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Abstract

This thesis addresses the problem of people detection and tracking by
mobile robots in indoor environments. A system that can detect and
recognise people is an essential part of any mobile robot that is designed
to operate in populated environments. Information about the presence
and location of persons in the robot’s surroundings is necessary to enable
interaction with the human operator, and also for ensuring the safety of
people near the robot.

The presented people tracking system uses a combination of thermal
and colour information to robustly track persons. The use of a thermal
camera simplifies the detection problem, which is especially difficult on
a mobile platform. The system is based on a fast and efficient sample-
based tracking method that enables tracking of people in real-time. The
elliptic measurement model is fast to calculate and allows detection and
tracking of persons under different views. An explicit model of the hu-
man silhouette effectively distinguishes persons from other objects in the
scene. Moreover the process of detection and localisation is performed
simultaneously so that measurements are incorporated directly into the
tracking framework without thresholding of observations. With this ap-
proach persons can be detected independently from current light condi-
tions and in situations where other popular detection methods based on
skin colour would fail.

A very challenging situation for a tracking system occurs when mul-
tiple persons are present on the scene. The tracking system has to esti-
mate the number and position of all persons in the vicinity of the robot.
Tracking of multiple persons in the presented system is realised by an ef-
ficient algorithm that mitigates the problems of combinatorial explosion
common to other known algorithms. A sequential detector initialises an
independent tracking filter for each new person appearing in the image.
A single filter is automatically deleted when it stops tracking a person.

While thermal vision is good for detecting people, it can be very
difficult to maintain the correct association between different observa-
tions and persons, especially where they occlude one another, due to the
unpredictable appearance and social behaviour of humans. To address
these problems the presented tracking system uses additional informa-
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tion from the colour camera. An adaptive colour model is incorporated
into the measurement model of the tracker to improve data association.
For this purpose an efficient integral image based method is used to
maintain the real-time performance of the tracker.

To deal with occlusions the system uses an explicit method that first
detects situations where people occlude each other. This is realised by
a new approach based on a machine learning classifier for pairwise com-
parison of persons that uses both thermal and colour features provided
by the tracker. This information is then incorporated into the tracker
for occlusion handling and to resolve situations where persons reappear
in a scene.

Finally the thesis presents a comprehensive, quantitative evaluation
of the whole system and its different components using a set of well
defined performance measures. The behaviour of the system was inves-
tigated on different data sets including different real office environments
and different appearances and behaviours of persons. Moreover the in-
fluence of all important system parameters on the performance of the
system was checked and their values optimised based on these results.
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Chapter 1

Introduction

1.1 Motivation

Many applications require or could benefit from a system that could
“look” at people and answer relevant questions about them. The ulti-
mate people recognition system would be able to answer questions such
as: “are there any persons in the surroundings?”, “how many persons
are there?”, “who are they?” and “what are they doing?” (see Fig. 1.1).
Such a system could assist or completely replace a human operator in
tasks that are too complex, difficult, monotonous, boring or badly paid.
In addition it would open the possibility for completely new and interest-
ing applications. Examples of existing systems involving people recog-
nition are: automated surveillance systems that can detect an intruder
or suspicious behaviour in public places, security systems verifying the
identity of a person that limit the access to restricted areas, and driver
assistant systems that can detect pedestrians and warn the driver in ad-
vance about possible danger. Other systems providing detailed analysis
of human body movement are used in fields such as medicine, sports or
for creating virtual agents in computer graphics and games.

A system that is able to “see” humans would also be an important
component of a mobile robot that operates in a populated environment.
Until now robots were used mainly in industrial applications, being de-
ployed in highly controlled environments and having little or no possi-
bility of interaction with people. In addition the mobility and autonomy
of these robots was very limited. Recently, however, more and more mo-
bile robots are designed to operate in populated environments. These
so-called service robots are designed to work in hospitals, museums, office
buildings or supermarkets, where they perform tasks such as cleaning,
surveillance, entertainment, education and delivery. The autonomy of
these robots opens possibilities for new interesting applications. In the
future robots may also fight fires, rescue persons from the rubble, per-
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Figure 1.1: A generic people recognition system provides relevant infor-
mation about humans.

form as security guards, and assist elderly people or customers in super-
markets. To realise all of these applications such a robot needs to have
certain skills involving knowledge about people. First of all a robot must
be aware of human presence to be able to navigate safely without the
possibility of harming or disturbing people. A mobile robot should not
only avoid persons but also adapt its navigation strategy, for example,
to make way for people. A successful mobile robot, besides navigation
skills, would need also the ability to communicate and cooperate with
people.

An essential part of every people recognition system regardless of the
application is a component that detects and localises humans. This infor-
mation could be used by other components of the recognition system, for
example, to localise human faces used later by a face recognition module
or to localise body parts to recognise gestures or human behaviours. It
could also be used by other components of the specific application, for
example, by a mobile robot in navigation tasks such as avoiding persons
or person following. The work presented in this thesis is concerned with
people detection and tracking for mobile robotic systems.

1.2 The Problem

The main challenges for people tracking systems come from the fact that
people have articulated bodies and their appearance can change drasti-
cally depending on pose, view, clothes, self-occlusions of different body
parts, etc. Moreover their behaviour can be very unpredictable. To
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create a good model of persons it is necessary to extract common prop-
erties from all these variations either for all people (detection task) or
for specific individuals (identification task). A successful people tracking
system requires both these tasks to be solved, which leads to a trade-
off between specificity and invariance. This is why creating an effective
model of human appearance and behaviour can be a very complex task.
By contrast tracking of rigid and predictable objects such as cars is much
easier, which has resulted in many successful existing applications.

Other challenges appear when multiple persons are present on the
scene. The tracking system has to estimate the number and position of
all persons in the vicinity of its sensors. Additionally problems of occlu-
sions by other persons or objects arise, as well as problems related to the
identification of individuals including: the correct assignment of sensor
measurements to persons (i.e., data association), identification of per-
sons re-appearing on the scene (“have I seen this person before?”), and
absolute identification (“exactly which person is it?”). Solving each of
these problems would require an increased amount of resources: memory
of previous frames, previous tracks and of all individuals in the database,
and also increased computational demands. This thesis does not consider
the problem of absolute identification, focusing rather on reliable data
association and re-identification of temporarily occluded persons within
the tracking process. Use of different sensors and modalities further
complicates the whole problem, since data fusion has to be performed.

People tracking from a mobile platform differs in some aspects from
non-mobile applications. There are several requirements that have to
be fulfilled when designing mobile robotic systems. First of all useful
approaches for mobile robots are those that can be utilised from a dis-
tance, so methods popular in non-mobile applications based on scanning
of finger prints or the retina cannot be used. The ideal system should
be able to recognise humans in their natural environment, without re-
quiring any special registration or scanning procedure. The increased
amount of sensor noise caused by the movement of the platform requires
the methods to be robust. In addition robots operate in real-time and
their computational resources are limited so the methods used should
also be fast and efficient.

Our people tracking system meets these requirements:

e It is non-invasive, since the only sensors used are thermal and
colour cameras.

e It is robust, due to the use of a probabilistic tracking algorithm
and a thermal camera.

e It is fast, thanks to an efficient sample-based tracking algorithm
and fast calculation methods for gradient and colour measure-
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ments. It allows for tracking of several people in real-time simul-
taneously.

The basic information about the location of persons provided by a
tracking system can serve as a basis for designing more complex robotic
systems. Possible extensions include recognising gestures, face expres-
sions, intentions and behaviours. All these components would create a
perception system oriented towards humans. Depending on the robot’s
task, this knowledge could be used to interact with people, avoid them
and serve them, efficiently and reliably.

All of the issues and problems presented make the field of people
tracking an open field for research, leaving many possibilities for im-
provements. There is no single method that would solve all existing
problems related to people tracking and the right choice depends heav-
ily on the application.

1.3 The Proposed Solution

The people tracking system presented in this thesis was entirely im-
plemented on an ActivMedia PeopleBot robot (Fig. 1.2) and tested in
different indoor environments. The sensory information for the track-
ing system is provided by two robot cameras: thermal and colour. A
more detailed description of the robot and its environment is presented
in Chapter 3.

The people tracking system uses a combination of thermal and colour
information to robustly track persons (see Fig. 1.3). The use of a ther-
mal camera simplifies the detection problem, especially on a mobile plat-
form, and the colour information from a standard camera helps in situ-
ations with multiple persons. The system is based on a fast and efficient
sample-based tracking method. Tracking of multiple persons is realised
by an efficient algorithm that mitigates the problems of combinatorial
explosion common to other known algorithms. A sequential detector ini-
tialises an independent tracking filter for each new person appearing in
the image. Individual filters are automatically deleted when they stop
tracking persons. Information from the colour camera is first aligned
to the thermal image using an affine transform and after that it is in-
corporated into the tracking framework. A colour appearance model of
a person is calculated using an efficient integral image method. Occlu-
sions in the system are treated explicitly. A classifier learned using the
AdaBoost algorithm [Freund and Schapire, 1995] allows the tracker to
detect occlusions. Thus, the system can reason about occlusions in order
to resolve situations where persons reappear in a scene.

Classical people tracking systems usually handle the detection and
tracking tasks separately. This is done mostly to simplify the whole
problem. However, such an architecture can cause loss of information
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Figure 1.2: The ActivMedia PeopleBot robot PeopleBoy - the experi-
mental platform used for testing the people tracking system.

between these steps, in addition to the computational cost of detection
by exhaustive search of all possible poses of persons. Recent trends and
techniques consider these problems simultaneously (track-before-detect,
also called unified tracking [Stone et al., 1999]). Our system is designed
in this latter spirit, using a track-before-detect technique.

In this work we do not use a global representation of the environment,
but instead all interesting information about persons is expressed in sen-
sor coordinates. This makes our approach similar to image-based servo-
ing in robotic manipulators or behavior based robotics. In selected appli-
cations (e.g., a vision-based version of the “peg-in-a-hole” task [Yoshimi
and Allen, 1994], a can collecting task based on Brooks’ subsumption
architecture [Connell, 1989]) it has been shown that this approach can
lead to more successful applications, being more robust and computa-
tionally efficient than systems using a global representation. A mobile
robot with a people tracking system using a local representation of the
environment should be able to successfully perform tasks such as finding
and following persons in the neighbourhood, avoiding them, and inter-
acting with them. A global representation of the environment is usually
required in more abstract and complex tasks in combination with naviga-
tion behaviours that would allow a robot, for example, to find a person
in a specified location. Such systems would involve complex methods
providing more detailed information about humans at the cost of higher
resource demands.
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Figure 1.3: An overview of the people tracking system for mobile robots

presented in this thesis.
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1.4

Contributions

This thesis presents a people tracking system suitable for mobile robots.
The specific contributions presented in this thesis include:

Development of a vision-based people tracking system working on
a real mobile robot.

Introduction of a unified tracking method based on a particle filter
and fast contour model of a person using thermal information to
ensure a high frame rate and robustness to noise and occlusions.

Proposal of an efficient heuristic tracking algorithm enabling track-
ing of a varying number of persons without a combinatorial explo-
sion in the complexity.

A new fusion method combining thermal and colour information for
improved data association, using the integral image representation
to speed up processing.

Detection of occlusions using a combination of different visual
cues selected by a machine learning classifier. This functionality
is demonstrated by incorporating an explicit method of occlusion
handling into the tracker based on the occlusions detected.

A comprehensive, quantitative evaluation of the whole system us-
ing different performance measures.

1.5 Publications

Part of the content of this thesis has already been presented in a num-
ber of journal articles, conferences and workshops. Here is a complete
list of publications arising during the course of this Ph.D. study. The
publications are available on-line at http://aass.oru.se/pub/~gck.

Journal Articles

Grzegorz Cielniak, Achim Lilienthal and Tom Duckett. Multi-
modal People Tracking by Mobile Robots: combining colour and
thermal vision with learned detection and handling of occlusions,
Submitted.

André Treptow, Grzegorz Cielniak and Tom Duckett. Real-Time
People Tracking for Mobile Robots using Thermal Vision, Robotics
and Autonomous Systems, Vol. 54, Nr. 9, pp. 729-739, 2006.


http://aass.oru.se/pub/~gck

CHAPTER 1. INTRODUCTION

Maren Bennewitz, Wolfram Burgard, Grzegorz Cielniak and Se-
bastian Thrun. Learning Motion Patterns of People for Compliant
Robot Motion, The International Journal of Robotics Research,
Vol. 24, No. 1, 2005.

Grzegorz Cielniak and Tom Duckett. People Recognition by Mo-
bile Robots, Journal of Intelligent and Fuzzy Systems, Vol. 15, No.
1, pp. 21-27, 2004.

Conference Proceedings

Grzegorz Cielniak, André Treptow and Tom Duckett. Quantitative
Performance Evaluation of A People Tracking System on a Mobile
Robot, Proc. of the FEuropean Conference on Mobile Robots, An-
cona, Italy, September 7-10, 2005.

André Treptow, Grzegorz Cielniak and Tom Duckett. Comparing
Measurement Models for Tracking People in Thermal Images on a
Mobile Robot, Proc. of the European Conference on Mobile Robots,
Ancona, Italy, September 7-10, 2005.

André Treptow, Grzegorz Cielniak and Tom Duckett. Active Peo-
ple Recognition Using Thermal and Grey Images on a Mobile Se-
curity Robot, Proc. of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Edmonton, Alberta, Canada, Au-
gust 2-6, 2005.

Grzegorz Cielniak, Maren Bennewitz and Wolfram Burgard. Ro-
bust Localization of Persons Based on Learned Motion Patterns,
Proc. of the Furopean Conference on Mobile Robots, Radziejowice,
Poland, September 4-6, 2003.

Grzegorz Cielniak, Maren Bennewitz and Wolfram Burgard. Where
is ...7 Learning and Utilizing Motion Patterns of Persons with Mo-
bile Robots, Proc. of the International Joint Conference on Arti-
ficial Intelligence, Acapulco, Mexico, August 9-15, 2003.

Workshop and Symposium Papers

Grzegorz Cielniak and Tom Duckett, People Recognition by Mobile
Robots, Proc. of the Joint SAIS/SSLS Workshop, Lund, Sweden,
April 15-16, 2004.

Maren Bennewitz, Grzegorz Cielniak and Wolfram Burgard. Uti-
lizing Learned Motion Patterns to Robustly Track Persons, Proc. of
the Joint IEEE International Workshop on Visual Surveillance
and Performance Fvaluation of Tracking and Surveillance, Nice,
France, October 11-12, 2003.
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Grzegorz Cielniak, Mihajlo Miladinovic, Daniel Hammarin, Li-
nus Goransson, Achim Lilienthal and Tom Duckett. Appearance-
based Tracking of Persons with an Omnidirectional Vision Sensor,
Proc. of the IEEE Workshop on Omnidirectional Vision, Madison,
Wisconsin, USA, June 21, 2003.

Grzegorz Cielniak and Tom Duckett. Person Identification by Mo-
bile Robots in Indoor Environments, Proc. of the IEEE Interna-
tional Workshop on Robotic Sensing, Orebro, Sweden, June 5-6,
2003.

1.6 Outline

The reminder of this thesis is organised as follows:

Chapter 2 presents the state of the art in people tracking includ-
ing models and sensors used for detecting people, the theory be-
hind Bayesian state estimation together with an efficient solution —
the particle filter — and problems related to tracking of multiple
persons. We also include a brief review on person identification
and finally present existing applications of people tracking with a
special focus on mobile robotics.

Chapter 3 introduces the experimental set-up, including a mobile
robot and its sensors, on which the entire system was implemented,
and the process of collecting ground truth data together with the
metrics used for evaluation of different components of the system.

Chapter 4 presents a sample-based tracking filter enabling track-
ing of a single person in thermal images using an elliptic contour
model. The experimental section of this chapter presents the over-
all performance of the system and the influence of different system
parameters on performance.

Chapter 5 presents an extension to the basic system enabling
efficient tracking of multiple persons together with an evaluation
of the performance of the system.

Chapter 6 describes how the colour information is incorporated
into the system, including the solution to the correspondence prob-
lem between thermal and colour cameras, a compact and efficient
colour representation based on rapid rectangular features and data
fusion of thermal and colour modalities. The experimental section
provides a comparison of the performance of the system with and
without colour information.



10

CHAPTER 1. INTRODUCTION

e Chapter 7 presents an occlusion detector based on an AdaBoost
classifier using a combination of thermal and colour features to-
gether with the evaluation and analysis of the performance of the
detector. The learned occlusion detector is used for improved oc-
clusion handling. An evaluation of the proposed approach is pre-
sented in the experimental part.

e Chapter 8 concludes the thesis, presenting open questions, limi-
tations of the system and possible improvements.



Chapter 2

Survey of Existing
Methods for Detection,
Tracking and
Identification of People
by Mobile Robots

This chapter presents the state of the art in people tracking and the
theoretical basis for the people tracking system presented in this the-
sis. We first give an overview of the most popular models and sensors
used for detecting people. Later we present the theory of people track-
ing, covering general Bayesian state estimation together with an efficient
solution — the particle filter — and the problems of tracking multiple per-
sons. In addition we briefly review related work on person identification.
Finally we give an overview of existing applications of people tracking
with special focus on mobile robotics.

2.1 Models

In people recognition and tracking models of people are used to help
solve two different problems: to separate persons from other objects in
the environment (detection) and to distinguish between different individ-
uals (identification). The latter problem could be further decomposed,
in increasing order of difficulty, into the problems of data association
(deciding on a frame-by-frame basis “which observation corresponds to
which person?”), association of new tracks with old tracks for persons

11
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that already appeared and disappeared (“have I seen this person be-
fore?”), and absolute identification (“exactly which person is it?”). This
thesis is focused on the problem of detection and tracking; therefore
only the problems of data association and re-identification of persons in
the occlusion handling procedure are considered. However it should be
straightforward to extend the system to also identify people re-appearing
on the scene. Further extensions allowing for absolute identification of
persons, even though possible within the existing framework, would re-
quire incorporation of reliable recognition techniques based, for example,
on face recognition. The increasing complexity of these extensions would
require more resources such as an increasing amount of memory (i.e.,
memory of recent frames, previous tracks and of all people in database)
and computational power.

In detection the main difficulty is to extract common properties for all
persons from the broad variety of human appearances. This appearance
depends on a person’s size, shape, clothes and additional features such as
mustache, beard, glasses, jewelry, bags, etc. Moreover the appearance
is affected by projection of the scene onto the sensor space, resulting
in self-occlusions and occlusions by other objects and persons in the
environment. In addition different individuals behave in different ways
(standing, walking, sitting, lying down, cycling etc.) and their bodies
can assume different poses. This also affects the detection task. On the
other hand all these variations in appearance and behaviour make the
identification task possible. The main goal in this case is to find specific
and invariant properties for each individual. Therefore the choice of a
proper person model for a specific application will always be related to
a trade-off between specificity and invariance.

Another important issue that should be discussed is the complexity
of the model. Complex models can provide very detailed information
that is required in applications such as simulating virtual agents, or sys-
tems analysing the movement of a sportsman or dancer (see [Gavrila,
1999 for a survey of the existing applications). Such systems usually do
not have strong constraints about processing time, often working in an
off-line manner, and allow for special arrangements of the environment.
In contrast on-line systems such as mobile robots usually do not require
such detailed information, and therefore tend to favour simpler models
that can fulfil the strict requirements for processing speed and robust-
ness suffice. Therefore the complexity of a model will be dictated by
the demands of a specific application limited by the available resources
(sensors and computational power).

Let us present some of the existing models used in people recognition
systems (see Fig. 2.1). We will use a general classification that separates
them into object-centred and view-centred models.

Object-centred (also called view-independent) models are based on
the structural characteristics of a person that are invariant to different



2.1. MODELS

13

Figure 2.1: Different representations of the human body: a) points
[Panagiotakis and Tziritas, 2004] b) blobs [Wren et al., 1997] ¢) splines
[Baumberg and Hogg, 1994] d) ellipses e) skeleton [Liu et al., 1999]
f) cylinders [Rohr, 1994] g) 3D model [Gavrila and Davis, 1996].
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view-points. Depending on the representation these models can be cat-
egorised into stick figures [Chen and Lee, 1992] and volumetric models
[Rohr, 1994]. Stick figures represent the skeletal structure of the body
while volumetric models attempt to represent the whole body by de-
composition into basic geometrical shapes such as spheres or cylinders.
Object-centred models are used mostly in recognition tasks that require
more complex analysis of the human body (e.g. gait recognition). One
serious drawback of these models is the fact that they require a pose
recovery procedure that maps information provided by the sensors to a
3D representation. This task is often computationally complex and de-
mands special conditions such as use of multiple sensors and/or markers
mounted on the person’s body.

View-centred models (or appearance models) are grounded in fea-
tures extracted from the information provided by sensors. These fea-
tures correspond to different appearances of a person due to, e.g., dif-
ferent view-points, light conditions, poses of the body, etc. Existing ap-
proaches use features such as points, edges, ribbons or blobs [Chen and
Lee, 1992], [Wren et al., 1997]. View-centred models avoid the difficult
pose recovery step required by object-centred models. This fact makes
view-centred models more robust in general to noisy sensory informa-
tion. Moreover appearance models are not restricted to 2D information
but may also contain 3D information (obtained from e.g., stereo-vision,
structure from motion, range sensors, etc.).

From the perspective of mobile robotics, appearance models are more
desirable since they are directly grounded in the robot’s perception (there
is no need to find correspondences between model components and image
features). The internal representation in the sensor space does not limit
possible applications and tasks (e.g., person following, user recognition).
In general appearance models are also more robust and require less com-
putational power, which in the case of limited hardware resources of a
robot and high real-time demands cannot be ignored.

In this thesis we use a simple appearance model that approximates
a person’s projection onto the image space. Its simplicity allows this
model to be combined with a fast tracking method. The model is based
on thermal information which allows robust tracking of persons even
in darkness. Our model helps to solve the two problems of detection
and identification: an elliptic approximation of the person’s contour is
used to separate the person from the background, together with a colour
model that allows the system to distinguish between different individuals
and helps to solve problems caused by occlusions. More details about
the elliptic model are given in Section 4.2.
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2.2 Detection

Traditionally people detection is considered as a task carried out before
tracking that determines the presence and number of persons from the
input sensory data. This is realised by segmentation of the image data
into regions corresponding to each detected person, usually by use of
some model of a person (see previous section). In this section we present
the most popular sensors and methods used to detect people, with a
special focus on mobile robotic applications.

The most popular sensors used for detecting people are vision cam-
eras. Most existing vision-based methods concern non-mobile applica-
tions (e.g., surveillance, pedestrian detection) where the pose of the cam-
era is fixed. Detection in this case can be solved by background subtrac-
tion [Haritaoglu et al., 1998] or temporal differencing [Rohr, 1994]. In
the first method foreground objects in the image frame are segmented
after subtraction of the background model of the scene. The temporal
differencing method uses differences between two consecutive frames to
determine moving objects. Both approaches make a strong assumption
that detected objects are persons. Other techniques use a further recog-
nition step in which persons are discriminated from other objects [Niyogi
and Adelson, 1994; Lipton et al., 1998].

Techniques based on skin colour can be used regardless of the motion
of the sensor, therefore being very popular in mobile robotics applica-
tions [Wilhelm et al., 2002; Brethes et al., 2004]. The skin colour of
the human body is quite unique compared to other objects, which al-
lows segmentation of regions in the image corresponding to the face or
hands of a person. Similar approaches for detecting humans are based on
face detection algorithms (see [Yang et al., 2002] for a detailed survey).
Some popular methods from the vast variety of different algorithms in-
clude principal component analysis (PCA) [Turk and Pentland, 1991],
template matching [Craw et al., 1992], or rapid detectors [Viola and
Jones, 2001]. However, methods based on skin colour or face detection
are usually limited to face and hand detection (assuming that people
generally do not wander around naked!), hence persons must be facing
the sensor. Recent advances in visual object recognition provide learning
techniques that enable detection of people without assuming any a priori
knowledge of the scene [Mohan et al., 2001]. They are, however, compu-
tationally demanding. All of the above mentioned vision-based systems
share common problems such as shadows, varying lighting conditions
and occlusions.

Use of non-standard vision sensors for people detection such as a
stereo camera [Zhao and Thorpe, 1999] or thermal sensor [Nanda and
Davis, 2002] helps to overcome some of the problems related to colour
vision. Stereo vision provides extra range information that makes seg-
mentation easier, allowing for detection of both standing and moving
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e) f)
Figure 2.2: A populated environment seen from different robot sensors:
a) colour camera image, b) thermal camera image, ¢) omni-directional
camera image, d) a disparity map from a stereo camera, e) range readings
from a laser scanner, f) a 3D point cloud model of a scene with added

colour information.
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people. Stereo vision has been applied only in a few mobile robotic ap-
plications [Huber and Kortenkamp, 1995; Kahn et al., 1996], perhaps
due to the low resolution of depth information available from these sen-
sors (typical stereo vision systems quantize the depth estimates into a
maximum of 32 layers/disparities). Thermal vision takes advantage of
the fact that humans have a distinctive thermal profile compared to non-
living objects. Moreover thermal information is not influenced by chang-
ing lighting conditions and allows detection of people even in darkness.
Infrared sensors have been applied to detect pedestrians in a driving as-
sistance system: [Bertozzi et al., 2003] use a template based approach
while [Nanda and Davis, 2002] apply different image filtering techniques.
[Meis et al., 2003] filter the whole image and classify persons based on the
symmetry of detected gradients. [Xu et al., 2004] employ a classification
method based on a support vector machine. As yet, however, there is
hardly any published work on using thermal sensor information to detect
humans on mobile robots. The main reason for the limited number of
applications using thermal vision so far is probably the relatively high
price of this sensor, which is gradually decreasing.

Other types of sensors that can be used for people detection include
range-finder sensors such as laser and sonar. These are very popular
sensors in mobile robotics for navigation and localisation tasks [Fox et al.,
1999]. A system described in [Schulz et al., 2001] detects local minima in
range readings caused by the legs of a person and then removes all static
objects by subtracting consecutive laser readings. In [Kluge et al., 2001]
the authors cluster scan data into a set of points representing objects
and by performing shape analysis extract those points corresponding
to people. Both approaches detect moving objects rather than people.
Despite the limitations of systems based on laser scanners (i.e. they can
only detect “moving objects” rather than humans), they remain popular
sensors in mobile robotic applications because of the low computational
demands due to the low dimensionality of sensor data. Recent progress
in building 3D range sensors (see an example in Fig. 2.2f) makes them
promising sensors for future applications requiring people detection.

To overcome some problems related to a specific sensor it is possible
to combine information from different sensors. For example, [Feyrer and
Zell, 2000] use different features provided by a colour and stereo camera
together with a laser scanner, and [Wilhelm et al., 2002] combine colour
vision with sonars. This approach generally leads to more robust recog-
nition systems. However, another problem arises here, namely sensor
fusion — how to combine the different types of sensor information.

Our mobile robotic system uses a thermal camera to efficiently detect
persons despite the motion of the platform. The distinct thermal profile
of the human body is segmented by use of an elliptic model that can
distinguish people from other warm objects such as radiators, lamps,
monitors, etc. The results of the segmentation are also used later to
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select regions corresponding to persons on a colour image, providing
additional information to distinguish between different persons (data
association) during the tracking process.
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2.3 Tracking a Single Person

Information provided by sensors can be imprecise or even misleading
due to the sensor noise, clutter and dynamic occlusions caused by other
objects or persons. Therefore to reliably estimate the location and move-
ment of persons it is necessary to apply a tracking procedure. Tracking
also enables combination of information from different sensors, giving
more accurate and complete results.

The most popular approach to the tracking problem is based on the
state space representation. Following this method, we describe a person’s
kinematics by a state vector and create a dynamical model of the person’s
movement. Tracking in this case is equivalent to the state estimation
problem for a dynamical system given sensor observations. This work
makes use of Bayesian inference, a widely accepted framework within the
tracking community that models uncertainty in the system by means of
probabilities.

We first describe the Bayesian estimation problem and its general
solution for a single person (also referred to as a target in the general
case). Later we present existing algorithms to solve this problem with
special focus devoted to Monte-Carlo methods, which form the basis of
the tracking methods used in this thesis. Multi-person tracking is then
described in Section 2.4.

2.3.1 Bayesian State Estimation

The Bayesian approach to the estimation problem requires a probabilis-
tic representation of the model dynamics. We will consider the case
when the state changes continuously in time but can only be observed
in discrete time steps through measurements. Having a sequence of
measurements the estimation procedure could be done in two manners:
either in batch mode or recursively. In batch mode estimated quantities
are obtained from the whole set of observations. Each time a new obser-
vation arrives it is necessary to recalculate everything from scratch. The
recursive case is much more appealing since estimates are just updated
when necessary. This makes the recursive case well suited to on-line
applications, requiring less resources and being faster than batch pro-
cessing. However in the recursive case errors can accumulate with time
and care has to be taken over the stability of sequential methods [Doucet
et al., 2001].

The Model

Let us describe the state vector of a dynamical system at time step t € N
by x; € R™* and the corresponding measurement vector as z; € R™=. To
build a model of the dynamical system we would need the two following
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components:

e a system model, describing the temporal evolution of the state:

Ty = ft—l(mt—lvvt—l)’ (21)

where f,_; is a known, possibly nonlinear function of the state
and vy_1 € R™ represents the process noise;

e an observation model:
Zy = ht(wt, ’l.Ut), (22)

where h; is a known, possibly nonlinear function and w; € R™»
represents the measurement noise.

Noise sequences v;_1 and w; are assumed to be white, independent,
with known probability density functions (pdf or density).

Equation 2.1 represents a first order Markov model. We also assume
that each observation z; depends only on the system state at time ¢ and
not on past observations. Both these assumptions allow us to formulate
a recursive version of the Bayesian estimator.

The Optimal Bayesian Solution

Our goal is to construct the posterior pdf of the state x; given all
the available information provided by the set of measurements zi.; =

{z1,...,2¢}. Using Bayes’ formula the posterior density can be written
as
p(@i)210) = P(zt|ﬂlt,Zl:t—l)P(mt|let—1). (2.3)
p(2z¢|z1:4-1)

We assume that the initial pdf p(ap) is known.
Due to the independence assumption made on the observations z1.¢,
expression 2.3 can be simplified to

_ pzi|xe)p(®e]21:0-1)
p(Te]z14) = D) (2.4)

By introducing a new intermediate variable x; we can transform the
denominator p(z¢|z1.¢—1) = [ p(zi|@e)p(@i|z1:0—1)de, (also called the
evidence) and obtain the update equation:

_ p(ze|xe)p(xe|Z1:0-1)
pladz) = fp(zt|wt)p<wt‘zl:t—l)dwt. (2:5)

The likelihood function p(z:|x;) is defined by the observation model
in Equation 2.2. The term p(at|z1.+—1) is the prediction density (or
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dynamical prior) that can be obtained by introducing an intermediate
variable x;_1:

p(xT|z14-1) = /p(l‘t|$t—1)p($t—1\let—l)dmt—l- (2.6)

The transitional prior p(x:|x;—1) can be derived from the system model
in Equation 2.1. The term p(x;—1|2z1..—1), which is referred to as the
prior is exactly the posterior density from the previous time step, and be-
cause of the Markov assumption contains all previous information about
the system up to time t — 1.

The prediction and update equations (Equation 2.6 and 2.5 respec-
tively) form the Bayesian filter, a recursive optimal estimator. Unfor-
tunately this is only a conceptual definition since there is no general
analytical solution for this filter. However in special cases (under cer-
tain assumptions) an optimal solution can be derived. Other methods
provide approximate solutions. The next section presents optimal and
approximate solutions to the Bayesian filtering problem. The classifica-
tion used follows the presentation found in [Ristic et al., 2004], which
also includes further references and more detailed descriptions.

Algorithms

Optimal solutions for the recursive Bayesian state estimator can be ob-
tained under certain assumptions. In real systems, cases where these
relatively strong assumptions hold are rare. Optimal algorithms include:

o The Kalman filter
Assumptions: state and measurement functions are linear, process
and measurement noise are Gaussians of known parameters. In
this case the posterior density at every time step is a Gaussian
characterised by two parameters, its mean and covariance. Despite
the mentioned limitations the Kalman filter is still a very popular
method in many existing tracking applications. A more detailed
description is presented, for example, in [Bar-Shalom et al., 2001].

e Grid-based methods
Assumptions: the state space is discrete and consists of a finite
number of states. These methods become computationally ineffi-
cient with increasing size of the state space.

e Benes and Daum filters
Assumptions: the measurement model is linear. This is a limited
class of non-linear filters for which there exists an exact solution.
More details about this class of filters and grid-based methods can
be found in [Ristic et al., 2004].
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The above solutions are often inadequate for application in real track-
ing systems that must handle non-Gaussian, non-linear and non-stationary
phenomena. Other solutions use suboptimal methods instead. We shortly
describe the most popular methods to give a general overview. These
methods can be divided into the following groups:

e Analytic approximations

These methods are based on the extended Kalman filter (EKF).
The main idea is to locally linearise the non-linear system and
measurement functions in the model. The linearisation is done
analytically and allows to represent the posterior p(a¢|z1+) by a
Gaussian density. The basic EKF uses a linearisation procedure
based on the first term of the Taylor expansion series and an ob-
vious extension is to use further terms which results in the higher-
order EKF. Another version of the EFK is its iterative variant
that performs linearisation of the measurement equation based on
the updated state of the filter (see [Bar-Shalom et al., 2001] for
more details about the EKF and its different versions). All these
filters are inappropriate for multi-modal densities because of the
Gaussian assumption.

o Numerical approrimations

These methods apply numerical integration to solve the integrals
found in Equation 2.6 and 2.5. They are also referred to as ap-
proximate grid-based methods. The computational cost of the
approach increases dramatically with increasing size of the state
space. Higher dimensionality also affects the convergence ratio.
The state space must be predefined and therefore cannot be par-
titioned unevenly without the prior knowledge.

o Gaussian sum filters
These methods are also known more generally as multiple model
filters. The key idea is to approximate the posterior by a Gaussian
mixture (a weighted sum of Gaussian density functions). There
is a static version to approximate on-line parameters of the filter
with a fixed number of components [Alspach and Sorenson, 1972]
and a dynamic one using mixture models [Bar-Shalom et al., 2001].

o Sampling approaches
These methods include the Unscented Kalman Filter (UKF) and
Monte Carlo (MC) methods. The UKF uses the non-linear system
model directly, unlike the EKF that performs analytical linearisa-
tion of the system model [Julier and Uhlmann, 1997]. The UKF
represents the Gaussian distribution with a minimal set of sample
points, which is far fewer than the number of samples needed by
Monte Carlo methods. At each time-step, the UKF samples the
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state around the current estimate in deterministic fashion. Each
sample is updated using the non-linear system model and a new
estimate is calculated after incorporating the new observations.
The UKF produces a better approximation than the EKF for non-
linear systems but its computational complexity is higher than the
EKF. The UKF still makes the assumption of Gaussian probabil-
ity distributions, hence it cannot handle multi-modal distributions.
Monte Carlo methods, which are able to deal with non-linearities
and multi-modal distributions, are described in more detail in the
following section.

2.3.2 Monte Carlo Methods

Monte Carlo methods provide an approximate sample-based solution
to the Bayesian estimation problem. The key idea is to represent the
required posterior density function by a set of random samples with as-
sociated weights and to compute estimates based on these samples. As
the number of samples becomes very large, this representation becomes
equivalent to the true posterior density. Simultaneously such a filter
approaches the optimal Bayesian estimator. These methods appear in
different names depending on the domain where they are applied: par-
ticle filtering [Carpenter et al., 1997], bootstrap filtering [Gordon et al.,
1993], interacting particle approximations [Del Moral, 1996], the conden-
sation algorithm in computer vision [Isard and Blake, 1998] or “survival
of the fittest” in genetic algorithms [Kanazawa et al., 1995]. The basic
idea of the Monte Carlo methods is presented in Fig. 2.3.

Monte Carlo Integration

One way to deal with multidimensional integrals is to apply Monte Carlo
integration. Suppose that we want to evaluate the following integral:

I= /g(:c)dw, (2.7)

where © € R"=.

If we can draw N >> 1 samples {x%;i = 1,..., N} from the probability
density function 7(x) such that g(x) = f(x)m(x) then we can obtain a
MC estimate of the integral 2.7:

In=~ > f@). (2.8)

If the samples a* are independent then the estimate Iy is unbiased
and will almost surely converge to I. The variance of function f(x) is
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Figure 2.3: Example of a particle filter showing the main steps of predic-
tion and update. A one-dimensional state space is represented, and the
weight of the samples is indicated by their relative size. After calculation
of the importance weights and resampling, the distribution of particles

becomes more sharply peaked around several modes. Taken from [Blake
et al., 1998].
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of the form
o? = /(f(a:) — I)*n(x)dx (2.9)

and if it is finite then under conditions of the central limit theorem the
MC estimation error e = Iy — I converges such that

Jim VN(Ix —I) ~ N(0,0?). (2.10)

The rate of convergence of this estimate is O(N2) independent of the
dimension of the integrand. This is a very important property that
makes MC methods especially efficient in high dimensional problems.
In contrast the convergence rate of any numerical integration method
depends on the size of the integrand.

Usually it is not possible to sample effectively from the posterior
distribution density 7(x) which is multivariate, nonstandard and known
only partially up to proportionality constant [Ristic et al., 2004]. One
way to overcome this limitation is to apply importance sampling.

Importance Sampling

If we cannot sample from 7 (x) directly but we can sample from another
distribution which is similar, then MC estimation is still possible. The
only requirement on the so-called importance (or proposal) density ¢(x)
is that it has the same support as w(x), where the support of a real-
valued function f on a set X is defined as the subset of X on which f is
nonzero, i.e.,

m(x) >0 — gq(x) >0, (2.11)
for all ® € R™=. Then

——q(x), (2.12)

where % is upper bounded and the MC estimate becomes a weighted

sum N
In =5 Y fai), (2.13)

but this time samples x’ are drawn from the importance distribution
q(x). The importance weights are

w(x') = ——2. (2.14)
q(z’)

If we do not know the normalising factor (denominator) in the ex-
pression 2.14 then we have to perform normalisation of the weights as

w(z') = ———. (2.15)
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The MC estimate can then be calculated as
L N
In = — g 9. 2.1
v =y L IEula) (2.16)

Sequential Importance Sampling (SIS)

The derivations provided in the previous sections will now be applied in
a recursive manner to the Bayesian estimation problem. This will form
the basis to most of the recursive MC methods. Different versions of
the particle filter correspond to different choices for the proposal distri-
bution. The posterior distribution (Eq. 2.3) at a given time step ¢ is
approximated by a set of weighted samples:

N
p(xt‘zl:t) ~ sz(s(xt - wé)a (217)
i=1

where ¢ is the Kronecker delta function. It can be shown [Ristic et al.,
2004] that by introduction of the importance function ¢(x) the weights
w! are updated as

i i p(ZACBi)p(iBi‘wi,l)
w; X Wwi_4 e
q(@f|zy_y, 2t)

(2.18)

Unfortunately the form of the importance function ¢(x) implies that
the variance of the importance weights can only increase with time [Ristic
et al., 2004]. This affects the accuracy of the MC estimate and leads to a
phenomenon known as the degeneracy problem. After a few iterations of
the SIS algorithm there will be only few particles with significant weight
values. The negative effects of the degeneracy of particle weights can be
reduced by introducing a resampling procedure.

Sequential Importance Resampling (SIR)

Negative effects of the degeneracy phenomenon appearing in the SIS fil-
ter can be eliminated by introduction of an additional resampling step
in the filtering procedure. Resampling generates a new set of inde-
pendent samples {mi*,z = 1,...,N} from the original set of samples
{zi;i = 1,...,N}. The original samples are reselected with probabil-
ity equal to their weights Pr{z!” = =]} = w!. As a result samples
with high weights are duplicated and samples with low weight values are
removed. There are efficient resampling methods of complexity O(N)
e.g., stratified, residual, systematic resampling (see [Douc et al., 2005]
for comparison of different resampling methods).

The Sequential Importance Resampling (SIR) filter, introduced by
[Gordon et al., 1993], originates from the SIS filter where the proposal
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distribution is chosen as a transitional prior (i.e. the density from the
previous iteration after updating with the motion model). Additionally
resampling is included after every filtering step. Substituting into 2.15
results in

wi o< wi_ p(z¢|xh). (2.19)

Since resampling is done at every step the weights of all particles are set
to uniform values. This implies that the weight update simplifies further
to

wi o p(z¢|xt). (2.20)

Other Filters

The SIR filter is regarded as a standard realisation of MC algorithms,
or the “standard particle filter” in robotics. It is easy to implement
since the importance density, which is chosen to be the transitional prior
p(x¢|xi—1), can be easily sampled. Moreover the sample weights can be
directly evaluated from the likelihood p(z¢|x;) and there is no need to
pass their values from the previous steps. However there are several
drawbacks of this method and various other methods and improvements
have been proposed.

The importance density g(x) of the SIR filter does not contain any
information about the latest observation z;, which results in degraded
efficiency and sensitivity to outliers. The auxiliary SIR filter [Pitt and
Shephard, 2001] tries to overcome these limitations. The resampling
procedure is performed on samples from the previous time step t — 1,
which allows the current measurements to be incorporated into the sam-
ple weights. This makes the ASIR filter less sensitive to outliers in cases
where the process noise is small. However, the usability of the ASIR
filter is limited since its performance degrades with increasing process
noise.

Resampling eliminates problems with sample degeneracy but cre-
ates another serious drawback. The so-called sample impoverishment
phenomenon is caused by the fact that in the resampling step samples
are selected from the discrete (not continuous) distribution. This very
quickly causes a loss of diversity among the samples (especially in cases
where the process noise is low) and after a few iterations almost all sam-
ples collapse into the same region. Negative effects are especially severe
in the SIR filter, in which resampling is done at every step of the algo-
rithm. One way to overcome this problem is to add some extra noise to
the samples (“jittering”). [Gordon et al., 1993] proposed a roughening
method which adds an amount of independent noise to all particles. An
alternative solution proposed by the same authors, called prior boost-
ing, performs sampling from an increased set of M > N samples from
the proposal distribution but uses only N samples in the resampling
procedure. The regularised Particle Filter (RPF) [Oudjane et al., 2001]
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performs an additional regularisation step in the resampling procedure
that “jitters” the samples. The RPF filter avoids sampling from the
discrete distribution and samples from the continuous approximation of
the posterior p(z¢|21.+) instead. The Resample-Move algorithm [Berzuini
and Gilks, 2001] is based on a similar principle as the RPF, but in addi-
tion it checks whether the regularisation step for each sample should be
accepted or rejected. This Markov chain step guarantees that samples
asymptotically approximate those from the posterior. Both the RPF
and Markov chain based methods perform better than the SIR filter in
cases when the sample impoverishment is severe, for example, due to low
process noise.

There is a vast variety of improvements to the standard particle filter
(see [Ristic et al., 2004] and [Doucet et al., 2001] for full details) but they
are outside the scope of this thesis, since the main focus is on real-time
tracking of persons using available computational resources on a typical
mobile service robot (see Chapter 3 for full details of our experimental
platform). However, it is assumed that any future improvements to the
SIR filter or enhancements made possible by increased computing power
(e.g., parallelisation) could also be applied to our tracking system.

2.4 Multi-Person Tracking

Tracking of multiple persons introduces new problems that do not appear
in the single-person case. First, the number of persons is not known since
persons can appear /disappear from the scene but also can be occluded by
other persons or objects. Second, it is not clear which sensor observation
corresponds to which person, known as the data association problem.
The aim of a tracking algorithm in the multi-person (or more general
multi-target) case is to estimate both the number of persons and the
state of all persons given a set of noisy measurements.

2.4.1 The Bayesian Formulation

To formulate the multi-target tracking (MTT) problem in the Bayesian
framework let us introduce a multi-target state variable X; = {x},..., M}
which consists of M (which is an unknown value) state vectors for all tar-
gets. Respectively p(X¢|z1.¢) will be the joint multi-target probability
density (JMPD).

The Bayesian filter in this case consists of the following prediction
equation

p(Xilz1i1) = / P X (X itz )dX oy, (2.21)
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and update equation

p(2¢| X¢)p(X¢|z1:0-1)
p(X¢|z1) = . 2.22
(Xelzr) S p(ze] X )p(X¢|z1:0-1)d X (222)
In such formulation the transitional prior p(X¢|z1.4—1) is responsible
both for evolution of the target states and their number M.
Practical solutions to the Bayesian formulation of the multi-target
tracking problem are discussed as follows.

2.4.2 Classical Methods

Ideally a joint state representation should be used, which would allow to
reliably estimate all target states including correlations between them.
However solutions based on this representation quickly become inefficient
due to the exponential growth of the state space. Thus the integrals in
Equations 2.21 and 2.22 usually become intractable. A common practice
to avoid this problem is to represent the state space as a set of indepen-
dent single-target states, known as a factorial representation, in which
the transitional prior can be expressed as

M
p(X4|X 1) o [] o |27)). (2.23)

Jj=1

The traditional approach to the multi-target tracking (MTT) prob-
lem makes use of this representation, where each target is assigned to
a separate single-target tracking filter. Classical MTT methods based
on the factorial representation require a pre-processing stage to search
the raw sensor data for features corresponding to persons. With this ap-
proach the measurements are thresholded to form a set of observations.
The observed features are then explicitly associated with existing tracks,
used to create new tracks, or rejected as false alarms. In this detection-
association-update scheme the main computational burden lies in the
data association step (deciding which observation corresponds to which
person).

The simplest data association methods are based on the nearest-
neighbour approach [Bar-Shalom and Fortmann, 1988]. They use the
most probable hypothesis (i.e. the closest or the strongest observation)
about observation-target correspondence at a given time step t, discard-
ing all the other possible assignments. These solutions usually do not
perform satisfactorily, especially in cases where the targets are not well
separated or when the false alarm rate increases.

Multi-Hypothesis Tracker (MHT)

The Multi-Hypothesis Tracker, introduced by [Reid, 1979], maintains all
possible association hypotheses between observations and targets (see
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Algorithm 1). A single hypothesis consists of one possible set of associa-
tions between all measurements and existing target hypotheses including
the possibility of measurement being a false alarm. The MHT algorithm
evaluates the posterior probabilities of the hypotheses and propagates
them over time. Since all possible hypothesis are included the MHT
algorithm is able to track a varying number of targets. Because of its
complexity, which grows exponentially with time, this algorithm usually
requires pruning and merging techniques to limit the number of possible
hypothesis and make the method computationally tractable [Cox and
Hingorani, 1996].

Algorithm 1 A single iteration of the MHT
given:
- set of all association hypotheses H;_ 1 together with corre-
sponding multi-target states X;_1

- set of n new measurements z; = {z},...,2"}
predict:
- apply a motion model to all hypothetical multi-target states
X1
associate:

- generate a new set of hypotheses H; based on the matching of
all n new measurements with the predicted target hypotheses
Hiy

update:

- evaluate all new hypotheses H; i.e., calculate their posterior

probabilities

Joint Probabilistic Data Association Filter (JPDAF)

The Joint Probabilistic Data Association Filter (JPDAF) [Bar-Shalom
and Fortmann, 1988] propagates only one set of association hypothesis,
which results in reduced complexity compared to the standard imple-
mentation of the MHT. Estimates of the individual target states are
calculated based on all measurements weighted according to the individ-
ual association probabilities, including the possibility of a measurement
being a false alarm. However, the number of feasible individual associa-
tions grows exponentially with the number of targets and measurements.
In contrast with the MHT, JPDAF can track only a fixed number of tar-
gets. It therefore requires some pre-processing to estimate the number
of targets (see the following discussion). Efficient sample-based versions
of JPDAF were proposed by [Schulz et al., 2001] and [Karlsson and
Gustafsson, 2001]. [Maskell et al., 2004] proposed a solution that lim-
its the combinatorial explosion, allowing tracking of a higher number of
targets using JPDAF-based methods.
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Algorithm 2 A single iteration of the JPDAF
given:
- set of m target states X, 1 = {z}_,,..., 2"}
- set of n new measurements z; = {z},..., 2"}
predict:
- apply a motion model to X;_;

associate:
- calculate association probabilities H for all target-

measurement pairs
update:
- calculate new estimates X; based on weighted associations H

2.4.3 Unified Tracking Methods

The classical approach to MTT using such a detection-association-update
scheme originates from radar applications that differ in several aspects
from vision applications. In vision-based tracking systems a classical de-
tection procedure usually requires scanning of the entire image at every
position and scale [Okuma et al., 2004], which is a computationally de-
manding procedure. Moreover, during the thresholding process some of
the information is lost, which can be a crucial issue in cases where the
signal-to-noise ratio of the sensor is low. This loss of information also
occurs when detected objects overlap even to a small extent. In addition,
to apply any of the above mentioned methods two assumptions about
the origin of the observations are made: first, a single measurement can
originate from a single target or clutter only, and second, a single target
can cause only one measurement. However, these assumptions are vio-
lated in many vision applications requiring tracking of complex non-rigid
objects that may overlap.

An attractive alternative to the classical approach is to incorporate
raw measurements directly into the tracking procedure. Such a solution
based on Bayesian filtering is called unified or track-before-detect tracking
[Stone et al., 1999]. In this case association between raw measurements
and target tracks is done implicitly within the Bayesian framework, and
the processes of detection and tracking are carried out simultaneously.
Sample-based versions of unified tracking algorithms provide tractable
solutions to multi-target tracking problems, and some good examples
include the multiple blob tracker BramBLe [Isard and MacCormick,
2001], and the work of [Orton and Fitzgerald, 2002], [Maskell et al.,
2003], [Smith et al., 2005b] and [Kreucher, 2005]. Unfortunately these
methods have other shortcomings, for example, the inefficient sampling
method of [Isard and MacCormick, 2001], the fixed number of targets in
[Maskell et al., 2003] and [Orton and Fitzgerald, 2002], or the complex
sensor modelling of [Kreucher, 2005]).
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2.4.4 Methods Based on a Joint State-Space Repre-
sentation

Most multi-target tracking methods use a factorial representation of the
state space to make the Bayes filter computationally tractable, but to
model correlations between different target states a full joint state space
representation is required. [Tao et al., 1999] and [Isard and MacCormick,
2001] use a standard particle filter (SIR) which was shown to be inef-
ficient with increasing dimensionality of the state (number of objects).
Therefore other, efficient sampling methods such as partitioned sam-
pling [MacCormick and Blake, 2000] or Markov Chain Monte Carlo
(MCMC) [Khan et al., 2004] should be used in this case. Partitioned
sampling improves the sampling procedure by dividing all particles into
partitions corresponding to each target, applying individual target dy-
namics and updating the final posterior by weighted resampling. A fur-
ther improvement to this algorithm called distributed partitioned sam-
pling [Smith and Gatica-Perez, 2004] sorts partitions according to their
importance. MCMC methods introduce an extra step to the filtering
procedure that selects samples from a Markov chain with a stationary
distribution corresponding to the final target distribution. A variant of
the MCMC method allowing tracking of a varying number of targets was
proposed in [Smith et al., 2005b].

2.4.5 Estimating the Number of Objects

The majority of multi-target tracking techniques usually require some
external procedure that estimates the number of objects. This can be
realised for example by using probabilities of target birth and death to
create and delete individual trackers [Bar-Shalom and Fortmann, 1988].
[Sidenbladh, 2003] uses an approximation of the joint state space based
on its first moment. The integral of this so called probability hypothesis
density gives a direct estimate of the number of targets. Methods that
allow for direct estimation of the number of targets include the MHT
and the method proposed by [Kreucher, 2005] that estimates the number
of targets directly from the posterior within the tracking framework.
Issues such as the varying number of targets, efficiency of sampling
methods and associations between measurements and tracks make mul-
tiple target tracking an open research problem. Since our application re-
quires high processing speed, the solution presented in this thesis uses a
set of individual particle filter-based trackers (factorial representation).
Independent trackers are used in order to maintain linear algorithmic
complexity with respect to the number of persons. To model corre-
lations between objects, colour information is used to distinguish be-
tween different individuals and occlusions are also modelled explicitly.
The measurements are incorporated directly into the tracking procedure
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(track-before-detect). A sequential detector is used to create a new track
for a newly appearing target. Colour information is used to help with
data association. Fusion of thermal and colour vision information is also
carried out within the tracking framework.

2.4.6 Dealing with Occlusions

Since visual tracking involves projection of real-world objects onto the
sensor space, a general solution to the multi-target tracking problem
must be able to deal with the problem of occlusions. An occlusion occurs
when the view of an object is fully or partially blocked by another object.
Many types of occlusions cannot be resolved without domain specific
knowledge, or models, helping to derive a structural interpretation of
the image.

For the multi-person tracking problem addressed in this thesis, the
possible sources of occlusion can be categorised into three main types:

e Self-occlusions caused by the persons themselves. This type of
occlusion occurs when tracking different body parts that can in-
terfere with each other. Since our system is designed to track the
whole human body self-occlusions do not usually present a major
problem.

e Occlusions caused by static and dynamic objects in the environ-
ment, e.g. tables, walls, moving vehicles, etc. Reasoning about
this kind of occlusion in general would require additional knowl-
edge about the environment. In mobile robotic applications, for
example, this would require integration of different algorithms for
map building, object recognition, etc., which would be outside the
scope of this thesis.

e Occlusions caused by other persons when more than one person
appears on the scene (see Figure 2.4). This happens especially
often when people interact with each other in real crowded envi-
ronments. Our work is focussed mainly on this type of occlusion.

In a few selected cases it is possible to solve problems related to occlu-
sions by use of special sensors or their special arrangements. One exam-
ple system uses a camera placed above the observed scene [Intille et al.,
1997]. Persons observed from such a view-point cannot occlude each
other. Another example is a multi-camera system [Mittal and Davis,
2002] where ambiguities caused by occlusion are resolved by combining
information from different cameras placed in different places. However
this solution introduces other problems such as sensor fusion, decisions
on where to place the cameras, how many of them to use and increased
costs. All these solutions can be used only in a few, very controlled
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scenarios and their use in mobile applications would be especially trou-
blesome if not impossible.

Figure 2.4: How many persons are there? A crowded scene with occlud-
ing people.

This thesis is focused on the passive aspect of perception, but it
should be mentioned that an active system like a mobile robot could
resolve some occlusions by taking appropriate actions. In ambiguous
situations the robot could change its position so that occluded persons
would become visible. This would require maintaining belief (e.g. prob-
ability distributions) over the persons’ identities and design of a robust
behaviour system that would allow the robot to operate in a populated
environment.

In the majority of people tracking systems the problem of occlusion
is solved within the tracking framework. Possible approaches handle oc-
clusions either implicitly without reasoning, or model them explicitly.
Implicit solutions use kinematic information as well as dedicated mea-
surement models [Wren et al., 1997; Khan and Shah, 2000; Isard and
MacCormick, 2001]. However the behaviour of people tends to be highly
unpredictable in general, and they may or may not interact. Therefore
implicit approaches can deal only with specific cases, i.e., short-term
occlusions.

We decided to use an explicit approach in our people tracking system.
This reasoning requires domain specific knowledge, i.e., detection of sit-
uations when persons appear to merge and split, and making decisions
about their behaviour during occlusion (see for example [Elgammal and
Davis, 2001; Senior et al., 2001; Mckenna et al., 2000]). We use colour
as additional information that helps to detect occluded persons and re-
solve occlusions when occluded persons appear again on the scene. More
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details are presented in Chapter 7.

35
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2.5 Identification

After detection and tracking of persons by a mobile robot, one of the
next logical steps towards building complete systems for human-robot
interaction is person identification. This includes deciding whether a
person has been seen before and, if so, which person is present, by com-
paring the appearance to a database of known persons. If suitable visual
features for discriminating different persons can be found, then standard
techniques from the field of pattern recognition such as machine learning
classifiers can be applied for identification [Duda et al., 2000]. While this
thesis does not address the absolute identification problem, it uses similar
techniques (comparing thermal and colour features for different persons)
for improving data association in the multi-person tracking problem (de-
ciding which observation corresponds to which person). Therefore this
section gives a brief review of the literature on person identification,
since all of these methods could also be applied to the problem of data
association in multi-person tracking.

Most automatic methods for people identification use biometrics. A
biometric is a measure based on physiological or behavioral character-
istics of a person including appearance, social behaviour, bio-dynamics,
natural physiognomy (e.g., skull measurements, fingerprint, retinal scans)
and imposed physiognomy (e.g., dog-tags, bracelets). Some of these
identification methods require interaction with the subject (e.g., finger-
prints, iris, retina, hand-writing). Below we shortly describe the most
common features used in person identification. We only consider features
that are accessible without subject intervention (non-invasive methods),
which makes them suitable for use by autonomous mobile robots.

Face

Face recognition is one of the most reliable methods to recognise humans.
Most of the existing face recognition systems are vision-based (using
either a single image or sequence). However, there are also techniques
using range data (analysis of the 3D shape of the face [Gordon, 1992])
and thermal information [Socolinsky et al., 2001]. Existing algorithms
can be divided into:

e Holistic methods, that use the whole face region as an input. Differ-
ent approaches use eigenfaces (principal component analysis) [Turk
and Pentland, 1991], fisherfaces [Belhumeur et al., 1996], support
vector machines [Osuna et al., 1997], genetic algorithms [Liu and
Wechsler, 2000] and artificial neural networks [Rowley et al., 1998].

o Feature-based methods, based on local features such as the eyes,
nose or mouth. Representative examples include graph matching
methods [Lades et al., 1993], hidden Markov models [Samaria and
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Harter, 1994] and self-organizing feature maps [Lawrence et al.,
1997].

e Hybrid methods, this approach is similar to the human perception
system, combining analysis of both the whole face and local fea-
tures [Pentland et al., 1994], [Penev and Atick, 1996].

Despite many advances in this field, a major problem — sensitivity to
pose and illumination variation — still exists. Recent trends in this field
lead to methods based on 3D geometrical models of the face.

Voice

Speaker recognition is the automatic process of recognizing who is speak-
ing on the basis of characteristics (physiological and behavioural) found
in speech waves. This information exists both in the short- and long-
term spectral features. Most speech recognition systems are designed
for verification of identity. Existing techniques for speaker identifica-
tion can be divided into text-dependent and text-independent methods.
The latter does not rely on a specific text being spoken, which makes
it more useful in mobile robotics. The two most successful approaches
are based on vector quantization [Soong et al., 1987] and hidden Markov
models [Savic and Gupta, 1990]. Variability generated by the speaker,
recording conditions and background noise makes the speaker identifica-
tion problem still an open issue for further research.

Gait

Psychophysiological experiments and biomechanics studies provide ev-
idence that gait signature contains possibly unique characteristics for
each individual. Recognition methods can be divided into model-based
methods which incorporate kinematics and dynamics of the human body
[Cunado et al., 2003], and model-free methods [Little and Boyd, 1998].
The majority of gait recognition systems are based on vision, which leads
to problems with segmentation of persons and occlusions.

Other

Other features that can be used in recognition systems are the whole ap-
pearance of persons (including face, hair, clothes, shoes, etc.) [Cielniak
and Duckett, 2003], shape and proportions of the body, weight and lip
movements. [Cielniak and Duckett, 2004] present results that indicate
that it is possible to discriminate between different persons even using
thermal features. All these features have been less well studied than the
features described above, but still they can be used as a complementary
input in systems combining multiple cues. Some examples of systems
using multiple cues include [Brunelli and Falavigna, 1995] (face, voice),
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[Ross and Jain, 2003] (face, fingerprint, hand geometry) and [Yang et al.,
1999] (whole body appearance, voice, face).
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2.6 Applications

2.6.1 Non-Mobile Applications

Many people tracking systems have been designed for applications such
as surveillance, video games, virtual reality interfaces, gesture recogni-
tion, user interfaces, etc. The majority of these systems use a stationary
camera and are usually designed to work in known or partially con-
trolled environments, which allows simplification of the detection task.
The most popular models used are appearance models of humans, how-
ever in applications for movie industry or motion analysis more complex
3D models are used. Real-time systems usually use tracking techniques
aided with heuristics to simplify the problem. Systems working in an
off-line manner apply state-of-the-art tracking algorithms allowing to
handle multiple persons and occlusions. Below we present few examples
of people tracking systems designed for non-mobile applications.

PFinder is one of the first people tracking systems developed [Wren
et al., 1997]. The system was used in many successful applications such
as video games, virtual reality interface or even for gesture recognition.
The system is able to track a single person in real-time (10 fps, 160x120
pixels). PFinder uses an appearance model based on statistics of colour
and shape. This model is learned before-hand from data. Different body
parts of a person are represented as blobs. This representation allows also
for recognition of simple gestures. PFinder uses a stationary camera and
background subtraction to detect a person and initialise the respective
model. Tracking is realised by predicting position of blobs based on a
constant velocity motion model and later updating the respective models
based on the classification of pixels by a maximum a posteriori approach.

The system W* proposed by [Haritaoglu et al., 1998] is similar in
spirit with PFinder. It also uses a blob based representation of the hu-
man body and learns appearance models based on histograms. The sys-
tem can also estimate the rough pose of the body. The most important
difference to PFinder is that W* system can track multiple persons: sin-
gle separated persons and groups. The system uses a heuristic approach
to tracking based on combination of prediction from the second order
motion model together with correlation techniques updating the model.
The Reading People Tracker [Siebel, 2003] also allows to track multiple
persons. The system uses a Kalman filter based active shape tracker to
track detected persons and has the ability to deal with partial occlusions.

Work by [Smith et al., 2005b] presents the latest achievements in
the field of people tracking based on stationary cameras. The system is
using a particle filter based multi person tracker. It models interactions
between occluding persons hence is able to deal with partial and total
occlusions. The advanced tracking methods do not allow to implement
the system in real time, however.
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[Gavrila and Davis, 1995] and [Sidenbladh, 2001] are examples of sys-
tems that use complex 3D models of persons. Because of their computa-
tional complexity they can be used only in specific applications without
real-time requirements such as in movie industry or motion analysis of
the human body. Both systems allow to track a single person only. The
first system in addition requires a specially controlled environment (i.e.
two camera set-up, persons wearing tight clothes). The latter system
uses a particle filter to robustly track the pose of a person.

2.6.2 Mobile Applications

In the case of mobile robots, people tracking becomes an even more
challenging task because the robot is moving and the environment is
unpredictable. In addition computational resources are very limited
since a robot usually has to perform other tasks such as navigation,
planning, object recognition, etc., at the same time. Therefore not all
techniques used in non-mobile applications can be directly applied to
mobile robotics. Below we present existing mobile robotic applications
designed to detect and localise people in the environment. Here the lit-
erature has been divided into systems which only detect humans based
on the current sensor data and systems which track them using recursive
methods for state estimation. Otherwise it is difficult to classify existing
systems into distinct categories, because the field is at an early stage
and a wide variety of techniques are still being explored. Perhaps two
general trends can be observed: First, a few approaches rely on a model
of the environment for separating humans from the background, there-
fore requiring accurate maps and self-localisation by the robot. Second,
many approaches apply complementary sensor modalities, e.g., vision
and range-finder data, in order to compensate for the limitations of each
individual modality. For example, many approaches try to detect hu-
man legs from local minima in laser scans, but usually this information
alone is not enough to guarantee reliable results, and another sensor
(e.g., vision) may be used to confirm the presence of humans. A further
observation is that almost no work has been done to objectively evalu-
ate or compare the different methods: this thesis presents a first step in
this direction, applying quantitative methods from computer vision to
evaluate tracking performance on a mobile robot.

Detection Only Systems

Early mobile robotic systems, despite their simplicity and hardware lim-
itations, showed that people can be detected and localised in the envi-
ronment even though the platform is moving. They usually made strong
assumption about the environment and used very limited and simple
models of persons, expecting the user to be somehow aware of the robot.
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Figure 2.5: First mobile robots able to recognise persons: a) Polly [Hor-
swill, 1993a], b) a biologically inspired system presented in [Blackburn
and Nguyen, 1994].

The most popular sensor was a colour camera working in low resolutions
to simplify the image processing. They usually could detect only a single
person since no tracking procedure was applied.

Most probably the first robot designed to recognise people was Polly
[Horswill, 1993a,b], a mobile robot that gave tours in the corridors of
the MIT AT Lab (see Fig. 2.5a). It was equipped with a simple vision
system (a camera pointing down at the floor with a resolution of 64x48
pixels and frame rate of 15 Hz) that was capable of detecting people
in its surroundings. The system could estimate the “depth” of different
objects in the environment by filtering out pixels belonging to the floor.
This approach assumes that the environment is planar, so that depth can
be estimated from height in the image plane, and that the floor has a
distinctive texture that can be easily separated from foreground objects.
Based on this depth information Polly could detect objects corresponding
to people’s legs (it was assumed that other similar objects like table or
chair legs would not be present). Walls and junctions were detected by
the same vision systems using a similar approach. Moreover the system
could also recognise simple gestures such as foot waving, allowing simple
interaction with the robot by the user.

[Blackburn and Nguyen, 1994] presented a mobile robot equipped
with a biologically inspired vision-control system that could separate the
motion of a moving object from the motion of the environment caused
by the movement of the robot (Fig. 2.5b). The reported speed of the
system was 15 fps with images of resolution 128x128 pixels. The system
required the speed of the tracked object to be high enough to separate
the object from the background, so the approach would only be useful
for tracking humans while they move quickly from one place to another.
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Figure 2.6: Robotic museum guides: a) Rhino [Burgard et al., 1999]
b) Minerva [Thrun et al., 1999].

[Huber and Kortenkamp, 1995; Wong et al., 1995] presented a mobile
robot with a visual attention system that was able to detect and follow an
arbitrary object. The system used both stereo and motion information
to detect the first object with enough texture information (assumed to
be a person). This information was later used by the robot to pursue
the detected object. The system could operate at a speed of 30 fps.
Later in [Kortenkamp et al., 1996] a similar system was used for gesture
recognition where a simple model of a person was introduced to obtain
more reliable detection. Another robotic system recognising gestures of
a person was presented by [Kahn et al., 1996].

The robot Rhino [Burgard et al., 1999] and its successor Minerva
[Thrun et al., 1999] are examples of very successful mobile platforms de-
signed to work in museums as artificial tour guides (see Fig. 2.6). They
use proximity sensors (i.e., sonars and laser scanners) to detect people.
The technique used for people detection is based on the entropy gain
filter [Fox et al., 1998] which was intended to filter out unexpected ob-
jects from the robot readings. Assuming that these unwanted objects
correspond to people, one can obtain a simple people detector. This
technique therefore requires an accurate, up-to-date map of the environ-
ment and reliable self-localisation, otherwise any discrepancies between
the map and environment would be detected mistakenly as persons (false
positives).

Many mobile robotic systems use techniques based on face detection.
In this case it is possible to choose from the vast amount of face detection
techniques in computer vision. In addition many techniques could also
be used for recognising the face of a potential user. [Barreto et al., 2004]
presents a human-robot interface that relies purely on a face detector
in combination with face recognition based on PCA. The robots Cog
and Kismet from MIT use a face detector aided by speech recognition
to localise humans. [Blanco et al., 2003] presents as system based on



2.6. APPLICATIONS 43

Figure 2.7: Commercially produced robots are able to recognise human
faces a) QRIO by Sony, b) Asimo by Honda.

the combination of face detection and laser scanner. Techniques based
on face detection are still very popular and have been used in recent
commercially produced robots such as Sony’s QRIO and Honda’s Asimo
(see Fig. 2.7).

There are several robotic applications which fuse information from
multiple sensors and modalities to assure more reliable detection. The
group from Ilmenau in Germany developed a system that can detect
persons using different cues including skin colour, face detector, head-
shoulder contour, motion and speech [Boehme et al., 1998, 1999]. To
combine information from different cues they used a biologically inspired
approach based on saliency maps that represent the importance of each
individual cue in different scales. [Feyrer and Zell, 1999] proposed a
system that combines skin colour, motion, contour and stereo informa-
tion. This system is based on hierarchical detection: skin colour and
motion cues are used to select regions of interest that are later filtered
depending on contour and stereo information. [Byers et al., 2003] present
another system combining skin colour and laser data in the interesting
application of a robotic photographer. In this system hypothetical re-
gions corresponding to people are found by detecting skin colour, and
laser data is used to estimate their distances and determine their size.
Despite the simplistic techniques this application has been successfully
tested in crowded environments such as conferences and public presen-
tations.

Tracking Systems

[Schlegel et al., 1998] present a people tracking system that uses a model
of a person including a colour histogram and adaptive contour model that
is learned during an initialisation phase. The system can detect and track
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people in a range of 1 to 5 m. In this system tracking is performed by
an adaptive procedure that updates both models. Example of systems
where tracking was realised in a similar way include [Waldherr et al.,
1998] and [Brethes et al., 2004]. Both systems use skin colour to select
the regions of interest and later update the colour models of these regions.
In addition the system in [Waldherr et al., 1998] uses an adaptive colour
model of the shirt to increase the robustness of detection.

[Wilhelm et al., 2002] present a robotic shop assistant. The tracking
system is based on a particle filter allowing to track a single person (a
potential user). The system uses a combination of skin colour, contour-
based information and additional range information from the robot’s
sonars. Information from different modalities is combined by a fuzzy
data fusion technique.

[Kleinehagenbrock et al., 2002] present another technique that com-
bines skin colour and laser data. In this case the two modalities are
fused by means of symbols and a respective set of rules. The system is
able to track one person and the reported speed is around 3-4 fps with
resolution 198x139 pixels for the vision system tracking skin colour and
4.6 Hz for the laser. The system is able to combine the different sensor
data asynchronously.

[Scheutz et al., 2004] present a system that could track multiple per-
sons with information provided by a laser for leg detection and a camera
for skin colour detection. The skin regions are used to verify hypothesis
of the existence of persons given by the laser tracker. Despite the ability
of the system to track multiple persons, occlusions are not handled.

[Schulz et al., 2001] present a particle filter based approach to track
multiple moving objects from a mobile platform. It uses information
from a laser scanner to detect the legs of persons, using scan match-
ing between consecutive scans to separate the legs from the background,
meaning that the approach cannot detect stationary persons. For each
object a single particle filter is used and the JPDAF algorithm is used
for data association. This algorithm explicitly models occlusions to in-
crease robustness, relying on the motion cue. This work gives the first
rigorous presentation of the multiple person tracking problem in the field
of mobile robotics. The sample-based JPDAF algorithm has also been
applied in tracking applications in other fields.

[Montemerlo et al., 2002] present a similar system. In this case the
tracking system uses information about the environment (an accurate
metric map collected beforehand) to increase the robustness and accu-
racy of the tracker. The people tracking is solved simultaneously with
the problem of pose estimation of the robot. However this technique
would be sensitive to dynamic environments, increasing the number of
false detections, since it relies on having an up-to-date map of the en-
vironment. To solve data association the nearest neighbour approach is
used.
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The system described by [Jensen and Siegwart, 2003] uses a laser
scanner and is similar in principle to [Montemerlo et al., 2002] in the
sense that the system uses a map of the environment and then selects
objects that are outliers. This is realised by the EM algorithm and a
feature-based representation of the environment to reduce the complexity
of the algorithm. However, the EM algorithm requires many iterations
and all previous data to be available, so the scalability of this approach
is not clear.

Another laser-based people tracking system mounted on a wheelchair
is presented by [Kluge et al., 2001]. Shapes of persons are represented
by a set of objects (i.e. vertices and edges) extracted from the laser
scan. Tracking of multiple moving persons is realised by matching ob-
jects from two consecutive scans represented in a graph-like structure.
The association is performed by standard optimisation techniques used
in graph theory. However this approach allows to track only well sep-
arated, moving objects and data association realised by the graph can
fail in cases of simultaneous appearance/disappearance of objects.

[Cielniak et al., 2003] developed a method for people tracking by
mobile robots allowing the incorporation of additional knowledge about
the behaviour of the people. These behaviours are learned off-line by
clustering recorded trajectories of the persons provided by a laser scanner
using the EM algorithm. The results from the clustering are later used
to construct a person-specific hidden Markov model (HMM). This model
can predict the intentions of a person and is used for on-line tracking.
Range and colour information is used to update the HMM model where
colour allows to distinguish between different individuals and tracking
of multiple persons. The issues related to on-line learning of behaviours
would need to be investigated further to allow application of this system
in practice.

[Zajdel et al., 2005] address the problem of tracking and identification
of persons from a mobile platform using vision. The proposed system
segments persons from the image in two ways: by a standard background
subtraction method when the robot is stationary and motion extraction
from optical flow when the robot is moving. The tracking procedure
is realised by a colour matching algorithm. The resulting tracks are
later used for re-identification of persons entering the field of view of
the camera. This so-called global tracking is used to determine whether
the observed person has been seen before. The method uses a Bayesian
network that associates local tracks using colour and spatio-temporal
features extracted from the tracks. However the authors did not inves-
tigate or discuss some possible problems of the approach. This would
include, for example, the influence of faulty tracks on the performance
of the global matching algorithm, or tractability of the approach with
a growing number of observed tracks (the complexity of the proposed
Bayesian network grows exponentially with the number of tracks).



46 CHAPTER 2. SURVEY OF EXISTING METHODS

2.7 Conclusions

In this chapter we presented the theoretical background and state of the
art in people tracking for mobile robots. The major challenge for peo-
ple tracking systems lies in reliable detection and localisation of people.
The selection of an appropriate model of a person depends heavily on
the application, however in general appearance models seem to be more
suitable for mobile robots. The most popular sensors are vision cameras,
but other sensors such as a thermal camera or laser scanner can simplify
or aid the detection task.

The Bayesian framework allows to specify the tracking problem in
a rigorous way. There are efficient sample-based algorithms that allow
to solve the general tracking problem. Tracking of multiple persons
introduces the further problems of estimating the number and order of
persons, as well as their locations. Despite the recent achievements in
this field, people tracking remains an open research area due to challenges
such as reliable detection of persons, efficiency of the tracking algorithms
and successful occlusion handling.

People tracking systems have been used in many interesting appli-
cations in different fields. Not all of the techniques used in non-mobile
applications can be directly transferred to robotic systems due to the
increased amount of noise, movement of the platform, unpredictability
of the environment and computational limitations. The presented mo-
bile applications illustrate the need for fast and reliable people tracking
systems.



Chapter 3

Experimental Set-up and
Evaluation Metrics

This chapter presents the set-up used to conduct the experimental part
of the thesis. We first present the mobile platform - an ActiveMedia
mobile robot - together with its sensors. The people tracking system de-
scribed in the thesis was entirely implemented on the robot. We describe
also the process of collecting the ground truth data. Finally we present
the metrics used for evaluation of the tracking system throughout the
remainder of the thesis.

3.1 Experimental Platform

The experimental platform used in the thesis was PeopleBoy - an Activ-
Media PeopleBot robot (Fig. 3.1), which is a mobile platform especially
designed for tasks involving interaction with humans. It is equipped
with an array of different sensors including a colour pan-tilt-zoom cam-
era (VC-C4R, Canon) and thermal camera (Thermal Tracer TS7302,
NEC). Information from these two cameras was used as input to the
people tracking system. The robot was equipped with a computer based
on the Intel Pentium IIT processor (0.85 GHz) running the Linux op-
erating system. The code for the tracker software was implemented in
C++.

The colour and thermal cameras are mounted close to each other to
allow for easy combination of the information from both cameras (see
Section 6.1.1). The cameras are connected to on-board frame-grabbers
allowing simultaneous capturing of images with a maximum frequency
of 15 Hz. The thermal camera (see Fig. 3.2a) converts infrared radiation
into an image where each pixel corresponds to a temperature value (see
Fig. 3.2b). In our set-up the visible range in the grey-scale image was
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Figure 3.1: The ActivMedia PeopleBot robot PeopleBoy equipped with
an array of different sensors.

equivalent to the temperature range from 24 to 36 °C.

3.2 Data Collection

Our system was tested on the data collected by the robot during several
runs. The robot was operated in an indoor environment (a corridor
and lab room at our institute). Persons taking part in the experiments
were asked to walk in front of the robot while it performed different
autonomous patrolling behaviours: corridor following (based on sonar
readings) and person following (using information from the implemented
tracker), or while the robot was stationary. At the same time, image data
were collected with a frequency of 15 Hz. The person following behaviour
was used to collect data for a single person and corridor following was
used in the multi-person case. The resolution of the thermal and colour
images was 320 x 240 pixels.

The person following behaviour of the robot was designed based on
the implemented tracker. The robot starts first in a search mode, ro-
tating continuously at the same time trying to detect a person in the
thermal image. After a person is detected the robot tries to get closer
and maintain a constant distance to the person. This is realised within
an image-based control loop: the direction of the robot is adjusted so
that the position of the person provided by the tracker remains in the
middle of the thermal image. The velocity of the robot is determined
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c)

Figure 3.2: The vision-based people tracking system uses information
from two cameras: a) thermal camera (Thermal Tracer TS7302, NEC)
b) thermal image ¢) colour camera (VC-C4R, Canon) d) colour image.

by the height of the person which corresponds to the apparent distance
between the robot and person. If the height is bigger than a specified
threshold, or in other words the robot gets close enough to a person, the
robot stops. Any change in the position of a person is immediately com-
pensated by the control loop resulting in an appropriate action of the
robot. The high frame rate of the system allowed for smooth operation
in our office environments.

3.3 Ground Truth

Obtaining the ground truth in the case of video data is often a difficult,
monotonous and labour demanding process. There have been attempts
to improve and automate this process by using synthesised ground truth
data [Black et al., 2003], systems performing fully automatic evaluation
based on colour and motion metrics [Erdem et al., 2001] and approaches
that first use some other algorithm to roughly select regions of interest
that are refined later by hand [Khan et al., 2004]. We used a similar
method in which results from a flood-fill segmentation algorithm were
corrected afterwards by hand using the VIPER-GT tool [Doermann and
Mihalcik, 2000].
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Figure 3.3: Ground truth data: a) single person - standing robot b) single
person - moving robot ¢) multiple persons - standing robot d) multiple
persons - moving robot; the percentage value in the bottom of a dashed
bounding box indicates the amount of occlusion.
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Single person Multiple persons

ref. name datasetl dataset?2 dataset3 dataset4

moving robot - + - +
frames 590 8431 3476 2131
frames total 1268 14573 4369 2400

tracks 8 45 42 11
detections 590 8431 6425 3831
occlusions - - 1130 159

max. persons 1 1 3 4

Table 3.1: Detailed information about the experimental data used in the
thesis.

Optimally the ground truth data should consist of true values for
each component of the state vector. Then the errors for each state vari-
able could be specified to obtain an indicator of the performance of the
tracker. However in our application obtaining such information for an
ellipse model would be very difficult and could introduce significant er-
rors. Instead we decided to consider only a bounding box around a
person (see Fig. 3.3) in order to simplify the ground truth labelling pro-
cess. As a result we were able to obtain a substantial amount of ground
truth data (see Table 3.3). The top and bottom edges of a bounding
box were determined from the contours of the head and feet while the
sides were specified by the maximum width of the torso (without arms).
The cases when persons appeared too close (< 3m) or too far (> 10m)
to the robot were not taken into account. This type of ground truth
information is just an approximation, and the quality of this process is
affected by factors such as the naturally blurred appearance of a person
in the image, noise caused by the movement of the robot and also the
skill of the person labelling the data.

In addition the ground truth data for the multi-person case contain
information about the amount of occlusion for each person (see Fig.
3.5d). The order of persons in the image was determined by the position
of the bottom edge of the bounding box: closer persons that occlude
other persons appear closer to the bottom edge of the image. Detailed
information about the ground truth data including the number of per-
sons, tracks, number of occlusions, robot’s behaviour and reference name
is presented in Table 3.3.
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Figure 3.4: Typical tracking errors: a) target and correct candidate
tracks b) track scattering ¢) track swapping d) track fetching.

3.4 FEvaluation Metrics

The problem of evaluating tracking systems has been addressed recently
by the computer vision community [Ferryman, 2000]. The consensus is
that there is no single metric that could indicate sufficiently the quality
of the entire system. For a proper evaluation it is important to use dif-
ferent metrics quantifying different performance aspects of the system.
Examples of different metrics can be found in [Doermann and Mihalcik,
2000; Needham and Boyle, 2003; Black et al., 2003; Erdem et al., 2001;
Smith et al., 2005a]. Having a good set of performance measures allows
to optimise algorithm parameters, check performance of the tracker for
different kinds of data, quantitatively compare different algorithms, sup-
port development of the algorithm, and decide upon trade-offs between
different performance aspects.

The output from the tracking system is a set of tracks corresponding
to each appearing person. A single track is a collection of estimated
values of the state for the corresponding person over some period of time.
To compare the output from the tracker with the ground truth data, we
first transform the information provided by the elliptic model to match
the assumed ground truth data described in the previous section. The
size of the bounding box generated by the system was specified as 2-width
and 3.5 - height of the elliptic model, which is an approximation to the
proportions of the human body. Bounding boxes from the ground truth
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data are referred to as targets and those from the tracker as candidates.

The output from the tracker should produce results as close to ground
truth as possible. However, due to tracking errors, tracks deviate from
their true paths, get scattered, missing or swapped (see Fig. 3.4). These
phenomena occur especially in the case of tracking multiple persons.
Therefore an association procedure is required to match the resulting
candidate tracks to the target tracks. However the association proce-
dure itself can produce inaccurate results in ambiguous situations. We
decided to use a spatial association technique that produces more reli-
able results in cases of track fetching but is more sensitive to situations
where tracks are swapped. In the spatial association procedure each
frame is considered separately. It is assumed that only one candidate
can match one target. As a measure of the distance between the target
and candidate we used the overlap ratio. Moreover from these associ-
ated target-candidate pairs we consider only those pairs that overlap
each other by more than a certain threshold (in our case > 50%). Other
candidates are considered as false alarms.

We use two kinds of metrics: detection metrics (counting persons)
and localisation metrics (area matching). Each type of metric is further
divided into three statistics: recall, precision and accuracy. Recall indi-
cates true positives (“hits”), precision indicates the level of false alarms,
and accuracy is a combination of both recall and precision. Such a set
of metrics allows thorough testing of the properties and performance of
the tracker and is similar in spirit to the metrics used in [Doermann and
Mihalcik, 2000] and [Smith et al., 2005a]. Figure 3.5 shows an illustra-
tive example of a possible outcome from the tracker, ground truth and
a set of calculated metrics for one frame.

3.4.1 Detection Metrics

Detection metrics take into account the number of all correctly detected
persons Npg in one frame and compare it with the number of targets Np
and number of candidates N¢o. The final result is a weighted average of
all frames.

o Count Recall (CR):

Ng
CR=—. 3.1
o (31
This metric indicates how well an algorithm counts persons.
o Count Precision (CP):
N,
cp=2% (3.2)
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Figure 3.5: An illustrative example showing a possible output from the
tracker together with different metrics calculated after applying the spa-
tial association procedure described in Section 3.4. Only the hatched
area is taken into account when calculating the localisation metrics.

is a counter-metric to CR and corresponds to the false detection
ratio.

o Count Accuracy (CA):

2. Ng

cA= -~ DR
N7+ N¢

(3.3)

This metric is applied to check the accuracy of detection. It pe-
nalises both missing recalls (false negatives) and false alarms (false
positives).

3.4.2 Localisation Metrics

These metrics express relations between areas corresponding to correctly
detected candidates Apg, all candidates Ac and targets Ar. The final
result is a weighted average of all frames.

o Area Recall (AR):

|AT M AR|

AR =
|Ar|

(3.4)

This metric measures the proportion of each target area covered
by the corresponding correctly detected candidate. Recall is cal-
culated for each target and averaged for the whole frame.
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e Area Precision (AP):
(3.5)

This metric is a counter-metric to AR and it examines areas of
correctly detected candidates with respect to all candidates in-
stead. Precision is computed for each candidate and averaged for
the whole frame.

e Area Accuracy (AA):

_2-|ATﬂAR|

AA= ——————,
|Ar| + |Ac]

(3.6)

This metric measures how well an algorithm covers the target areas
but also penalises for areas that are not covered.

All of the mentioned metrics are normalised to give percentages. If
the nominator is greater than the denominator the result is set to 100.
If the denominator is 0 then the result is undefined.

3.5 Conclusions

In this chapter we presented the set-up and methodology used in the
experimental part of the thesis. Our robot PeopleBoy is well suited for
tasks requiring interaction with persons. Colour and thermal cameras
mounted on the robot provide the sensory information to the imple-
mented people tracking system.

A proper evaluation of the tracking system is an important issue
which seems to be neglected in many mobile robotic applications. We
address this problem and present a set of metrics for evaluating the
detection and localisation performance of the tracking system. This
methodology is not limited to people tracking, but could also be used to
evaluate more general object trackers.
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Chapter 4

The Basic Tracking
System

This chapter presents a people tracking system for mobile robots with
a thermal camera that uses an elliptic contour model. First an efficient
tracking method based on the particle filter is described for tracking a
single person. Detailed information is provided about the measurement
and dynamic model used by the particle filter. The section is concluded
by experiments showing the general performance of the tracker. The
parameters and performance of this tracker are used as a reference for
further extensions of the system. We also show the performance of the
system with respect to different system parameters to determine opti-
mal values and the sensitivity of the tracker to their changes. Extensions
to the proposed system for tracking multiple persons and incorporating
colour information for increased performance and better occlusion han-
dling are presented in the following chapters.

4.1 Particle Filter

Our system is based on a particle filter that provides an efficient solu-
tion to the estimation problem despite the high dimensionality of the
state space. The particle filter allows to perform both the detection and
tracking procedure simultaneously without exhaustive search through
the entire state space. Moreover the measurements are incorporated di-
rectly into the tracking framework without any thresholding procedure
that can cause loss of information.

The posterior probability p(x:|z1.1) of our system being in state x;
given a history of measurements z;.; is approximated by a set of IV
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weighted samples such that
N
p(ai|z1) = > wid(x, — ). (4.1)
i=1

Each z! describes a possible state together with a weight w! which is
proportional to the likelihood that the system is in this state. We use
a standard Sampling Importance Resampling (SIR) filter that consist of
a prediction, update and resampling step (see Algorithm 3 and Section
2.3.2 for more details about the SIR filter). In the prediction step a
motion model (see Section 4.3) is applied to each particle, while the
update step calculates new weights for particles by application of the
measurement model (see Section 4.2). To avoid negative effects of sample
impoverishment the SIR filter applies a resampling step (see Section
2.3.2). Starting with some initial distribution p(x¢) (in our case uniform)
these three steps are repeated iteratively, providing at each time step ¢
estimates &; of the state of the system as a weighted mean over all sample
states:

- 1 i
T = Zwtwt. (4.2)

The resampling step is implemented using the systematic resampling
algorithm (see Algorithm 4). With this approach the complexity of the
resampling step is O(N) with respect to the number of particles. After
the resampling procedure all weights of particles are distributed uni-
formly.

Algorithm 3 A single iteration of the SIR filter

predict:
- draw samples x}, ~ p(x|z}_,), i=1,...,N
update: 4 ‘
- calculate weights @], = p(zk~|;13}€), i1=1,...,N
B . . i w;’c ] -
normalise weights wj = SRR i=1,....,N
re-sample:
- generate a new set of samples {x}, ;¢ = 1,..., N} by using the

systematic resampling algorithm (see Algorithm 4)

4.2 Measurement Model

A thermal camera provides images where the human silhouette is very
distinct, which makes the problem of detection easier. Moreover it is
possible to segment persons easily despite the sensor movement, which
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Algorithm 4 Systematic resampling after [Ristic et al., 2004]

C1 = w,i
for i=2 to N do
Ci =¢Ci—1+ w}c
end for
i=1
draw uy ~ U[0, N7
for j=1 to N do
Uj = Uy +N71(‘7 — ].)
while u; > ¢; do
i=14+1
end while
x, =z,
wi =N"!
end for
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Figure 4.1: Other objects visible in the thermal image.
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Figure 4.2: The elliptic measurement model in thermal images.

is a crucial property for a mobile robot system. However there are other
objects that can be visible in thermal images such as lamps, radiators,
monitors, robots, etc. (see Fig. 4.1). We propose an elliptic contour
model that allows to distinguish persons from other objects in the envi-
ronment. The contour measurement model used to estimate the position
of a person in the image consists of two elliptic segments: one ellipse de-
scribes the position of the body part and the other ellipse measures the
position of the head part. Thus we obtain a 9-dimensional state vector:
z; = (z,y,w, h,d, vy, vy, Uy, vp) where (z,y) is the mid-point of the body
ellipse with width w and height h. The height of the head is calculated
by dividing h by a constant factor. The displacement of the middle of
the head part from the middle of the body ellipse is described by d. We
also model velocities of the body part as (vs,vy, vy, vn). The elliptic
contour model can be seen in Figure 4.2.

To calculate the weight w! of a sample i with state ¢ we divide the
ellipses into m different regions (see Figure 4.3) and for each region j
the image gradient A;- between pixels in the inner part and pixels in the
outer part of the ellipse is calculated. The gradient is maximal if the
ellipses fit the contour of a person in the image data. A fitness value f?
for each sample 7 is then calculated as the sum of all gradients multiplied
by a weight «; for each region:

Fr=2 (4.3)
j=1

The weights a; sum to one and are chosen so that the shoulder parts
have lower weight to minimize the measurement error that occurs due
to different arm positions (see Figure 4.6). Typical fitness values for
situations with and without a person in the thermal image are depicted
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Figure 4.3: Elliptic model divided into 7 sections.
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Figure 4.4: Histograms of particle fitness values for 30 selected frames
containing no person (left) and a person (right).
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Figure 4.5: Situations with multiple persons leading to wrong estimates.

in Figure 4.4. The fitness value is finally scaled to values in [0, 1] in order
to represent a likelihood:

exp(s - (f* = 0))
exp(r - (ft —0)) +exp(r- (0 — 1))’

where 6 denotes a fitness threshold and the value of s defines the slope
of the likelihood function. With a proper choice of the value x too strong
peaks in the observation model can be avoided. This kind of likelihood
function was used in [Li and Wang, 2005] for visual tracking of objects.
The weight update equation is then straightforwardly

py(zelat) = (4.4)

wi = py(z:|z}). (4.5)

When the mean gradient value calculated by Equation 4.4 is greater
than 0.5 a person is considered to be detected. However in situations
when the posterior probability distribution is highly multi-modal (e.g.
multiple persons appearing on the scene) the weighted mean estimate
can lead to a detection in wrong regions (see Fig. 4.5). To avoid such
situations we also check the uncertainty of the estimate U, [Karlsson and
Gustafsson, 2001] given by equation:

N
Up =Y wix) — &) (] — &) (4.6)
i=1

If the value U; is above some threshold we discard the corresponding
detections.

Our contour model can be considered as a deformable template [Yuille
and Hallinan, 1992] and is similar to the model used by Isard and
Blake [Isard and Blake, 1998] for tracking people in grey scale images.
However, they use a spline model of the head and shoulder contour which
cannot be applied in situations where the person is far away or visible
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Figure 4.6: Tracking with different arm positions.

in a side view, because there will be no recognisable head-shoulder con-
tour. The elliptic contour model is able to cope with these situations.
Another advantage of the contour model used in this thesis is that it
can be calculated very quickly due to the fact that we measure only dif-
ferences between pixel values on the inner and outer part of the ellipse.
Figure 4.7 shows the results of tracking a person under different views
at different distances: starting with a frontal view the person turns to a
side view and then a back view.

An unconstrained model as described so far would require that the
whole 9-dimensional state space is explored. This would make it nec-
essary to use an enormous number of particles. However this problem
can be greatly alleviated by introducing constraints on some state vari-
ables. In our case we check limits of the ratio r,j between the width
and height of an ellipse model, the ratio r4, between the state variable
d (relative position of the head) and width of a sample, and finally the
minimum and maximum values of the state variables y and h. If any
of these requirements for a given sample is not fulfilled we discard the
particle. Such a sample gets a very low chance to be selected in the next
resampling step.
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Figure 4.7: Tracking under different views using the elliptic measurement
model.

4.3 Motion Model

In our work we consider the movement of a person in the image space.
Optimally the motion model of the tracked object should be learned
from data [Blake and Isard, 1998]. However the movement of a person,
especially persons that interact with other people, can be unpredictable
and it would be difficult if not impossible to learn such motion models.
If learning is not possible other simpler models can be used such as
the linear Gaussian model in the Kalman filter. However the Gaussian
assumptions made about the motion are very often not met in visual
applications. One possible way to deal with this problem would be to
use a multiple model filter [Pavlovic et al., 2000] with a set of different
motion models tracking a person in parallel and selecting the best motion
model for a given situation. However this approach increases significantly
the complexity of the tracker and introduces a decision problem: when
to switch between different models.

Another important factor that introduces problems when selecting
the motion model is the movement of the mobile platform together with
its sensors. This movement further influences the apparent motion of
a person in the image. The compensation of this movement would re-
quire complex transformations based on geometrical characteristics of
the camera and robot, together with additional models or assumptions
about the environment (e.g. planarity of the floor), etc. In such situa-



4.4. EXPERIMENTS 65

tions, when the range of activities of persons varies in addition to being
observed from a mobile platform, it is better to use a more general mo-
tion model. In our system we use a random walk — a discrete realisation
of Brownian motion — that can cope with the above mentioned problems
to some extent and at the same time is relatively simple and efficient.

Random walk belongs to the family of first order stochastic processes,
and thus depends only on the state of the system from the previous step.
Such a motion model can deal with changes of position and shape, and
despite some limitations (e.g. it does not allow modelling of oscillatory
movements) it is a commonly used model in visual tracking [Blake and
Isard, 1998].

The generative form of a Brownian motion model used in our work
can be expressed as:

x; = Axy_1 + Bwy, (4.7

where wy, is a vector of independent random variables A(0,1) of the
same dimension as the state vector x;. For our elliptic model matrix A
has the following form:

I, 0 6t
A=|10 1 0 |, (4.8)
00 I

where t is a time interval between two consecutive steps and B is a
matrix specifying the amount of randomness introduced into the system.

4.4 Experiments

This section presents results showing the performance of the tracker
based on the metrics introduced in Section 3.4. We used data collected
for a single person in both a stationary and moving robot scenario (see
Table 3.3 for more details).

Thanks to the evaluation metrics, we could optimise all system pa-
rameters based on the test data. As the performance criterion we chose
an area accuracy metric that reflects the overall performance of the
tracker. The influence of each parameter on the performance of the
tracker was checked independently. Experiments for each parameter
value were repeated 10 times with different random variations in the
particle filter (run with N = 1000) for each trial. Obtained optimal
values for the system parameters were as follows:
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Parameter Value

ag,...,a7 0.18,0.18,0.18,0.07,0.07,0.16,0.16
Kk, 8 0.125, 22
U; threshold 400 pixels
B diag{0,0,0,0,60,30,30,22,22}
limits 0.1 < 7ypp < 0.9, —1.5 < rgy < 1.5,
0.2 - image_height < y < 0.8 - tmage_height,
h > 0.02 - tmage_height

With this set of optimised parameters we ran experiments including
all the data for the single person case. Each experiment was repeated
10 times with different random variations in the particle filter for each
trial using NV = 1000 particles. From the results presented in Figure 4.8
it can be seen that, in general, the tracking system based on the thermal
appearance of a person decreases false detections especially well: the de-
tection precision metric for both data sets was 94.61%. The performance
of localisation is affected strongly by the fact that we are considering
bounding boxes around a person, which results in low recall values espe-
cially in the case of distant and very close persons. The movement of the
platform sometimes causes blurry images and increased noise, resulting
in worse recall metrics compared to the stationary robot scenario. The
difference in the area accuracy metric between the data sets for the sta-
tionary and moving robot was 1.22%. Using a standard paired t-test,
differences between both data sets in recall and accuracy metrics were
found to be significant (p < 0.01) and differences in precision metrics
were not found to be significant at the same confidence level (p < 0.01).

We also checked the performance of the system with respect to dif-
ferent parameters of the particle filter including the number of particles
and the percentage of samples used in the resampling step. As default
values we chose 1000 particles and 20% of re-initialised samples. As in
the case of parameter optimisation we chose an area accuracy metric as
the performance criterion. Each experiment was repeated 10 times with
different random variations in the particle filter for each trial.

Figure 4.9a shows the results for different numbers of samples. The
quality of tracking increases with the number of samples and satisfactory
results can be obtained with 300 particles. With more than 2000 samples
the quality of tracking saturates and there is no significant improvement
in the results. With less than 200 samples the tracker often loses tracks
and the pose estimates become inaccurate.

To reduce the effects of degeneracy of particles we choose a fraction of
all samples for re-initialisation in the resampling step. The best results
can be observed for small values around 20% of re-initialised samples (see
Fig. 4.9b). With more than 70% the performance of the tracker drops
down due to the small number (less than 300) of samples effectively
used in the filtering procedure. In the range between 10-50% the results
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Figure 4.8: Detection and localisation metrics for tracking a single person
in both stationary (dataset!) and moving (dataset2) robot scenario.
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Figure 4.9: Performance measures for different system parameters:
a) number of samples b) ratio of re-initialised samples.
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Processing step Platform
PeopleBoy
Intel Pentium IIT ~ AMD Athlon XP
0.85 GHz [ms] 2.00 GHz [ms]
resampling 0.84 0.29
motion model 1.69 0.70
measuring 30.69 12.36
weight calculation 0.18 0.07
estimate uncertainty 0.33 0.10
total 33.73 13.52

Table 4.1: Average processing times of consecutive steps of the tracking
algorithm calculated for N = 1000 samples.

indicate a low sensitivity of the tracker to changes in the ratio of re-
initialised samples.

The use of the elliptic model results in low computational require-
ments. One iteration of the tracking algorithm using N = 300 parti-
cles on the PeopleBoy robot (Intel Pentium III processor, 0.85 GHz)
requires only 11 ms, which is equivalent to a frame-rate of 90 Hz and
leaves enough computational resources for other high-level tasks such as
planning, navigation, face recognition, etc. Table 4.4 presents average
processing times of different processing steps of the tracking algorithm
calculated on the robot and modern PC for comparison.

4.5 Conclusions

In this chapter we presented an effective, fast and robust tracking system,
allowing a mobile robot to track a single person in real-time. The sensory
information is provided by a thermal camera, which enables tracking of
people despite the movement of the robot. An efficient tracking method
based on a particle filter allows to detect and localise a person without
the need to scan the entire image. Measurements are incorporated di-
rectly into the tracking framework without thresholding of observations.
The elliptic measurement model is fast to calculate and allows detection
and tracking of persons under different views. An explicit model of the
human silhouette effectively distinguishes persons from other objects in
the scene. By contrast, the usual blob representations either make strong
assumptions about the detected persons (the only objects in the scene)
or involve filtering of non-person objects based on heuristics about the
size and proportions, which may result in many false positives. Please
note that the elliptic model also provides information about the position
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c) d)
Figure 4.10: Selected problematic situations for an elliptic model:
a) wrong estimate, b) incidental false detection, c) sitting person,
d) blurred image (dark ellipse indicates an estimate below the detec-
tion threshold).

of the person’s head, which could be used to provide an initial estimate
for a face tracking system, for example.

The first shortcoming of the presented system is that it cannot track
multiple persons. If a mobile robot is supposed to interact with different
users and operate in crowded environments it is necessary to deal with
multiple persons. An extension allowing our system to track multiple
persons is described in the next chapter. Another issue is related to the
elliptic contour model, which can detect and track persons only in the
up-right pose, for which a head-shoulder contour is visible. This pose
is most natural and common when interacting with a mobile robot in
indoor scenarios. However such a model does not allow to track persons
in some special poses: bending, lying, etc. In addition even though the
system is able to detect infants and sitting persons, the provided esti-
mates would be incorrect (see Fig. 4.10c). Moreover the contour of a
person does not always provide accurate estimates about the position
and size of the person (Fig. 4.10a) and sometimes it also happens that
the pattern of the person’s clothing seen on the thermal image is very
similar to a human silhouette, resulting in false positives (Fig. 4.10b).
The more sophisticated measurement model that incorporates additional
thermal features based on integral images presented in [Treptow et al.,



70 CHAPTER 4. THE BASIC TRACKING SYSTEM

2006] improves the tracking performance in such situations. Fig. 4.10d
presents the case when the image from the camera is too blurred to
detect a person because of fast rotational movements of the robot. In-
corporation of additional colour information could also help with some
of above mentioned problems by focusing samples in the right regions of
the image. An extension of the basic tracking system introduced in this
chapter that incporporates colour information is presented in Chapter 6.



Chapter 5

Tracking Multiple
Persons

In this chapter an extension to the people tracking system proposed
in the previous chapter that enables detection and tracking of multiple
persons is presented. A sequential detector that detects new persons
appearing on the scene without the necessity of scanning the whole im-
age is described. Later we present an efficient solution to the multi-
person tracking problem based on independent tracking filters that en-
ables tracking in real-time. The performance of the tracker is evaluated
in the experiments and possible extensions and improvements are dis-
cussed.

We propose an efficient algorithm for tracking of multiple persons.
The algorithm uses a factorial representation of the state space but
in contrast to other classic tracking methods (i.e. MHT [Reid, 1979],
JPDAF [Bar-Shalom and Fortmann, 1988]) does allow for incorporation
of the raw measurements into the tracking procedure. Such a solution is
better suited for vision-based tracking applications since a time consum-
ing detection step can be avoided. It also removes the loss of information
caused by the thresholding procedure in the detection step, which is very
important for mobile systems where the movement of the platform in-
troduces a significant amount of noise. This approach, called unified
tracking [Stone et al., 1999], allows for association between raw mea-
surements and target tracks implicitly within the Bayesian framework,
and the processes of detection and tracking are carried out simultane-
ously. A more thorough discussion of the unified approach to tracking
is presented in Section 2.4.3.
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5.1 Sequential Detector

We investigate a unified tracking approach that detects new persons in-
crementally as they appear while maintaining existing tracks of persons.
Our system uses a set of independent particle filters to track different
persons. We denote by X; = {mgl), . ,ach)} the combined state of the
tracker where M indicates number of persons.

To assign new filters to new persons we use a sequential detector, i.e.
a separate tracking filter with the state &(P) consisting of a set of Np
randomly initialised particles. These particles are used to “catch” a new
person entering the scene. To avoid multiple detections in the same or
similar regions, the weight of detection particles is penalised by a factor
1¥p < 1in cases where particles cross already detected areas. The weight
update equation 4.5 for the i*" detection particle is modified to

wiP" = p(zi |2y, (5.1)

where ¢ = p if particle ¢ overlaps with other detected regions and
1) = 1 otherwise. In this way, already existing filters naturally limit the
search space for the detector. The weights of the detection particles are
normalised after the update procedure.

The penalty factor ¢ p allows us to specify how close a new detected
region can be to other regions. In the extreme case where ¢¥p = 0
only well-separated persons can be detected. However in crowded scenes
higher values are more appropriate. The term v actually depends on
both the detector state ng) and the combined state of the tracker X;.
Therefore it could assume a more sophisticated form, for example, taking
into account both the position and velocities of the particles. The sim-
plified form of the penalty factor ¢ used in our case resulted in a very
computationally efficient method. Moreover from our investigations a
more complex form (i.e. amount of overlap between particle regions) did
not result in a significant increase in performance of the detector. This
approach in the worst case requires Np - M tests for overlap, where M
stands for the number of already detected persons. If a particle overlaps
with more than one region it is penalised only once. Detection occurs —
similar to the single person tracker — when the mean gradient value cal-
culated by Equation 4.2 is greater than 0.5 and the sample uncertainty
specified by Equation 4.6 is above a specified threshold. Then the par-
ticles from the detector are used to initialise a new tracker before being
re-initialised in order to detect the next new person. Figure 5.1 presents
an example case when three persons are successively detected.

Such a design of the detector causes problems in cases when a few
people appear in the image at the same time. Since they can only be
detected sequentially, detection delays can occur. On the other hand, a
sequential detector allows to detect each person in constant time, which
is a very important consideration in real-time applications.
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Figure 5.1: The sequential detector.
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Frame

Figure 5.2: Two persons passing by. There is enough kinematic infor-
mation to solve the tracking problem.

5.2 Heuristic Approach to Track Multiple
Persons

The most advanced multi-target tracking algorithms take into account
correlations between the targets and use a joint state space represen-
tation. This allows to solve the tracking problem including occlusions
between targets implicitly within the tracking framework. However it
is required that there is enough other information, e.g. from the target
kinematics, to distinguish between different targets and assign the right
measurement to the right object. An example of this situation is given
in Figure 5.2 where two persons pass one another with significantly dif-
ferent velocities. However this is only one possible scenario of peoples’
interaction. Persons often stop and interact in different ways: talking,
exchanging items, trying to avoid each other, etc. In such situations
kinematic information is usually not sufficient and sometimes even mis-
leading. Moreover, in our system we consider a moving platform that
further complicates the situation: the movement of the platform com-
bined with the movement of persons can be unpredictable and result in
complex apparent motion of persons in the image.
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The use of complex multi-target tracking algorithms (e.g., [Kreucher,
2005],[Orton and Fitzgerald, 2002]) would be justified in situations where
we could model all possible behaviours of a person. However, this is
not possible in our application. The use of such algorithms, where the
computational complexity grows exponentially with the number of per-
sons and observations, cannot be fully justified in this case, especially
when considering a system designed to work in real-time. Thus we have
adopted a computationally simpler solution based on the factorial rep-
resentation of the state space.

In our system an independent particle filter is assigned to each de-
tected person, so that the total number of particles used by the tracker is
Np+ M - N, where M is the number of persons detected by the detector
described in the previous section. Such a solution is computationally
inexpensive and appropriate for on-line applications, but suffers in cases
when tracked persons are too close to one another. To reduce these
problems we try to explicitly model interactions between persons and
prevent the corresponding trackers from being to close to each other.
This is realised by penalising the weights of particles that intersect with
areas corresponding to other detected persons. The weight update equa-
tion for a single tracking filter j is similar to Equation 5.1 used in the
detector o o

w" = plzdla” )0, (5.2)

but this time
Y= e(*pgn)7 (5.3)

where g;; expresses the amount of overlap between particle ¢ and re-
gion j multiplied by a penalty factor p. The penalty factor p allows to
specify the “strength” of interactions between persons and the amount
of handled partial occlusions (see Fig. 5.3). When p = 0 no penalty
is applied (1) = 1), which leads to situations where stronger filters (i.e.
with the more peaked likelihood) “fetch” the others. Target “fetching”
(also called “hijacking” [Khan et al., 2004]) occurs when two or more
tracking filters in close proximity are attracted by stronger evidence in
one region. This causes the filters tracking targets with weaker evidence
to collapse into one region, resulting in tracking errors. It appears as if
the weaker filters are “fetched” by the stronger filters.

Very high values of p (¢ &~ 0) do not allow any overlap between persons
and weaker filters quickly disappear. The optimal value for the penalty
factor p depends on a trade-off between the amount of handled overlap
(partial occlusions) and the ability to deal with target fetching. The
proposed form of the penalty factor ¢ is just one possibility, and could
also depend on the velocity of persons. However, as previously discussed,
velocity information about interacting persons can be unreliable. This
solution is similar to the interaction model proposed by [Khan et al.,
2004], where the authors propose a Random Markov Field for this pur-
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Figure 5.3: Different values of p parameter allow to specify the strength
of interaction between filters: a) p =10b) p = 1.

pose, using a joint state space representation. The proposed treatment
of interactions has the drawback that in the case of occlusions weaker
filters disappear. In the worst case, this approach requires N-M - (M —1)
calculations of the amount of overlap between the particles. The overlap
calculations for the rectangular regions used in our case can, however, be
efficiently implemented. If a particle overlaps with more than one region
it is penalised only once.

After weight normalisation we check if the filters still track the per-
sons. When the mean gradient value of a tracking filter calculated by
Equation 4.2 is smaller than 0.5 or the sample uncertainty specified by
Equation 4.6 is above a specified threshold the filter is deleted.

5.3 Experiments

This section presents results showing the performance of the tracker
when tracking multiple persons based on the metrics introduced in Sec-
tion 3.4. We used data collected for multiple persons both in a stationary
and moving robot scenario (see Table 3.3 for more details). Each experi-
ment including all the data was repeated 10 times with different random
variations in the particle filter for each trial using Np = N = 1000
particles.

To determine optimal values of the system parameters we used a
similar approach as described in the previous chapter choosing an area
accuracy metric as the performance criterion. The influence of each pa-
rameter on the performance of the tracker was checked independently
repeated 10 times with different random variations in the particle fil-
ter for each trial run with Np = N = 1000 particles. The obtained
optimised values for the system parameters were as follows:
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Figure 5.4: Detection and localisation metrics for tracking multiple per-
sons in both stationary (dataset3) and moving (dataset4 ) robot scenario.

Parameter Value

Yp 0.01
p 2

The other parameters for the measurement and motion model were kept
without change.

The results in the case of tracking multiple people are shown in Fig-
ure 5.4. In comparison with the single person case there is a significant
deterioration in the performance of the system, indicated by lower re-
call values caused mainly by long crossings and occlusions of persons.
The movement of the platform has also a negative influence causing a
reduction of 3.40% in the recall detection metric when compared with
the stationary robot case. There was also some minor influence on the
recall metrics due to the sequential nature of the detector. Despite this,
the tracker still keeps the number of false detection low, as indicated by
the high precision values. The slightly better results for the precision
metrics in the moving robot case can be explained by a lower number
of occlusions in this data set (see Table 3.3). The localisation accu-
racy metrics for both data sets was 67.70%. Using a standard paired
t-test, differences between both data sets in all cases were found to be
significant (p < 0.01).

We also checked how the number of particles assigned to each filter
influences the performance of the tracker. Fig. 5.5a presents results for
different number of samples N. During this experiment the number of
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Figure 5.5: Performance measures for: a) number of samples assigned to
each individual tracker b) adaptive version assigning an equal fraction
of samples to each individual tracker.

samples in the detector filter was kept constant (Np = 1000). The
tracker performance is satisfactory even with 200 particles per filter and
with more than 1000 samples the performance (around 66%) does not
change any more. Each new tracker naturally limits the search space of
the other trackers. This fact leads to the conclusion that the number
of samples per filter can be reduced every time a new filter is initialised
without affecting the performance of the tracker. To check this claim
we ran an experiment with an adaptive number of samples where the
total number of samples is kept constant and only a fraction of the
samples (%) is assigned to each filter. The results are presented in
Figure 5.5b. It can be seen that even with N = 500 of total samples
the tracker performance is satisfactory (62.67%). This approach allows
to limit substantially the total number of samples used by the tracker
especially when there are more people appearing on the scene.

To check the performance of the detector we fixed the number of
particles used by each tracking filter to N = 1000 samples and varied
the number of detector particles (see Fig. 5.6a). The overall performance
of the tracker becomes satisfactory with about 500 particles (65.77%).
Using more than 1000 samples does not result in a significant increase in
the performance. The average number of frames needed for detection of
a single person was 4, corresponding to a time of 0.26 s with the specified
frame rate of 15 Hz.

The computational requirements for all tracking filters are exactly
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Figure 5.6: Performance measures for different number of samples used
in the detector filter.

the same as for a single filter. Additional processing time is needed
by the detector to check intersections between particles (Np - M checks
in the worst case) and the amount of overlap between particles of the
tracking filters (N -M - (M —1) overlap calculations in the worst case). In
Table 5.1 average processing times needed for calculating 1000 particles
for different numbers of tracked persons are presented. The number
of particles used during these tests was set to Np = 1000, N = 1000.
To get the average time needed for calculating 1000 samples the total
time needed for the system was normalised by the number of individual
trackers (including detector) used at a given time. When one person is
tracked, the system requires around 8% more time when compared to
the time needed just by the detector. This time is required to calculate
intersections between detector and filter particles. When more than one
person is tracked the additional time is used to check the amount of the
overlap between individual filters. In the case of four people it requires
around 36% more time per 1000 samples.

5.4 Conclusions

In this chapter we presented an effective and computationally feasible
extension to the basic tracking system allowing a mobile robot to track
multiple persons in real-time. The unified tracking approach detects new
persons incrementally as they appear while maintaining existing tracks
of persons. Different persons are tracked by a set of independent particle
filters. The computational efficiency of the tracker was obtained by an
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Number of persons Platform
PeopleBoy
Intel Pentium IIT ~ AMD Athlon XP
0.85 GHz [ms] 2.00 GHz [ms]
detector only 33.73 13.52
1 36.40 14.59
2 39.68 15.90
3 43.72 17.52
4 46.17 18.51

Table 5.1: Average processing times for each tracker needed to calculate
1000 samples depending on the number of simultaneously tracked people.

approach that directly manipulates the weights of the particles.

The sequential detector enables detection of new persons in constant
time. However it introduces some detection delays depending on the
number of simultaneously appearing people. The other major drawback
of the tracker is that it cannot cope properly with occlusions. The weaker
filters disappear in case of an occlusion even though the tracker quickly
recovers as soon as a person is visible again. Proper occlusion handling
would allow to track persons despite occlusions. The next chapters there-
fore present a further extension to the proposed tracker, incorporating
additional colour information, that is used to detect cases in which oc-
clusions occur and later to explicitly reason about them.



Chapter 6

Incorporating Colour
Information

This chapter presents an extension to the proposed system to incorpo-
rate colour information provided by a colour camera mounted on the
robot. This approach improves data association and increases the ro-
bustness and performance of the tracker. First we present the solution
to the correspondence problem between the two cameras. Later a com-
pact and efficient colour representation is described together with an
adaptive appearance model. We also present a rapid way to calculate
the rectangular colour features used to measure similarity of the region of
interest to the appearance model. We also show how to fuse thermal and
colour information together. The section is concluded by experiments
comparing the performance of the tracking system with and without
colour information, using different colour representations and different
colour spaces.

6.1 Colour Model

6.1.1 Correspondence Between Cameras

Incorporating colour information into the tracking system requires ther-
mal and colour images to be aligned. Since the baseline between these
two cameras is relatively small compared to the distance from the sen-
sors to the persons in the scene, it is possible to model the displacement
between the cameras by means of an affine transform. If we describe
pixel coordinates in the thermal image as (u,v) and pixel coordinates in
the colour image as (z,y) then the affine transform between the thermal
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and colour images can be described as

z _ b1 +p2u +p3v (6 1)
y P4+ psu+pev |’ '

where p,;; = {P1,P2,P3,P4,P5,P6} is an unknown parameter vector.
Usually values of this parameter should be determined by some auto-
matic calibration procedure. Note, however, that in our case we have two
cameras with different modalities, meaning that standard stereo-camera
calibration methods cannot be directly applied. A robust method for
multi-sensor alignment based on multi-scale directional derivative filters,
which allows to determine the parameter values p, s, automatically was
proposed by [Irani and Anandan, 1998]. We used a simpler approach and
calculated the parameter values from data provided by the camera man-
ufacturers, and in our case Paff = {-0.15,1.20,0.00, —0.13,0.00, 1.20}.
A visualisation of the aligned images can be seen in Figure 6.1.

Figure 6.1: Images from the colour and thermal cameras (on the left
side of the figure) are aligned by affine transformation. The resulting
combined image is shown on the right side of the figure. The white
frame specifies the border of the colour image.

6.1.2 Colour Representation

The most popular representation of the colour distribution in visual
tracking applications is based on colour histograms [Comaniciu et al.,
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2003; Perez et al., 2002]. Colour histograms are relatively easy to con-
struct and compare using some of the proposed similarity measures
[Swain and Ballard, 1991]. Despite recently proposed efficient algorithms
[Porikli, 2005] they are still computationally demanding, especially if a
significant number of measurements is required. Choosing the number
of bins in the histogram is also a problematic issue. Instead, we use an
efficient colour representation proposed in [Stricker and Orengo, 1995]
where the authors used the first three moments (mean, variance and
skewness) of the colour distribution. The similarity measure based on
this representation was shown to be more effective than histogram based
methods (e.g., [Swain and Ballard, 1991]) in the domain of image index-
ing. We use this representation in our system to obtain a very compact
model, which can be quickly calculated and evaluated as we show later
in this section. In the experimental part we compare results using the
proposed approach with a solution based on colour histograms.

Colour distribution does not contain any information about the spa-
tial layout of the colour. However the head, torso and legs of a person
can usually be distinguished as differently coloured, and this additional
information helps to build a more robust and precise colour model. One
possible approach to incorporate the spatial layout of the colour distri-
bution uses a colour correlogram, which is a histogram representation
containing spatial relations between pixels [Huang et al., 1997], but the
computational complexity of this approach is even higher than in the case
of colour histograms. We use an approach that divides the region cor-
responding to a person’s body into different rectangular sub-areas from
which we calculate the colour statistics (see Fig. 6.2b). The position
and size of these regions is determined from the information provided
by the elliptic contour model. The rectangular shape of these regions
allows application of a fast method for calculating the colour statistics.
A similar approach was used in [Han et al., 2005], where a rectangular
region of the person’s body was divided into n different parts.

The hardware of our robot provides images in the RGB colour space.
In many computer vision applications other colour spaces are used e.g.,
the HSV (Hue-Saturation-Value) representation where the colour is rep-
resented in 3D-polar coordinates [Perez et al., 2002; Okuma et al., 2004;
Zhao and Tao, 2005]. With this approach the brightness and saturation
are separated and the influence of changing lighting conditions can be
reduced. However the additional time needed for conversion between
colour spaces and calculation of circular statistics required by the HSV
moment based model makes use of this representation questionable in
real-time applications.
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Figure 6.2: Rectangular features: a) thermal image b) colour image
with regions corresponding to different body parts from which colour
information is extracted.

6.1.3 Adaptive Colour Model

Our appearance model of a person is based on colour moments, thus
being very compact yet providing enough information to improve track-
ing. This model is created every time a new detection occurs, i.e. a
new track is initialised on the thermal image. By using the affine trans-
form described earlier we are able to determine the region corresponding
to a person in the colour image (see Fig. 6.2). From the three rect-
angular regions corresponding to the person’s head, torso and legs we
collect colour statistics ¢; about the first three moments (mq,ms, ms)
for three colour channels (R, G, B). Thus we obtain a feature vector ¢;
of size 3 x 3 x 3 = 27. To make the model more robust to changing light
conditions we adapt it using the new information as long as a person
is tracked. In our current implementation we store information about
colour statistics from the last n frames and calculate their mean value

1 t—1
¢ = — Ct. 6.2
t
Tk i=t—nr—1

The size of the parameter n; influences the robustness and adaptivity of
the colour model.

We use the Lo metric, i.e. Euclidean distance, to measure the dis-
tance between the model ¢} and region of interest ¢; of the form

dt = (C; - Ct)z. (63)
Finally, the likelihood model for colour information can be described as
Pe(zi®:) = eaxp (—Ad7) , (6.4)

where A is a parameter that allows to specify the shape of the colour
likelihood. Since A scales the distance, higher values of A mean that
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Figure 6.3: Integral image: a) creation of the integral image b) calculat-
ing the sum over a rectangular area using the integral image.

the colour-based likelihood model is more peaked, thus having more im-
portance when combined with the gradient information from the ellipse
model.

6.1.4 Rapid Rectangular Colour Features

The simple features based on the colour moments can be rapidly calcu-
lated using an integral image representation [Viola and Jones, 2001]. The
main idea is not to work directly on image intensities but to use some
intermediate representation. Each pixel of the integral image contains
a sum of all pixels in the rectangular area determined by the left-upper
borders of the image and the pixel coordinates. The integral image I7
can be created from the original image I using the following formula:

I(z,y) = Z I(u,v), (6.5)

u<a,v<y

where (x, y) represents the pixel coordinates in the integral image 1T and
(u,v) the pixel coordinates in the original image I. This can be easily
realised in one pass over the original image I as follows:

S(z,y) = S(r,y—1)+1(x,y) (6.6)
I(x,y) = II(xz—1,y)+ S(z,y), (6.7)

where S(z,y) is the cumulative row sum. The resulting integral image
IT is one pixel wider and higher since S(x,—1) = 0 and I1(-1,y) = 0.
Such a representation can easily be extended to colour images if we treat
each colour channel independently. In the case of the RGB colour repre-
sentation the resulting integral image consists of three integral images:
IR, Ilg,11p.

Having obtained the integral image, only four basic operations are
required to calculate a sum over any rectangular region in the original
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image; if we consider the situation presented in Figure 6.3b the sum
over the rectangular region R = IT(x4,y4) + I1(x1,y1) — (II(z2,y2) +
II(x3,y3)). This makes the method very fast, and in particular, allows
the calculation of the sum of any size region in constant time. Grey-scale
features based on integral images were also used in [Treptow and Zell,
2004] to track an ordinary football and colour features based on three
integral images for the different colour channels were used in [Han et al.,
2005] to track different objects including people.

The estimates for the first three moments of the colour distribution
can be obtained by means of k statistics. The k statistics can be easily
calculated by using sums of the rth powers of the colour data:

ng My

S, = Z Z I"(z,y), (6.8)

r=1y=1

where I(z,y) is a pixel value of the image of size n, x n,. Note that
this calculation should be performed for each colour channel. For each
power of the sum S, we have to calculate one separate colour integral
image II. Then it is easy to obtain the first three k-statistics using the
following formulas:

ki = Si/n, (6.9)
o n52 — 512
25:1)’ — 3’)7,5152 + n253
ks nn—1)mn-2) (6.11)

where n = ng, X ny. Finally the normalised values of the estimates for
the mean m;y, variance mo and skewness mg can be obtained as

m; = k‘l, (612)
ma = k’g/k’l, (613)
m3 = k‘3/k‘2% (614)

The normalisation is performed to balance the influence of each moment
on the final score.

6.2 Fusing Thermal and Colour Informa-
tion

If we assume that the likelihoods for the gradient model py(2;|z;) (Equa-
tion 4.4) and colour model p.(z¢|x+) (Equation 6.4) are independent then
the data fusion can be realised by taking a product of these two likeli-
hoods as

p(zt|®e) = py(zi|ze)pe(2i|Te). (6.15)
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The parameters k, 0 (gradient model) and A (colour model) specify the
shape of the gradient and colour likelihood functions, thus specifying the
importance of the respective features.

When a person is not detected, a colour model cannot be built and
only gradient information can be used to update the weight of the par-
ticles of a single tracking filter j as

w = po(ze]®? Y, i=1,... N, j=1,...,M. (6.16)

However as soon as a person is detected the colour model can be
created and the weight update equation changes to:

wI = py(z@? pe(zi| @Y, i =1, N, j=1,..., M. (6.17)

Please note that the sequential detector relies only on gradient informa-
tion.

If the assumptions about the independence of measurements hold
then Equation 6.15 can be easily extended to combine many other fea-
tures. A similar solution was used in work of [Rasmussen and Hager,
2001; Hayman and Eklundh, 2002; Serby et al., 2004].

6.3 Experiments

This section presents results showing the performance of the tracker
when tracking multiple persons with additional colour information based
on the metrics introduced in Section 3.4. We used data collected for mul-
tiple persons in both stationary and moving robot scenarios (see Table
3.3 for more details). In this chapter all results are presented using a
combined data set that includes both scenarios. Each experiment includ-
ing all the data was repeated 10 times with different random variations
in the particle filter for each trial using Np = N = 1000 particles.

To determine optimal values of the system parameters we used a
similar approach as described in the previous chapters, choosing an area
accuracy metric as the performance criterion. The influence of each
parameter on the performance of the tracker was checked independently
and repeated 10 times with different random variations in the particle
filter for each trial run with Np = N = 1000 particles. The optimised
values obtained for the system parameters were as follows:

Parameter Value

ng 10 frames
A 50

The other parameters for the measurement model, motion model and
penalty terms ¥ p and p were kept without change.
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Figure 6.4: Detection and localisation metrics for tracking multiple per-
sons without and with colour information.

Results presented in Figure 6.4 show the difference in performance
of the tracker with and without additional colour information. Both
detection and localisation metrics indicate a significant improvement due
to a better focus of samples around tracked persons. This leads not only
to more precise estimates but also decreases the number of cases when
the tracker loses track of the person. The overall accuracy is affected by
low recall values, which are caused mostly by occluded persons.

Figure 6.5 shows the comparison of different colour representations
based on colour moments and histograms. We used a colour histogram
with 20 evenly spaced bins for each colour channel. To measure similarity
of two histograms we used a method proposed by [Stricker and Orengo,
1995]. This method, instead of comparing standard histograms directly,
is based on cumulative histograms. Each bin h; of the cumulative colour
histogram is defined in terms of normal histogram bins h; such that

hj =Y hi. (6.18)

We use the Ly metric specified by Equation 6.3 to measure similarity
between two cumulative histograms. Thanks to this approach problems
caused by sparse elements in histogram bins and effects of quantization
are reduced, and the approach was shown to perform better than simi-
larity measures based on standard histograms. The performance of the
tracker based on histograms is slightly better than when using moments.
However satisfactory results can be obtained even when using only the
first moment of the colour distribution.
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Type of integral image Platform
PeopleBoy
Intel Pentium IIT  AMD Athlon XP
0.85 GHz [ms] 2.00 GHz [ms]

greyscale 0.86 0.24

colour (RGB) 5.12 2.09

colour (RGB) 2"? degree 12.83 4.35
colour (RGB) 37¢ degree 16.09 4.90

Table 6.1: Time requirements for building different variants of integral
image.

Representation Platform
PeopleBoy
Intel Pentium III  AMD Athlon XP
0.85 GHz [ms] 2.00 GHz [ms]

gradient 33.73 13.52
greyscale 35.96 15.88
colour, RGB, first moment 50.24 17.66
colour, RGB, first two moments 64.19 23.46
colour, RGB, first three moments 68.79 25.89

colour, RGB, histogram (20 bins) 8011.00 2709.00

Table 6.2: Average processing time needed to calculate 1000 samples
using different colour representations.

Figure 6.6 shows the performance of the tracker when using colour
histograms with different colour spaces including grey scale, RGB and
HSV. It can be seen that most of the improvement is due to the in-
tensity information. Moreover using HSV colour representation results
in slightly worse performance compared to the RGB space. This fact
indicates that for certain tasks (in our case data association) the HSV
representation does not necessarily have to lead to better results.

Table 6.1 presents the time required to process different versions of
the integral image including one-channel grey-scale and RGB colour im-
ages for different power sums used later to calculate features of higher
moments. Grey-scale images can be calculated very quickly: it takes
approx. 0.86 ms on the PeopleBoy robot. Colour images require more
time since it is necessary to calculate three layers. Moreover the integral
images needed for calculation of higher moments (2nd and 3rd) require
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additional multiplications and a 64-bit representation of data, which fur-
ther increases time demands. Table 6.2 presents the average processing
time needed for calculation of 1000 samples when using different colour
representations. It takes about two times longer to calculate one step of
the tracking procedure when using all three moments compared to the
tracker based on gradient information only. A good trade-off between
time requirements and performance of the tracker for our set-up is a
representation using only the first moment of the colour distribution.
However using just intensity information (grey-scale images) is also an
attractive alternative, especially when other tasks (e.g., navigation) have
to be performed by the robot at the same time. With increasing com-
putational power of robots, use of higher moments should be possible
in real-time scenario. For comparison the figure also includes time re-
quirements for the approach based on colour histograms. The average
time to calculate 1000 samples is around 2 orders of magnitude higher
compared to the representation based on 3 moments. The obtained re-
sult of ~2.7 sec. on a 2.00 GHz processor would make histogram based
methods unsuitable for real-time applications like ours.

6.4 Conclusions

In this chapter we presented an extension of the tracker to incorporate
colour information. The additional colour information increases the ro-
bustness and accuracy of the tracker. An adaptive appearance colour
model of each tracked person reduces problems related to different light
conditions and changes in view. An efficient and compact representa-
tion based on statistical moments of the colour distribution was shown to
perform similarly to other popular representations based on colour his-
tograms, while requiring much less computational time. A rapid method
for calculating rectangular features enables real-time tracking using both
thermal and colour information.

The proposed adaptive colour model has several useful properties; for
example, it is recognisable from a wide range of distances, and is fairly
invariant to different orientations of the persons. However, in situations
when people wear similar clothes (uniforms, lab coats) obviously there
will be no gain in the performance of the tracker. The tracker still cannot
cope with occlusions, but the availability of the colour information allows
us to further extend the system to detect and handle occlusions, as
presented in the next chapter.
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Chapter 7

Handling Occlusions

In this chapter we present a novel approach for handling occlusions in
the people tracking system. We treat occlusions explicitly, i.e. we first
detect them and then reason about them in the tracking algorithm on
the basis of heuristics. Detection of occlusions allows us to determine
the occluding persons and treat them differently to the persons that are
occluded. We present a classifier built using the AdaBoost algorithm
of Freund and Shapire [Freund and Schapire, 1995] to compare visual
information for a pair of tracked persons in order to determine which
person occludes the other. In the experiments we show the performance
of this classifier and determine the visual features which contain the
most relevant information for occlusion detection. The results from the
trained occlusion detector are then applied to the problem of occlusion
handling in a heuristic extension to the tracking algorithm described
in the previous chapter. The corresponding experiments demonstrate a
further improvement in performance of the multi-person tracker.

7.1 Detecting Occlusions

To detect occlusions we first have to check if regions corresponding to
different persons overlap. This requires M - log(M) comparisons, where
M is a number of persons in the scene. In crowded environments it may
happen that more than two people overlap with each another. Ideally
we would have to consider all interacting persons and their relations.
To avoid combinatorial explosion we propose a simplified approach that
sorts the order of all persons in the image according to pairwise com-
parisons. The proposed occlusion detector specifies which one of two
overlapping persons is in front of the other. Which person occludes
the other is determined on the basis of a sort procedure which requires
Mo - log(Mp) comparisons, where Mo specifies the number of overlap-

93
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Figure 7.1: a) Top and bottom thermal features. b) Overlapping and
non-overlapping areas from which colour features are extracted.

ping persons.

There are several features that could indicate the correct order of
two overlapping persons in the image, from which we have chosen a set
of three thermal and three colour features:

e The “strength” (i.e., mean gradient value) of a tracking filter, since
a person for which the corresponding tracker indicates a higher
confidence is more likely to be in the front. This feature is, however,
very noisy and is affected by many factors such as movement of the
camera, temperature of the environment, etc.

e The top and bottom of the elliptic contour model (see Fig. 7.1a)
can also indicate the depth of a person, since closer persons appear
taller and closer to the upper and bottom border of the image.
However the bottom is affected in situations when persons stand
too close to the camera such that their lower part is cut and can-
not be properly estimated. The top of a person’s head is a more
reliable feature which is, however, affected by the different height
of persons.

e Another set of features is obtained from the colour similarity of the
image region corresponding to a person. We have chosen three such
regions including the overlapping, non-overlapping and whole areas
of a person (see Fig. 7.1b). Occluded persons should have lower
similarity values. These features can be misleading when overlaps
are small (overlapping area) or big (non-overlapping area).

Thus six features were obtained: three corresponding to the information
from the thermal image and three colour features. Since a single feature
cannot easily determine the right order of the persons we propose an
application of a boosting algorithm [Freund and Schapire, 1995] to weight
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Figure 7.2: Relationship of the different thermal features to the apparent
distance of a person taken from the ground truth data.

and combine a number of “weak classifiers” built from these features,
resulting in a “strong classifier” with much improved occlusion detection
accuracy.

To give an impression of the discriminative power of the thermal fea-
tures used, we present a graphical representation of their relationship to
the apparent distance of a person taken from the ground truth data (see
Fig. 7.2). This distance uniquely determines the order of the persons.
Note that range information from a laser scanner could also be used to
simplify this problem. However in this work we consider an exclusively
vision-based system. (It would not be meaningful to provide a similar
visualisation for the colour features, since these features are based on
comparisons of two tracked persons rather than a single tracked person
as in the thermal case.)

7.2 AdaBoost Approach

We use the AdaBoost (Adaptive Boosting) classification algorithm [Fre-
und and Schapire, 1995] for selecting the optimal combination of selected
features to detect occlusions. AdaBoost is a linear classifier that has
some attractive properties such as good generalisation, simplicity of im-
plementation and can be also considered as a feature selector. AdaBoost
combines results from so-called “weak” classifiers h;(x) into one “strong”
classifier H(x) = sign(f(z)) given that

T
fl@) =" ah(x), (7.1)
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where T is the number of weak classifiers and «; is an importance weight
given to each “weak” classifier h;(x) according to the performance during
an iterative learning process (see Algorithm 5 for details). As a result
we obtain a final classifier that performs better than any of these weak
classifiers alone. The high performance of the final strong classifier is due
to the fact that during the learning process focus is put on the examples
from the training set which are most difficult to classify (this process is
called “boosting”).

Algorithm 5 AdaBoost learning algorithm after [Viola and Jones, 2001]
input:
- training data (x;,v;), ¢ = 1,..., N with N, positive (y; = 1)
and N,, negative (y; = 0) examples
init:
- set uniform distribution of weights assigned to each input ex-
amples w! = depending on the value of y;

fort=1to T do
- for each feature j train a classifier h; with error

N
€5 = D iy wilhj(wi — i)
- select the best weak classifier h; with the lowest error ¢; and
set (he, €) = (hj,ej) .
- update weights: W}, ; = wiBi ¢ with

1 1
N, N,

| 0: =; correctly classified .
€ { 1: otherwise and fi = 12
- normalise all weights: w},| = =x=5—, i=1,...,N
o1 Wi
end for
output:

- the final strong classifier:
T T
H(z) = 1o Y, qouh(x)>05), oy
0 : otherwise
where a; = log(é)

Following the approach presented by [Viola and Jones, 2001] we first
developed an approach using simple weak classifiers that are based on a
single-valued feature f;(z)

' . 1: pjfj(.%‘) < pjej
hj(z) = { 0: otherwise, (7.2)
where 6; is a threshold and p; = {—1,1} is a parity indicator determin-

ing the direction of the inequality sign. During the training procedure
optimal values of §; and p; are determined such that the number of
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misclassified training examples is minimised as

N
(0j,pj) = argmin Z [hi(2n) — Ynl. (7.3)

(91‘ ;Pi) n=1

The number of possible combinations of (6, p;) is limited since there is
a finite set of training examples.

We found that results using the single features directly can be limited
when the number of weak classifiers is small. In our case there are
only six individual features: the strength of the tracker, the estimate
of the upper and lower end of a person, and the colour similarity of
the three areas. Boosting with simple weak classifiers in such a case
is limited, resulting in relatively low performance of the final strong
classifier. One way to increase the number of weak classifiers is to use a
weighted combination of T' features such as

£@) = Y aufita), (7.4

where «; specifies a weight for a single valued feature f;(x). We discretise
possible weight values «; from the range {—1,1} into Ny fractions. As
a result we obtain a much larger number of weak classifiers that can be
selected by the boosting algorithm. In our experiments, we compared re-
sults using weak classifiers built from two and three features (“weighted
pairs” and “weighted triplets” respectively). Since the underlying weak
classifiers in this case are equivalent to linear networks, and the Adaboost
algorithm itself builds a perceptron-type classifier from the weak clas-
sifiers, this approach is equivalent to building a multi-layer perceptron
rather than a single-layer perceptron as in the approach of Viola and
Jones[Viola and Jones, 2001]. The resulting improvement in occlusion
detection accuracy can be seen in Section 7.4.

7.3 Dealing with Occlusions

The learned occlusion detector can be used to improve the tracking per-
formance during occlusions. It is used in two different ways: first, to
alter the penalising policy between the trackers (as described in Section
5.2), and second, to re-identify occluded persons when they reappear.
Our interaction model for tracking multiple persons allows tracking
of people that overlap to a certain degree. This is achieved by modifying
the interaction factor p to prevent target fetching (i.e., to prevent two
filters in close proximity from collapsing around the same tracked object).
The proposed pairwise occlusion detector is used to determine which of
the tracking filters is occluded. We consider two possible situations:



98 CHAPTER 7. HANDLING OCCLUSIONS

partial occlusion and total occlusion. During partial occlusion, some
part of a person is still visible. However, the gradient along the contour
is disturbed, which can cause a quick disappearance of the tracker. To
avoid this we change the penalty term for a partially occluded tracker
which we denote by p, so the penalty equation 7.5 changes to

) = el—Posis), (7.5)

Interaction with other filters (non-overlapping with this pair) remains
unchanged. A modified update procedure for the tracker with improved
occlusion handling is presented in Algorithm 6.

Algorithm 6 A modified update procedure for tracking filters (not to-
tally occluded).

for each filter
measure(thermal,colour)

handle occlusions():

- determine overlaps between filters

- determine occlusions between overlapping filters:
- detect occlusions using the AdaBoost detector
- assign occluded/occluding filters
- assign partial/total occlusions

- adjust the penalty term p (Eq. 7.5) for each filter according to
the type of occlusion

for each filter
penalise()

calculate estimates()

When the head contour of a person becomes occluded the correspond-
ing tracker is considered to be totally occluded. This means that we can
only guess the true position of this person. We assume that the state
of the occluded person is the same as the state of the occluding person
(simply stating that an occluded person is behind the occluding one).
No penalty is considered for the occluded tracker. We keep particles of
the totally occluded tracker for a short time (we use a threshold of 8
frames here) in situations when quick occlusions occur and the veloc-
ity of particles may allow to resolve this occlusion. However after this
time has elapsed the particles of the tracker are removed and the only
information kept is the colour model. When a new person is detected by
the detector this information is used to match the colour model to all
occluded trackers. If the colour model is most similar to the closest oc-
cluded tracker then the detected person is considered to be an occluded
one. Otherwise the person is considered to be a new person. To avoid
situations where the occluded tracker stays forever behind the occluding
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Feature type Results [%] T total

thermal 76.39 4 4.49 243
colour 69.07 £1.94 243
both  89.38 £+ 2.48 1206

Table 7.1: Classification results for different type of features used to
create weak classifiers (resulting in T total weak classifiers).

one, we also specify a maximal duration of occlusion (in our case 10 sec.).
This minimises errors in the case where an occluded person disappears
from the scene in some other way (e.g., through a door or a corridor
behind an occluding person) or in cases of missed assignments to newly
detected persons.

7.4 Experiments - Detecting Occlusions

We extracted the described thermal and colour features from data col-
lected for multiple persons in both stationary and moving robot scenar-
ios (see Table 3.3 for more details). We considered only cases when two
or more people were overlapping. Moreover since the behaviour of the
tracker without proper occlusion handling is unpredictable after a total
occlusion occurs, we took only those examples that preceded the mo-
ment of total occlusion. During partial and total occlusions, the colour
models of the respective persons were not updated. In this way we ob-
tained N, = 121 positive and N,, = 121 negative examples giving in
total V = 242 examples.

We created additional weak classifiers based on weighted sums of
pairs of features with Ny = 20 fractions giving, in the case of all six
thermal and colour features used, 1200 new weak classifiers. We used
60% of randomly selected input examples as a training set and the re-
maining part as a test set. Each training procedure was repeated 10
times.

The strong classifier learned from the combination of thermal and
colour features was able to predict correctly around 89% of all cases
(see Table 7.1). This gives a significant advantage over classification
results obtained when thermal and colour features were used separately
(p < 0.01). Thermal features provided significantly better results than
colour features alone.

Table 7.2 shows results for different methods of combining features
into weak classifiers. The comparatively bad results when using single
features are caused by the low number of weak classifiers. The proposed
method of using a weighted combination of pairs of features increased the
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Combination of features Results [%] T total

single 74.94 4+ 4.88 6
weighted pairs  89.36 £ 2.48 1206
weighted triplets 89.38 + 1.82 129206

Table 7.2: Classification results for different combination of features to
create weak classifiers (resulting in T total weak classifiers).

Single feature Results [%]

strength  50.10 £ 4.91
top 72.99 £ 3.85
bottom  56.49 + 4.25
colour 67.62 4+ 3.04
colour_.o 45.56 + 2.69
colour_.no 67.42 £ 2.92

Table 7.3: Classification results for single features (colour_o and
colour_no labels stand for colour of the overlapping and non-overlapping
area respectively).

performance of the final classifier by around 15%. We also made tests
with weighted triplets of features for comparison. Despite the much
higher number of possible weak classifiers the difference in performance
compared to weighted pairs was not found to be significant (based on a
paired t-test with confidence level p = 0.01).

From the results presented in Table 7.3 we can get an impression
about how much information is provided by a single feature. The most
reliable features are the top of a person’s head, colour similarity of the
whole region and of the non-overlapping area. Weak classifiers based on
combinations of these features had the highest importance (see Table
7.4). Other features also contributed to the final classifier (e.g., the
feature based on the position of the bottom of the elliptic model) even
though their individual performance was relatively poor.

7.5 Experiments - Dealing with Occlusions

This section presents results showing the performance of the tracker
when tracking multiple persons with improved occlusion handling using
the metrics introduced in Section 3.4. We used data collected for multiple
persons in both stationary and moving robot scenarios (see Table 3.3 for
more details). In this chapter all results are presented using a combined
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Place Weight of a feature
strength  top bottom colour colour.o colour_no

1 -0.05 - - - - 1.00
2 - -0.05 - 1.00 - -

3 - -1.00 0.45 - - -

4 - -0.75 1.00 - - -

) - - 0.05 - - 1.00
6 - -0.80 1.00 - - -

7 - - 0.10 - - 1.00
8 -0.55 1.00 - - - -

9 -1.00 0.05 - - - -
10 - - -0.05 1.00 - -

Table 7.4: 10 best weak classifiers with their respective weights (colour_o
and colourno labels stand for colour of the overlapping and non-
overlapping area respectively).

data set that includes both scenarios. Each experiment including all
the data was repeated 10 times with different random variations in the
particle filter for each trial using Np = N = 1000 particles.

To determine optimal values of the system parameters we used a
similar approach as described in the previous chapters, choosing an area
accuracy metric as the performance criterion. The influence of each
parameter on the performance of the tracker was checked independently
and repeated 10 times with different random variations in the particle
filter for each trial run with Np = N = 1000 particles. The optimised
values obtained for the system parameters were as follows:

Parameter Value

po 0.5

Other parameters for the measurement model, motion model and penalty
terms ¥ p and p were kept without change.

Results presented in Figure 7.3 show the difference in performance
of the tracker using only thermal gradient information, with additional
colour information, and with both colour information and the occlusion
handling procedure. Both detection and localisation metrics indicate a
significant improvement when using the occlusion detector and enhanced
tracking algorithm, which diminishes problems related to occlusions giv-
ing an increase of 6.83% in the area recall metrics and 3.12% in the area
accuracy metrics. The output from the tracker can be seen in Figure 7.4.
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Figure 7.3: Detection and localisation metrics for tracking multiple per-
sons without and with colour information and with occlusion handling

procedure.

Figure 7.4: Selected thermal images from the sequence showing the out-
put from the tracker before, during and after the occlusion of three
simultaneously tracked persons. The bounding boxes corresponding to
occluded persons are marked by a dotted line.
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7.6 Conclusions

In this chapter we presented an algorithm for detecting occlusions in the
people tracking system. The algorithm is able to determine the order of
persons in the image using a combination of thermal and colour cues.
The order is determined by a classifier built using the AdaBoost algo-
rithm which performs a comparison between two selected persons. This
procedure determines which person is occluding the other one. We have
shown that using weak classifiers constructed from a weighted combi-
nation of pairs of features gives the best performance while keeping the
computational demands low. During the learning procedure AdaBoost
automatically selects the best combination of features, creating a high
performance “strong” classifier. Using this classifier, an extension to
the multi-person tracker was proposed for handling occlusions, further
improving the performance of the system.

Of course such a method of dealing with occlusions can be considered
only as a proposal in order to demonstrate the concept of explicit occlu-
sion handling based on a learned classifier. It was based on observation
of the occlusion problem in our specific scenario and application. We
believe that the question of how to handle occlusions is impossible to
answer in a general way, i.e. independently of a particular application.
Our solution demonstrates that it is plausible to deal with occlusions
to some extent, and through experiments we showed that this increases
the overall performance of the tracker. Such a solution has obvious pit-
falls that should be considered in future work, such as proper handling of
misclassification errors, wrong assignments after occlusions, dealing with
uniformly dressed people, etc. A mobile robot itself could be designed
to check if the occluded person is really behind another person by taking
appropriate actions (e.g. driving to look closer of from a different angle).
Recognition of human behaviour could also help to solve this kind of
problem.
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Chapter 8

Conclusions and Future
Work

This chapter presents a summary of the main contributions of the thesis
and an analysis of their significance. Open questions are then discussed
together with possible improvements to the presented system.

8.1 Summary of Contributions

In this thesis a people tracking system designed for mobile robots was
presented. The system is entirely vision-based, using sensory informa-
tion provided by thermal and colour cameras. The use of a thermal
camera helped to overcome the main difficulty for vision-based systems,
especially for those mounted on a moving platform, namely reliable and
efficient segmentation of persons. The elliptic contour model based on
thermal gradient information ensures both high robustness and compu-
tational efficiency of the method. The results indicate that the basic
tracker using the proposed model minimises false alarms especially well.

Our tracking system follows recent trends in the design of tracking al-
gorithms. Many previous vision systems required an exhaustive scanning
procedure for the detection task which limited their use in real-time ap-
plications. In contrast our system uses an efficient sample-based tracking
algorithm that avoids excessive scanning of the whole image. In addi-
tion the system is built in the spirit of the unified tracking framework
which provided a combined solution to the detection and tracking prob-
lems. Such a solution is especially suitable for mobile systems where the
movement of the platform causes increased measurement noise. Our sys-
tem incorporates unthresholded measurements directly into the tracking
framework, avoiding the loss of information that can occur in a separate
pre-processing stage for people detection.
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To track multiple persons we proposed an efficient heuristic track-
ing algorithm for tracking a varying number of persons that mitigates
the problems with combinatorial explosion associated with other multi-
target tracking methods. Our method operates directly on the sample
weights and uses an efficient method of calculating interactions between
individual filters. For each new appearing person an individual tracking
filter is assigned which is initialised by a sequential detector that detects
consecutive persons in predictable time. The experiments showed that
it is possible to adjust the number of samples for each individual fil-
ter depending on the number of tracked persons to further improve the
computational efficiency of tracking without affecting tracking quality.

Through the experiments we showed that the data association in our
system can be improved when the additional colour information is incor-
porated. The fusion of thermal and colour information is done within
the tracking framework by combination of the respective likelihoods.
Our system uses an efficient colour representation based on the integral
image representation to speed up processing. It was found that use of
three colour moments (in RGB colour space) showed the best perfor-
mance while using just one moment gave the best compromise between
performance and computational requirements. In addition the results
showed that use of the HSV colour space, which is popular in many
computer-vision applications, does not necessary lead to better results.

A major difficulty for all tracking systems involving multi-target
tracking is the problem of occlusions. The occlusions in our system are
treated explicitly. To achieve this we propose a new approach for detect-
ing occlusions using a machine learning classifier for pairwise compari-
son of persons (classifying which one is in front of the other). While we
found that the final classifier learned by the AdaBoost algorithm based
on thermal features gave better results than a classifier using colour fea-
tures, the combination of thermal and colour features produced the best
classification performance. We also incorporated the occlusion detec-
tion classifier into the tracking algorithm, adjusting the penalty policy
in occlusion handling, which resulted in a significant increase in the per-
formance of the whole system.

Finally the thesis provided a comprehensive, quantitative evaluation
of the whole system and its different components using a set of well
defined performance measures. The behaviour of the system was inves-
tigated on different data sets including different real office environments
and different appearances and behaviours of persons. Moreover the influ-
ence of all important system parameters on the performance of the sys-
tem was checked and their values optimised based on the area accuracy
metric, which proved to be a good indicator of the overall performance of
the system. A list and description of all system parameters is presented
in Appendix A. The proposed methodology can be easily extended and
used in future research for comparisons and further improvements to the
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system.

8.2 Limitations and Possible Improvements

To the best knowledge of the author, this thesis presents the first system
using a thermal camera for people detection and tracking that was de-
signed for mobile robots. The experience gained during this work allows
us to expect that the popularity of thermal sensors in mobile robotic ap-
plications should increase in the near future. This is related to decreasing
prices and the high potential of possible applications.

A thermal sensor not only simplifies the problem of detection but
also allows for work in darkness which could be especially important
in security applications. It could also be used for other tasks since the
thermal signature of objects such as lamps or radiators can be used in
other localisation and object recognition tasks.

The presented tracking framework allows easy incorporation of other
cues and modalities and also to use different extensions to the proposed
measurement and motion model.

The efficiency of the proposed method allowed for the implementation
of the person following behaviour on the robot that was also used for
data collection in this work. The high frame rate of the system allowed
for smooth operation in our office environments.

When designing the elliptic contour model the main emphasis in our
work was placed on its efficiency. This simple model could be extended
in various ways. The presented elliptic model allows to detect and track
persons in the up-right position only. A more sophisticated model would
be needed to deal with other situations when persons are sitting, bending
or lying down, for example. This could be realised by a completely new
design of the contour model allowing for better flexibility of the shape or
by creating several separate contour models for each possible behaviour.
The latter approach could also be used for human behaviour recogni-
tion. In some situations the generality of the presented elliptic model
causes inaccurate estimates resulting in low localisation performance.
This problem could be diminished by incorporating an additional fea-
ture based model. An approach that combines our gradient model and
a learned feature model based on the integral image representation was
presented in [Treptow et al., 2006].

The proposed algorithm for tracking of multiple persons was also
designed to run on real-time systems. It would be interesting to inves-
tigate the difference in performance with other tracking algorithms to
compare their strengths and weaknesses. This would include other solu-
tions based on individual trackers and techniques such as MCMC-based
multiple target tracking described in [Khan et al., 2004]. Also more
sophisticated forms of the interaction model could be investigated, for



108 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

example, models that take into account the velocity of tracked persons.
Further improvements to the interaction model would require solving
problems of behaviour and intention recognition [Cielniak et al., 2003].
This information could be used to determine possible interactions be-
tween people and to select an appropriate interaction model accordingly.
In addition our occlusion detector could also be incorporated.

During the experiments we used data containing a maximum of 4
persons. However this number does not limit the maximum capabilities
of the tracker. The maximum number of persons depends heavily on
the image resolution and kind of interaction between persons. With
the resolution of 320 x 240 our tracker would be able to track up to 10
persons. In more crowded scenes the tracker most probably would loose
some of them. To deal with this problem the system could be extended
to detect and track crowds of people, perhaps with a single tracker. A
hypothetical application would be a crowd of school students being given
a tour of the robot lab.

The presented appearance colour model was shown to be very effec-
tive, despite its limiting assumptions. It could be used in other applica-
tions requiring very fast processing times. However the simple rectan-
gular features that can be rapidly calculated can be quite noisy because
of the assumed approximations of the human body shape. To decrease
this noise other methods for collecting features from more complicated
shapes should be investigated.

The colour appearance model could be also used to re-identify per-
sons when they re-appear on the scene, as in the approach proposed
by [Zajdel et al., 2005]. It could also be used to identify tracked per-
sons. This colour appearance model has several useful properties; for
example, it is recognisable from a wide range of distances, and is fairly
invariant to different orientations of persons. However, it has a number
of obvious drawbacks, e.g., people often change their clothes on a regular
basis! To overcome this problem, combination with other people recog-
nition techniques with complementary strengths and weaknesses should
be investigated. Accurate (but not so robust) techniques such as face
or speech recognition could be used at the start of each day to obtain a
confident initial estimate of the identity of a person. Then the clothing
model could be re-acquired or added to an existing database of clothes
for that person, and used for general identification purposes later in the
day, and in situations where faces and voices cannot be easily recog-
nised. Combination with other recognition techniques would also help
to overcome problems when the appearance of persons is very similar,
e.g., when they wear uniforms.

The proposed method for dealing with occlusions would also need
further investigation. Our approach is based on the observation of the
occlusion problem in a specific scenario and application. Obvious pitfalls
such as improper handling of misclassification errors, wrong assignments
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after occlusions, uniformly dressed people, etc. should be considered in
future work.

The proposed system is not limited only to specific hardware, envi-
ronments and scenarios. Further extensions would open many possible
topics for investigation and future research. For example an interesting
extension would include mounting an omnidirectional mirror on top of
a colour camera. The system could learn appearance colour models of
persons when they are visible in the thermal camera. This information
could be used further for tracking persons in the colour omni-camera,
providing information about persons in the whole surrounding of the
robot. The use of thermal camera is also not mandatory: in prelimi-
nary investigations we also applied the elliptic measurement model to
difference images obtained from a colour camera using background sub-
traction techniques. Our robot was especially designed for tasks involv-
ing cooperation with humans. However it should be straightforward to
use the system on other mobile robots. Possible problems could include
the change in perspective, which would require re-tuning of some sys-
tem parameters. Our system was designed for indoor environments. In
outdoor environments there are several complications that would have
to be considered: constantly changing temperature of the environment,
heavily dressed people, more difficulties with colour information, etc.

One day, however, robots may take over the planet, destroying all
the people and making the proposed method redundant — then we will
know we really succeeded!
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Appendix A

System Parameters

Pofy

number of particles

weights of the segments of the elliptic contour model
gradient likelihood parameters

estimate uncertainty threshold

amount of randomness in the motion model
geometrical constrains for the ellipse model

number of detector particles

penalty factor for the detector

interaction factor for multiple tracking filters
interaction factor for an occluded tracking filter
importance factor of the colour likelihood

number of recent frames used to construct a colour model
affine transformation coefficients
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