
Mälardalen University Press Dissertations
No. 124

RESOURCE SHARING IN REAL-TIME
SYSTEMS ON MULTIPROCESSORS

Farhang Nemati

2012

School of Innovation, Design and Engineering

Mälardalen University Press Dissertations
No. 124

RESOURCE SHARING IN REAL-TIME
SYSTEMS ON MULTIPROCESSORS

Farhang Nemati

2012

School of Innovation, Design and Engineering

Copyright © Farhang Nemati, 2012
ISBN 978-91-7485-063-5
ISSN 1651-4238
Printed by Mälardalen University, Västerås, Sweden

Mälardalen University Press Dissertations
No. 124

RESOURCE SHARING IN REAL-TIME SYSTEMS ON MULTIPROCESSORS

Farhang Nemati

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid
Akademin för innovation, design och teknik kommer att offentligen försvaras

fredagen den 25 maj 2012, 14.00 i Gamma, Mälardalens högskola, Västerås.

Fakultetsopponent: professor James H Anderson,
University of North Carolina at Chapel Hill

Akademin för innovation, design och teknik

Mälardalen University Press Dissertations
No. 124

RESOURCE SHARING IN REAL-TIME SYSTEMS ON MULTIPROCESSORS

Farhang Nemati

Akademisk avhandling

som för avläggande av teknologie doktorsexamen i datavetenskap vid
Akademin för innovation, design och teknik kommer att offentligen försvaras

fredagen den 25 maj 2012, 14.00 i Gamma, Mälardalens högskola, Västerås.

Fakultetsopponent: professor James H Anderson,
University of North Carolina at Chapel Hill

Akademin för innovation, design och teknik

Abstract
In recent years multiprocessor architectures have become mainstream, and multi-core processors are
found in products ranging from small portable cell phones to large computer servers. In parallel,
research on real-time systems has mainly focused on traditional single-core processors. Hence, in order
for real-time systems to fully leverage on the extra capacity offered by new multi-core processors, new
design techniques, scheduling approaches, and real-time analysis methods have to be developed.

In the multi-core and multiprocessor domain there are mainly two scheduling approaches, global and
partitioned scheduling. Under global scheduling each task can execute on any processor at any time
while under partitioned scheduling tasks are statically allocated to processors and migration of tasks
among processors is not allowed. Besides simplicity and efficiency of partitioned scheduling protocols,
existing scheduling and synchronization techniques developed for single-core processor platforms can
more easily be extended to partitioned scheduling. This also simplifies migration of existing systems to
multi-cores. An important issue related to partitioned scheduling is the distribution of tasks among the
processors, which is a bin-packing problem.

In this thesis we propose a blocking-aware partitioning heuristic algorithm to distribute tasks onto
the processors of a multi-core architecture. The objective of the proposed algorithm is to decrease the
blocking overhead of tasks, which reduces the total utilization and has the potential to reduce the
number of required processors.

In industrial embedded software systems, large and complex systems are usually divided into several
components (applications) each of which is developed independently without knowledge of each other,
and potentially in parallel. However, the applications may share mutually exclusive resources when they
co-execute on a multi-core platform which introduce a challenge for the techniques needed to ensure
predictability. In this thesis we have proposed a new synchronization protocol for handling mutually
exclusive resources shared among real-time applications on a multi-core platform. The schedulability
analysis of each application is performed in isolation and parallel and the requirements of each
application with respect to the resources it may share are included in an interface. The protocol did not
originally consider any priorities among the applications. We have proposed an additional version of
the protocol which grants access to resources based on priorities assigned to the applications. We have
also proposed an optimal priority assignment algorithm to assign unique priorities to the applications
sharing resources. Our evaluations confirm that the protocol together with the priority assignment
algorithm outperforms existing alternatives in most cases.

In the proposed synchronization protocol each application is assumed to be allocated on one dedicated
core. However, in this thesis we have further extended the synchronization protocol to be applicable
for applications allocated on multiple dedicated cores of a multi-core platform. Furthermore, we have
shown how to efficiently calculate the resource hold times of resources for applications. The resource
hold time of a resource for an application is the maximum duration of time that the application may
lock the resource whenever it requests the resource. Finally, the thesis discusses and proposes directions
for future work.

ISBN 978-91-7485-063-5
ISSN 1651-4238

Populärvetenskaplig

sammanfattning

Klassiska programvarusystem som exempelvis ordbehandlare, bildbehandlare

och webbläsare har typiskt en förväntad funktion att uppfylla, till exempel,

en användare ska kunna producera typsatt skrift under relativt smärtfria for-

mer. Man kan generalisera och säga att korrekt funktion är av yttersta vikt

för hur populär och användbar en viss programvara är medans exakt hur en

viss funktion realiseras är av underordnad betydelse. Tittar man istället på så

kallade realtidssystem så är, utöver korrekt funktionalitet hos programvaran,

också det tidsmässiga utförandet av funktionen av yttersta vikt. Med andra ord

så bör, eller måste, de funktionella resultaten produceras inom vissa specificer-

ade tidsramar. Ett exempel är en airbag som inte får utlösas för tidigt eller för

sent. Detta kan tyckas relativt okomplicerat, men tittar man närmare på hur re-

altidssystem är konstruerade så finner man att ett system vanligtvis är uppdelat

i ett antal delar som körs (exekveras) parallellt. Dessa delar kallas för tasks

och varje task är en sekvens (del) av funktionalitet, eller instruktioner, som

genomförs samtidigt med andra tasks. Dessa tasks exekverar på en processor,

själva hjärnan i en dator. Realtidsanalyser har tagits fram för att förutsäga hur

sekvenser av taskexekveringar kommer att ske givet att antal tasks och deras

karakteristik.

Utvecklingen och modernisering av processorer har tvingat fram så kallade

multicoreprocessorer - processorer med multipla hjärnor (cores). Tasks kan nu,

jämfört med hur det var förr, köras parallellt med varandra på olika cores, vilket

samtidigt förbättrar effektiviteten hos en processor med avseende på hur my-

cket som kan exekveras, men även komplicerar både analys och förutsägbarhet

med avseende på hur dessa tasks körs. Analys behövs för att kunna förutsäga

korrekt tidsmässigt beteende hos programvaran i ett realtidssystem.

i

ii

I denna doktorsavhandling har vi föreslagit en metod att fördela ett re-

altidssystems tasks på ett antal processorer givet en multicorearkitektur. Denna

metod ökar avsevärt både prestation, förutsägbarhet och resursutnyttjandet hos

det multicorebaserade realtidsystemet genom att garantera tidsmässigt korrekt

exekvering av programvarusystem med komplexa beroenden vilka har direkt

påverkan på hur lång tid ett task kräver för att exekvera.

Inom industriella system brukar stora och komplexa programvarusystem

delas in i flera delar (applikationer) som var och en kan utvecklas oberoende

av varandra och parallellt. Men det kan hända att applikationer delar olika

resurser när de exekverar tillsammans på en multi-core arkitektur. I denna

avhandling har vi föreslagit nya metoder för att hantera resurser som delas

mellan realtidsapplikationer som exekverar på en multi-core arkitektur.

Abstract

In recent years multiprocessor architectures have become mainstream, and

multi-core processors are found in products ranging from small portable cell

phones to large computer servers. In parallel, research on real-time systems

has mainly focused on traditional single-core processors. Hence, in order for

real-time systems to fully leverage on the extra capacity offered by new multi-

core processors, new design techniques, scheduling approaches, and real-time

analysis methods have to be developed.

In the multi-core and multiprocessor domain there are mainly two schedul-

ing approaches, global and partitioned scheduling. Under global scheduling

each task can execute on any processor at any time while under partitioned

scheduling tasks are statically allocated to processors and migration of tasks

among processors is not allowed. Besides simplicity and efficiency of par-

titioned scheduling protocols, existing scheduling and synchronization tech-

niques developed for single-core processor platforms can more easily be ex-

tended to partitioned scheduling. This also simplifies migration of existing

systems to multi-cores. An important issue related to partitioned scheduling is

the distribution of tasks among the processors, which is a bin-packing problem.

In this thesis we propose a blocking-aware partitioning heuristic algorithm

to distribute tasks onto the processors of a multi-core architecture. The objec-

tive of the proposed algorithm is to decrease the blocking overhead of tasks,

which reduces the total utilization and has the potential to reduce the number

of required processors.

In industrial embedded software systems, large and complex systems are

usually divided into several components (applications) each of which is devel-

oped independently without knowledge of each other, and potentially in paral-

lel. However, the applications may share mutually exclusive resources when

they co-execute on a multi-core platform which introduce a challenge for the

techniques needed to ensure predictability. In this thesis we have proposed a

iii

iv

new synchronization protocol for handling mutually exclusive resources shared

among real-time applications on a multi-core platform. The schedulability

analysis of each application is performed in isolation and parallel and the re-

quirements of each application with respect to the resources it may share are

included in an interface. The protocol did not originally consider any prior-

ities among the applications. We have proposed an additional version of the

protocol which grants access to resources based on priorities assigned to the

applications. We have also proposed an optimal priority assignment algorithm

to assign unique priorities to the applications sharing resources. Our evalua-

tions confirm that the protocol together with the priority assignment algorithm

outperforms existing alternatives in most cases.

In the proposed synchronization protocol each application is assumed to

be allocated on one dedicated core. However, in this thesis we have further

extended the synchronization protocol to be applicable for applications allo-

cated on multiple dedicated cores of a multi-core platform. Furthermore, we

have shown how to efficiently calculate the resource hold times of resources

for applications. The resource hold time of a resource for an application is the

maximum duration of time that the application may lock the resource whenever

it requests the resource. Finally, the thesis discusses and proposes directions

for future work.

Acknowledgments

First, I want to thank my supervisors, Thomas Nolte, Christer Norström, and

Anders Wall for guiding and helping me during my studies. I specially thank

Thomas Nolte for all his support and encouragement.

I would like to give many thanks to the people from whom I have learned

many things in many aspects; Hans Hansson, Ivica Crnkovic, Paul Petters-

son, Sasikumar Punnekkat, Björn Lisper, Mikael Sjödin, Lars Asplund, Mats

Björkman, Kristina Lundkvist, Jan Gustafsson, Cristina Seceleanu, Frank Lüd-

ers, Jan Carlson, Dag Nyström, Andreas Ermedahl, Radu Dobrin, Daniel Sund-

mark, Rikard Land, Damir Isovic, Kaj Hänninen, Daniel Flemström, and Jukka

Mäki-Turja.

I also thank people at IDT; Carola, Gunnar, Malin, Åsa, Jenny, Ingrid, Su-

sanne, for making many things easier. During my studies, trips, coffee breaks

and parties I have had a lot of fun and I wish to give many thanks to Aida,

Aneta, Séverine, Hongyu, Rafia, Kathrin, Sara A., Sara D., Shahina, Adnan,

Andreas H., Andreas G., Moris, Hüseyin, Bob (Stefan), Nima, Luis (Yue Lu),

Mohammad, Mikael Å., Daniel H., Hang, Jagadish, Nikola, Federico, Saad,

Mehrdad, Mobyen, Johan K., Abhilash, Juraj, Luka, Leo, Josip, Antonio, Tibi,

Sigrid, Barbara, Batu, Fredrik, Giacomo, Guillermo, Svetlana, Raluca, Eduard

and all others for all the fun and memories.

I want to give my gratitude to my parents for their support and love in my

life. Last but not least, my special thanks goes to my wife Samal, for all the

support, love and fun. I would also wish to thank my lovely daughter Ronia

just for existing and making our family complete.

This work has been supported by the Swedish Foundation for Strategic

Research (SSF), via the research programme PROGRESS.

Farhang Nemati

Västerås, May, 2012

v

List of Publications

Papers Included in the PhD Thesis1

Paper A Partitioning Real-Time Systems on Multiprocessors with Shared Re-

sources. Farhang Nemati, Thomas Nolte, Moris Behnam. In 14th Inter-

national Conference On Principles Of Distributed Systems (OPODIS’10),

pages 253-269, December, 2010.

Paper B Independently-developed Real-Time Systems on Multi-cores with Sh-

ared Resources. Farhang Nemati, Moris Behnam, Thomas Nolte. In

23rd Euromicro Conference on Real-Time Systems (ECRTS’11), pages

251-261, July, 2011.

Paper C Resource Sharing among Prioritized Real-Time Applications on Mul-

ti-cores. Farhang Nemati, Thomas Nolte. MRTC report ISSN 1404-

3041 ISRN MDH-MRTC-265/2012-1-SE, Mälardalen Real-Time Re-

search Centre, Mälardalen University, April, 2012 (submitted to con-

ference).

Paper D Resource Sharing among Real-Time Components under Multiproces-

sor Clustered Scheduling. Farhang Nemati, Thomas Nolte. Journal of

Real-Time Systems (under revision).

Paper E Resource Hold Times under Multiprocessor Static-Priority Global

Scheduling. Farhang Nemati, Thomas Nolte. In 17th IEEE International

Conference on Embedded and Real-Time Computing Systems and Ap-

plications (RTCSA’11), pages 197-206, August, 2011.

1The included articles have been reformatted to comply with the PhD layout

vii

viii

Additional Papers, not Included in the PhD Thesis

Journals

1. Sharing Resources among Independently-developed Systems on Multi-

cores. Farhang Nemati, Moris Behnam, Thomas Nolte. ACM SIGBED

Review, vol 8, nr 1, pages 46-53, ACM, March, 2011.

Conferences and Workshops

1. Towards Resource Sharing by Message Passing among Real-Time Com-

ponents on Multi-cores. Farhang Nemati, Rafia Inam, Thomas Nolte,

Mikael Sjödin. In 16th IEEE International Conference on Emerging

Technology and Factory Automation (ETFA’11), Work-in-Progress (WiP)

session, pages 1-4, September, 2011.

2. Towards an Efficient Approach for Resource Sharing in Real-Time Mul-

tiprocessor Systems. Moris Behnam, Farhang Nemati, Thomas Nolte,

Håkan Grahn. In 6th IEEE International Symposium on Industrial Em-

bedded Systems (SIES’11), Work-in-Progress (WiP) session, pages 99-

102, June, 2011.

3. Independently-developed Systems on Multi-cores with Shared Resources.

Farhang Nemati, Moris Behnam, Thomas Nolte. In 3rd Workshop on

Compositional Theory and Technology for Real-Time Embedded Sys-

tems (CRTS’10) in conjunction with the 31th IEEE Real-Time Systems

Symposium (RTSS’10), December, 2010.

4. A Flexible Tool for Evaluating Scheduling, Synchronization and Parti-

tioning Algorithms on Multiprocessors. Farhang Nemati, Thomas Nolte.

In 15th IEEE International Conference on Emerging Techonologies and

Factory (ETFA’10), Work-in-Progress (WiP) session, pages 1-4, Septem-

ber, 2010.

5. Multiprocessor Synchronization and Hierarchical Scheduling. Farhang

Nemati, Moris Behnam, Thomas Nolte. In 38th International Confer-

ence on Parallel Processing (ICPP’09) Workshops, pages 58-64, Septem-

ber, 2009.

6. Investigation of Implementing a Synchronization Protocol under Multi-

processors Hierarchical Scheduling. Farhang Nemati, Moris Behnam,

ix

Thomas Nolte, Reinder J. Bril. In 14th IEEE International Conference

on Emerging Technologies and Factory (ETFA’09), pages 1670-1673,

September, 2009.

7. Efficiently Migrating Real-Time Systems to Multi-Cores. Farhang Ne-

mati, Moris Behnam, Thomas Nolte. In 14th IEEE Conference on Emerg-

ing Technologies and Factory (ETFA’09), pages 1-8, 2009.

8. Towards Hierarchical Scheduling in AUTOSAR. Mikael Åsberg, Moris

Behnam, Farhang Nemati, Thomas Nolte. In 14th IEEE International

Conference on Emerging Techonologies and Factory (ETFA’09), pages

1181-1188, September, 2009.

9. An Investigation of Synchronization under Multiprocessors Hierarchical

Scheduling. Farhang Nemati, Moris Behnam, Thomas Nolte. In the 21st

Euromicro Conference on Real-Time Systems (ECRTS’09), Work-in-

Progress (WiP) session, pages 49-52, July, 2009.

10. Towards Migrating Legacy Real-Time Systems to Multi-Core Platforms.

Farhang Nemati, Johan Kraft, Thomas Nolte. In 13th IEEE Interna-

tional Conference on Emerging Technologies and Factory Automation

(ETFA’08), Work-in-Progress (WiP) session, pages 717-720, September,

2008.

11. Validation of Temporal Simulation Models of Complex Real-Time Sys-

tems. Farhang Nemati, Johan Kraft, Christer Norström. In 32nd IEEE

International Computer Software and Application Conference (COMP-

SAC’08), pages 1335-1340, July, 2008.

Contents

I Thesis 1

1 Introduction 3

1.1 Contributions . 5

1.1.1 Partitioning Heuristic Algorithm 5

1.1.2 Synchronization Protocols for Real-Time Applications

in an Open System on Multiprocessors 6

1.2 Thesis Outline . 8

2 Background 9

2.1 Real-Time Systems . 9

2.2 Multi-core Platforms . 10

2.3 Real-Time Scheduling on Multiprocessors 11

2.3.1 Partitioned Scheduling 11

2.3.2 Global Scheduling 12

2.3.3 Hybrid Scheduling 12

2.4 Resource Sharing on Multiprocessors 13

2.4.1 The Multiprocessor Priority Ceiling Protocol (MPCP) 13

2.4.2 The Multiprocessor Stack Resource Policy (MSRP) . . 14

2.4.3 The Flexible Multiprocessor Locking Protocol (FMLP) 15

2.4.4 Parallel PCP (P-PCP) 16

2.4.5 O(m) Locking Protocol (OMLP) 17

2.4.6 Multiprocessor Synchronization Protocol for Real-Time

Open Systems (MSOS) 18

2.5 Assumptions of the Thesis 18

xi

xii Contents

3 Blocking-aware Algorithms for Partitioning Task Sets on Multi-

processors 21

3.1 Related Work . 21

3.2 Task and Platform Model . 23

3.3 Partitioning Algorithms with Resource Sharing 23

3.3.1 Blocking-Aware Algorithm (BPA) 24

3.3.2 Synchronization-Aware Algorithm (SPA) 28

4 Resource Sharing among Real-Time Applications on Multiproces-

sors 31

4.1 The Synchronization Protocol for Real-Time Applications un-

der Partitioned Scheduling 33

4.1.1 Assumptions and Definitions 33

4.1.2 MSOS-FIFO . 34

4.1.3 MSOS-Priority . 36

4.2 An Optimal Algorithm for Assigning Priorities to Applications 39

4.3 Synchronization Protocol for Real-Time Applications under Clus-

tered Scheduling . 42

4.3.1 Assumptions and Definitions 42

4.3.2 C-MSOS . 45

4.3.3 Efficient Resource Hold Times 45

4.3.4 Decreasing Resource Hold Times 47

4.3.5 Summary . 47

5 Conclusions 49

5.1 Summary . 49

5.2 Future Work . 50

6 Overview of Papers 53

6.1 Paper A . 53

6.2 Paper B . 54

6.3 Paper C . 54

6.4 Paper D . 55

6.5 Paper E . 56

Bibliography . 57

Contents xiii

II Included Papers 63

7 Paper A:

Partitioning Real-Time Systems on Multiprocessors with Shared

Resources 65

7.1 Introduction . 67

7.1.1 Contributions . 68

7.1.2 Related Work . 68

7.2 Task and Platform Model . 71

7.3 The Blocking Aware Partitioning Algorithms 72

7.3.1 Blocking-Aware Partitioning Algorithm (BPA) 72

7.3.2 Synchronization-Aware Partitioning Algorithm (SPA) . 77

7.4 Experimental Evaluation and Comparison of Algorithms . . . 79

7.4.1 Experiment Setup . 80

7.4.2 Results . 81

7.5 Conclusion . 84

Bibliography . 87

8 Paper B:

Independently-developed Real-Time Systems on Multi-cores with

Shared Resources 91

8.1 Introduction . 93

8.1.1 Contributions . 94

8.1.2 Related Work . 95

8.2 Task and Platform Model . 97

8.3 The Multiprocessors Synchronization Protocol for Real-time

Open Systems (MSOS) . 98

8.3.1 Assumptions and terminology 98

8.3.2 General Description of MSOS 99

8.3.3 MSOS Rules . 100

8.4 Schedulability Analysis . 101

8.4.1 Computing Resource Hold Times 101

8.4.2 Blocking Times under MSOS 102

8.4.3 Total Blocking Time 108

8.5 Extracting the Requirements in the Interface 108

8.6 Experimental Evaluation . 109

8.6.1 Experiment Setup . 111

8.6.2 Results . 112

8.7 Conclusion . 116

xiv Contents

Bibliography . 117

9 Paper C:

Resource Sharing among Prioritized Real-Time Applications on

Multiprocessors 121

9.1 Introduction . 123

9.1.1 Contributions . 124

9.1.2 Related Work . 124

9.2 Task and Platform Model . 126

9.3 The MSOS-FIFO for Non-prioritized Real-Time Applications 127

9.3.1 Definitions . 127

9.3.2 General Description of MSOS-FIFO 128

9.4 The MSOS-Priority (MSOS for Prioritized Real-Time Appli-

cations) . 129

9.4.1 Request Rules . 130

9.5 Schedulability Analysis under MSOS-Priority 131

9.5.1 Computing Resource Hold Times 131

9.5.2 Blocking Times under MSOS-Priority 131

9.5.3 Interface . 135

9.6 The Optimal Algorithm for Assigning Priorities to Applications 137

9.7 Schedulability Tests Extended with Preemption Overhead . . . 141

9.7.1 Local Preemption Overhead 141

9.7.2 Remote Preemption Overhead 142

9.8 Experimental Evaluation . 143

9.8.1 Experiment Setup . 143

9.8.2 Results . 144

9.9 Conclusion . 148

Bibliography . 151

10 Paper D:

Resource Sharing among Real-Time Components under Multipro-

cessor Clustered Scheduling 153

10.1 Introduction . 155

10.1.1 Contributions . 156

10.1.2 Related Work . 156

10.2 System and Platform Model 158

10.3 Resource Sharing . 160

10.4 Locking Protocol for Real-Time Components under Clustered

Scheduling . 162

Contents xv

10.4.1 PIP on Multiprocessors 162

10.4.2 General Description of C-MSOS 162

10.4.3 C-MSOS Rules . 163

10.4.4 Illustrative Example 164

10.5 Schedulability Analysis . 166

10.5.1 Schedulability Analysis of PIP 167

10.5.2 Schedulability Analysis of C-MSOS 169

10.5.3 Improved Calculation of Response Times under C-MSOS178

10.6 Extracting Interfaces . 179

10.6.1 Deriving Requirements 179

10.6.2 Determine Minimum and Maximum Required Processors182

10.7 Minimizing the Number of Required Processors for all Com-

ponents . 183

10.8 Evaluation . 185

10.8.1 Simulation-based Evaluation of C-MSOS 185

10.8.2 Practicality of Optimization of the Total Number of

Processors Required by Components 190

10.9 Summary and Conclusion . 191

Bibliography . 195

11 Paper E:

Resource Hold Times under Multiprocessor Static-Priority Global

Scheduling 199

11.1 Introduction . 201

11.1.1 Contributions . 202

11.1.2 Related Work . 203

11.2 System and Platform Model 204

11.3 Resource Sharing . 205

11.4 PIP on Multiprocessors . 206

11.4.1 Schedulability Analysis of B-PIP 207

11.4.2 Extending Schedulability Analysis to I-PIP 210

11.5 Computing Resource Hold Times 211

11.5.1 Resource Hold Time Calculation 213

11.6 Decreasing Resource Hold Times 214

11.6.1 Decreasing Resource Hold Time of a Single Global

Resource . 214

11.6.2 Decreasing Resource Hold Time of all Global Resources215

11.7 An Illustrative Example . 216

11.7.1 Testing the Schedulability 216

xvi Contents

11.8 Conclusions . 219

Bibliography . 221

I

Thesis

1

Chapter 1

Introduction

Inherent in problems with power consumption and related thermal problems,

multi-core platforms seem to be the way forward towards increasing perfor-

mance of processors, and single-chip multiprocessors (multi-cores) are today

the dominating technology for desktop computing.

The performance improvements of using multi-core processors depend on

the nature of the applications as well as the implementation of the software. To

take advantage of the concurrency offered by a multi-core architecture, appro-

priate algorithms have to be used to divide the software into tasks (threads) and

efficient scheduling techniques and partitioning algorithms to distribute tasks

fairly on processors are required to increase the overall performance.

Two main approaches for scheduling real-time systems on multiprocessors

exist [1, 2, 3, 4]; global and partitioned scheduling. Under global scheduling

protocols, e.g., Global Earliest Deadline First (G-EDF), tasks are scheduled by

a single scheduler and each task can be executed on any processor. A single

global queue is used for storing tasks. A task can be preempted on a processor

and resumed on another processor, i.e., migration of tasks among cores is per-

mitted. Under a partitioned scheduling protocol, tasks are statically assigned to

processors and the tasks within each processor are scheduled by a uniprocessor

scheduling protocol, e.g., Rate Monotonic (RM) and EDF. Each processor is

associated with a separate ready queue for scheduling task jobs. There are sys-

tems in which some tasks cannot migrate among cores while other tasks can

migrate. For such systems neither global or partitioned scheduling methods

can be used. A two-level hybrid scheduling approach [4], which is a mix of

global and partitioned scheduling methods, is used for those systems.

3

4 Chapter 1. Introduction

In the multiprocessor research community, considerable work has been

done on scheduling algorithms where it is assumed that tasks are indepen-

dent. However, synchronization in the multiprocessor context has not received

enough attention. Under partitioned scheduling, if all tasks that share the same

resources can be allocated on the same processor then the uniprocessor syn-

chronization protocols can be used [5]. This is not always possible, and some

adjustments have to be done to the protocols to support synchronization of

tasks across processors. The uniprocessor lock-based synchronization pro-

tocols have been extended to support inter processor synchronization among

tasks [6, 7, 8, 9, 10, 11, 12]. However, under global scheduling methods, the

uniprocessor synchronization protocols [13, 1] can not be reused without mod-

ification. Instead, new lock-based synchronization protocols have been devel-

oped to support resource sharing under global scheduling methods [9, 14].

Partitioned scheduling protocols have been used more often and are sup-

ported widely by commercial real-time operating systems [15], inherent in their

simplicity, efficiency and predictability. Besides, the well studied uniproces-

sor scheduling and synchronization methods can be reused for multiprocessors

with fewer changes. However, partitioning is known to be a bin-packing prob-

lem which is a NP-hard problem in the strong sense; hence finding an optimal

solution in polynomial time is not realistic in the general case. Thus, to take ad-

vantage of the performance offered by multi-cores, partitioned scheduling pro-

tocols have to be coordinated with appropriate partitioning algorithms [15, 16].

Heuristic approaches and sufficient feasibility tests for bin-packing algorithms

have been developed to find a near-optimal partitioning [2, 3]. However, the

scheduling protocols and existing partitioning algorithms for multiprocessors

mostly assume independent tasks.

The availability of multi-core platforms has attracted a lot of attention in

multiprocessor embedded software analysis and runtime policies, protocols

and techniques. As the multi-core platforms are to be the defacto processors,

the industry must cope with a potential migration towards multi-core platforms.

The industry can benefit from multi-core platforms as these platforms facilitate

hardware consolidation by co-executing multiple real-time applications on a

shared multi-core platform.

An important issue for industry when it comes to migration to multi-cores

is the existing applications. When migrating to multi-cores it has to be possible

that several applications can co-execute on a shared multi-core platform. The

(often independently-developed) applications may have been developed with

different techniques, e.g., several real-time applications that will co-execute on

a multi-core may have different scheduling policies. However, when the appli-

1.1 Contributions 5

cations co-execute on the same multi-core platform they may share resources

that require mutual exclusive access. Two challenges to overcome when mi-

grating existing applications to multi-cores are how to migrate the applications

with minor changes, and how to abstract key properties of applications suffi-

ciently, such that the developer of one application does not need to be aware of

particular techniques used in other applications.

Looking at industrial software systems, to speed up their development,

it is not uncommon that large and complex systems are divided into several

semi-independent subsystems each of which is developed independently. The

subsystems which may share resources will eventually be integrated and co-

execute on the same platform. This issue has got attention and has been studied

in the uniprocessor domain [17, 18, 19]. However, new techniques are sought

for scheduling semi-independent subsystems on multi-cores.

1.1 Contributions

The main contributions of this thesis are in the area of partitioning heuristics

and synchronization protocols for multi-core real-time systems. In the follow-

ing two subsections we present these contributions in more details.

1.1.1 Partitioning Heuristic Algorithm

As mentioned in Section 1, the partitioning algorithms that partition an ap-

plication on a multi-core have not considered resource sharing. Considering

resource sharing in partitioning algorithms leads to decreased blocking and

better schedulability of a task set. We have proposed a partitioning algorithm,

based on bin-packing, for allocating tasks onto processors of a multi-core plat-

form (Chapter 3). Tasks may access mutually exclusive resources and the aim

of the algorithm is to decrease the overall blocking overhead in the system. An

efficient partitioning algorithm may consequently increase the schedulability

of a task set and reduce the number of processors. We proposed the partition-

ing algorithm in Paper A and we compared it to a similar algorithm originally

proposed by Lakshmanan et al. [15]. Our new algorithm has shown to have

the potential to decrease the total number of required processors and it mostly

performs better than the similar existing algorithm.

6 Chapter 1. Introduction

1.1.2 Synchronization Protocols for Real-Time Applications

in an Open System on Multiprocessors

The multi-core platforms offer an opportunity for hardware consolidation and

open systems where multiple independently-developed real-time applications

can co-execute on a shared multi-core platform. The applications may, how-

ever, share mutually exclusive resources, imposing a challange when trying to

achieve independence. Methods, techniques and protocols are needed to sup-

port handling of shared resources among the co-executing applications. We

aim to tackle this important issue:

1. Synchronization Protocol for Real-Time Applications under Parti-

tioned Scheduling

(a) In Paper B we proposed a synchronization protocol for resource

sharing among independently-developed real-time applications on

a multi-core platform, where each application is allocated on a ded-

icated core. The protocol is called Multiprocessors Synchroniza-

tion protocol for real-time Open Systems (MSOS). In the paper,

we have presented an interface-based schedulability condition for

MSOS. The interface abstracts the resource sharing of an applica-

tion allocated on one processor through a set of requirements that

have to be satisfied to guarantee the schedulability of the applica-

tion. In Paper B, we further evaluated and compared MSOS to two

existing synchronization protocols for partitioned scheduling.

(b) The original MSOS assumes no priority setting among the applica-

tions, i.e., applications waiting for shared resources are enqueued

in a First-In First-Out (FIFO) manner. We extended MSOS to sup-

port prioritized applications which increases the schedulability of

the applications. This contribution is directed by Paper C. In the pa-

per, we extended the interface of applications and their schedulabil-

ity analysis to support prioritized applications. To distinguish the

extended MSOS from the original one we call the original MSOS

and the extended one as MSOS-FIFO and MSOS-Priority respec-

tively. In Paper C, by means of simulations, we evaluated and

compared MSOS-Priority to the key state-of-the-art synchroniza-

tion protocols as well as to MSOS-FIFO.

(c) In Paper C, we proposed an optimal priority setting algorithm which

assigns priorities to the applications under MSOS-Priority. As con-

1.1 Contributions 7

firmed by the evaluation results, the algorithm increases the schedu-

lability of applications significantly.

2. Synchronization Protocol for Real-Time Applications under Clus-

tered Scheduling

(a) In Paper D, we proposed a synchronization protocol, called Clus-

tered MSOS (C-MSOS), for supporting resource sharing among

real-time applications where each application is allocated on a ded-

icated set of cores (cluster). In the paper we derived the interface-

based schedulability analysis for four alternatives of C-MSOS. The

alternatives are distinguished by the way the queues in which ap-

plications and tasks wait for shared resources are handled. In a

simulation-based evaluation in Paper D we have compared all four

alternatives of C-MSOS.

(b) In Paper D, in order to minimize the interference of applications

regarding the shared resources, we let the priority of a task holding

a global resource (i.e., a global resource is shared among multiple

applications) be raised to be higher than any priority in its appli-

cation. In this way no other task executing in non-critical sections

can delay a task holding a global resource. This means that the Re-

source Hold Times (RHT) of global resources are minimized. The

RHT of a global resource in an application is the maximum time

that any task in the application may hold (lock) the resource. How-

ever, boosting the priority of any task holding a global resource

may make an application unschedulable. Therefore the priorities

of tasks holding global resources are raised as long as the applica-

tion remains schedulable, i.e., boosting the priorities should never

compromise the schedulability of the application. Under unipro-

cessor platforms, it has been shown [20, 21] that it is possible to

achieve one single optimal solution, when trying to set the best pri-

ority ceilings for global resources. However, this is not the case

when an application is scheduled on multiple processors (i.e., tasks

in the application are scheduled by a global scheduling policy). In

Paper E we calculated the RHT’s for global resources while as-

suming that the priorities of tasks holding global resources can be

boosted as far as the application remains schedulable. We have

shown that despite of uniprocessor platforms where there exists

8 Chapter 1. Introduction

one optimal solution, on multiprocessors there can exist multiple

Pareto-optimal solutions.

1.2 Thesis Outline

The outline of the thesis is as follows. In Chapter 2 we give a background

describing real-time systems, scheduling, multiprocessors, multi-core archi-

tectures, the problems and the existing solutions, e.g., scheduling and syn-

chronization protocols. Chapter 3 gives an overview of our proposed heuristic

partitioning algorithm. In Chapter 4 we have presented our proposed synchro-

nization protocol for both non-proiritized and prioritized applications. In the

chapter we have further presented the extension of our proposed protocol to

clustered scheduling, i.e., where one application can be allocated on multiple

dedicated cores. In Chapter 4 we have also discussed efficient resource hold

time calculations. In Chapter 5 we present our conclusion and future work. We

present the technical overview of the papers that are included in this thesis in

Chapter 6, and we present these papers in Chapters 7 - 11 respectively.

Chapter 2

Background

2.1 Real-Time Systems

In a real-time system, besides the functional correctness of the system, the

output has to satisfy timing attributes as well [22], e.g., the outputs have to be

delivered within deadlines. A real-time system is typically developed following

a concurrent programming approach in which a system may be divided into

several parts, called tasks, and each task, which is a sequence of operations,

executes in parallel with other tasks. A task may issue an infinite number of

instances called jobs during run-time.

Each task has timing attributes, e.g., deadline before which the task should

finish its execution, Worst Case Execution Time (WCET) which is the maxi-

mum time that a task needs to perform and complete its execution when exe-

cuting without interference from other tasks. The execution of a task can be

periodic or aperiodic; a periodic task is triggered with a constant time, denoted

as period, in between instances, and an aperiodic task may be triggered at any

arbitrary time instant.

Real-time systems are generally categorized into two categories; hard real-

time systems and soft real-time systems. In a hard real-time system tasks are

not allowed to miss their deadlines, while in a soft real-time system some tasks

may miss their deadlines. A safety-critical system is a type of hard-real time

system in which missing deadlines of tasks may lead to catastrophic incidents,

hence in such a system missing deadlines are not tolerable.

9

10 Chapter 2. Background

2.2 Multi-core Platforms

A multi-core (single-chip multiprocessor) processor is a combination of two

or more independent processors (cores) on a single chip. The cores are con-

nected to a single shared memory via a shared bus. The cores typically have

independent L1 caches and may share an on-chip L2 cache.

Multi-core architectures are today the dominating technology for desktop

computing and are becoming the defacto processors overall. The performance

of using multiprocessors, however, depends on the nature of the applications as

well as the implementation of the software. To take advantage of the concur-

rency offered by a multi-core architecture, appropriate algorithms have to be

used to divide the software into tasks (threads) and to distribute tasks on cores

to increase the system performance. If an application is not (or cannot) be fairly

divided into tasks, e.g., one task does all the heavy work, a multi-core will not

help improving the performance significantly. Real-time systems can highly

benefit from multi-core processors, as they are typically multi-threaded, hence

making it easier to adapt them to multi-cores than single-threaded, sequential

programs, e.g., critical functionality can have dedicated cores and independent

tasks can run concurrently to improve performance. Moreover, since the cores

are located on the same chip and typically have shared memory, communica-

tion between cores is very fast.

While multi-core platforms offer significant advantages, they also intro-

duce big challenges. Existing software systems need adjustments to be adapted

on multi-cores. Many existing legacy real-time systems are very large and

complex, typically consisting of huge amount of code. It is normally not an

option to throw them away and to develop a new system from scratch. A sig-

nificant challenge is to adapt them to work efficiently on multi-core platforms.

If the system contains independent tasks, it is a matter of deciding on which

processor each task should be executed. In this case scheduling protocols from

single-processor platforms can easily be reused. However, tasks are usually not

independent and they may share resources. This means that, to be able to adapt

the existing systems to be executed on a multi-core platform, synchronization

protocols are required to be changed or new protocols have to be developed.

For hard real-time systems, from a practical point of view, a static assign-

ment of processors, i.e., partitioned scheduling (Section 2.3.1), is often the

more common approach [2], often inherent in reasons of predictability and

simplicity. Also, the well-studied and verified scheduling analysis methods

from the single-processor domain has the potential to be reused. However,

fairly allocating tasks onto processors (partitioning) is a challenge, which is a

2.3 Real-Time Scheduling on Multiprocessors 11

bin-packing problem.

Finally, the processors on a multi-core can be identical, which means that

all processors have the same performance, this type of multi-core architec-

tures are called homogenous. However, the architecture may suffer from heat

and power consumption problems. Thus, processor architects have developed

multi-core architectures consisting of processors with different performance in

which tasks can run on appropriate processors, i.e., the tasks that do not need

higher performance can run on processors with lower performance, decreasing

energy consumption.

2.3 Real-Time Scheduling on Multiprocessors

The major approaches for scheduling real-time systems on multiprocessors are

partitioned scheduling, global scheduling, and the combination of these two

called hybrid scheduling [1, 2, 3, 4].

2.3.1 Partitioned Scheduling

Under partitioned scheduling tasks are statically assigned to processors, and

the tasks within each processor are scheduled by a single-processor scheduling

protocol, e.g., RM and EDF [23]. Each task is allocated to a processor on which

its jobs will run. Each processor is associated with a separate ready queue for

scheduling its tasks’ jobs.

An advantage of partitioned scheduling is that well-understood and veri-

fied scheduling analysis from the uniprocessor domain has the potential to be

reused. Another advantage is the run-time efficiency of these protocols as the

tasks and jobs do not suffer from migration overhead. A disadvantage of parti-

tioned scheduling is that it is a bin-packing problem which is known to be NP-

hard in the strong sense, and finding an optimal distribution of tasks among

processors in polynomial time is not generally realistic. Another disadvan-

tage of partitioned scheduling algorithms is that prohibiting migration of tasks

among processors decreases the utilization bound, i.e., it has been shown [3]

that task sets exist that are only schedulable if migration among processors is

allowed. Non-optimal heuristic algorithms have been used for partitioning a

task set on a multiprocessor platform. An example of a partitioned scheduling

algorithm is Partitioned EDF (P-EDF) [2].

12 Chapter 2. Background

2.3.2 Global Scheduling

Under global scheduling algorithms tasks are scheduled by a single system-

level scheduler, and each task or job can be executed on any processor. A

single global queue is used for storing ready jobs. At any time instant, at most

m ready jobs with highest priority among all ready jobs are chosen to run on a

multiprocessor consisting of m processors. A task or its jobs can be preempted

on one processor and resumed on another processor, i.e., migration of tasks

(or its corresponding jobs) among cores is permitted. An example of a global

scheduling algorithm is Global EDF (G-EDF) [2]. The global scheduling algo-

rithms are not necessarily optimal either, although in the research community

new multiprocessor scheduling algorithms have been developed that are op-

timal. Proportionate fair (Pfair) scheduling approaches are examples of such

algorithms [24, 25]. However, this particular class of scheduling algorithms

suffers from high run-time overhead as they may have to increase the num-

ber of preemptions and migrations significantly. However, there have been

research works on decreasing this overhead in the multiprocessor scheduling

algorithms; e.g., the work by Levin et al. [26].

2.3.3 Hybrid Scheduling

There are systems that cannot be scheduled by either pure partitioned or pure

global scheduling; for example some tasks cannot migrate among cores while

other tasks are allowed to migrate. An example approach for those systems is

the two-level hybrid scheduling approach [4], which is based on a mix of global

and partitioned scheduling methods. In such protocols, at the first level a global

scheduler assigns jobs to processors and at the second level each processor

schedules the assigned jobs by a local scheduler.

Recently more general approaches, such as cluster-based scheduling [27,

28], have been proposed which can be categorized as a generalization of par-

titioned and global scheduling protocols. Using such an approach, tasks are

statically assigned to clusters and tasks within each cluster are globally sched-

uled. Cluster-based scheduling can be physical or virtual. In physical cluster-

based scheduling the virtual processors of each cluster are statically mapped to

a subset of physical processors of the multiprocessor [27]. In virtual cluster-

based scheduling [28] the processors of each cluster are dynamically mapped

(one-to-many) onto processors of the multiprocessor. Virtual clustering is more

general and less sensitive to task-cluster mapping compared to physical clus-

tering.

2.4 Resource Sharing on Multiprocessors 13

2.4 Resource Sharing on Multiprocessors

Generally there are two classes of resource sharing, i.e., lock-based and lock-

free synchronization protocols. In the lock-free approach [29, 30], operations

on simple software objects, e.g., stacks, linked lists, are performed by retry

loops, i.e., operations are retried until the object is accessed successfully. The

advantages of lock-free algorithms is that they do not require kernel support

and as there is no need to lock, priority inversion does not occur. The disad-

vantage of these approaches is that it is not easy to apply them to hard real-time

systems as the worst case number of retries is not easily predictable. In this the-

sis we have focused on the lock-based approach, thus in this section we present

an overview of a non-exhaustive list of the existing lock-based synchronization

methods.

On a multiprocessor platform a job, besides lower priority jobs, can be

blocked by higher priority jobs that are assigned to different processors as

well. This does not rise any problem on uniprocessor platforms. Another issue,

which is not the case in the existing uniprocessor synchronization techniques,

is that on a uniprocessor, a job Ji can not be blocked by lower priority jobs

arriving after Ji. However, on a multiprocessor, a job Ji can be blocked by the

lower priority jobs arriving after Ji if they are executing on different proces-

sors. Those cases introduce more complexity and pessimism into schedulabil-

ity analysis.

The existing lock-based synchronization protocols can be categorized as

suspend-based and spin-based protocols. Under a suspend-based protocol a

task requesting a resource that is shared across processors suspends if the re-

source is locked by another task. Under a spin-based protocol a task requesting

the locked resource keeps the processor and performs spin-lock (busy wait).

2.4.1 The Multiprocessor Priority Ceiling Protocol (MPCP)

Rajkumar proposed MPCP (Multiprocessor Priority Ceiling Protocol) [6], that

extends PCP (Priority Ceiling Protocol) [13] to shared memory multiproces-

sors hence allowing for synchronization of tasks sharing mutually exclusive re-

sources using partitioned FPS (Fixed Priority Scheduling). MPCP is a suspend-

based protocol under which tasks waiting for a global resource suspend and are

enqueued in an associated prioritized global queue. Under MPCP, the priority

14 Chapter 2. Background

of a task within a global critical section (gcs), in which it requests a global re-

source, is boosted to be greater than the highest priority among all local tasks.

This priority is called remote ceiling. A gcs can only be preempted by other

gcs’s that have higher remote ceiling. Lakshmanan et al. [15] extended a spin-

based alternative of MPCP.

MPCP is used for synchronizing a set of tasks sharing lock-based resources

under a partitioned FPS protocol, i.e., RM. Under MPCP, resources are di-

vided into local and global resources. The local resources are protected using

a uniprocessor synchronization protocol, i.e., PCP.

Under MPCP, the blocking time of a task, in addition to the local blocking,

has to include the remote blocking terms where a task is blocked by tasks

executing on other processors. However, the maximum remote blocking time

of a job is bounded and is a function of the duration of critical sections of

other jobs. This is a consequence of assigning any gcs a ceiling greater than

the priority of any other task, hence a gcs can only be blocked by another

gcs and not by any non-critical section. Assume ρH is the highest priority

among all tasks. The remote ceiling of a job Ji executing within a gcs equals

to ρH + 1 +max{ρj |τj requests Rk and τj is not on Ji’s processor}.

Global critical sections cannot be nested in local critical sections and vice

versa. Global resources potentially lead to high blocking times, thus tasks

sharing the same resources are preferred to be assigned to the same processor

as far as possible. We have proposed an algorithm that attempts to reduce the

blocking times by assigning tasks to appropriate processors (Chapter 3).

2.4.2 The Multiprocessor Stack Resource Policy (MSRP)

Gai et al. [7] presented MSRP (Multiprocessor SRP), which is an extension

of SRP (Stack-based Resource allocation Protocol) [1] to multiprocessors and

it is a spin-based synchronization protocol. MSRP is used for synchronizing

a set of tasks sharing lock-based resources under a partitioned EDF (P-EDF).

The shared resources are classified as either local or global resources. Tasks

are synchronized on local resources using SRP, and access to global resources

is guaranteed a bounded blocking time. Further, under MSRP, when a task is

blocked on a global resource it performs busy wait (spin lock). This means that

the processor is kept busy without doing any work, hence the duration of the

spin lock should be as short as possible which means locking a global resource

should be reduced as far as possible. To achieve this goal under MSRP, the

tasks executing in global critical sections become non-preemptive. The tasks

blocked on a global resource are added to a FIFO queue. Global critical sec-

2.4 Resource Sharing on Multiprocessors 15

tions are not allowed to be nested under MSRP.

Gai et al. [8] compared their implementation of MSRP to MPCP. They

pointed out that the complexity of implementation as a disadvantage of MPCP

and that wasting more local processor time (due to busy wait) as a disadvantage

of MSRP. They have performed two case studies for the comparison. The re-

sults show that MPCP works better when the duration of global critical sections

are increased while MSRP outperforms MPCP when critical sections become

shorter. Also in applications where tasks access many resources, and resources

are accessed by many tasks, which lead to more pessimism in MPCP, MSRP

has a significant advantage compared to MPCP.

2.4.3 The Flexible Multiprocessor Locking Protocol (FMLP)

Block et al. [9] presented FMLP (Flexible Multiprocessor Locking Protocol)

which is a synchronization protocol for multiprocessors. FMLP can be applied

to both partitioned and global scheduling algorithms, e.g., P-EDF and G-EDF.

In FMLP, resources are categorized into short and long resources, and

whether a resource is short or long is user specified. There is no limitation

on nesting resource accesses, except that requests for long resources cannot be

nested in requests for short resources.

Under FMLP, deadlock is prevented by grouping resources. A group in-

cludes either global or local resources, and two resources are in the same group

if a request for one is nested in a request for the other one. A group lock is as-

signed to each group and only one task can hold the lock of the group at any

time.

The jobs that are blocked on short resources perform busy-wait and are

added to a FIFO queue. Jobs that access short resources hold the group lock

and execute non-preemptively. A job accessing a long resource holds the group

lock and executes preemptively using priority inheritance, i.e., it inherits the

highest priority among all jobs blocked on any resource within the group. Tasks

blocked on a long resource are added to a FIFO queue.

Under global scheduling, FMLP actually works under a variant of G-EDF

for Suspendable and Non-preemptable jobs (GSN-EDF) [9] which guarantees

that a job Ji can only be blocked, with a constraint duration, by another non-

preemptable job when Ji is released or resumed.

Brandenburg and Anderson in [10] extended partitioned FMLP to the fixed

priority scheduling policy and derived a schedulability test for it. Under parti-

tioned FMLP global resources are categorized into long and short resources.

Tasks blocked on long resources suspend while tasks blocked on short re-

16 Chapter 2. Background

sources perform busy wait. However, there is no concrete solution how to

assign a global resource as long or short and it is assumed to be user defined. In

an evaluation of partitioned FMLP [31], the authors differentiate between long

FMLP and short FMLP where all global resources are only long and only short

respectively. Thus, long FMLP and short FMLP are suspend-based and spin-

based synchronization protocols respectively. In both alternatives the tasks

accessing a global resource executes non-preemptively and blocked tasks are

waiting in a FIFO-based queue.

2.4.4 Parallel PCP (P-PCP)

Easwaran and Andersson proposed a synchronization protocol [14] under the

global fixed priority scheduling protocol called Parallel PCP (P-PCP). The au-

thors have derived schedulability analysis for the previously known Priority

Inheritance Protocol (PIP) under global scheduling algorithms as well as for P-

PCP. For resource sharing under global fixed priority scheduling policies, this

is the first work that provides a schedulability test.

Under PIP, while a job Jj accesses a resource, the job’s effective priority

is raised to the highest priority of any job waiting for the resource if there is

any, otherwise Jj executes with its base priority. A synchronization protocol

may temporarily raise the priority of a job which is called effective priority of

the job. Under PIP the priority of a job locking a global resource is not raised

unless a higher priority job is waiting for the resource. We call this alternative

of PIP as Basic PIP (B-PIP). In [32] we extended the schedulability analysis to

Immediate PIP (I-PIP) where the effective priority of a job locking a resource

is immediately raised to the highest priority of any task that may request the

resource.

P-PCP is a generalization of PCP to the global fixed priority scheduling

policy. For each task sharing resources, P-PCP offers the possibility of a trade-

off between the interference from lower priority jobs and the amount of parallel

executions that can be performed. The tradeoff for each task is adjusted based

on an associated tuning parameter, noted by α. A higher value for α of the task

means that more lower priority jobs may execute at effective priority higher

than the task’s base priority thus introducing more interference to the task.

However, at the same time a higher value of α will increase the parallelism on

a multiprocessor platform.

2.4 Resource Sharing on Multiprocessors 17

2.4.5 O(m) Locking Protocol (OMLP)

Brandenburg and Anderson [11] proposed a new suspend-based locking proto-

col, called OMLP (O(m) Locking Protocol). OMLP is an suspension-oblivious

protocol. Under a suspension-oblivious locking protocol, the suspended tasks

are assumed to occupy processors and thus blocking is counted as demand. To

test the schedulability, the worst-case execution times of tasks are inflated with

blocking times. In difference with OMLP, other suspend-based protocols are

suspend-aware where suspended tasks are not assumed to occupy their proces-

sors. OMLP works under both global and partitioned scheduling. OMLP is

asymptotically optimal, which means that the total blocking for any task set

is a constant factor of blocking that cannot be avoided for some task sets in

the worst case. An asymptotically optimal locking protocol however does not

mean it can perform better than non-asymptotically optimal protocols.

Under global OMLP, each global resource is associated with two queues in

which requesting jobs are enqueued, i.e., a FIFO queue of size m where m is

the number of processors and a prioritized queue. Whenever a job requests a

resource if its associated FIFO queue is not full the job will be added to the end

of the FIFO queue, otherwise it is added to the prioritized queue of the resource.

The job at the head of the FIFO queue is granted access to the resource. As

soon as the full FIFO gets a free place, i.e., the job at the head of the FIFO

queue releases the resource, the highest priority job from the prioritized queue

is added to the end of the FIFO queue.

Under partitioned OMLP, each processor has a unique token and any local

task requesting any global resource should hold the token to be able to access

its requested resource. The tasks requesting global resources are enqueued in

a prioritized queue to receive the token. The tasks waiting for a global re-

source are also enqueued in a global FIFO queue associated with the resource.

Any task accessing a global resource cannot be preempted by any task until it

releases the resource.

Recently, the same authors extended OMLP to clustered scheduling [33].

In this work, in despite of global and partitioned OMLP where each resource

needs two queues (a FIFO and a prioritized), the authors have simplified OMLP

under clustered scheduling so that it only needs a FIFO queue for each global

resource in order to be asymptotically optimal. To achieve this, instead of

priority inheritance and boosting in global and partitioned OMLP respectively,

they propose a new concept called priority donation which is an extension of

priority boosting. With priority boosting a job can be repeatedly preempted

while with priority donation, each job can be preempted at most once. Under

18 Chapter 2. Background

priority donation a higher priority job may suspend and donate its priority to a

lower priority job requesting a resource to accomplish accessing the resource.

2.4.6 Multiprocessor Synchronization Protocol for Real-Time

Open Systems (MSOS)

We proposed MSOS (Multiprocessor Synchronization protocol for real-time

Open Systems) [12] which is a suspend-based synchronization protocol for

handling resource sharing among real-time applications in an open system on

a multi-core platform. In an open system, applications can enter and exit dur-

ing run-time. The schedulability analysis of each application is performed in

isolation and its demand for global resources is summarized in a set of require-

ments which can be used for the global scheduling when co-executing with

other applications. Validating these requirements is easier than performing the

whole schedulability analysis. Thus, an run-time admission control program

would perform much better when introducing a new application or changing

an existing one.

We refer to the original MSOS as MSOS-FIFO. The protocol assumes

that each real-time application is allocated on a dedicated core. Furthermore,

MSOS-FIFO assumes that the applications have no assigned priority and thus

applications waiting for a global resource are enqueued in an associated global

FIFO-based queue. However, in real-time systems assigning priorities often

increases the schedulability of systems. We have proposed an alternative of

MSOS, called MSOS-Priority [34] to be applicable for prioritized applications

when accessing mutually exclusive resources. MSOS-Priority together with

an optimal priority assignment algorithm that is proposed in the same paper

mostly outperforms any existing suspend-based synchronization protocol and

in many cases, e.g., for lower preemption overhead, it even outperforms spin-

based protocols as well. More details about MSOS (both MSOS-FIFO and

MSOS-Priority) are presented in Chapter 4.

2.5 Assumptions of the Thesis

With respect to the above presented background material, the work presented

in this thesis has been developed under the following limitations:

Real-Time Systems:

We assume hard real-time systems.

2.5 Assumptions of the Thesis 19

Multi-core Architecture:

We assume identical multi-core architectures. However, as a future work

we believe that this assumption can be relaxed.

Scheduling Protocol:

The different contributions of the thesis focus on different scheduling

classes, i.e., partitioned global as well as clustered scheduling approaches.

Synchronization Protocol:

In the partitioning algorithm we have focused on MPCP as the synchro-

nization protocol under which our heuristic attempts to decrease block-

ing overhead. The major focus of the thesis is the synchronization pro-

tocols that we have developed and improved. However, for the exper-

imental evaluations we have considered other existing synchronization

protocols, i.e., MPCP, MSRP, FMLP, OMLP, and PIP.

System Model and Related Work:

In the included papers there may be some differences in the terminolo-

gies and notions, e.g., in some papers we use real-time applications while

in some other papers we have used real-time components. Thus, we have

provided different task and platform models throughout the thesis. We

have also presented the related work separately, i.e., the work related

to each approach is presented previous to the approach in its respective

chapter.

Chapter 3

Blocking-aware Algorithms

for Partitioning Task Sets on

Multiprocessors

In this chapter we present our proposed partitioning algorithm in which a task

set is attempted to be efficiently allocated onto a shared memory multi-core

platform with identical processors.

3.1 Related Work

A scheduling framework for multi-core processors was presented by Rajagopal-

an et al. [35]. The framework tries to balance between the abstraction level of

the system and the performance of the underlying hardware. The framework

groups dependant tasks, which, for example, share data, to improve the perfor-

mance. The paper presents Related Thread ID (RTID) as a mechanism to help

the programmers to identify groups of tasks.

The grey-box modeling approach for designing real-time embedded sys-

tems was presented in [36]. In the grey-box task model the focus is on task-

level abstraction and it targets performance of the processors as well as timing

constraints of the system.

In Paper A [16] we have proposed a heuristic blocking-aware algorithm to

allocate a task set on a multi-core platform to reduce the blocking overhead of

21

22 Chapter 3. Blocking-aware Algorithms for Partitioning Task Sets

on Multiprocessors

tasks.

Partitioning (allocation tasks on processors) of a task set on a multiproces-

sor platform is a bin-packing problem which is known to be a NP-hard problem

in the strong sense; therefore finding an optimal solution in polynomial time is

not realistic in the general case [37]. Heuristic algorithms have been developed

to find near-optimal solutions.

A study of bin-packing algorithms for designing distributed real-time sys-

tems was presented in [38]. The presented method partitions a software into

modules to be allocated on hardware nodes. In their approach they use two

graphs; one graph which models software modules and another graph that rep-

resents the hardware architecture. The authors extend the bin-packing algo-

rithm with heuristics to minimize the number of required bins (processors) and

the required bandwidth for the communication between nodes.

Liu et al. [39] presented a heuristic algorithm for allocating tasks in multi-

core-based massively parallel systems. Their algorithm has two rounds; in the

first round processes (groups of threads - partitions in this thesis) are assigned

to processing nodes, and the second round allocates tasks in a process to the

cores of a processor. However, the algorithm does not consider synchronization

between tasks.

Baruah and Fisher have presented a bin-packing partitioning algorithm, the

first-fit decreasing (FFD) algorithm [40] for a set of independent sporadic tasks

on multiprocessors. The tasks are indexed in non-decreasing order based on

their relative deadlines, and the algorithm assigns the tasks to the processors

in first-fit order. The tasks on each processor are scheduled under uniprocessor

EDF.

Lakshmanan et al. [15] investigated and analyzed two alternatives of exe-

cution control policies (suspend-based and spin-based remote blocking) under

MPCP. They have developed a blocking-aware task allocation algorithm, an

extension to the best-fit decreasing (BFD) algorithm, and evaluated it under

both execution control policies. Their blocking-aware algorithm is of great rel-

evance to our proposed algorithm, hence we have presented their algorithm in

more details in Section 3.3. Together with our algorithm we have also imple-

mented and evaluated their blocking-aware algorithm and compared the per-

formances of both algorithms.

3.2 Task and Platform Model 23

3.2 Task and Platform Model

Our target system is a task set that consists of n sporadic tasks, τi(Ti, Ci, ρi,
{Csi,q,p}) where Ti is the minimum inter-arrival time between two successive

jobs of task τi with worst-case execution time Ci and ρi as its priority. The

tasks share a set of resources, R, which are protected using semaphores. The

set of critical sections, in which task τi requests resources in R, is denoted

by {Csi,q,p}, where Csi,q,p indicates the worst case execution time of the pth

critical section of task τi, in which the task accesses resource Rq ∈ R. The

tasks have implicit deadlines, i.e., the relative deadline of any job of τi is equal

to Ti. A job of task τi, is specified by Ji. The utilization factor of task τi is

denoted by ui where ui = Ci/Ti.

We have also assumed that the multi-core platform is composed of identical

unit-capacity processors with shared memory. The task set is partitioned into

partitions {P1, . . . , Pm}, where m represent the number of required processors

and each partition is allocated onto one processor.

3.3 Partitioning Algorithms with Resource Shar-

ing

In this section we present our blocking-aware heuristic algorithm to allocate

tasks onto the processors of a multi-core platform. The algorithm extends a

bin-packing algorithm with synchronization factors. The results of our exper-

imental evaluation [16] shows a significant performance increment compared

to the existing similar algorithm [15] and a reference blocking-agnostic bin-

packing algorithm. The blocking-agnostic algorithm, in the context of this

thesis, refers to a bin-packing algorithm that does not consider blocking pa-

rameters to increase the performance of partitioning, although blocking times

are included in the schedulability test.

In our algorithm task constraints are identified, e.g., dependencies between

tasks, timing attributes, and resource sharing preferences, and we extend the

best-fit decreasing (BFD) bin-packing algorithm with blocking time param-

eters. The objective of the heuristic is to decrease the blocking overheads,

by assigning tasks to appropriate partitions with respect to the constraints and

preferences.

In a blocking-agnostic BFD algorithm, the processors are ordered in non-

increasing order of their utilization and tasks are ordered in non-increasing or-

der of their size (utilization). Beginning from the top of the ordered processor

24 Chapter 3. Blocking-aware Algorithms for Partitioning Task Sets

on Multiprocessors

list, the algorithm attempts to allocate the task from the top of the ordered task

set onto the first processor that fits it, i.e., the first processor on which the task

can be allocated without making any processor unschedulable. If none of the

processors can fit the task, a new processor is added to the processor list and

the task is allocated to this processor. At each step the schedulability of all pro-

cessors must be tested, because allocating a task to a processor can increase the

remote blocking time of tasks previously allocated to other processors and may

make the other processors unschedulable. This means, it is possible that some

of the previous processors become unschedulable even if a task is allocated to

a new processor.

The algorithm proposed in [15] was called Synchronization-Aware Par-

titioning Algorithm, and we call our algorithm Blocking-Aware Partitioning

Algorithm. Both algorithms have the same objective, i.e., consideration of

resource sharing factors during partitioning to decrease the overall blocking

overheads. However, to ease refereing them, we refer them as SPA and BPA

respectively. Both our algorithm (BPA) and the existing one (SPA) assume

that MPCP is used for lock-based synchronization. Thus, we derive heuristics

based on the blocking parameters in MPCP. However, our algorithm can be

easily extended to other synchronization protocols as well, e.g., MSRP, FMLP

and OMLP.

3.3.1 Blocking-Aware Algorithm (BPA)

The algorithm attempts to allocate a task set onto processors in two rounds. The

output of the round with better partitioning results will be chosen as the output

of the algorithm. In each round the tasks are allocated to the processors in a

different way. When a bin-packing algorithm allocates an object (task) to a bin

(processor), it usually attempts to put the object in a bin that fits it better, and it

does not consider the unallocated objects. The rationale behind the two rounds

is that the heuristic tries to consider both the past and the future by looking

at tasks allocated in the past and those that are not yet allocated. In the first

round the algorithm considers the tasks that are not allocated to any processor

yet, and attempts to take as many as possible of the best related tasks with the

current task by considering remote blocking parameters. In the second round it

considers the already allocated tasks and tries to allocate the current task onto

the processor that contains best related tasks to the current task. In the second

round, the algorithm performs more like the usual bin packing algorithms, i.e.,

it attempts to find the best bin for the current object. Briefly, the algorithm in

the first round looks at the future and in the second round it considers the past.

3.3 Partitioning Algorithms with Resource Sharing 25

Before starting the two rounds the algorithm performs some basic steps:

• A heuristic weight is assigned to each task which is a function of task’s

utilization as well as the blocking parameters that lead to potential re-

mote blocking time introduced by other tasks. The heuristic weight for

a task τi, denoted by wi, is calculated as follows:

wi = ui +

⌈(

∑

ρi<ρk

NCi,kβi,k

⌈

Ti

Tk

⌉

+NCi max
ρi≥ρk

(βi,k)

)

/Ti

⌉

(3.1)

where, NCi,k is the number of critical sections of τk in which it shares a

resource with τi and βi,k is the longest critical section among them, and

NCi is the total number of critical sections of τi.

Considering the remote blocking terms of MPCP [6], the rationale be-

hind the definition of the weight is that the tasks that have the potential

to be punished more by remote blocking become heavier. Thus, they

can be allocated earlier and attract as many as possible of the tasks with

which they share resources.

• Next, the macrotasks are generated. A macrotask is a group of tasks

that directly or indirectly share resources, e.g., if tasks τi and τj share

resource Rp and tasks τj and τk share resource Rq , all three tasks belong

to the same macrotask. A macrotask has two alternatives; it can either be

broken or unbroken. A macrotask is set as broken if it cannot fit in one

processor, i.e., it cannot be scheduled by a single processor even if no

other task is allocated onto the processor, otherwise it is set as unbroken.

If a macrotask is unbroken, the partitioning algorithm always allocate all

tasks in the macrotask to the same processor. Thus, all resources shared

by tasks within the macrotask will be local. However, tasks within a

broken macrotask have to be distributed into more than one partition.

Similar to tasks, a weight is assigned to each macrotask, which is the

summation of the weights of its tasks.

• After generating the macrotasks, the unbroken macrotasks along with

the tasks not belonging to any unbroken macrotasks (i.e., the tasks that

either do not share any resource or they belong to a broken macrotask)

are ordered in a single list in non-increasing order of their weights. We

call this list as the mixed list.

In the both rounds the strategy of task allocation depends on attraction be-

tween tasks. Co-allocation of tasks on the same processor is based on a cost

26 Chapter 3. Blocking-aware Algorithms for Partitioning Task Sets

on Multiprocessors

function which is called attraction function. The attraction of task τk to a task

τi is defined based on the potential remote blocking overhead that task τk can

introduce to task τi if they are allocated onto different processors. We represent

the attraction of task τk to task τi as vi,k which is calculated as follows:

vi,k =

{

NCi,kβi,k

⌈

Ti

Tk

⌉

ρi < ρk;

NCiβi,k ρi ≥ ρk
(3.2)

The rationale behind the attraction function is to allocate the tasks which

may remotely block a task τi to the same processor as τi’s in the order of remote

blocking overhead, as far as possible.

The weight function (Equation 3.1) and attraction function (Equation 3.2)

are heuristics to guide the algorithm under MPCP. These functions may dif-

fer under other synchronization protocols, e.g., MSRP, which have different

remote blocking terms.

After the basic steps the algorithm continues with the rounds:

First Round The following steps are repeated within the first round until all

tasks are allocated to processors:

• All processors are ordered in non-increasing order of their size (utiliza-

tion).

• The object (a task or an unbroken macrotask) at the top of the mixed list

is picked to be allocated.

(i) If the object is a task and it does not belong to any broken macrotask

it will be allocated onto the first processor that fits it, beginning from the

top of the ordered processor list. If none of the processors can fit the task

a new processor is added to the list and the task is allocated onto it.

(ii) If the object is an unbroken macrotask, all its tasks will be allocated

onto the first processor that fits them, i.e., all processors can successfully

be scheduled. If none of the processors can fit the tasks (i.e., at least one

processor becomes unschedulable), they will be allocated onto a new

processor.

(iii) If the object is a task that belongs to a broken macrotask, the algo-

rithm orders the not allocated tasks in the macrotask in non-increasing

order of attraction to the task based on Equation 3.2. We denote this list

as attraction list of the task. The task itself will be on the top of its at-

traction list. Although creation of an attraction list begins from a task,

3.3 Partitioning Algorithms with Resource Sharing 27

in continuation tasks are added to the list that are most attracted to all of

the tasks in the list, i.e., the sum of its attraction to the tasks in the list is

maximized. The best processor for allocation which is the processor that

fits the most tasks from the attraction list is selected, beginning from the

top of the list. If none of the existing processors can fit any of the tasks, a

new processor is added and as many tasks as possible from the attraction

list are allocated to the processor. However, if the new processor cannot

fit any task from the attraction list, i.e., at least one of the processors be-

come unschedulable, the first round fails and the algorithm moves to the

second round.

Second Round The following steps are repeated until all tasks are allocated

to the processors:

• The object at the top of the mixed list is picked.

(i) If the object is a task and it does not belong to any broken macrotask,

this step is performed the same way as in the first round.

(ii) If the object is an unbroken macrotask, in this step the algorithm

performs the same way as in the first round.

(iii) If the object is a task that belongs to a broken macrotask, the ordered

list of processors is a concatenation of two ordered lists of processors.

The top list contains the processors that include some tasks from the

macrotask of the picked task; this list is ordered in non-increasing order

of processors’ attraction to the task based on Equation 3.2, i.e., the pro-

cessor which has the greatest sum of attractions of its tasks to the picked

task is the most attracted processor to the task. The second list of pro-

cessors is the list of the processors that do not contain any task from the

macrotask of the picked task and are ordered in non-increasing order of

their utilization. The picked task will be allocated onto the first proces-

sor from the processor list that will fit it. The task will be allocated to a

new processor if none of the existing ones can fit it. The second round

of the algorithm fails if allocating the task to the new processor makes at

least one of the processors unschedulabe.

If both rounds fail to schedule a task set the algorithm fails. If one of the

rounds fails the result will be the output of the other round. Finally, if both

rounds succeed to schedule the task set, the one with less processors will be

the output of the algorithm.

28 Chapter 3. Blocking-aware Algorithms for Partitioning Task Sets

on Multiprocessors

3.3.2 Synchronization-Aware Algorithm (SPA)

In this section we present the partitioning algorithm originally proposed by

Lakshmanan et al. [15].

• Similar to BPA, the macrotasks are generated (in [15], macrotasks are

denoted as bundles). A sufficient number of processors that fit the total

utilization of the task set, i.e., ⌈
∑

ui⌉, are added.

• The utilization of macrotasks and tasks are considered as their size and

all the macrotasks together with all other tasks are ordered in a list in

non-increasing order of their utilization. The algorithm attempts to al-

locate each macrotask onto a processor. Without adding any new pro-

cessor, all macrotasks and tasks that fit are allocated onto the processors

and the macrotasks that cannot fit are put aside. After each allocation,

the processors are ordered in their non-increasing order of utilization.

• The remaining macrotasks are ordered in the order of the cost of breaking

them. The cost of breaking a macrotask is defined based on the estimated

cost (blocking time) introduced into the tasks by transforming a local

resource into a global resource, i.e., the tasks sharing the resource are

allocated to different processors. The estimated cost of transforming a

local resource Rq into a global resource is defined as follows.

Cost(Rq) = Global Overhead − Local Discount (3.3)

The Global Overhead is calculated as follows.

Global Overhead = Csq/min
∀τi

(Ti) (3.4)

where Csq is the length of the longest critical section accessing Rq .

And the Local Discount is defined as follows.

Local Discount = max
∀τi accessing Rq

(Csi,q/Ti) (3.5)

where Csi,q is the length of the longest critical section of τi accessing

Rq .

The cost of breaking any macrotask, mTaskk, is calculated as the maxi-

mum of blocking overhead caused by transforming its accessed resources

into global resources.

3.3 Partitioning Algorithms with Resource Sharing 29

Cost(mTaskk) =
∑

∀Rq accessed by mTaskk

Cost(Rq) (3.6)

• The macrotask with minimum breaking cost is picked and is broken in

two pieces such that the size of one piece is as close to the largest uti-

lization available among processors as possible. This means, the tasks

within the selected macrotask are ordered in decreasing order of their

size (utilization) and the tasks from the ordered list are added to the pro-

cessor with the largest available utilization as far as possible. In this way,

the macrotask has been broken in two pieces; (1) the one including the

tasks allocated to the processor and (2) the tasks that could not fit in the

processor. If the fitting is not possible a new processor is added and the

whole algorithm is repeated again.

The SPA algorithm does not consider any blocking parameters while it al-

locates the current task to a processor, but only its utilization, i.e., the tasks

are ordered in order of their utilization only. The BPA, on the other hand, as-

signs a heuristic weight (Equation 3.1) which besides the utilization includes

the blocking parameters as well. Another issue is that in SPA no relationship

based on blocking parameters among individual tasks within a macrotask is

considered which as in the BPA could help to allocate tasks from a broken

bundle to appropriate processors to decreases the blocking times. The attrac-

tion function in Equation 3.2 facilitates the BPA to allocate the most attracted

tasks from the current task’s broken macrotask on the same processor. As our

experimental results in Paper A show, considering these issues can improve the

partitioning significantly.

Chapter 4

Resource Sharing among

Real-Time Applications on

Multiprocessors

In this chapter we present our work on resource sharing among multiple real-

time applications (independently-developed systems) when they co-execute on

a shared multi-core platform.

Co-executing of real-time applications on a multi-core platform may have

one (or a combination) of the following alternatives: (i) One application is stat-

ically allocated on one dedicated processor, (ii) Multiple applications are stati-

cally allocated on one dedicated processor, (iii) Each application is distributed

over multiple dedicated processors (one cluster).

There are more alternatives which are different from those that we men-

tioned here. The framework presented by Lipari and Bini [41] and the frame-

work proposed by Shin et al. [28] are examples of those alternatives. In these

works a component (application) is allocated on a virtual multiprocessor (vir-

tual cluster) which consists of a set of virtual processors. The virtual processors

are allocated on the physical processors (dynamically or statically) and com-

ponents may share physical processors. However, in this thesis we have only

focused on the cases where the components are allocated on dedicated proces-

sors/clusters and the components do not share processors.

In Paper B [12] we developed the synchronization protocol MSOS with

focus on the first alternative, i.e., one application per processor. The original

31

32 Chapter 4. Resource Sharing among Real-Time Applications on

Multiprocessors

MSOS, which we call MSOS-FIFO, assumed no priority among applications

on accessing resources. In Paper C [34] we developed a new version of MSOS,

called MSOS-Priority which is applicable for prioritized applications. For the

second alternative, the well studied techniques for integrating real-time appli-

cations on uniprocessors can be reused, e.g., the methods presented in [42]

and [17]. These techniques usually abstract the timing requirements of the in-

ternal tasks of each application and by using this, each application is abstracted

as one (artificial) task, hence from outside of the containing processor there will

be one application on the processor. Thus by reusing uniprocessor techniques

in this area the second alternative becomes similar to the first alternative. We

extended our work to the third alternative, where one application is allocated

on one dedicated cluster, in Paper D [43].

Regarding co-executing real-time applications in a shared open environ-

ment on a uniprocessor platform, a considerable amount of work has been

done. A non-exhaustive list of research in this domain includes [44, 45, 46,

47, 48, 42, 49]. Hierarchical scheduling has been studied and developed as

a solution for temporal isolation among real-time applications (components)

when they execute on the processor. Most of work in this domain has not con-

sidered shared resources among the applications. A non-exhaustive list of work

presenting the techniques for resource sharing among real-time applications on

uniprocessors includes [17, 18, 19].

Hierarchical scheduling techniques have also been developed for multipro-

cessors (multi-cores) [27, 28]. However, the systems (called clusters in the

mentioned papers) are assumed to be independent and do not allow for sharing

of mutually exclusive resources.

Recently, Faggioli et al. proposed a server-based resource reservation pro-

tocol for resource sharing called Multiprocessor BandWidth Inheritance pro-

tocol (M-BWI) [50] which can be used for open systems on multiprocessors

where hard, soft and non real-time systems may co-execute. M-BWI uses a

mixture of spin-based and suspend-based approaches for tasks waiting for re-

sources. The underlying scheduling policy is not required to be known. How-

ever, M-BWI assumes that the number of processors are known. The imple-

mentation of M-BWI seems to be complex as various states for servers have

to be preserved during run-time. Furthermore, under M-BWI tasks have to be

aware of each other, e.g., to establish the chain of blocks, which may make it

difficult to use M-BWI with black box or legacy components.

4.1 The Synchronization Protocol for Real-Time Applications under

Partitioned Scheduling 33

4.1 The Synchronization Protocol for Real-Time

Applications under Partitioned Scheduling

As mentioned above we developed the synchronization protocol MSOS (Multi-

processors Synchronization protocol for real-time Open Systems) for handling

resource sharing among independently-developed real-time applications on a

shared multi-core platform; MSOS-FIFO and MSOS-Priority for synchroniza-

tion on mutually exclusive resources shared among non-prioritized and priori-

tized real-time applications respectively.

4.1.1 Assumptions and Definitions

We assume that one core of the underlying multi-core contains at most one

real-time application Ak. Application Ak is represented by an interface Ik
which abstracts the information regarding shared resources. Each application

may use a different scheduling policy, however in this thesis we concentrate on

fixed priority scheduling within applications.

An application Ak consists of a task set denoted by τAk
which consists

of n sporadic tasks, τi(Ti, Ci, ρi, {Csi,q,p}) where Ti denotes the minimum

inter-arrival time (period) between two successive jobs of task τi with worst-

case execution time Ci and ρi as its unique priority. The tasks have implicit

deadlines, i.e., the relative deadline of any job of τi is equal to Ti. A task, τh,

has a higher priority than another task, τl, if ρh > ρl. The tasks in application

Ak share a set of mutually exclusive resources RAk
that are protected using

semaphores. The set of shared resources RAk
consists of two subsets of dif-

ferent types of resources; local and global resources. A local resource is only

used by tasks of one application while a global resource is shared by tasks from

multiple applications. The sets of local and global resources accessed by tasks

in application Ak are denoted by RL
Ak

and RG
Ak

respectively. The set of critical

sections, in which task τi requests resources in RAk
is denoted by {Csi,q,p},

where Csi,q,p is the worst-case execution time of the pth critical section of task

τi in which the task locks resource Rq . We denote Csi,q as the worst-case ex-

ecution time of the longest critical section in which τi requests Rq . We further

assume non-nested critical sections.

The above assumptions are valid for both MSOS-FIFO and MSOS-Priority.

However, in MSOS-FIFO an application Ak is represented by Ak(Ik) while in

MSOS-Priority the application is represented by Ak(ρAk, Ik) where ρAk is

the priority of application Ak.

34 Chapter 4. Resource Sharing among Real-Time Applications on

Multiprocessors

Resource Hold Time (RHT) The RHT of a global resource Rq by task τi
in application Ak denoted by RHTq,k,i, is the maximum duration of time the

global resource Rq can be locked by τi, i.e., RHTq,k,i is the maximum time

interval starting from the time instant when τi locks Rq and ending at the time

instant when τi releases Rq . Thus, the resource hold time of a global resource,

Rq , by application Ak denoted by RHTq,k, is as follows:

RHTq,k = max
τi ∈ τq,k

{RHTq,k,i} (4.1)

where τq,k is the set of tasks in application Ak sharing Rq.

The concept of resource hold times for composing multiple independently-

developed real-time applications on uniprocessors has been studied [20, 21].

On a multi-core (multiprocessor) platform we compute resource hold times for

global resources in a different way.

Maximum Resource Wait Time For a global resourceRq in applicationAk ,

denoted by RWTq,k, the maximum resource wait time is the worst-case time

that any task τi within Ak may wait for other applications on Rq whenever τi
requests Rq.

4.1.2 MSOS-FIFO

Application Interface In MSOS-FIFO an application Ak is represented by

an interface Ik(Qk, Zk) where Qk represents a set of requirements. When an

application Ak is co-executing with other applications on a multi-core plat-

form, it is said to be schedulable if all the requirements in Qk are satisfied.

A requirement in Qk is a linear inequality which only depends on the maxi-

mum resource wait times of one or more global resources, e.g., 2RWT1,k +
3RWT3,k ≤ 18. The requirements of each application are extracted from

its schedulability analysis in isolation. Zk in the interface represents a set;

Zk = {. . . , Zq,k, . . .}, where Zq,k, called Maximum Application Locking

Time (MALT), represents the maximum duration of time that any task τx in

any other application Al (l �= k) may be blocked by tasks in Ak whenever τx
requests Rq.

4.1 The Synchronization Protocol for Real-Time Applications under

Partitioned Scheduling 35

General Description

Access to the local resources is handled by a uniprocessor synchronization pro-

tocol, e.g., PCP or SRP. Under MSOS-FIFO each global resource is associated

with a global FIFO queue in which applications requesting the resource are en-

queued. Within an application the tasks requesting the global resource are en-

queued in a local queue; either priority-based or FIFO-based queues. When the

resource becomes available to the application at the head of the global FIFO,

the eligible task, e.g., at the top of the local FIFO queue, within the application

is granted access to the resource.

To decrease interference of applications, they have to release the locked

global resources as soon as possible. In other words, the lengths of resource

hold times of global resources have to be as short as possible. This means

that a task τi that is granted access to a global resource Rq should not be

delayed by any other task τj , unless τj holds another global resource. To

achieve this, the priority of any task τi within an application Ak request-

ing a global resource Rq is increased immediately to ρi + ρmax(Ak), where

ρmax(Ak) = max {ρi|τi ∈ τAk
}. Boosting the priority of τi when it is granted

access to a global resource will guarantee that τi can only be delayed or pre-

empted by higher priority tasks executing within a gcs. Thus, the RHT of a

global resource Rq by a task τi is computed as follows:

RHTq,k,i = Csi,q +Hi,q,k (4.2)

where Hi,q,k =
∑

∀τj∈τAk
, ρi<ρj

∧ Rl∈RG
Ak

, l �= q

Csj,l.

An application Al can block another application Ak on a global resource

Rq up to Zq,l time units whenever any task within Ak requests Rq . The worst-

case waiting time RWTq,k of Ak to wait for Rq whenever any of its tasks

requests Rq is calculated as follows:

RWTq,k =
∑

Al �=Ak

Zq,l (4.3)

In Paper B we have derived the calculation of Zq,k of a global resource Rq

for an application Ak, as follows:

- For FIFO-based local queues:

Zq,k =
∑

τi ∈ τq,k

RHTq,k,i (4.4)

36 Chapter 4. Resource Sharing among Real-Time Applications on

Multiprocessors

- For Priority-based local queues:

Zq,k = |τq,k| max
τi ∈ τq,k

{RHTq,k,i} (4.5)

where |τq,k| is the number of tasks in application Ak sharing Rq .

4.1.3 MSOS-Priority

General Description

The general idea in MSOS-Priority is to manage access to mutually exclusive

global resources among prioritized applications. To handle accessing the re-

sources the global queues have to be priority-based. When a global resource

becomes available, the highest priority application in the associated global

queue is eligible to use the resource. Within an application the tasks requesting

a global queue are enqueued in either a priority-based or a FIFO-based local

queue. When the highest priority application is granted access to a global re-

source, the eligible task within the application is granted access to the resource.

If multiple requested global resources become available for an application they

are accessed in the priority order of their requesting tasks within the applica-

tion.

It has been shown [51] that cache-related preemption overhead, depending

on the working set size (WSS) of jobs, can be significant. WSS of a job is the

amount of memory that the job needs during its execution. Thus, performing

busy wait in spin-based protocols in some cases may benefit the schedulability

as they decrease preemptions comparing to suspend-based protocols. As the

results of our experimental evaluations in Paper C show, the larger preemption

overheads generally decrease the performance of suspend-based protocols sig-

nificantly. However, the experiments show that MSOS-Priority almost always

outperforms all other suspend-based protocols. Furthermore, in many cases

MSOS-Priority performs better than spin-based protocols even if the preemp-

tion overhead is relatively high. In this thesis we did not consider the system

overhead, e.g., the overhead regarding queue manipulating, which will favor

spin-based protocols significantly, and for relatively large amount of system

overhead it will be very hard for suspend-based protocols to outperform spin-

based protocols. For MSOS-Priority to reach its highest performance with re-

gard to schedulability, an efficient priority assignment algorithm has to be used.

Our proposed optimal priority assignment algorithm (Section 4.2) contributes

to the efficiency of MSOS-Priority significantly.

4.1 The Synchronization Protocol for Real-Time Applications under

Partitioned Scheduling 37

Under MSOS-FIFO, a gcs of a lower priority task τl can be preempted by

a gcs of a higher priority task τh if they are accessing different resources. This

increases the number of preemptions which adds up the preemption overhead

to gcs’s and thus making RHT’s longer. To avoid this, we modify this rule in

MSOS-Priority to reduce preemptions. To achieve this, tasks have to execute

non-preemptively while accessing a global resource, i.e., within gcs’s. The

RHT of a global resource Rq by a task τi is computed similar to MSOS-FIFO

except that, under MSOS-Priority, at most one gcs from lower priority tasks

may further increase the length of RHT:

RHTq,k,i = Csi,q +Hi,q,k + max
∀τl∈τAk

, ρi>ρl

∧ Rs∈RG
Ak

, s �= q

{Csl,s} (4.6)

Maximum Application Locking Time (MALT), denoted by Zq,k(t) repre-

sents the maximum delay any task τx in any other lower priority application

Al may incur from tasks in Ak during time interval t, each time τx requests

resource Rq .

The maximum execution (workload) of all critical sections of a task τj
locking Rq during time interval t, denoted by Wj(t, Rq), is computed as fol-

lows (more details in Paper C):

Wj(t, Rq) = (⌈ t
Tj
⌉+ 1) nG

j,q RHTq,k,j (4.7)

where nG
j,q is the maximum number of requests of any job of τj to Rq .

Using the workload function for one task in Equation 4.7, we can calculate

the total maximum workload of all critical sections of all tasks in application

Ak in which they use a global resource Rq during time interval t, i.e., Zq,k(t).
This is the maximum delay introduced by tasks in Ak to any task requesting

Rq in any lower priority application during any time interval t. Zq,k(t) is

calculated as follows:

Zq,k(t) =
∑

τj ∈ τq,k

Wj(t, Rq) (4.8)

The maximum Resource Wait Time (RWT) for a global resource Rq in-

curred by task τi in application Ak, denoted by RWTq,k,i(t), is the maximum

duration of time that τi may wait for the remote applications on resource Rq

during any time interval t.

38 Chapter 4. Resource Sharing among Real-Time Applications on

Multiprocessors

A RWT under MSOS-Priority, considering delays from lower priority ap-

plications and higher priority applications can be calculated as follows:

RWTq,k,i(t) =
∑

ρAk<ρAl

Zq,l(t) + nG
i,q max

ρAk>ρAl

{RHTq,l} (4.9)

Under MSOS-FIFO, a RWT for a global resource is a constant value which

is the same for any task sharing the resource. However, a RWT under MSOS-

Priority is a function of time interval t and may differ for different tasks. The

RWT for a global resourceRq of a task τi in applicationAk during the period of

τi equals to RWTq,k,i(Ti) which covers all delay introduced from both higher

priority and lower priority applications sharing Rq:

RWTq,k,i =
∑

ρAk<ρAl

Zq,l(Ti) + nG
i,q max

ρAk>ρAl

{RHTq,l} (4.10)

where RWTq,k,i(Ti) is denoted by RWTq,k,i.

Application Interface In MSOS-Priority the interface of an application Ak

has to contain the requirements that have to be satisfied for Ak to be schedu-

lable. Furthermore, the interface has to provide information required by other

applications sharing resources with Ak.

Looking at Equation 4.10, the calculation of the RWT of a task τi in ap-

plication Ak for a global resource Rq requires MALT’s, e.g., Zq,h(t), from the

higher priority applications as well as RHT’s, e.g., RHTq,l, from the lower

priority applications. This means that to be able to calculate the RWT’s, the in-

terfaces of the applications have to provide both RHT’s and MALT’s for global

resources they share. Thus the interface of an application Ak is represented by

Ik(Qk, Zk, RHT) where Qk represents a set of requirements, Zk is a set of

MALT’s and a MALT is a function of time interval t. MALT’s in the interface

of application Ak are needed for calculating the total delay introduced by Ak

to the lower priority applications sharing resources with Ak. RHT in the inter-

face is a set of RHT’s of global resources shared by application Ak. RHT’s are

needed for calculating the total delay introduced by Ak to the higher priority

applications.

4.2 An Optimal Algorithm for Assigning Priorities to Applications 39

4.2 An Optimal Algorithm for Assigning Priori-

ties to Applications

In this section we present our optimal algorithm which assigns unique priorities

to the applications. The algorithm only needs information in the interfaces. The

algorithm is optimal in the sense that if it fails to assign unique priorities to

applications such that all applications become schedulable, any hypothetically

optimal algorithm will also fail.

Audsley’s Optimal Priority Assignment (OPA) [52] for priority assignment

in uniprocessors is the most similar work to our priority assignment algorithm.

Davis and Burns [53] showed that OPA can be extended to fixed priority mul-

tiprocessor global scheduling if the schedulability of a task does not dependent

on priority ordering among higher priority or among lower priority tasks. Our

proposed algorithm is a generalization of OPA which can be applicable for as-

signing priorities to applications based on their requirements. However, our

algorithm can perform more efficiently than OPA because the schedulability

test that is used by our algorithm is much simpler than that used in [53]. Fur-

thermore, as we will show later in this section, although in the worst case the

maximum number of schedulability tests performed by our algorithm is the

same as OPA, in some cases our algorithm performs less schedulability tests

than OPA.

The pseudo code of the algorithm is shown in Figure 4.1. The algorithm

starts by initially assigning the lowest priority (i.e., 0) to all applications. Then

the algorithm in different stages tries to increase the priority of applications.

In each stage it leaves the priorities of the applications that are schedulable

(Line 10) and it increases the priority of the applications that are not schedu-

lable (the for-loop in Line 18). The priority of all unschedulable applications

is increased by the number of the schedulable applications in the current stage

(Line 19). If the number of applications that become schedulable in the current

stage is more than one, their priorities are increased in such a way that each

application gets a unique priority; the first application’s priority is increased by

0, the second’s is increased by 1, the third’s is increased by 2, etc (the for-loop

in Line 22). When testing the schedulability of an application Ak, the algo-

rithm assumes that all the applications that have the same priority as Ak are

higher priority applications. This assumption helps to test whether Ak can tol-

erate all the remaining applications if they get priority higher than that of Ak .

Thus, when calculating RWT’s based on Equation 4.10 the algorithm changes

condition ρAk < ρAl in the first term to ρAk ≤ ρAl.

40 Chapter 4. Resource Sharing among Real-Time Applications on

Multiprocessors

()

Figure 4.1: The Priority Assignment Algorithm

Figure 4.2 illustrates an example of the algorithm. In this example, there

are four applications sharing resources. The algorithm succeeds to assign pri-

orities to them in three stages. First the algorithm gives the lowest priority to

them, i.e., ρAi = 0 for each application. In this stage the algorithm realizes

that applications A1 and A3 are schedulable but A2 and A4 are not schedula-

ble, thus the priority of A2 and A4 are increased by 2 which is the number of

schedulable applications, i.e., A1 and A3. Both A1 and A3 are schedulable,

hence to assign unique priorities, the algorithm increases the priority of A1

and A3 by 0 and 1 respectively. Please notice that increasing the priority of

the schedulable applications can be done in any order since their schedulability

has been tested assuming that all the other ones have higher priority. Thus the

order in which the priorities of these applications are increased will not make

any of them unschedulable. In the second stage, only applications A2 and A4

4.2 An Optimal Algorithm for Assigning Priorities to Applications 41

Figure 4.2: Illustrative Example for the Priority Assignment Algorithm

are left. At this stage the algorithm finds that A4 is not schedulable, hence its

priority has to be increased. In the last stage, A4 also becomes schedulable

and since all applications are now schedulable the algorithm succeeds. If at

any stage the algorithm cannot find any schedulable application, meaning that

none of the remaining applications can tolerate the other ones to have higher

priorities, the algorithm fails.

In Audsley’s priority assignment algorithm [52] to find a solution (if any)

at most m(m + 1)/2 schedulability tests will be performed where m is the

number of tasks to be prioritized. Similarly, in our algorithm to find a solution

(if any), in the worst case at each stage only one application is schedulable and

is assigned a priority. In the next stage the schedulability of all the remaining

applications has to be tested again. In this case, after the algorithm is finished,

the schedulability test for the applications with priority m,m− 1, . . . , 2, 1 has

been performed m,m − 1, . . . , 2, 1 times respectively, and hence the maxi-

mum number of schedulability tests is m(m+ 1)/2 where m is the number of

applications to be prioritized.

However, it may happen that at a stage, x number of applications are

schedulable where x > 1. In this case the priority of all remaining applications

(i.e. applications that are unschedulable at the current stage) will be increased

by x (Figure ??, Line 19 of the algorithm). This means that, the maximum

number of schedulability tests for each of the remaining applications would be

decreased by x, i.e., the number of stages the algorithm runs is decreased by x.

The more similar stages exist the lower the maximum number of schedulabil-

ity tests will be. As a result the maximum number of stages and consequently

42 Chapter 4. Resource Sharing among Real-Time Applications on

Multiprocessors

the number schedulability tests are decreased. This is not the case in Aud-

sley’s OPA; depending on the order of selecting tasks (or applications), it is

still possible that m(m + 1)/2 schedulability tests would be performed, e.g.,

OPA finds a solution in exactly m stages. E.g., in the illustrative example in

Figure ??, OPA will assign priorities in 4 stages, and if it selects the applica-

tions in order A4, A2, A3, A1, it will perform 4, 3, 1, 1 schedulability tests for

A4, A2, A3 and A1 respectively, and in total 9 tests will be performed. On the

other hand, our algorithm assigns priorities in 3 stages and it performs 3, 2, 1,

1 schedulability tests for A4, A2, A3 and A1 respectively, and in total 7 tests

are performed.

4.3 Synchronization Protocol for Real-Time Ap-

plications under Clustered Scheduling

As mentioned in the beginning of this chapter, the third alternative where ap-

plications co-execute on a shared multi-core platform is that one application is

allocated on a dedicated cluster (multiple cores). We have generalized MSOS

to be applicable to this alternative. In this section we present the extended

MSOS which we call Clustered MSOS (C-MSOS).

4.3.1 Assumptions and Definitions

We consider a set of real-time components, i.e., real-time applications, aimed

to be allocated on the multiprocessor platform. A real-time component con-

sists of a set of real-time tasks. A component may also include components,

i.e., hierarchical components, however in this thesis we focus on components

composed of tasks only. Each component is allocated on a dedicated subset

of processors, called cluster. Each component has its local scheduler which

can be any multiprocessor global scheduling algorithm, e.g., G-EDF. The jobs

generated by tasks of a component can migrate among its processors, however

migration of jobs among clusters is not allowed.

A component Ck consists of a task set denoted by τCk
which includes

nk sporadic tasks τi(Ti, Ei, Di, ρi, {Csi,q,p}) where Ti denotes the minimum

inter-arrival time between two successive jobs of task τi with worst-case exe-

cution time Ei, relative deadline Di and ρi as its unique base priority. A task

τi has a higher priority than another task τj if ρi > ρj . The set of mutually

exclusive resources shared by tasks in component Ck is denoted by RCk
. The

set of shared resources RCk
consists of two sets of different types of resources;

4.3 Synchronization Protocol for Real-Time Applications under

Clustered Scheduling 43

local and global resources. The sets of local and global resources accessed by

tasks in component Ck are denoted by RL
Ck

and RG
Ck

respectively. Similar to

MSOS-FIFO and MSOS-Priority, the set of critical sections, in which task τi
requests resources in RCk

is denoted by {Csi,q,p}, where Csi,q,p is the worst

case execution time of the pth critical section of task τi in which the task uses

resource Rq. We define Csi,q to be the worst case execution time of the longest

critical section in which τi uses Rq . We also denote CsTi,q as the maximum

total amount of time that τi uses Rq , i.e., CsTi,q =
∑

Csi,q,p. The set of tasks

in component Ck sharing Rq is denoted by τq,k, and ni,q is the total number of

critical sections of task τi in which it accesses resource Rq . We assume non-

nested critical sections. Unlike MSOS-FIFO and MSOS-Priority, we assume

constrained-deadline tasks, i.e., Di ≤ Ti for any τi.

Component Ck will be allocated on a cluster comprised of mk processors;

m
(min)
k ≤ mk ≤ m

(max)
k where m

(min)
k and m

(max)
k are the minimum and

maximum number of processors required by Ck respectively. In Paper D we

have shown how to efficiently determine the number of processors which Ck

will be allocated on in the integration phase. In the paper, we have shown

that using the information in the interfaces of components the integration of all

the real-time components on a multiprocessor platform can be formulated as a

Nonlinear Integer Programming (NIP) problem [54]. By formulating the inte-

gration phase as a NIP problem, by means of the techniques in this domain [54]

it is possible to minimize the total number of required processors on which all

components will be schedulable, i.e., their requirements are satisfied.

Resource Hold Time (RHT) of a global resource Rq by task τi in com-

ponent Ck, assuming that Ck is allocated on mk processors, is denoted by

RHTq,k,i(mk) and is the maximum duration of time that the global resource

Rq can be locked by τi. Consequently, the resource hold time of a global

resource Rq by component Ck, denoted by RHTq,k(mk), is calculated as fol-

lows:

RHTq,k(mk) = max
τi ∈ τq,k

{RHTq,k,i(mk)} (4.11)

Maximum Resource Wait Time (RWT) for a global resource Rq in compo-

nent Ck, denoted as RWTq,k, is the worst-case duration of time that whenever

any task τi within Ck requests Rq it can be delayed by other components, i.e.,

Rq is held by tasks from other components.

44 Chapter 4. Resource Sharing among Real-Time Applications on

Multiprocessors

Component Interface A component Ck is abstracted and represented by an

interface denoted by Ik(Qk(mk) , Zk(mk) , m
(min)
k , m

(max)
k). The index of

a component, i.e., k, in the specification of the interface is used to clarify the

relationships in the analysis and does not indicate any order among the com-

ponents, neither does it show that the number of the components is known.

Global resource requirements of Ck are encapsulated in the interface by

Qk(mk) which is a set of resource requirements that have to be satisfied for

Ck to be schedulable on mk processors. The parameter mk in Qk(mk) in-

dicates that the requirements are dependent on mk, and hence for different

values of mk the requirements may be different. For Ck to be schedulable on

any mk processors (m
(min)
k ≤ mk ≤ m

(max)
k), all requirements in Qk(mk)

have to be satisfied. Each requirement rl(mk) in Qk(mk) which depends on

mk, is represented as a linear inequality which indicates that an expression of

the maximum resource wait times of one or more global resources should not

exceed a value gl(mk), e.g., r1(mk)
def
= 4RWT2,k + 3RWT3,k ≤ g1(mk).

Each requirement is extracted from one task requesting at least one global re-

source. Thus, the number of requirements equals to the number of tasks in

component Ck that may request global resources. A formal definition of the

requirements is as follows:

Qk(mk) = {rl(mk)} (4.12)

where

rl(mk)
def
=

∑

∀Rq ∈RG
Ck

∧ τi ∈ τq,k

αi,qRWTq,k ≤ gl(mk)
(4.13)

where αi,q is a constant, i.e., it only depends on internal parameters of Ck

(more details can be found in Paper D).

The global resource requirements in Qk(mk) of a component Ck are ex-

tracted from the schedulability analysis of the component in isolation, i.e., to

extract the requirements of a component, no information from other possible

existing components on the same multi-core platform is required.

Zk(mk) in the interface, represents a set Zk(mk) = {Zq,k(mk)} where

Zq,k(mk) is the Maximum Component Locking Time (MCLT). Zq,k(mk)
represents the maximum duration of time that Ck can delay the execution of

any task τx in any component Cl (l �= k) whenever τx requests Rq , i.e., any

time any task in Cl requests Rq its execution can be delayed by Ck for at most

Zq,k(mk) time units.

4.3 Synchronization Protocol for Real-Time Applications under

Clustered Scheduling 45

4.3.2 C-MSOS

Under C-MSOS, sharing local resources is handled by multiprocessor PIP.

Each global resource is associated with a global queue in which components

requesting the resource are enqueued. We assume non-prioritized components,

hence the global queues can be implemented in either FIFO or Round-Robin

manner. Since the resource queues are also shared among tasks and compo-

nents it may cause contention. We assume that access to queues is performed

in an atomic manner, e.g., the index of a FIFO queue has to be an atomic

variable. However, we do not consider the overhead regarding contention on

resource queues.

Within a component the jobs requesting a global resource are enqueued in a

local queue. To reduce interference among components and shorten the RHT’s,

the blocking time on global resources should only depend on the duration of

global critical sections. This bounds blocking times on global resources as a

function of length and number of global critical sections only. Thus the priority

of jobs accessing global resources have to be boosted to be higher than any

base priority within the component. The boosted priority of any job of task τi
requesting any global resource equals to ρmax(Ck) + 1, where ρmax(Ck) =
max {ρi|τi ∈ Ck}. Boosting the priority of a job when it executes within a gcs
ensures that it can only be delayed by jobs within gcs’s. However, boosting

the priorities such that they are higher than any priority in the component may

cause problem, i.e., make the component unschedulable. We have motivated

this problem and proposed a solution for it in Paper E [32] which we have

discussed in Section 4.3.3.

4.3.3 Efficient Resource Hold Times

The usual way of decreasing interference among tasks/applications regarding

global resources in the existing synchronization protocols under partitioned

scheduling has been boosting the priority of a task accessing a global resource

to be higher than any base priority of any task that may preempt the task hold-

ing the resource. However, although boosting the priorities of tasks holding

global resources in this way makes RHT’s shorter, it may make a component

unschedulable. Thus, to shorten the RHT’s the priorities of tasks holding global

resources have to be boosted only as far as the application remains schedula-

ble, i.e., boosting the priorities must never compromise the schedulability of

an application. On uniprocessor platforms, it has been shown [20, 21] that it is

possible to achieve one single optimal solution, when trying to decrease RHT’s

46 Chapter 4. Resource Sharing among Real-Time Applications on

Multiprocessors

within an application. However, in Paper E we have shown that this is not the

case when the application is scheduled on multiple processors and there can

exist multiple Pareto-optimal solutions.

Considering that the effective priority of a task holding a global resource

may not necessarily be high enough to prevent it from being preempted by any

task in an application, the RHT’s have to be calculated differently. We assume

that the priorities of jobs within an application Ak that are granted access to a

global resource Rq are boosted to a boost level without compromising schedu-

lability of the application. We denote the boost level of Rq in Ak by boostq,k,

i.e., the priority of any job Ji in Ak that is granted access to Rq is immedi-

ately raised to boostq,k. With this assumption, we have derived calculation of

RHT’s:

When a job Ji holds the lock of a global resource Rq and its effective

priority is immediately raised to boostq, its execution can be delayed by any

other job generated by any other task that belongs to at least one of following

three categories:

• The set of tasks with base priority higher than or equal to boostq . We

denote Rhq,i as an upper bound for the maximum cumulative execution

of the jobs generated by these tasks, while Ji holds the lock of Rq .

• The set of tasks with priorities lower than boostq, whose generated jobs

may hold any local resource Rp that satisfy condition ⌈Rp⌉ ≥ boostq ,

where ⌈Rp⌉ is the highest priority of any task that may request Rq . In

this case these generated jobs may delay the execution of Ji while Ji
holds Rq since their effective priority is at least as high as Ji’s boosted

priority. The upper bound for the maximum cumulative execution (work-

load) of these jobs when they hold Rp during the interval that Ji holds

Rq is denoted by Rlq,i.

• The third category represents the set of tasks with priorities lower than

boostq , whose generated jobs hold the lock of any global resource Rl

other than Rq with a boost level higher than or equal to Rq’s boost level,

i.e., boostl ≥ boostq . These jobs holding Rl may delay the execution

of Ji while Ji holds Rq because they have a boosted priority at least as

high as Ji’s boosted priority. The maximum delay from jobs of these

tasks is denoted by Rbq,i.

When Ji itself uses resource Rq it will hold the resource up to Csi,q time

units, hence the RHT of Rq for τi in Application Ak, i.e., RHTq,k,i is calcu-

lated as follows:

4.3 Synchronization Protocol for Real-Time Applications under

Clustered Scheduling 47

RHTq,k,i = Csi,q +Rhq,i +Rlq,i +Rbq,i (4.14)

4.3.4 Decreasing Resource Hold Times

Considering the task categories shown in Section 4.3.3 that contribute to the

calculation of RHT of a global resource Rq, the RHT of Rq in application

Ak (i.e., RHTq,k) can be decreased by increasing the boost level of Rq (i.e.,

boostq) as far as Ak remains schedulable.

The goal is to reduce all RHT’s of all global resources in an application

Ak as far as possible. For uniprocessors, it has been shown that a single op-

timal solution can be achieved [20, 21]. However, under global scheduling

and depending on the order of selecting the resources to increase their boost

level, the final solution may differ. In Paper E we have shown that for multi-

processors, e.g., for fixed-priority global scheduling algorithm and PIP as the

synchronization protocol, there can exist a set of Pareto-optimal allocations of

boosting levels to global resources. In a Pareto-optimal allocation of booting

levels, none of the boosting levels can further be increased without decreasing

boosting level of any other global resources.

4.3.5 Summary

In this chapter we presented our work on resource sharing among real-time ap-

plications (components) on a shared multi-core platform. We have presented

our proposed synchronization protocol called MSOS for resource handling

among real-time applications where each application is allocated on one pro-

cessor (core). We originally proposed MSOS for applications with no assigned

priorities (called MSOS-FIFO). Later we developed a new version of MSOS

called MSOS-Priority which extends MSOS for prioritized applications. We

have also proposed an optimal priority assignment algorithm to assign unique

priorities to the applications on accessing resources.

We have further extended MSOS to clustered scheduling where each real-

time component is allocated on multiple dedicated processors and the tasks

within each component are scheduled using a global scheduling. The new

protocol which is called C-MSOS has been developed with different queue

handling techniques. Finally, we have shown that boosting the priorities of

the tasks holding global resources may make their component unschedulable.

Thus the priority boosting should not compromise the schedulability of the

48 Chapter 4. Resource Sharing among Real-Time Applications on

Multiprocessors

component. However, we have shown that there may exist a set of Pareto-

optimal solutions when trying to minimize the resource hold times.

The details regarding our proposed protocols and algorithm, their analysis

and their experimental evaluations can be found in the respective papers.

Chapter 5

Conclusions

5.1 Summary

In this thesis we have pointed out the increasing interest in multiprocessor

methods and techniques as the multi-core architectures are becoming the de-

facto processors. We have explained some of the challenges regarding re-

source management on these platforms. We have briefly discussed the exist-

ing scheduling approaches, e.g., partitioned and global scheduling as well as

an overview of the existing synchronization protocols for lock-based resource

sharing on multiprocessor platforms with real-time properties.

We have proposed a heuristic blocking-aware partitioning algorithm which

extends a bin-packing algorithm with synchronization factors. The algorithm

allocates a task set onto the processors of an identical unit-capacity multi-core

platform. The objective of the algorithm is to decrease the overall blocking

times of tasks by means of allocating the tasks that directly or indirectly share

resources onto the same processors as far as possible. This generally increases

schedulability of a task set and can lead to fewer required processors compared

to a blocking-agnostic bin-packing algorithm.

In the thesis, we have also discussed that in industry it is not uncommon

to divide large and complex systems into several components (applications)

where each of them can be developed independently and in isolation. When

these applications are integrated and co-execute on a multi-core platform, a

challenge to overcome is how to manage the mutually exclusive resources that

these applications may share. We have proposed a synchronization protocol,

called MSOS, for resource management among real-time applications when

49

50 Chapter 5. Conclusions

they co-execute on a multi-core platform with the assumption that each ap-

plication is allocated on a dedicated core. We have provided the methods

to perform the schedulability analysis of each application in isolation where

the resource requirements of each application are summarized in an interface.

Interface-based global scheduling of MSOS facilitates resource management

in open systems where applications can enter and exist during run-time.

The first proposed synchronization protocol MSOS, called MSOS-FIFO,

and only supported un-prioritized applications in which applications waiting

for locked resources are enqueued in FIFO queues. However, to increase the

schedulability of applications we proposed a new version of MSOS, called

MSOS-Priority, to support prioritized applications. Under MSOS-Priority, ap-

plications are granted access to shared resources based on their priorities. We

have proposed an optimal priority assignment algorithm which assigns unique

priorities to applications. Our experimental evaluations showed that MSOS-

Priority together with the priority assignment algorithm mostly outperform the

existing alternatives.

We have further extended MSOS to be applicable for the cases where each

application is allocated on a sub-set of cores (cluster). Under the extended

MSOS which is called C-MSOS, each application is assigned on multiple cores

and hence within an application tasks are scheduled using a global scheduling

policy. Finally, we presented how to efficiently extract and calculate the re-

source hold times of shared resources. To decrease the interference of applica-

tions on a shared multi-core platform, resource hold times have to be as short as

possible. However, shortening the resource hold times should not compromise

the schedulability of an application. We have shown that a set of Pareto-optimal

solutions may exist when an application is allocated on multiple cores.

5.2 Future Work

In the future we plan to work further on the resource management issues on

multi-core platforms and we will investigate the possibility of improvement of

the existing protocols as well as development of new approaches.

One future work will be to extend our partitioning algorithm to other syn-

chronization protocols, e.g., MSRP, FMLP and OMLP, under partitioned sched-

uling.

In this thesis we have focused on resource management on shared memory

multi-cores where resources are protected by semaphores. In a fault-tolerant

system, applications have to be protected from other applications that may mal-

5.2 Future Work 51

function. If the applications are allowed to access shared memory, a malfunc-

tioning application may corrupt parts of the memory that is also shared by other

applications. To avoid this, the applications are isolated such that each of them

can only access its dedicated portion of memory. However, in this case using

resource sharing protocols that rely on shared memory (semaphores) is not fea-

sible. In the future we aim to work on resource management among real-time

applications on multi-cores by means of message passing.

Chapter 6

Overview of Papers

6.1 Paper A

Farhang Nemati, Thomas Nolte and Moris Behnam. Partitioning Real-Time

Systems on Multiprocessors with Shared Resources. In 14th International Con-

ference On Principles Of Distributed Systems (OPODIS’10), pages 253-269,

December, 2010.

Summary In this paper we propose a blocking-aware partitioning algorithm

which allocates a task set on a multiprocessor (multi-core) platform in a way

that the overall amount of blocking times of tasks are decreased. The algorithm

reduces the total utilization which, in turn, has the potential to decrease the total

number of required processors (cores). In this paper we evaluate our algorithm

and compare it with an existing similar algorithm. The comparison criteria

includes both number of schedulable systems as well as processor reduction

performance.

My contribution I was the main driver in writing the paper and I was re-

sponsible for further evaluation of the algorithm. I was also responsible for

implementing an algorithm similar to the algorithm proposed in Paper B, and

comparing the two algorithms.

53

54 Chapter 6. Overview of Papers

6.2 Paper B

Farhang Nemati, Moris Behnam and Thomas Nolte. Independently-developed

Real-Time Systems on Multi-cores with Shared Resources. In 23rd Euromicro

Conference on Real-Time Systems (ECRTS’11), pages 251-261, July, 2011.

Summary In this paper we propose a synchronization protocol for resource

sharing among independently-developed real-time systems on multi-core plat-

forms. The systems may use different scheduling policies and they may have

their own local priority settings. Each system is allocated on a dedicated pro-

cessor (core).

In the proposed synchronization protocol, each system is abstracted by

an interface which abstracts the information needed for supporting global re-

sources. The protocol facilitates the composability of various real-time systems

with different scheduling and priority settings on a multi-core platform.

We have performed experimental evaluations and compared the perfor-

mance of our proposed protocol (MSOS) against the two existing synchroniza-

tion protocols MPCP and FMLP. The results show that the new synchronization

protocol enables composability without any significant loss of performance. In

fact, in most cases the new protocol performs better than at least one of the

other two synchronization protocols. Hence, we believe that the proposed pro-

tocol is a viable solution for synchronization among independently-developed

real-time systems executing on a multi-core platform.

My contribution I was the main driver in writing the paper and I was re-

sponsible for further evaluation of the proposed protocol.

6.3 Paper C

Farhang Nemati and Thomas Nolte. Resource Sharing among Prioritized Real-

Time Applications on Multi-cores. MRTC report ISSN 1404-3041 ISRN MDH-

MRTC-265/2012-1-SE, Mälardalen Real-Time Research Centre, Mälardalen

University, April, 2012 (submitted to conference).

Summary MSOS (Multiprocessors Synchronization protocol for real-time

Open Systems) is a synchronization protocol for handling resource sharing

6.4 Paper D 55

among independently-developedreal-time applications (components) on multi-

core platforms. MSOS does not consider any priority setting among applica-

tions. To handle resource sharing based on the priority of applications, in this

paper we extend MSOS such that it allows for resource sharing among priori-

tized real-time applications on a multi-core platform. We propose an optimal

priority assignment algorithm which assigns unique priorities to the applica-

tions based on information in their interfaces. We have performed experimen-

tal evaluations to compare the extended MSOS (called MSOS-Priority) to the

existing MSOS as well as to the current state of the art locking protocols under

multiprocessor partitioned scheduling, i.e., MPCP, MSRP, FMLP and OMLP.

The evaluations show that MSOS-Priority mostly performs significantly better

than alternative approaches.

My contribution I was the main driver in writing the paper and I was re-

sponsible for evaluation of the protocol.

6.4 Paper D

Farhang Nemati and Thomas Nolte. Resource Sharing among Real-Time Com-

ponents under Multiprocessor Clustered Scheduling. Journal of Real-Time

Systems (under revision).

Summary In this paper we generalize our previously proposed synchroniza-

tion protocol (MSOS) for resource sharing among independently-developed

real-time applications (components) on multi-core platforms. Each component

is statically allocated on a dedicated subset of processors (cluster) whose tasks

are scheduled by its own scheduler. In this paper we focus on multiprocessor

global fixed priority preemptive scheduling algorithms to be used to schedule

the tasks of each component on its cluster. Sharing the local resources is han-

dled by the Priority Inheritance Protocol (PIP). For sharing the global resources

(shared across components) we have studied the usage of FIFO and Round-

Robin queues for access across the components and the usage of FIFO and

prioritized queues within components for handling sharing of these resources.

We have derived schedulability analysis for the different alternatives and com-

pared their performance by means of experimental evaluations. Finally, we

have formulated the integration phase in the form of a nonlinear integer pro-

gramming problem whose techniques can be used to minimize the total number

of processors required to guarantee the schedulability of all components.

56 Chapter 6. Overview of Papers

My contribution I was the main driver in writing the paper and I was also

responsible for experimental evaluation of the protocol.

6.5 Paper E

Farhang Nemati and Thomas Nolte. Resource Hold Times under Multipro-

cessor Static-Priority Global Scheduling. In 17th IEEE International Con-

ference on Embedded and Real-Time Computing Systems and Applications

(RTCSA’11), pages 197-206, August, 2011.

Summary Co-executing independently-developed real-time applications on

a shared multiprocessor system, where each application executes on a dedi-

cated subset of processors, requires to overcome the problem of handling mu-

tually exclusive shared resources among those applications. To handle resource

sharing, it is important to determine the Resource Hold Time (RHT), i.e., the

maximum duration of time that an application locks a shared resource.

In this paper, we study resource hold times under multiprocessor static-

priority global scheduling. We present how to compute RHT’s for each re-

source in an application. We also show how to decrease the RHT’s without

compromising the schedulability of the application. We show that decreasing

all RHT’s for all shared resources is a multiobjective optimization problem and

there can exist multiple Pareto-optimal solutions.

My contribution I was the main driver in writing the paper.

Bibliography

[1] T. Baker. Stack-based scheduling of real-time processes. Journal of Real-

Time Systems, 3(1):67–99, 1991.

[2] T. Baker. A comparison of global and partitioned EDF schedulability test

for multiprocessors. Technical report, 2005.

[3] J. Carpenter, S. Funk, P. Holman, A. Srinivasan, J. Anderson, and

S. Baruah. A categorization of real-time multiprocessor scheduling prob-

lems and algorithms. In Handbook on Scheduling Algorithms, Methods,

and Models. Chapman Hall/CRC, Boca, 2004.

[4] U. Devi. Soft real-time scheduling on multiprocessors. In PhD thesis,

available at www.cs.unc.edu/˜anderson/diss/devidiss.pdf, 2006.

[5] J. M. López, J. L. Dı́az, and D. F. Garcı́a. Utilization bounds for EDF

scheduling on real-time multiprocessor systems. Journal of Real-Time

Systems, 28(1):39–68, 2004.

[6] R. Rajkumar. Synchronization in Real-Time Systems: A Priority Inheri-

tance Approach. Kluwer Academic Publishers, 1991.

[7] P. Gai, G. Lipari, and M. D. Natale. Minimizing memory utilization

of real-time task sets in single and multi-processor systems-on-a-chip.

In Proceedings of 22nd IEEE Real-Time Systems Symposium (RTSS’01),

pages 73–83, 2001.

[8] P. Gai, M. Di Natale, G. Lipari, A. Ferrari, C. Gabellini, and P. Marceca.

A comparison of MPCP and MSRP when sharing resources in the janus

multiple processor on a chip platform. In Proceedings of 9th IEEE Real-

Time And Embedded Technology Application Symposium (RTAS’03),

pages 189–198, 2003.

57

58 Bibliography

[9] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible

real-time locking protocol for multiprocessors. In Proceedings of 13th

IEEE Conference on Embedded and Real-Time Computing Systems and

Applications (RTCSA’07), pages 47–56, 2007.

[10] B. Brandenburg and J. Anderson. An implementation of the PCP, SRP,

D-PCP, M-PCP, and FMLP real-time synchronization protocols in LIT-

MUS. In Proceedings of 14th IEEE International Conference on Embed-

ded and Real-Time Computing Systems and Applications (RTCSA’08),

pages 185–194, 2008.

[11] B. Brandenburg and J. Anderson. Optimality results for multiprocessor

real-time locking. In Proceedings of 31st IEEE Real-Time Systems Sym-

posiumst (RTSS’10), pages 49–60, 2010.

[12] F. Nemati, M. Behnam, and T. Nolte. Independently-developed real-time

systems on multi-cores with shared resources. In Proceedings of 23th

Euromicro Conference on Real-time Systems (ECRTS’11), pages 251–

261, 2011.

[13] L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority inheritance protocols:

An approach to real-time synchronization. IEEE Transactions on Com-

puters, 39(9):1175–1185, 1990.

[14] A. Easwaran and B. Andersson. Resource sharing in global fixed-priority

preemptive multiprocessor scheduling. In Proceedings of 30th IEEE

Real-Time Systems Symposium (RTSS’09), pages 377–386, 2009.

[15] K. Lakshmanan, D. de Niz, and R. Rajkumar. Coordinated task schedul-

ing, allocation and synchronization on multiprocessors. In Proceedings

of 30th IEEE Real-Time Systems Symposium (RTSS’09), pages 469–478,

2009.

[16] F. Nemati, T. Nolte, and M. Behnam. Partitioning real-time systems on

multiprocessors with shared resources. In Proceedings of 14th Interna-

tional Conference on Principles of Distributed Systems (OPODIS’10),

pages 253–269, 2010.

[17] M. Behnam, I. Shin, T. Nolte, and M. Nolin. SIRAP: a synchronization

protocol for hierarchical resource sharingin real-time open systems. In

Proceedings of 7th ACM & IEEE International conference on Embedded

software (EMSOFT’07), pages 279–288, 2007.

Bibliography 59

[18] R. I. Davis and A. Burns. Resource sharing in hierarchical fixed priority

pre-emptive systems. In Proceedings of 27th IEEE International Real-

Time Systems Symposium (RTSS’06), pages 389–398, 2006.

[19] N. Fisher, M. Bertogna, and S. Baruah. The Design of an EDF-Scheduled

Resource-Sharing Open Environment. In Proceedings of 28th IEEE Inter-

national Real-Time Systems Symposium (RTSS’07), pages 83–92, 2007.

[20] N. Fisher, M. Bertogna, and S. Baruah. Resource-Locking Durations in

EDF-Scheduled Systems. In Proceedings of 13th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS’07), pages

91–100, 2007.

[21] M. Bertogna, N. Fisher, and S. Baruah. Static-priority scheduling and re-

source hold times. In Proceedings of 21st IEEE Parallel and Distributed

Processing Symposium (IPDPS’07) Workshops, pages 1–8, 2007.

[22] J. A. Stankovic and K. Ramamritham, editors. Tutorial: hard real-time

systems. IEEE Computer Society Press, 1989.

[23] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-

ming in a hard-real-time environment. Journal of ACM, 20(1):46–61,

1973.

[24] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Propor-

tionate progress: A notion of fairness in resource allocation. Journal of

Algorithmica, 15(6):600–625, 1996.

[25] J. Anderson, P. Holman, and A. Srinivasan. Fair scheduling of real-time

tasks on multiprocessors. In Handbook of Scheduling, 2005.

[26] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt. DP-FAIR: A

Simple Model for Understanding Optimal Multiprocessor Scheduling.

In Proceedings of 22nd Euromicro Conference on Real-Time Systems

(ECRTS’10), pages 3–13, 2010.

[27] J. M. Calandrino, J. H. Anderson, and D. P. Baumberger. A hy-

brid real-time scheduling approach for large-scale multicore platforms.

In Proceedings of 19th Euromicro Conference on Real-time Systems

(ECRTS’07), pages 247–258, 2007.

60 Bibliography

[28] I. Shin, A. Easwaran, and I. Lee. Hierarchical scheduling framework for

virtual clustering of multiprocessors. In Proceedings of 20th Euromicro

Conference on Real-time Systems (ECRTS’08), pages 181–190, 2008.

[29] U. Devi, H. Leontyev, and J. Anderson. Efficient synchronization un-

der global EDF scheduling on multiprocessors. In Proceedings of 18th

Euromicro Conference on Real-time Systems (ECRTS’06), pages 75–84,

2006.

[30] P. Tsigas and Y. Zhang. Non-blocking Data Sharing in Multiprocessor

Real-Time Systems. In Proceedings of 6th IEEE Conference on Embed-

ded and Real-Time Computing Systems and Applications (RTCSA’99),

pages 247–254, 1999.

[31] B. B. Brandenburg and J. H. Anderson. A comparison of the M-PCP ,

D-PCP , and FMLP on LITMUS. In Proceedings of 12th International

Conference on Principles of Distributed Systems (OPODIS’08), pages

105–124, 2008.

[32] F. Nemati and T. Nolte. Resource hold times under multiprocessor static-

priority global scheduling. In Proceedings of 17th IEEE International

Conference on Embedded and Real-Time Computing Systems and Appli-

cations (RTCSA’11), pages 197–206, 2011.

[33] B. Brandenburg and J. Anderson. Real-time resource-sharing under clus-

tered scheduling: Mutex, reader-writer, and k-exclusion locks. In Pro-

ceedings of 11th ACM and IEEE International Conference on Embedded

Software (EMSOFT’11), pages 69–78, 2011.

[34] F. Nemati and T. Nolte. Resource sharing among prioritized real-time

applications on multiprocessors. Technical report, April, 2012.

[35] M. Rajagopalan, B. T. Lewis, and T. A. Anderson. Thread scheduling for

multi-core platforms. In Proceedings of 11th Workshop on Hot Topics in

Operating Systems (HotOS’07), 2007.

[36] A. Prayati, C. Wong, P. Marchal, F. Catthoor, H. de Man, N. Cossement,

R. Lauwereins, D. Verkest, and A. Birbas. Task concurrency management

experiment for power-efficient speed-up of embedded mpeg4 im1 player.

In Proceedings of International Conference on Parallel Processing Work-

shops (ICPPW’00), pages 453–460, 2000.

Bibliography 61

[37] D. S. Johnson. Near-optimal bin packing algorithms. Massachusetts

Institute of Technology, 1973.

[38] D. de Niz and R. Rajkumar. Partitioning bin-packing algorithms for dis-

tributed real-time systems. Journal of Embedded Systems, 2(3-4):196–

208, 2006.

[39] Y. Liu, X. Zhang, H. Li, and D. Qian. Allocating tasks in multi-core

processor based parallel systems. In Proceedings of Network and Paral-

lel Computing Workshops, in conjunction with IFIP’07, pages 748–753,

2007.

[40] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of

sporadic task systems. In Proceedings of 26th IEEE Real-Time Systems

Symposium (RTSS’05), pages 321–329, 2005.

[41] G. Lipari and E. Bini. A Framework for Hierarchical Scheduling on Mul-

tiprocessors: From Application Requirements to Run-Time Allocation.

In Proceedings of 31th IEEE Real-Time Systems Symposium (RTSS’10),

pages 249–258, 2010.

[42] I. Shin and I. Lee. Periodic resource model for compositional real-time

guarantees. In Proceedings of 24th IEEE Real-Time Systems Symposium

(RTSS’03), pages 2–13, 2003.

[43] F. Nemati and T. Nolte. Resource sharing among real-time components

under multiprocessor clustered scheduling. Real-Time Systems (under

revision).

[44] L. Almeida and P. Pedreiras. Scheduling within temporal partitions:

response-time analysis and server design. In Proceedings of 4th ACM

International Conference on Embedded Software (EMSOFT’04), pages

95–103, 2004.

[45] X. Feng and A. Mok. A model of hierarchical real-time virtual resources.

In Proceedings of 23th IEEE Real-Time Systems Symposium (RTSS’02),

pages 26–35, 2002.

[46] G. Lipari and S. K. Baruah. Efficient scheduling of real-time multi-task

applications in dynamic systems. In Proceedings of 6th IEEE Real-

Time Technology and Applications Symposium (RTAS’00), pages 166–

175, 2000.

[47] S. Matic and T. A. Henzinger. Trading end-to-end latency for com-

posability. In Proceedings of 26th IEEE Real-Time Systems Symposium

(RTSS’05), pages 99–110, 2005.

[48] A. Mok, X. Feng, and D. Chen. Resource partition for real-time systems.

In Proceedings of 7th IEEE Real-Time Technology and Applications Sym-

posium (RTAS’01), pages 75–84, 2001.

[49] R. I. Davis and A. Burns. Hierarchical fixed priority pre-emptive

scheduling. In Proceedings of 26th IEEE Real-Time Systems Symposium

(RTSS’05), pages 389–398, 2005.

[50] D. Faggioli, G. Lipari, and T. Cucinotta. The Multiprocessor Bandwidth

Inheritance Protocol. In Proceedings of 22th Euromicro Conference on

Real-time Systems (ECRTS’10), pages 90–99, 2010.

[51] A. Bastoni, B.B. Brandenburg, and J.H. Anderson. Is semi-partitioned

scheduling practical? In Proceedings of 23rd Euromicro Conference on

Real-time Systems (ECRTS’11), pages 125–135, 2011.

[52] N.C. Audsley. Optimal Priority Assignment And Feasibility Of Static

Priority Tasks With Arbitrary Start. Technical report, 1991.

[53] R. I. Davis and A. Burns. Priority Assignment for Global Fixed Priority

Pre-Emptive Scheduling in Multiprocessor Real-Time Systems. In Pro-

ceedings of 30th IEEE Real-Time Systems Symposium (RTSS’09), pages

398–409, 2009.

[54] D. Li and X. Sun. Nonlinear integer programming. Springer, 2006.

