caused by
ROS, OS, TCP etc. Speci�cally, in our case a data rate of less than 70kBytes/s575

is required for the communication link between two robots. This allows us to
de�ne speci�cations for a communication system required for future real-world
experiments. Similarly, we can investigate the processor load of the on-board
computers caused by the algorithm. In particular, the on-board computers were
able to generate way point proposals with an update-rate of 1:0Hz. This is fast580

enough for typical applications, especially when the measuring and recovering
time of MOX sensors are considered. These may be in the range of 1 � 20sec
for sensor’s response and in worst case up to more than 1min for the recovery
time [46].

7.2. Real Gas Experiment585

Now, we consider the experiment with a single real ethanol gas source. Here
we employ only 3 robots. In a �rst step we repeat the exploration with a prede-
�ned sweeping trajectory. In this experiment the ethanol source as described in
section 6 was placed in the middle of our 3m� 6m lab environment. This �eld
was discretized so as to create a 15 � 30 spatial sampling grid. In the experi-590

ment we assume Dirichlet boundary condition f(x; t) = 0 at the borders of the
exploration environment. Note that this assumption is only chosen due to a lack
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of the actual knowledge about the conditions at the border of the exploration
environment. Clearly, this also causes a mismatch between the reality and the
used model. Also, in order to take the inertia of the gas sensor into account595

(response time of the sensor is < 2s [47]) a speci�c measurement procedure is
designed as follows:

1. once the robot arrives to the target position, it stops
2. it then waits for 1s to allow the sensor to reach a steady state.
3. then, a measurement starts over the time period of 5s600

4. �nally, the robot moves to the next measurement position.

Thus, the actual measurement at one position is averaged over 5s. Such a long
measurement time is needed to reduce the measurement noise caused by the
ADC, or to smooth out short time-scale turbulence in the air
ow. However, as
the performance is measured with respect to the number of measurements, the605

actual time needed to take a measurement plays a minor role in the evaluation
of the results. We would also like to remark that the overall performance of
both considered strategies depends on the number of grid cells. Their number
scales with (i) the size of the considered environment and (ii) with the selected
spatial resolution, i.e. the size of the cell. The impact of the discretization of610

the exploration environment in this experiment we leave outside the scope for
this paper. For the direct comparison of the two experiments, we made sure
that the resolution and the number of cells in the environment is the same.

The results of the meander exploration are shown in Fig 8. In Fig 8b the
trajectories are plotted as an overlay above the estimated source strength distri-615

bution. The black peak at x = 0, y = 0 which indicates that a single source at
this location with an approximated strength of 0:6 was found. Fig 8a shows the
estimated gas concentration based on the PDE model. Further, Fig 8c depicts
the raw concentration measurements collected at the locations marked with a
dot. 4

620

As can be seen, the model-based estimated gas concentration in Fig 8a di�ers
from the raw observations in Fig 8c. Although the estimated gas distribution
exhibits a radial shape5, the real concentration shows an asymmetric pattern.
This asymmetric pattern with increased concentration in the lower left area
was observed during multiple sweeping experiments. A possible explanation for625

this phenomenon would be a room speci�c air
ow, caused by a none-airtight
door located in the lower left corner of the lab, or by an aligned temperature-
gradient in the room. Also, the air 
ow introduced by the fan placed over
the source may cause an asymmetric concentration distribution. Even though,
the observations of the real gas dispersion do not perfectly match our model630

assumption, the source position estimated based on the model is correct within
the accuracy of the discretization. Thus, the di�usion PDE approximates the

4Between the measurement locations the concentration was linearly interpolated to better
visualize the raw data.

5This is so since a di�usion PDE with a single source has a Gaussian function as a solution.
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(a) (b) (c) (d)

Figure 9: Proposed strategy: Here four snapshots of the estimated concentration and source
distribution are shown. In (a) after 30s and 6 measurements, in (b) after 120s and 30 measure-
ments, in (c) after 200s and 53 measurements and in (d) after 230s and 62 measurements. The
blue dots indicate the locations of measurements taken until the corresponding time stamp.

real gas dispersion su�ciently well in the scenario considered here. It shows
the advantage of the probabilistic approach that is able to deal with imperfect
model assumptions.635

As we can see from the experiments with a meander-based movement strat-
egy, having a su�cient number of measurements allows a PDE-based di�usion
model to approximate well the gas and source distribution. Now, in the second
step we switch to the proposed model-based exploration strategy as described
in Section 5. We also keep the same experimental setup. The results of the an640

experiment run are exemplarily shown in Fig. 9. In Fig. 9a to 9d snapshots of
the estimated concentration and source distribution are shown.

In Fig. 10 we compare the performance of the meander trajectory with that
generated by the proposed exploration strategy using the same EMD and NMSE
metrics as in �rst experiment. Let us also point out that for some time instances645

the estimated source distribution was exactly equal to zero for all grid cells. For
these cases the EMD criterion could not be computed. Thus, we excluded these
occurrences from the performance plot in Fig. 10a and linearly interpolated the
error curve; these segments are indicated by dotted lines.

From the EMD plot it can be seen that the meander trajectory correctly650

identi�es the source after approximately 225 measurements, as indicated by the
convergence of the error curve. The 225 measurements correspond to exactly the
half of all 450 cells. In other words the robot of the second trajectory (i.e. green
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in Fig. 8b) is very close to the source. This shows once more that measurements
close to the source are very important for the reconstruction. Unfortunately, it655

also shows that the performance of the meander highly depends on the position
of the source. This is a general drawback of the meander trajectory. In contrast
by the proposed strategy the robots were able to identify the source with less
than 100 measurements. At this point let us comment on the discretization
that was used. A perfect localization within the accuracy of the discretization660

corresponds to an EMD error of less or equal to 1. This is due to the fact
that in our setup the actual source is located at the edge of two cells, but for
calculating the EMD we consider the ground truth source distribution as a single
peak located only in one cell.

Now, let us study the MSE performance. In contrast to the hardware-in-665

the-loop experiments, in the real world experiments the NMSE in Fig.10b of the
estimated concentration is rather high, especially, in case of some runs with the
proposed strategy. Of course, this is not a very precise performance indicator,
since the concentration was not compared to real ground truth values but to
the collected raw data by the meander trajectory. However, it gives a �rst hint670

on a certain mismatch between the model assumptions of the gas dispersion
and reality. Besides, the meander strategy achieves a lower NMSE in Fig.10b
compared to the proposed strategy. While the EMD error plot shows that
the proposed strategy is better for source localization since it achieves a low
estimation error for the source distribution faster, for concentration mapping675

tasks a prede�ned sweeping trajectory may be better since the accuracy of the
estimated concentration �eld is better according to the NMSE when model
mismatches are present.

Still the NMSE is very high. Unfortunately in the real world experiment this
can be either caused by a wrong reconstruction (i.e. model mismatch) or the680

way we de�ned our "ground truth". For example we consider only a static map
based on the raw measurements as ground truth, however the gas concentrations
is a dynamic process that changes over time.

8. Discussion and Conclusion

The results of the experiments have shown that a model-based exploration is685

of advantage for sampling a gas di�usion process in order to localize gas sources.
Using an intelligent exploration strategy, the number of required measurements
can be reduced while the capability to locate gas sources and to some degree
also to map the gas distributions is preserved. This property is favorable for
applications, where a measurement is expensive or consumes a lot of time.690

The potential of the presented approach arises from the uncertainty driven
strategy for taking new measurements in combination with the assumption that
the sources are sparsely distributed in the environment and their number is
small. This assumption is encoded with a prior PDF that assumes the proba-
bilistic source strength distribution to have zero mean and unknown variance.695

Under this assumption evidence for a source with non-zero posterior mean e�ec-
tively \contradicts" this prior assumption; as such the uncertainties of the esti-
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(a) (b)

Figure 10: Performance in real experiments: The two plots compare the performance of
the meander trajectory and the proposed exploration strategy. In (a) the error is plotted
regarding the estimated source distributions by means of the Earth Mover’s Distance (EMD).
Here ground truth data were available. The plot (b) shows the Normalized Mean Square
Error (NMSE) of the estimated concentration �eld compared to the raw data collected by the
meander in Fig 8c.

mated sources in the corresponding regions grow. As a consequence, the robots
concentrate their measurements on informative regions around the sources ac-
cording to the proposed exploration strategy. It also implies that based on our700

approach robots tend to repeat measurements at the same location several times
in contrast to classical coverage or sweeping algorithms where each point in space
is only measured once. Intuitively, this feature is not counter-productive and
seems to be important for monitoring dynamic processes. Repetitive measure-
ments do provide information about time dependencies and are able to reduce705

the impact of noise. On the down side we observed that favoring the regions
around the sources, may cause single robots to get stuck in the neighborhood of
a source. This may prevent - under certain conditions - to discover all sources.
However, we did not observe this in our experiments. Multiple robots, however,
are able to e�ectively reduce the uncertainty around the sources by multiple si-710

multaneous measurements, and individual robots can "escape" from the source
location. In future work a mechanism to declare a source as being found, after
its PDF has converged, may also help to explore other regions not visited yet.

In the hardware-in-the-loop experiments we have shown the potential of this
model-based multi-robot exploration for gas source localization. While it seems715

obvious that prior information based on a model facilitates the exploration, it
is unclear how the model-mismatch between the used dispersion model and real
gas dispersion a�ects the exploration. Unfortunately a detail analytical study or
quanti�cation of the model mismatch is impossible in real world conditioned by
the lack of ground truth data. However, it would be possible to setup simulations720

with a de�ned discrepancy in the model used by the exploration strategy and
the one used by the simulator. This is part of our future work. Nevertheless,
from the practical point of view in the experiments with ethanol gas we have
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shown that our exploration approach is able to handle a certain degree of model-
mismatch quite well. The high error between the reconstructed concentration725

�eld and gas measurements indicates clearly that the model does not �t perfectly
to the observations. Nonetheless, the exploration strategy is able to identify the
source, despite model mismatches.

We believe that key reasons for the model mismatch are turbulence and
advection mechanisms that are not explicitly represented with (1), yet repre-730

sent important phenomena in reality. Incorporation of these e�ects into the
model is part of future work. For example, the advection-based di�usion can be
incorporated directly into the PDE through a convection term.

A further important advantage of the presented approach is its robustness
with respect to the sensor calibration. Correct concentration measurements735

with exact scaling are not needed. Instead normalized concentration values are
su�cient as long as the outputs of the sensors on di�erent robots are all in
the same range. Moreover, we noticed that it is even possible to localize the
source when a linear relation between the concentration and the sensor voltage
is assumed.740

Nonetheless, there are also some limitations of the presented approach. For
instance in the experiments the source was placed in the middle of the region
to be explored. In general it is easier to locate a source that is farther away
from the border. Furthermore, only one source was considered in the real world
experiments. Thus, additional experimental studies should be considered in745

future work.
In summary, let us mention that realistic gas dispersion problems are com-

plex dynamical processes. From a practical perspective having a very complex
model that adequately represents reality might lead to computationally very
complex inverse problems. Instead, simpler probabilistic models, like the one750

used in this work, can be seen as a numerically feasible approximation, which
can be estimated based on concentration measurements in an adequate (in the
context of robotic exploration) amount of time.

Appendix A.

In Section 7.2 we have shown a single exemplary experiment run. Of course755

we performed several runs to evaluate our approach. However, in order to
compare two di�erent runs it would be necessary to have similar environmental
conditions. The two runs (meander and proposed strategy) are carried out
immediately after each other within less than 30min. With an increasing time in
between experiments the environmental condition changes. For example because760

of the evaporation ethanol the background concentration level is rising. Further
because of di�erent temperature gradient in the room at di�erent times of the
day, the air 
ow may look di�erent. Nevertheless, we present four experiment
runs in Figure A.11, where the fourth correspond to the experiment presented in
Section 7.2. The other three were carried out at di�erent days. A comparison765

based on the EMD is still valid since the source position has not changed.
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However, the NMSE should be considered with caution because of possible
changes in the environmental conditions.

(a) (b)

Figure A.11: Performance in real experiments: The two plots compare the performance of the
meander trajectory and the proposed exploration strategy in four di�erent experiment runs.
In (a) the error is plotted regarding the estimated source distributions by means of the Earth
Mover’s Distance (EMD). Here ground truth data were available. The plot (b) shows the
Normalized Mean Square Error (NMSE) of the estimated concentration �eld compared to the
raw data collected by the meander.
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