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Abstract

Persson, Martin (2008). Semantic Mapping using Virtual Sensors and Fusion
of Aerial Images with Sensor Data from a Ground Vehicle. Orebro Studies in
Technology 30, 170 pp.

In this thesis, semantic mapping is understood to be the process of putting a
tag or label on objects or regions in a map. This label should be interpretable
by and have a meaning for a human. The use of semantic information has sev-
eral application areas in mobile robotics. The largest area is in human-robot
interaction where the semantics is necessary for a common understanding be-
tween robot and human of the operational environment. Other areas include
localization through connection of human spatial concepts to particular loca-
tions, improving 3D models of indoor and outdoor environments, and model
validation.

This thesis investigates the extraction of semantic information for mobile
robots in outdoor environments and the use of semantic information to link
ground-level occupancy maps and aerial images. The thesis concentrates on
three related issues: i) recognition of human spatial concepts in a scene, ii)
the ability to incorporate semantic knowledge in a map, and iii) the ability to
connect information collected by a mobile robot with information extracted
from an aerial image.

The first issue deals with a vision-based virtual sensor for classification of
views (images). The images are fed into a set of learned virtual sensors, where
each virtual sensor is trained for classification of a particular type of human
spatial concept. The virtual sensors are evaluated with images from both ordi-
nary cameras and an omni-directional camera, showing robust properties that
can cope with variations such as changing season.

In the second part a probabilistic semantic map is computed based on an
occupancy grid map and the output from a virtual sensor. A local semantic map
is built around the robot for each position where images have been acquired.
This map is a grid map augmented with semantic information in the form of
probabilities that the occupied grid cells belong to a particular class. The local



maps are fused into a global probabilistic semantic map covering the area along
the trajectory of the mobile robot.

In the third part information extracted from an aerial image is used to im-
prove the mapping process. Region and object boundaries taken from the prob-
abilistic semantic map are used to initialize segmentation of the aerial image.
Algorithms for both local segmentation related to the borders and global seg-
mentation of the entire aerial image, exemplified with the two classes ground
and buildings, are presented. Ground-level semantic information allows focus-
ing of the segmentation of the aerial image to desired classes and generation
of a semantic map that covers a larger area than can be built using only the
onboard sensors.

Keywords: semantic mapping, aerial image, mobile robot, supervised learning,
semi-supervised learning.
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Chapter 1
Introduction

Mobile robots are often unmanned ground vehicles that can be either au-
tonomous, semi-autonomous or teleoperated. The most common way to allow
autonomous robots to navigate efficiently is to let the robot use a map as the
internal representation of the environment. A lot of research has focused on
map building of unknown environments using the mobile robot’s onboard sen-
sors. Most of this research has been devoted to robots that operate in planar
indoor environments. Outdoor environments are more challenging for the map
building process. It cannot any longer be assumed that the ground is flat, the
environment contains larger moving objects such as cars and the operating area
has a larger scale that put higher demands on both mapping and localization
algorithms.

This thesis presents work on how a mobile robot can increase its awareness
of the surroundings in an outdoor environment. This is done by building se-
mantic maps, where connected regions in the map are annotated with names
of the semantic class that they belong to. In this process a vision-based virtual
sensor is used for the classification. It is also shown how semantic information
can be used to extract information from aerial images and use this to extend
the map beyond the range of the onboard sensors.

There are a wide range of application areas making use of semantic infor-
mation in mobile robotics. The most obvious area is human robot interaction
where a semantic understanding is necessary for a common understanding be-
tween human and robot of the operational environment. Other areas include
the use of semantics as the link between sensor data collected by a mobile robot
and data collected by other means and the use of semantics for execution mon-
itoring, used to find problems in the execution of a plan.

1.1 Motivation

Occupancy maps can be seen as the standard low level map in mobile robot
applications. These maps often include three types of areas:

15



16 CHAPTER 1. INTRODUCTION

1. Free areas - areas where the robot with a high probability can operate (if
the area is large enough).

2. Occupied areas - areas where the robot with a high probability cannot be
located. In indoor environments occupied areas typically represent walls
and furniture.

3. Unexplored areas - areas where the status is unknown to the robot.

Occupancy maps are used for planning and navigating in an environment. The
map can be used for localization and path planning, i.e., the mobile robot can
determine how to go from A to B in an optimal way. The robot can also use
the map to decide how the area shall be further explored in order to reduce the
extent of unknown areas.

A semantic map brings a new dimension of knowledge into the map. With
a semantic map the robot not only knows that it is close to an object, but also
knows what type of object it faces. With semantic information in the map, the
abstraction level of operating the robot can be changed. Instead of ordering
the robot to go to a coordinate in the map the robot can be ordered to go to
the entrance of a building. To illustrate the benefits of the ability to extract
semantic knowledge and of the use of semantic mapping, a number of different
situations in outdoor environments are given in the following, where semantic
knowledge can support a mobile robot or similar systems:

Follow a route description Humans often use verbal route descriptions when
explaining the way for someone that will visit a location for the first
time. If the robot has the possibility to understand its surroundings it
could follow the same type of descriptions. A route description could for
instance be:

1. Follow the road straight ahead.
2. Pass two buildings on the right side.

3. Stop at the road crossing.

Make a route description Conversely to the previous example, a robot that
travels from A to B using absolute navigation could also produce route
descriptions for humans. Stored information can then be used to auto-
matically produce descriptions for tourists, business travellers, etc.

Localization using GIS When the robot can build maps that not only outline
objects, but also labels the object types, navigation using GIS (Geograph-
ical Information Systems) such as city maps is facilitated. If the robot can
distinguish, for example, buildings from other large objects (trees, lorries
and ground formations) the correlation between the building informa-
tion in the robot’s map and in a city map may be established as long as
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the initial pose estimation is good enough. For the case where only one
building has been found this “good enough” is related to the inter-house
distances and for the case where several buildings have been mapped the
initial pose estimation can be even less restricted.

Navigation using GPS and aerial image Consider a mobile robot that should
go from position A to position B, where the positions are known in global
coordinates. If the robot is equipped with a GPS (Global Positioning Sys-
tem) it can navigate from A toward B. What it cannot foresee are possible
obstacles in the form of rough terrain, large buildings, etc., and it is there-
fore not possible to plan the shortest traversable path to B. Now assume
that the robot has access to an aerial image and that it has the ability
to recognise certain types of objects, such as buildings, trucks and roads,
with the onboard sensors. The robot can then build a semantic map of
its vicinity, correlate this with estimated buildings and roads in the aerial
image and start planning the path to take. As more buildings are detected,
the segmentation of the aerial image improves and the final path to the
goal can be determined.

Assistance for the visually impaired The technique of a virtual sensor that uses
vision to understand objects in the environment could be used in an as-
sistance system for blind people. With a small wearable camera and an
audio interface the system can report on objects detected in the environ-
ment, e.g.:

1. Bus stop to the left.
2. Approaching a grey building.
3. Entrance straight ahead.

This case clearly indicates the benefit of using high-level (semantic) infor-
mation, since the alternative where the environment is only described in
terms of objects with no labels is less useful.

Search and Surveillance Consider a robot that should be used in an urban area
that is restricted for persons to enter and that the robot has no access to
any a priori information. Depending on the task the robot needs to un-
derstand the environment and be able to detect human spatial concepts
that are of interest for an operator. This can, for example, be to search for
injured people or to find signs of intruders like broken windows. Extract-
ing information with a vision system the robot can report the locations of
different objects and send photos of them back to the operator. This gives
the operator the possibility to mark interesting locations in the images
for further investigations or to give new commands based on the visual
information.
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From the above situations three desired “skills” related to semantic information
can be noted:

1. The ability to recognise certain types of objects in a scene and by that
relating these objects to human spatial concepts,

2. the ability to incorporate semantic knowledge in a map, and

3. the ability to connect information collected by a mobile robot with infor-
mation extracted in an aerial image.

1.2 Objectives

The main objective of the work presented in this thesis is to propose a frame-
work for semantic mapping in outdoor environments, a framework that can
interpret information from vision systems, fuse the information with other sen-
sor modalities and use this to build semantic maps. The performance of the
proposed techniques is demonstrated in experiments with data collected by
mobile robots in an outdoor environment. The work is structured according
to the three “skills” discussed in the previous section. It was decided to use
machine learning for the recognition part in order to have a generic system that
can adapt to different environments by a training process.

A mobile robot shall by use of onboard sensors and possible additional in-
formation include semantic information in a map that is updated by the robot.
For the work with this thesis the main information source was selected to be
vision sensors. Vision sensors have a number of attractive properties, including:

e They are often available at low cost,

e they are passive, resulting in decreased probability of interference with
other sensors,

¢ they can produce data with rich information (both high resolution and
colour information), and

¢ they can acquire the data quickly.

There are also some drawbacks, especially in comparison to laser range scan-
ners or radar; standard cameras do not allow to measure range directly, indirect
range measurement have low accuracy, and standard cameras are sensitive to
brightness, mix of direct and indirect light, weather conditions, etc.

Another objective of the work presented in this thesis is to develop algo-
rithms that allow to automatically include information from aerial images in
the mapping process. With the growing access to high quality aerial images,
e.g., from Google Earth and Microsoft’s Virtual Earth, it becomes an attractive
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opportunity for mobile systems to use such images in planning and navigation.
Extracting accurate information from monocular aerial images is not a triv-
ial task. Usually digital elevation models are needed in order to separate, e.g.,
buildings from driveways. An alternative method that can replace digital ele-
vation models by combining the aerial image with data from a mobile robot
is suggested and evaluated. The objective is to extract information that can be
useful in tasks such as planning and exploration.

The work presented in this thesis is concentrated on extraction of semantic
information and on semantic map building. It is assumed that techniques for
navigation, planning, etc., are available. The experiments were performed using
manually controlled mobile robots and the paths were chosen by a human.
The evaluated algorithms are implemented in Matlab [The MathWorks] for
evaluation and currently work off-line.

1.3 System Overview

The system presented in this thesis consists of three modules that were designed
to be applied in a sequential order. The modules can be exchanged or extended
separately if new requirements arise or if information can be gathered in alter-
native ways.

The first module is a virtual sensor for classification of views. In our case
the views are images and together with the robot pose and the orientation of
the sensor this module points out the directions toward selected human spa-
tial concepts. Two different vision sensors have been used; an ordinary camera
mounted on a pan-and-tilt-head (PT-head) and an omni-directional camera giv-
ing a 360°-view of the surroundings in one single shot. Each omni-image was
transformed to a number of planar images, dividing the 360°-view into smaller
portions. The images are fed into learned virtual sensors, where each virtual
sensor is trained for classification of a certain type of human spatial concept.

The second module computes a semantic map based on an occupancy grid
map and the knowledge about the objects in the environment, in our case the
output from Module 1, the virtual sensor. A local map is built for each robot
position where images have been acquired. The local maps are then fused into
a global probabilistic semantic map. These operations assume that the robot is
able to determine its pose (position and orientation) in the map.

The third module uses information extracted from an aerial image in the
mapping process. Region and object boundaries in the form of line segments
taken from the probabilistic semantic map (Module 2) are used to initialize
local segmentation of the aerial image. An example is given with the class
buildings, where wall estimates constitute the object boundaries. These wall
estimates are matched with edges found in the aerial image. Segmentation of
the aerial image is based on the matched lines. The results from the local seg-
mentation are used to train colour models which are further used for global
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segmentation of the aerial image. In this way the robot acquires information
about the surroundings it has not yet visited. The global segmentation is exem-
plified with two classes, buildings and ground.

With these three modules, the three “skills” listed at the end of Section 1.1
are addressed.

1.4 Main Contributions

The main contributions of the work presented in this thesis are:

¢ Definition and evaluation of a learned virtual sensor based on a generic
feature set. Together with the pose from the mobile robot this can be used
to point out different human spatial concepts.

[Publications 6 and 7]

¢ A method to build probabilistic semantic maps that handles the uncer-
tainty of the classification with the virtual sensor.

[Publication 5]

¢ Introduction of ground-based semantic information as an alternative to
the use of elevation data in detection of buildings in aerial images.

[Publications 1, 2, 3, and 4]

¢ The use of aerial images in mobile robot mapping to extend the view of
the onboard sensors to, e.g., be able to “see” around the corner.

[Publications 1, 2, 3, and 4]

1.5 Thesis Outline

The presentation of the work is divided into two parts where the first part
(Chapters 3 - 5) covers ground-based semantic mapping and extraction of se-
mantic information, i.e., Module 1 and 2. The second part (Chapters 6 - 8) is
based on work that includes aerial images. In detail, the thesis is organized as
follows:

Chapter 2 describes the experimental equipment used, consisting of two mobile
robots and two handheld digital cameras.

Chapter 3 gives an overview of works that have been published in the area of
semantic mapping and works about mobile robot applications in which seman-
tic information is utilized in a number of different ways.
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Chapter 4 describes the virtual sensor (Module 1). Two classification meth-
ods, AdaBoost and Bayes classifier, are compared for diverse sets of images of
buildings and nonbuildings. Virtual sensors for windows and trucks are learned
and an example where the output from the virtual sensor is combined with the
mobile robot pose to point out the direction to buildings is given.

Chapter 5 shows how the information from the virtual sensor can be used to
label connected regions in an occupancy grid map and in this way create a
probabilistic semantic map (Module 2).

Chapter 6 describes systems for automatic detection of buildings in aerial im-
ages and specifically points out problems with monocular images.

Chapter 7 presents a method to overcome problems in detection of buildings
in monocular aerial images and at the same time to improve the limited sensor
range of the mobile robot. It is shown how the probabilistic semantic map
described in Chapter 5 can be used to control the segmentation of the aerial
image in order to detect buildings (first part of Module 3).

Chapter 8 extends the work in Chapter 7 by adding a global segmentation step
of the aerial image in order to obtain estimates of both building outlines and
driveable areas. With this information exploration in unknown areas can be
reduced and path planning facilitated (second part of Module 3).

Chapter 9 summarizes the thesis, discusses the limitations of the system and
gives proposals for future work.

The appendices contain a list of abbreviations and explanations of the nota-
tion used in the thesis (Appendix A), and give details on some of the implemen-
tations (Appendix B).

1.6 Publications

A large extent of the work presented in this thesis has been previously reported
in the following publications:

1. Martin Persson, Tom Duckett and Achim Lilienthal, “Fusion of Aerial
Images and Sensor Data from a Ground Vehicle for Improved Semantic
Mapping”, accepted for publication in Robotics and Autonomous Sys-
tems, Elsevier, 2008



22

CHAPTER 1. INTRODUCTION

. Martin Persson, Tom Duckett and Achim Lilienthal, “Improved Mapping

and Image Segmentation by Using Semantic Information to Link Aerial
Images and Ground-Level Information”, In Recent Progress in Robotics;
Viable Robotic Service to Human, Springer-Verlag, Lecture Notes in Con-
trol and Information Sciences, Vol. 370, December 2007, pp. 157-169

. Martin Persson, Tom Duckett and Achim Lilienthal, “Fusion of Aerial

Images and Sensor Data from a Ground Vehicle for Improved Semantic
Mapping”, In IROS 2007 Workshop: From Sensors to Human Spatial
Concepts, November 2, 2007, San Diego, USA, pp. 17-24

. Martin Persson, Tom Duckett and Achim Lilienthal, “Improved Mapping

and Image Segmentation by Using Semantic Information to Link Aerial
Images and Ground-Level Information”, In Proceedings of the 13th In-
ternational Conference on Advanced Robotics (ICAR), August 21-24,
2007, Jeju, Korea, pp. 924-929

. Martin Persson, Tom Duckett, Christoffer Valgren and Achim Lilien-

thal, “Probabilistic Semantic Mapping with a Virtual Sensor for Build-
ing/Nature Detection”, In Proceedings of the 7th IEEE International
Symposium on Computational Intelligence in Robotics and Automation
(CIRA), June 21-24, 2007, Jacksonville, FL, USA, pp. 236-242

. Martin Persson, Tom Duckett and Achim Lilienthal, “Virtual Sensor for

Human Concepts — Building Detection by an Outdoor Mobile Robot™,
In Robotics and Autonomous Systems, Elsevier, 55:5, May 31, 2007, pp.
383-390

. Martin Persson, Tom Duckett and Achim Lilienthal, “Virtual Sensor for

Human Concepts — Building Detection by an Outdoor Mobile Robot”,
In IROS 2006 Workshop: From Sensors to Human Spatial Concepts -
Geometric Approaches and Appearance-Based Approaches, October 10,
2006, Beijing, China, pp. 21-26

. Martin Persson and Tom Duckett, “Automatic Building Detection for

Mobile Robot Mapping”, In Book of Abstracts of Third Swedish Work-
shop on Autonomous Robotics, FOI 2005, Stockholm, September 1-2,
2005, pp. 36-37

. Martin Persson, Mats Sandvall and Tom Duckett, “Automatic Building

Detection from Aerial Images for Mobile Robot Mapping”, In Proceed-
ings of the IEEE International Symposium on Computational Intelligence
in Robotics and Automation (CIRA), Espoo, Finland, June 27-30, 20035,
pp. 273-278



Chapter 2
Experimental Equipment

This chapter contains descriptions of the equipment used in the experiments
presented in Chapters 4, 5, 7, and 8. First, navigation sensors for mobile robots
are discussed, followed by descriptions of the robots, Tjorven and Rasmus.
Then, the two handheld cameras used to take images for training and evalu-
ation of the virtual sensor are introduced, and details about the aerial images
used are presented.

2.1 Navigation Sensors for Mobile Robots

During the collection of data with our mobile robots, the robots were manually
controlled. Thus, the navigation sensors onboard the robots were not needed in
this phase. However, when the data were processed, localization was important.
It was used for building the occupancy grid maps and for registration of the
position and orientation of the robot.

GPS

In the Global Positioning System (GPS) triangulation of signals sent from satel-
lites with known positions and at known times is used to calculate positions in
a global coordinate system. GPS system errors, such as orbit, timing and atmo-
spheric errors, limit the accuracy that can be achieved to approximately 10-15
metres for a standard receiver [El-Rabbany, 2002].

GPS receivers placed in the vicinity of each other often show the same er-
rors. This fact is exploited in differential GPS (DGPS). A GPS receiver is then
placed at a known location and the current error can be calculated. This is then
transmitted to mobile GPS receivers via radio, and the error can in this way be
significantly reduced. The method gives an accuracy of 1-5 m at distances of up
to a few hundred kilometres.

Other methods for improving navigation accuracy include RTK GPS (real-
time kinematics GPS), and differential corrections offered as commercial ser-
vices; these are used, e.g., by agriculture vehicles [Garcia-Alegre et al., 2001].
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A quality measure of the position estimate is indirectly available from the
GPS receiver. The number of satellites used in the calculation is one measure.
At minimum three are needed for a 2D-position (latitude/longitude), and four
are needed to also calculate an altitude value. Depending on the relative posi-
tions of the satellites, the accuracy may vary considerably. This is reported in
three parameters: position, horizontal and vertical dilution of precision (PDOP,
HDOP, and VDOP).

Odometry

Odometry consists of proprioceptive (self-measurement) sensors that measure
the movement of robot wheels using wheel encoders. The encoder information
can be used to compute a position estimate. The error in position estimates
from this type of sensor accumulates as the robot moves and estimates are
usually useless for long runs. Errors are due to factors such as slippery surfaces
and unequal wheel diameters.

IMU, Compass and Inclinometers

Inertial Measurement Unit (IMU) compass, and inclinometers are complemen-
tary navigation sensors. An IMU usually consists of three accelerometers, mea-
suring the unit’s acceleration in an orthogonal frame, and angular rate gyros
that measure the rotation rates around the same axes. From these a relative
6D pose can be calculated. A compass delivers absolute values of the robot
heading, and inclinometers measure pitch and roll angles of the robot.

Integrated Navigation

The sensors described above are often used in integrated navigation systems due
to their complementary strengths and weaknesses. GPS is the only sensor that
directly gives a global position. Due to the properties of GPS, it is usually com-
bined with sensors that are accurate for short distance motion or do not drift
over time. Odometry needs calibration but it can be quite accurate over short
distances, and it is not affected by time. Inertial measurements on the other
hand suffer from drift directly related to the integration time. Combined, these
sensors can constitute a navigation system, giving geo-referenced positions with
high accuracy as long as the GPS delivers reliable position estimates.

GPS is best suited for open areas or in the air, where it continuously has
a number of GPS-satellites in view. In urban terrain, where satellites may be
shadowed by buildings, problems due to reflections or multi-path signals arise,
especially close to large objects. This has been noted by, e.g., Ohno et al. in their
work that addressed fusion of DGPS and odometry [Ohno et al., 2004]. The
problem with multi-path signals is impossible to detect using the usual qual-
ity measures, such as the number of satellites in sight or the position dilution
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of precision, and can therefore introduce severe position errors. One way to
overcome the problem is to use complementary sensors, e.g., laser range scan-
ners [Kim et al., 2007], since these are suitable for navigation in urban regions.
Still, the system needs a correct initial position in order to be able to detect the
presence of multi-path signals.

2.2 Mobile Robot Tjorven

This section describes the mobile robot Tjorven, used in most of the experi-
ments presented in this thesis. Tjorven is a Pioneer P3-AT from ActivMedia,
equipped with differential GPS, a laser range scanner, cameras and odometry.
The robot is equipped with two different types of cameras; an ordinary camera
mounted on a pan-tilt-head together with the laser, and an omni-directional dig-
ital camera. The onboard computer runs Player!, tailored for the used sensor
configuration, which handles data collection. The robot is depicted in Figure
2.1 with markings of the used sensors and equipment.

/ Omnidirectional camera

Differential GPS

< / Laser range scanner

O

3 /‘ Camera

Pan-tilt head

Odometry

Figure 2.1: The mobile robot Tjorven.

IPlayer is a robot server released under the GNU General Public License. Information about the
project can be found at http://playerstage.sourceforge.net/.
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Laser range scanner

The laser range scanner is a SICK* LMS 200 mounted on the pan-tilt-head. It
has a maximum scanning range of 80 m, a field of view of 180°, a selectable
angular resolution of 0.25°, 0.5°, or 1° (1° was used in the experiments), and a
range resolution of 10 mm. A complete scan takes in the order of 10 ms, and
scans are usually stored at 20 Hz in our experiments.

GPS

The used differential GPS from NovAtel®, a ProPak-G2Plus, consists of one
GPS receiver, which is called the base station, placed at a fixed position and
one portable GPS receiver, called the rover station, which is mounted on the
robot. These two GPS receivers are connected via a wireless serial modem.
The imprecision of the system is around 0.2 m (standard deviation) in good
conditions. GPS data are stored at 1 Hz.

Odometry

The odometry measures the rotation of one wheel on the left side of the robot
and one wheel on the right side of the robot. Using this it captures both trans-
lational and rotational motion. Measurements from odometry are stored at 10
Hz.

Pan-Tilt Head

The rotary pan-tilt head, a PowerCube 70 from Amtec*, allows for rotational
motion around two axes. In the horizontal plane it can rotate about three quar-
ters of a revolution, limited by the physical configuration of the robot compo-
nents, and the head can tilt approximately +60°.

Planar Camera

The planar camera is mounted on the laser range scanner giving it the same
movability as the laser. The camera is a DFK 41F02 manufactured by Imag-
ingSource’. It is a FireWire camera with a colour CCD sensor with 1280 x 960
pixel resolution.

Omni-directional Camera

The omni-directional camera gives a 360° view of the surroundings in one single
shot. The camera itself is a standard consumer-grade SLR digital camera, 8

2
3

www.sick.com

www.novatel.com

4Amtec-robotics is now integrated in Schunk GmbH, www.schunk.com
S www.theimagingsource.com
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megapixel Canon EOS350D®. On top of the lens, a curved mirror from 0-
360.com’ is mounted.

2.3 Mobile Robot Rasmus

Rasmus is an outdoor mobile robot, an ATRV JR from iRobot. The robot is
equipped with a laser scanner, a stereo vision sensor and navigation sensors.

GPS

Odometry

Laser range scanner

Figure 2.2: The mobile robot Rasmus.

Camera

The cameras on Rasmus are analogue camera modules XC-999, manufactured
by Sony®. They have a 1/2 inch CCD colour sensor with 768 x 494 pixel reso-
lution.

6WWW.C31’101’1.C01’1’1

7www.0-360.com
8 www.sony.com
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Laser range scanner

The mobile robot is equipped with a fixed 2D SICK laser range scanner of type
LMS 200; the specifications are the same as the ones for the laser range scanner
on Tjorven, see Section 2.2.

GPS-receiver

The GPS-receiver on Rasmus is an Ashtech G12 GPS’. The update rate for
position computation is selectable between 10 Hz and 20 Hz [Ashtech, 2000].
At 20 Hz the calculation is limited to eight satellites.

Inertial Measurement Unit

The inertial measurement unit is a Crossbow!? IMU400CA-200. It consists of
3 accelerometers and 3 angular rate sensors; see the manual [Crossbow, 2001]
for further information.

Compass

The compass unit is a KVH C100. It measures heading with a resolution of
0.1°, and it has an update rate of 10 Hz [KVH, 1998].

Odometry

The robot uses two wheel encoders that give the rotation of one left and one
right wheel. The output is presented as a linear value representing forward
distance and a rotation value representing the robot rotation around its vertical
axis. The resolution is below 0.1 mm.

2.4 Handheld Cameras

Two handheld digital cameras have been used to collect images for training the
virtual sensor. The first is a 5 megapixel Sony DSC-P92 digital camera with
autofocus. It has an optical zoom of 38 to 114 mm (measured as for 35 mm
film photography).

The second camera is built into a SonyEricsson K750i mobile phone. This
camera is also equipped with autofocus, and the image size is 2 megapixels.
The fixed focal length is 4.8 mm (equivalent to 40 mm when measured as for
35 mm film photography).

9
10

www.magellangps.com
www.xbow.com
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Both cameras store images in JPEG-format, and the finest settings (highest
resolution and quality) have been used for the collection of images. The cameras
are depicted in Figure 2.3.

Figure 2.3: The used digital cameras. The one on the right is the Sony DSC-P92, and the
one on the left is the SonyEricsson K750i.

2.5 Aerial Images

The aerial images used in this project are colour images taken from altitudes of
2300 m to 4600 m. The images were taken during summer, in clear weather.
The pixel size is 0.5 m or lower (images with higher resolution were converted
to 0.5 m). The images are stored in uncompressed TIFF-format.
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Chapter 3
Semantic Mapping

This chapter presents the state-of-the-art in semantic mapping for mobile ro-
bots. The focus is on outdoor semantic mapping, even though it is not restricted
to outdoor environments. It was, however, difficult to find relevant literature in
this subject since the number of publications on semantic mapping is still quite
low. Most of the relevant publications relate to mapping of indoor environ-
ments and only a few consider the problem that the robot itself extracts the
semantic labels for the map. The content of this chapter is therefore broader
than the topic of this thesis in order to capture immediate works that can have
an influence on research in semantic mapping.

In this thesis, semantic mapping is understood to be the process of putting a
tag or label on objects or regions in a map. This label should be interpretable by
and have a meaning for a human. In mobile robotics this can also be described
as a transformation of sensor readings to a human spatial concept. Alternative
interpretations of semantics in this area exist. For instance semantics can, when
extracted by a robot, have a meaning for the robot but be hard for humans to
interpret [Téllez and Angulo, 2007].

This chapter is organised as follows. Section 3.1 gives a short overview on
different types of maps used in mobile robotics. Extraction of semantic infor-
mation in indoor environments is discussed in Section 3.2. This includes object
detection, space classification and systems where semantic maps form a layer
in a hierarchical representation of the environment. Examples from outdoor
mapping are presented in Section 3.3. As a motivation for using semantic in-
formation, Section 3.4 gives examples of how semantic information is used in
different applications. The chapter concludes with a summary in Section 3.5.

3.1 Mobile Robot Mapping

A map is a representation of an area, a restricted part of the world. Maps used
in mobile robotics can be divided into three groups; metric maps, topological
maps and hybrid maps, where the latter are a combination of the first two
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types. To give a short overview, this section briefly presents these maps. For

a more comprehensive survey on mapping for mobile robots see e.g. [Thrun,
2002], and for hybrid maps see [Buschka, 2006].

3.1.1 Metric Maps

A metric map is a map where distances can be measured, distances that relate
to the real world. Metric maps build by a mobile robot can be divided into grid
maps and feature-based maps [Jensfelt, 2001].

Grid Map Grid maps are probably the most common environment represen-
tation used for indoor mobile robots. The value of a grid cell in a metric grid
map represents a measure of occupancy of that specific cell and gives informa-
tion whether the cell has been explored or not [Moravec and Elfes, 1985]. A
grid map containing metric information is well suited for path planning. Static
objects that are observed several times are usually given higher values than dy-
namic objects that appear at different locations. The main drawbacks of grid
maps are that they are space consuming and that they provide a poor interface
to most symbolic problem solvers [Thrun, 1998].

Feature-based Map Feature-based maps represent features or landmarks that
can be distinguished by the mobile robot. Examples of commonly used features
are edges, planes and corners [Chong and Kleeman, 1997]. Feature-based maps
are not used in the work presented in this thesis, but some of the referred works
presented in, e.g., Section 3.2 use this type of map.

Topographic Map In a topographic map the elevation of the Earth’s surface
is shown by contour lines. This type of map also often includes symbols that
represent features like different types of terrain, cultural landscapes and urban
areas with streets and buildings. Topographic maps are seldom used directly in
mobile robotics but they can be used in the creation of schematic maps [Freksa
etal., 2000]. The schematic map can be used both for path planning of a mobile
robot and as the reference model of the environment during navigation by the
mobile robot.

3.1.2 Topological Maps

Topological maps are represented as graphs with nodes and arcs (also called
edges) where the nodes represent distinct spatial locations and the arcs describe
how the nodes are connected. This allows efficient planning and typically re-
sults in lower computational and memory requirements [Thrun, 1998]. Topo-
logical maps can be built from metric maps where the nodes can be found by
use of, e.g., Voronoi diagrams [v. Zwynsvoorde et al., 2000].
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3.1.3 Hybrid Maps

Hybrid maps are a solution to overcome the shortcomings from using only one
specific type of map by combining different type of maps. Most common is the
combination of metric and topological maps. In the context of this thesis, the
combination of metric maps and semantic information is more relevant.

3.2 Indoor Semantic Mapping

In this section works related to indoor semantic mapping are presented. First,
works on object labelling are reported. Second, scientific work on how to clas-
sify different areas is described, e.g., where space in an indoor environment is
labelled as “kitchen” and “office”. Finally, hierarchical map constructions that
include semantic maps are presented.

3.2.1 Object Labelling

Finding doors and gateways is essential for mobile robots in order to navigate
in indoor environments and consequently the largest group of publications ad-
dresses door and gateway recognition. In the following, short descriptions of a
selection of works where objects are found and classified are given.

In Anguelov’s work [Anguelov et al., 2002] movable objects, detected from
mapping the environment at different times, are learned. Similar objects can
then be detected by the mobile robot in new environments without seeing the
object move. The approach is model-based, where the objects are detected using
a 2D laser range scanner. This gives the contour and size of the object, which in
turn is compared with templates. To detect a correct contour the objects need to
be separated from other objects. In the experiments a small number of objects
(a sofa, a box and two robots) are used.

Another type of object that often moves is a door. A door can be in a state
from closed to fully open. This fact has been explored in order to detect doors
[Anguelov et al., 2004]. The authors assume rectilinear walls and perform con-
secutive mappings of a corridor using a laser range scanner. The map building
process detects when an already mapped door has moved. This door is then
used to train a model of the door colour as seen by an omni-directional cam-
era. The vision system uses the colour model to find more doors of the same
colour (only one colour is modelled at a time).

Another step toward semantic representations of environments is taken by
Limketkai et al. They present a method to classify 2D laser range finder readings
into three classes: walls, doors, and others [Limketkai et al., 2005]. A Markov
chain Monte Carlo method is used to learn model parameters and the results
are metric maps with object labels. The objects are aggregated from primitive
line segments. A wall can, for example, be a number of aligned lines. The doors
are assumed to be indented and the size of the indentation is learned.
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Indoor environments often contain planar surfaces that are parallel or or-
thogonal with respect to each other. Extracting planes from 3D laser range data
has been used to achieve semantic scene interpretations of indoor environments
as floors, walls, roofs, and open doors [Nichter et al., 2003, Weingarten and
Siegwart, 2006]. Niichter ef al. use a semantic net with relationships such as
parallel, orthogonal, under etc. The planes are classified using these relation-
ships, for example floor is parallel to roof and floor is under roof.
The semantic information is used to merge neighboring planes, which in turn
leads to refined 3D models with reduced jitter in floors, walls and ceilings. In
a similar work the semantic information was used to improve scan matching
using a fast variant of Iterative Closest Point (ICP) [Besl and McKay, 1992]
by performing individual matching of the different classes, e.g., points belong-
ing to floor in one scan are matched with floor-points in the following scan
[Nichter et al., 2005].

Beeson er al. use extended Voronoi graphs to autonomously detect places
in a global metric map [Beeson et al., 2005]. Their work is based on detection
of gateways and path fragments in the map. These two concepts are used to
detect places. According to their definition, a place is found when there are not
exactly two gateways and one path. For instance, a dead end is a place since it
has one gateway and one path, and an intersection is also a place since it has
more than one path. This type of place detection can be used in topological
map building.

In vision based SLAM (Simultaneous Localization and Mapping) different
kinds of visual landmarks are used. A semantic approach is to learn and la-
bel objects by their appearance using SIFT (Scale-Invariant Feature Transform)
features. In order to handle different views of the landmarks, 3D-object models
can be built based on a number of views of the object [Jeong et al., 2006]. Inte-
grating the semantic map in SLAM eliminates the need for a specific anchoring
technique that connects positions in the map (landmarks) and their associated
semantics. Instead, the SIFT features directly constitute the link between the
learned objects and objects registered as landmarks in the semantic map. In
the work presented by Jeong et al. experiments are performed with 5 different
objects that are manually labelled and pre-stored in an object feature database.

Ekvall et al. also use SIFT features to recognise objects in combination with
SLAM [Ekvall et al., 2006]. Training is performed by showing the interesting
objects to a mobile robot equipped with a vision system. An object is extract by
background subtraction. Semantic information in the form of Receptive Field
Cooccurence Histograms (RFCH) and SIFT features of the object are extracted.
RFCH is used to locate potential objects and SIFT features are used for veri-
fication of the object in zoomed-in images. When the robot performs SLAM
and detects an object, a reference to the object is placed in the map and in this
way the robot can return and find a requested object. If the object has moved,
a search for the object is performed.
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3.2.2 Space Labelling

The previous subsection gave examples of object labelling and locating objects
in a map. In this subsection, the focus is on classification of areas in the map.
Several works on classification of indoor space have been reported. They can
be divided into two classes. The first type that is reported here distinguishes be-
tween gateways, rooms, and corridors. The second type of methods also classify
what type of room the robot has entered, e.g., “kitchen” or “living room”.

An example of the first type is the virtual sensor for detection of room
and corridor transitions presented in [Buschka and Saffiotti, 2002]. The virtual
sensor makes use of sonar sensors and both indicates the transitions between
different rooms and calculates a set of parameters characterising the individual
rooms. Each room can be seen as a node in a topological structure. The set of
parameters includes the width and length of the room and is calculated using
the central 2"¢ order moments resulting in a virtual sensor that is relatively
stable to changes of the furniture in the room.

When service robots act in a domestic environment it is important that the
definition of regions follow a human representation. In human augmented map-
ping [Topp and Christensen, 2006] a person guides a mobile robot in a domes-
tic environment, and gives the robot information about the different locations.
During this guided home tour the robot learns about the environment from the
user or from several users. A hierarchical representation of the environment is
created and segmented using the following concepts:

¢ Objects — things that can be manipulated.

¢ Locations — areas from where objects can be observed or manipulated,
often smaller than a room.

e Regions — contain one or several locations.

¢ Floor — connects a number of regions with the same height in order to
be able to distinguish between similar room configurations at different
levels.

The guidance procedure includes dialog between the robot and the user where
the robot can ask questions in order to remove ambiguous information.

Another robot system that learns places in a home environment is BIRON
[Spexard et al., 2006]. BIRON uses an integration of spoken dialog and visual
localization to learn different rooms in an apartment.

Mozos et al. semantically label indoor environments as corridors, rooms,
doorways, etc. Features are extracted from range data collected with 180-
degree laser range scanners [Mozos et al., 2005, Mozos, 2004]. These features
are the input to a classifier learned using the AdaBoost algorithm. The fea-
tures are based on 360-degrees scans and to obtain them two configurations
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have been used. The first configuration uses two 180-degree laser range scan-
ners and the second configuration uses one 180-degree laser range scanner and
the remaining 180-degrees are simulated from a map of the environment. In
[Rottmann et al., 2005] additional features extracted from a vision sensor are
used. The use of visual features is limited to recognition of a few objects (e.g.
monitor, coffee machine, and faces), due to its complexity. Nevertheless, in the
environments where the system was evaluated, it was demonstrated that us-
ing these visual features made it easier to classify a room as either a seminar
room, an office or a kitchen. The method has been tested in different office
environments.

Friedman ef al. extract the topological structure of indoor environments
via place labels (“room”, “doorway”, “hallway”, and “junction”) [Friedman
et al.,, 2007]. A map is built using measurements from a laser range scanner and
SLAM. Similar features to those defined by Mozos are extracted at the nodes of
a Voronoi graph defined in the map. Voronoi random fields, a technique to ex-
tract the topological structure of indoor environments, are introduced. Points
on the Voronoi graph are labelled by converting the graph into a conditional
random field [Lafferty et al., 2001] and the feature set is extended with con-
nectivity features extracted from the Voronoi graph. With these new features
it is possible to differentiate between actual doorways and narrow passages
caused by furniture, since it is more likely that short loops are found around
furniture than through doorways. Adding these features to a classifier learned
with AdaBoost improved the resulting topological map. Further improvement
was reported when the Voronoi random fields were used together with the best
weak classifiers found by AdaBoost.

A purely visual approach to the classification of indoor environments is pre-
sented by Pirri [Pirri, 2004]. The method makes use of a texture database ob-
tained from a large number of images of indoor environments. The textures are
processed with a wavelet transform to describe their characteristics. Textures
of furniture and wall materials are stored in the database and combined with
a statistical memory that includes probability distributions of the likelihood of
rooms with respect to the furniture.

3.2.3 Hierarchies for Semantic Mapping

Approaches that use semantic mapping and are intended to handle navigation
at different scales and complexity often present maps in the form of a hierar-
chy. Different levels of refinement are used with at least one layer of semantic
information.

The concept of the Spatial Semantic Hierarchy (SSH) evolved during the
1990’ [Kuipers, 2000]. SSH is inspired by properties of cognitive mapping,
the principles that humans use to store spatial knowledge of large-scale areas.
Spatial knowledge describes environments and is essential for getting from one
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place to another. SSH consists of several interacting representations of knowl-
edge about large-scale spaces that are divided into five levels:

e The sensory level is the interface to the sensor systems such as vision and
laser with the focus to handle motion and exploration.

e The control level uses continuous control laws as world descriptors. The
level can create and make use of local geometric maps.

o The causal level contains information similar to what can be obtained
from route directions and is essential in SSH.

o The topological level includes an ontology of places, paths, connectivity
etc. intended for planning.

o The metrical level contains a global metric map. This map is not an es-
sential part of SSH.

The metrical level can be used in path planning or to distinguish between places
that appear to be identical in the other levels, but navigation and exploration
can still be possible without this information.

Galindo et al. present a multi-hierarchical semantic map for mobile robots
[Galindo et al., 2005]. The map consists of two hierarchies; the spatial hierar-
chy and the conceptual hierarchy. The spatial hierarchy contains information
gathered by the robot sensors. The information is stored in three levels; local
grid maps, a topological map and an abstract node that represents the whole
spatial environment of the robot. The conceptual hierarchy models the rela-
tionship between concepts, where concepts are categories (objects and rooms)
and instances (e.g. “room-C” and “sofa-1”). The two hierarchies are integrated
to allow the robot to perform tasks like “go to the living room”. This multi-
hierarchical semantic map is further developed in [Galindo et al., 2007]. The
two hierarchies resemble the previous ones, but are here named spatio-symbolic
hierarchy and the semantic hierarchy. The semantic map is used to discard el-
ements of the domain that should not be considered in the planning phase in
order to speed up the planning process. For instance, if the robot should go
from the living room to the kitchen and get a fork in a drawer it should not
consider objects in the bath room.

Mozos et al. present a complete system for a service robot using representa-
tions of spatial and functional properties in a single hierarchical semantic map
[Mozos et al., 2007]. The hierarchy is composed of four layers; the metric map,
the navigation map, the topological map and the conceptual map. The naviga-
tion map is a graph with nodes that are placed within a maximum distance of
each other and the map is used for planning and autonomous navigation. It is
similar to the topological map but represents the environment in more detail.
The conceptual map contains descriptions of concepts and their relations in the
form of “is-a” and “has-a”, e.g., “LivingRoom is-a Room” or “LivingRoom
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hasObject LivingRoomObj” and “TVSet is-a LivingRoomObj”. The system
includes speech synthesis and speech recognition for operation, which is used
in turn by human augmented mapping to learn the places in the topological
map. Using semantic information is motivated by the intended use of the robot
to interact with people that are not trained robot operators.

NavSpace [Ross et al., 2006] is a stratified spatial representation that in-
cludes lower tiers for navigation and localization, and upper tiers for human-
robot interaction. It was developed to enable navigation of a wheelchair using
dialogs with the human. These dialogs can handle concepts such as “left of”
and “beside”, place labels (e.g., “kitchen”), action descriptions (e.g., “turn”)
and quantitative terms (e.g., “10 metres”).

It can be noted that in the works described above, the conceptual relation-
ships are hand-coded and not learned by the robot itself.

3.3 Outdoor Semantic Mapping

The number of publications related to outdoor semantic mapping is lower than
the works on indoor semantic mapping that were reported above.

Wolf and Sukhatme [Wolf and Sukhatme, 2007] describe two mapping ap-
proaches that create outdoor semantic maps from laser range scanner readings.
Two techniques for supervised learning were used: Hidden Markov Models
(HMM) and Support Vector Machines (SVM). The first semantic map is based
on the activity caused by passing objects of different sizes. Using this infor-
mation, the area is classified as either road or sidewalk. The resulting map is
stored in a two-dimensional grid of symmetric cells. Two robots are placed
on each side of the road with overlapping fields of view in order to decrease
the influence of occlusion. During data collection the positions of the robots
were fixed and known. Four properties were extracted from the laser data and
stored in the map: activity, occupancy, average object size and maximum object
size. The authors also included one more class, stationary objects, in addition
to road and sidewalk and then used a multi-class SVM for the classification.
The second type of semantic map classifies ground into two classes; navigable
and non-navigable. The classification is based on the roughness of the terrain
measured by the laser and is intended to be used for path planning.

Triebel et al. have developed a mapping technique for outdoor environ-
ments, called multi-level surface maps, that can handle structures like bridges
[Triebel et al., 2006]. Multiple surfaces can be stored in each grid cell and by
analysing the neighbouring cells, classification of the terrain into traversable,
non-traversable and vertical surfaces is performed.

Closely related work to these terrain mapping approaches concerns detec-
tion of drivable areas for mobile robots using vision [Dahlkamp et al., 2006,
Guo et al., 2006, Song et al., 2006]. These works do not primarily build seman-
tic maps but they use semantic information for road localization in navigation.
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The work performed by Torralba et al. delivers the most extensive semantic
mapping system found in the literature. Place recognition is performed in both
indoor and outdoor environments with the same system [Torralba et al., 2003].
The system identifies locations (e.g. office 610), categorises new environments
(“office”, “corridor”, “street”, etc) and performs object recognition using the
knowledge of the location as extra information. Global image features based
on wavelet image decomposition of monochrome images are used and Principal
Components Analysis (PCA) reduces the dimensionality to 80 principal com-
ponents. The presented system recognises over 60 locations and 20 different
objects, which is a high number compared with many other reported systems.
For training and evaluation, a mobile system consisting of a helmet mounted
web camera with resolution 120 x 160 pixels is used. The system is claimed to
be robust to a number of difficulties, such as motion blur, saturation and low
contrast.

3.3.1 3D Modelling of Urban Environments

Several research projects directed toward automatic modelling of outdoor en-
vironments, especially urban environments, have been presented in the last
decade. Even though these projects do not explicitly use semantic informa-
tion, they need to be able to classify data in order to remove data belonging
to classes that should not be included in the final model. From our perspective,
these types of projects are also interesting as references for building semantic
grid maps as described in Chapter 5.

A project for rapid urban modelling, with the aim to automatically con-
struct 3D walk-through models of city centres without objects such as pedestri-
ans, cars and vegetation, is presented in [Frith and Zakhor, 2003]. The system
uses laser range scanners and cameras both on ground and in air. A Digital
Elevation Model (DEM) is constructed from an airborne laser range scanner
mounted on an airplane and overview images are captured. The experimental
set-up used for the data acquisition on the ground consists of a digital colour
camera and two 2D-laser range scanners mounted so that one measures a hori-
zontal plane and the other measures a vertical plane [Frith and Zakhor, 2001].
The equipment is mounted at 3.6 meters height on a truck that drives along the
roads and the collection of data is performed for one side of the road at a time.
The horizontal scanner is used for position estimation and the vertical scanner
captures the shape of the buildings. Images from the digital camera are used
as texture on the 3D-models built from the scanned data. Turns of the truck
cause problems and data affected by this are ignored [Frith and Zakhor, 2002].
Vegetation and pedestrians occlude the facades and are therefore removed from
the model using semantic segmentation of the data. The scans are divided into
a background part including buildings and ground, and a foreground part that
should be removed. Removing the foreground will in turn leave holes in the
measurements that need to be filled. The missing spatial information is recon-
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structed and the images from the most direct views for the background are used
to fill in the holes. The application has problems with, e.g., vegetation and is
therefore not suitable for residential areas.

Another system for urban modelling is AVENUE [Allen et al., 2001]. The
main goal with AVENUE is to automate site modelling of urban environments.
The system consists of three components: a 3D modelling system, a planning
system for deciding where to take the next view and a mobile robot for ac-
quiring data. Range sensing (CYRAX 2400 3D laser range scanner) is used
to provide dense geometric information, which are then registered and fused
with images to provide photometric information. The planning phase, Nex:-
Best-View, makes sure that the new scanning includes object surfaces not yet
modelled. The navigation system of the mobile robot uses odometry and DGPS
[Georgiev and Allen, 2004]. Visual localization is performed when the GPS is
shadowed. Using coarse knowledge of the position based on previous sensor
readings, the robot knows in what direction to search for building models and
matches the corresponding model with the current view in order to accurately
determine its pose.

An additional project working on 3D-mapping is presented in [Howard
etal., 2004]. A large area (one square kilometre) is mapped with a two-wheeled
mobile robot (Segway RMP, Robotic Mobility Platform) equipped with both a
vertical and a horizontal laser range scanner. The vertical scanner is directed
upwards giving readings both to the right and to the left of the robot. Assump-
tions made are that the altitude is constant and that the environment is partially
structured. Two levels of localization are used. The first is the fine-scale local-
ization that uses the horizontal laser range scanner, roll and pitch data and the
odometry. This gives a detailed localization with a drift. The second navigation
system is the coarse-scale localization. This uses either GPS, good in open areas,
or Monte Carlo Localization (MCL) that is good close to buildings. The MCL
requires a prior map that can be extracted from an aerial or satellite image. To
combine the coarse and fine localization, feature-based fitting of sub-maps is
used.

A fourth project with its main focus on the environment close to roads is
presented in [Abuhadrous et al., 2004]. A 2D laser range scanner with 270°
scanning angle is mounted on the backside of a car. Histograms are used for
identification of objects along a road. The system separates three object types:
roads, building facades and trees, and illustrates these using simple 3D models.

These four projects (summarized in Table 3.1) all represent semantic infor-
mation even though it is not explicitly mentioned. Frith removes vegetation and
pedestrians from the model of ground and buildings. In AVENUE buildings are
used for localization. Other examples are the use of building outlines extracted
from aerial images [Howard et al., 2004] and classification of trees and build-
ings in laser range point clouds [Abuhadrous et al., 2004].
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| References | Description | Sensors & Navigation |

[Frih and Zakhor, 3D-modelling of build- | 2 cross-mounted 2D laser

2001, 2002, 2003] ings in urban areas. Oc- | range scanners, vision, and
cluding objects are re- | DEM. MCL in aerial photo.
moved.

[Allen et al., 2001] 3D-modelling of urban Vision and laser range scan-
environments. ner (3D). Odometry and

DGPS.

[Howard et al., 2004] | Outdoor 3D-modelling, 2 cross-mounted 2D laser
assumes constant range scanners. IMU, odom-
altitude. etry, laser range scanner for

fine localization, GPS or
MCL for coarse localization.

[Abuhadrous et al., 3D-modelling of roads, Vertically mounted 2D laser

2004] building facades and range scanner with 270°
trees. field-of-view. GPS and odom-

etry.

Table 3.1: Summary of 3D-modelling projects where MCL is the abbreviation of Monte
Carlo localization and DEM means Digital Elevation Model. Cross-mounted laser range
scanners means a configuration where the planes spanned by the laser beams are per-
pendicular to each other.

3.4 Applications Using Semantic Information

In this section several examples are given that demonstrate the broad use of
semantic information for different applications. The section finishes with an
example where the use of semantic information is suggested but not yet well
explored.

The importance of semantic information in the form of human spatial con-
cepts is evident in the communication between robots and humans. A project
that aims for dialogs with robots is "Talking to Godot" [Theobalt et al., 2002].
The representation of the environment uses three layers; grid map, topological
map, and a semantic map that connects regions in the topological map with
semantic symbols [Bos et al., 2003]. Other robot systems that use dialog func-
tions are the already mentioned [Topp and Christensen, 2006] and [Spexard
et al., 2006]. Skubic ef al. discussed the benefits of linguistic spatial descrip-
tions for different types of robot control, and pointed out that this is especially
important when there are novice robot users [Skubic et al., 2003]. In these sit-
uations it is necessary for the robot to be able to relate its sensor readings to
human spatial concepts.

Semantic information extracted from an aerial image has been used for lo-
calization [Oh et al., 2004]. Oh et al. used map data to bias a robot motion
model in a Bayesian filter to areas with higher probability of robot presence.
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They assumed that mobile robot trajectories are more likely to follow paths
in the map and that semantic information in the form of probable paths was
known. Using these assumptions, GPS position errors due to reflections from
buildings were compensated.

Stachniss et al. make use of the space labelling technique introduced by
Mozos [Mozos, 2004] for multi-robot exploration [Stachniss, 2006, Stachniss
et al., 2006]. The idea is to use the semantic information in the form of space
labels to direct the robots in an efficient way. A corridor is a natural place
to start mapping an area since it often has connections to different rooms.
Stachniss shows by simulation of up to 50 mobile robots that the exploration
time is reduced when this type of strategy is applied.

To be able to benchmark SLAM-algorithms in urban environments, Wulf et
al. use semantic information as a link between a 3D city model and drawings
of the buildings [Wulf et al., 2007]. By extracting walls from the 3D data they
could obtain a verification of the model accuracy by comparing the 3D data
belonging to walls with the walls in the drawings.

Another area where semantic information has been used is in execution
monitoring [Bouguerra et al., 2007]. In execution monitoring the goal is to find
problems in the execution of a plan. Semantic knowledge was organised in a
knowledge base with definitions of concepts and relations between them. Such
a relation can, for example, be that a “bedroom has-at-least one bed”. The
semantic information was encoded using description logics and a system for
knowledge representation and reasoning, LOOM', was used for managing the
semantic information.

In [Nielsen et al., 2004] semantics is defined to give meaning to something.
To give meaning to an environment the authors let a mobile robot take images
(snapshots) of the environment and tag these with the present location. A test is
performed where novice robot operators should fulfil a certain task using either
a standard 2D map or a 3D-map augmented with snapshots. The practical ex-
periments showed that navigation was facilitated with the latter configuration
and the operators experienced that they had better control of the robot.

Semantic information can be used in mobile robotics in, e.g., search and ex-
ploration, SLAM, and perception [Calisi et al., 2007]. SLAM, as an example, is
a well-studied problem that most often takes into account geometrical forma-
tions. The combination of SLAM and semantic information has been proposed
by Dellaert and Bruemmer [Dellaert and Bruemmer, 2004]. But, while the use
of semantic and contextual information has been shown to be promising in
many situations, it has rarely been incorporated in the mapping process [Calisi
et al., 2007].

Thttp://www.isi.edu/isd/ LOOM/
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3.5 Summary and Conclusions

This chapter has presented an overview of literature on semantic mapping. The
major part of the work that deals with semantic mapping considers an indoor
environment and only a few works deal with outdoor environments. The scope
of the literature survey was therefore extended to include also projects dealing
with 3D-modelling of urban environments where semantic information implic-
itly has an important role in order to reduce effects from false readings and
occlusions.

Semantic information has been shown to be useful in a number of situa-
tions. The most obvious is in human robot interaction where the semantic in-
formation facilitates communication in both directions. Other examples where
semantic knowledge can be used include localization, exploration, evaluation,
execution monitoring, and remote control.

Several promising concepts where topological and metric maps are labelled
with semantic information have been presented in recent years and interest in
semantic mapping seems to be increasing. Hybrid maps in the form of hier-
archies where lower layers represent metric and topological information, and
upper layers contain the semantic information are used by a number of re-
searchers. Examples of methods that can automatically classify objects and
spaces, mainly indoor, into semantic classes have been given.

Based on the content and references presented in this chapter it can be noted
that there is an increasing interest in semantic mapping. This interest has so far
been concentrated to indoor environments. There is therefore a gap in current
research regarding outdoor semantic mapping, a gap that this thesis intends to

fill in.






Chapter 4
Virtual Sensor for Semantic Labelling

4.1 Introduction

To enable human operators to interact with mobile robots, semantic informa-
tion is of high value, as pointed out in the previous chapter. Several other ap-
plications for the semantic information were also mentioned. To extract the
semantic information the robot system needs a mechanism that can transform
the sensor readings into human spatial concepts.

In this chapter it is shown that virtual sensors can constitute this mecha-
nism, being the component that processes and interprets information about the
surroundings from data collected by mobile robots. A virtual sensor is under-
stood as one or several physical sensors with a dedicated signal processing unit
for recognition of real world concepts. An important aspect of the virtual sen-
sor proposed in this work is a general method for learning a particular instance
of the virtual sensor from a set of generic features.

As an example, this chapter describes virtual sensors for detection of four
human spatial concepts: buildings, nature, windows and trucks. Three of these
concepts are man-made structures. The main example is a virtual sensor for
building detection using methods for classification of views as buildings or non-
buildings based on vision. The purpose of this is twofold. First of all, buildings
are one type of very distinct objects that often is used in, e.g., textual description
of route directions. Second, the virtual sensor is needed as a building detector
in Chapter 7, where building outlines identified by a ground-level mobile robot
are used for segmentation of aerial images.

4.1.1 Outline

The method to obtain a virtual sensor for building detection is based on learn-
ing a mapping from a set of image features to a particular concept. It combines
different types of features such as edge orientation, gray level clustering, and
corners. Section 4.2 describes the feature extraction.

47
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The AdaBoost algorithm [Freund and Schapire, 1997] is used for learning
a classifier for monocular gray scale images based on the features. AdaBoost
has an ability to select the best so-called weak classifiers out of many others.
The selected weak classifiers are linearly combined by AdaBoost to produce
one strong classifier. Due to this selection process it is possible to start with a
large feature set, calculate classifiers based on each feature and let AdaBoost
select the best ones. This allows the same feature set to be utilized also for
identification of other concepts. AdaBoost is presented in Section 4.3.

Many different learning approaches could possibly be used to solve the clas-
sification part of the virtual sensor. To compare the performance of AdaBoost
with an alternative classifier, the Bayes Optimal Classifier (BOC) was selected.
BOC uses the variance and covariance of the features in the training data to
weight the importance of each feature. Section 4.4 introduces BOC.

Section 4.5 presents an evaluation of a virtual sensor for building detection
based on building and nonbuilding images. It is shown that the virtual sensor
robustly establishes the link between sensor data and the particular human spa-
tial concept. Experiments with an outdoor mobile robot show that the method
is able to separate the two classes with a high classification rate, and that the
method extrapolates well to images collected under different conditions.

In Section 4.6, the virtual sensor for buildings is applied on a mobile robot,
combining classifications of sub-images from a panoramic view with spatial
information (location and orientation of the robot) in order to estimate the
directions of buildings in an outdoor environment. This information could then
be communicated, for example, to a remote human operator.

The method can be extended to virtual sensors for other human spatial
concepts. This is demonstrated by learning and evaluating two further virtual
sensors. Section 4.7 shows that the feature set can be used to distinguish be-
tween three human spatial concepts; buildings, nature, and windows, and in
Section 4.8 a virtual sensor for trucks complements the first three virtual sen-
sors, giving a total of four different human spatial concepts within the same
experiment.

A summary and conclusions of this chapter are given in Section 4.9.

4.2 The Feature Set

A vision sensor onboard the mobile robot acquires the environmental data used
by the virtual sensor to determine how the surroundings should be classified.
These data are processed and stored as gray scale images and hence the feature
set defined in this section contains features that can be extracted from this type
of images. The objective of the feature set is to capture significant properties
in the images allowing learned classifiers to distinguish between different con-
cepts. To make such a method work for a wide variety of classes requires a
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generic set of features. To define such a set is hard and therefore a heuristic
method has been used in the design of the feature set.

The philosophy regarding the selection of features that should be included
in the feature set is to include features that are believed to contribute with a
high probability to an increase of the classification rates of the virtual sensors.
Since AdaBoost is used as the learning mechanism only features that in fact
contribute will be used in the final classifier. It is therefore not a problem if the
feature set contains features that are of modest use for a particular classification
task. A benefit of this approach is that whenever a classification problem needs
some more features to perform well, these features can be added to the feature
set. Adding features can in turn also result in better performance of previously
trained virtual sensors if they are retrained utilizing the extended feature set.

The first virtual sensor presented here is the virtual sensor for the concept
of buildings. The discussion therefore continues with an analysis of suitable
features for building detection. Many systems for building detection, both for
aerial and ground-level images, use line and edge related features. Building
detection from ground-level images often uses the fact that, in many cases,
buildings show mainly horizontal and vertical edges. In nature, on the other
hand, edges tend to have more randomly distributed orientations. Inspection
of histograms based on edge orientation confirms this observation. Histograms
of edge direction can be classified by, e.g., Support Vector Machines (SVM).
This has been used for detection of buildings in natural images [Malobabic
et al., 2005]. Another method, developed for building detection in content-
based image retrieval, uses consistent line clusters with different properties
[Li and Shapiro, 2002]. These properties are based on edge orientation, edge
colours, and edge positions.

An example of other features that have been used in outdoor environments
is the output from Gabor filters. Gabor filters are considered as a robust method
for texture estimation and have been used for recognising roads in aerial images
and natural objects such as trees and coral [Ramos et al., 2006]. The images
were divided into 11 x 11 pixel patches and filtered using four Gabor filters
defined for two scales and two orientations.

Another example of features extracted from images taken by a mobile robot
was presented in [Morita et al., 2005, 2006]. Features were calculated from
image patches (16 x 16 pixels) taken from the upper part of the images and
consisted of the average of R, G, and B normalized colours, the edge density, the
distribution of edge orientation, and the number of line segments. The patches
were classified into three classes; trees, buildings and sky (uniform) with a SVM
and the classification result was used for self-localization of the mobile robot
along a previously visited path.

For the virtual sensor presented in this section, a large number of image fea-
tures that are extracted from the whole image have been selected. The features
can be divided into three groups. The obvious indication of man-made struc-
tures is that they have a high content of vertical and horizontal edges, which is
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also confirmed in the related work presented above. The first type of features
represents this property. The second type of features combines the edges into
more complex structures such as corners and rectangles. The third type of fea-
tures is based on the assumption that certain types of concepts contain surfaces
in homogeneous colours, e.g., facades.

The features that are calculated for each image are numbered 1 to 24. All
features except 9 and 13 are normalized in order to avoid scaling problems.
This feature set was selected with regard to a virtual sensor for building detec-
tion. An extended form of the feature set is used in Section 4.8 for a virtual
sensor for truck detection.

4.2.1 Edge Orientation

The first group of features is based on edge orientation. The calculation of the
orientations includes a few steps. First an edge image is calculated resulting
in a binary image. From this binary image straight line segments representing
straight edges are calculated and finally the orientations of these lines are used
to compute the features.

For edge detection Canny’s edge detector [Canny, 1986] is used. It includes a
Gaussian filter and is less likely than others to be affected by noise. A drawback
is that the Gaussian filter can distort straight lines. For line extraction in the
edge image an implementation by Peter Kovesi [Kovesi, 2000] was used, see
Appendix B.1. The absolute values of the line orientations are calculated and
sorted into different histograms. The features based on edge orientation are:

1. 3-bin histogram of absolute edge orientation values.

8-bin histogram of absolute edge orientation values.

Fraction of vertical lines out of the total number.

Fraction of horizontal lines.

Fraction of non-horizontal and non-vertical lines.

As 1) but based only on edges longer than 20% of the longest edge.

As 1) but based only on edges longer than 10% of the shortest image side.

® N kN

As 1) but weighted with the lengths of the edges.

To be able to compare features 1-3 and 6-8 between images with a different
number of lines, each bin value is divided by the total number of lines in the
histogram, giving relative values of the orientation distribution.
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Feature 1

Feature 1, denoted as fi, is a 3-bin histogram of the absolute edge orientation
values, where the edge orientation is defined in the interval [—7/2,7/2]. The

histogram has class limits [0, 0.2, 7/2—0.2, 7 /2] radians giving that f; is a vector
with 3 elements.

Hs = Hist(|f],cs), cs =[0,0.2,7/2 — 0.2, 7/2] (4.1)

where 6 is the orientations of the edges. The normalized f; is then calculated as
fi=Hs/>  Hs. (4.2)

Feature 2

Feature 2, f5, is defined in the same way as f; with the only difference that an
8-bin histogram is used with limits [0, 7/16,...,77/16,7/2]:

Hg = Hist(|6],cs), cs = [0,7/16,...,77/16,7/2]. (4.3)
fo=Hs/ > Hs. (4.4)

Feature 3to 5

Feature 3 is the fraction of vertical lines, taken from f, out of the total number
of lines:

fs=f(3) (4.5)

where f1(3) denotes the member value of bin 3. Feature 4, the fraction of hori-
zontal lines and Feature 3, the fraction of non-horizontal and non-vertical lines,
are defined in an analogous way:

fi=f(1) (4.6)

fs=11(2)=1-fi(1) = f1(3). (4.7)

Features 6 to 8

In Feature 1 to 3, all line segments found in the image were used. To capture
only the major lines in the image, features 6, 7, and 8 decrease the influence
of short lines. Feature 6 is calculated like fi, but only with the edges longer
than 20% of the longest edge. In Feature 7, the calculations are based on the
edges that are longer than 10% of the shortest image side and in Feature 8 edge
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orientation members are weighted with the edge length in the calculation of the
histogram.

4.2.2 Edge Combinations

The lines found to compute features 1-8 can be combined to form corners and
rectangles. The features based on these combinations are:

9. Number of right-angled corners.
10. 9) divided by the number of edges.

11. Fraction of right-angled corners with direction angles close to 45° + n -
90°,n €0,...,3.

12. 11) divided by the number of edges.
13. The number of rectangles.

14. 13) divided by the number of corners.

Features 9 and 10

Feature 9 is the number of right-angled corners in the image. Here, a right-
angled corner is defined as two lines with close end points (maximum 4 pixels
separation) and 90° & B4e, angle in between. During the experiments B4e, =
20° was used. Feature 10 is the number of right-angled corners relative to the
number of edges:

fio=fo/ 3 Ha. (4.8)

Features 11 and 12

For buildings with vertical and horizontal lines from doors and windows, the
corners most often have a direction of 45°, 135°, 225° and 315°, assuming that
the camera is oriented correctly, see Section 4.2.5. The direction is defined as
the ‘mean’ value of the orientation angle for the two lines defining the corner.
This property is captured in feature 11.

fi1=Cus/fo (4.9)

where Cy5 is the number of right-angled corners with the above defined direc-
tions £15°. Feature 12 is Feature 11 relative to the number of edges:

f12=f11/zﬁ3- (4.10)
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Figure 4.1: Example of extraction of edge combination features. The upper right part
shows line segments extracted from the image to the left. The lower left image shows
the lines that are connected as corners and the lower right part shows rectangles formed
from the corners.

Features 13 and 14

From the lines and corners defined above rectangles are detected. A rectangle
is formed from two corners and the pair of lines constructing these corners.
The conditions on the final rectangle are that all four corners shall have an
angle of 90° £ 4., and that the distance between the line endpoints forming
the rectangle corners are maximum 4 pixels. The number of rectangles is stored
in Feature 13 and Feature 14 is the number of rectangles relative to the number
of right-angled corners:

fia = f13/fo (4.11)

An example on the extraction of edges, corners and rectangles is given in
Figure 4.1.

4.2.3 Gray Levels

Unlike to the above defined features using edges, features 15 to 24 are based on
gray levels. Features 15 to 19 use gray level histograms to estimate if dominat-
ing gray levels exist. Features 20 to 24 are computed from connected areas to
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quantify the existence of homogeneous areas. The features are scaled with the
image size.
Features 15 to 19

Equally binned gray level histogram with 25 bins are used and the result is
normalized with the image size. In order to capture several dominating gray
levels the largest bins are accumulated in features 16-19. These features capture
the distribution of gray levels in the image.

15. Largest value in gray level histogram.

16. Sum of the 2 largest values in gray level histogram.
17. Sum of the 3 largest values in gray level histogram.
18. Sum of the 4 largest values in gray level histogram.

19. Sum of the 5 largest values in gray level histogram.

Features 20 to 24

With features 20-24, images showing large variations in intensity can be sep-
arated from those that have large homogeneous areas. Typical areas that can
be homogeneous are, e.g., building facades, roads, lawns, water and the sky.
To find local areas with homogeneous gray levels a search for the largest con-
nected areas with similar gray level is performed. Gray levels are considered to
be similar if they fall into the same bin of the 25-bin histogram. The largest
regions of interest that are 4-connected are calculated and up to the 5 largest
are accumulated in features 21-24:

20. Largest 4-connected area.

21. Sum of the 2 largest 4-connected areas.
22. Sum of the 3 largest 4-connected areas.
23. Sum of the 4 largest 4-connected areas.

24. Sum of the 5 largest 4-connected areas.

4.2.4 Camera Invariance

In the work presented in this chapter, virtual sensors will use input data that
were obtained from a number of different cameras. To illustrate that the defined
feature set can be utilized with different cameras, experiments using different
image sets are performed in Section 4.5. In this paragraph, a direct comparison
of images taken by two of the different cameras is performed to illustrate that
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Figure 4.2: The seven image pairs used for the camera invariance test. The left image
in each pair was obtained from the digital camera and the right image in each pair was
obtained from the mobile phone camera.

the defined features are not really affected by the choice of camera. The cameras
are a 5 megapixel Sony DSC-P92 digital camera and a Sony Ericsson K750i
mobile phone 2 megapixel camera, see Section 2.4.

The evaluation of the feature set is performed on seven image pairs. Each
pair was taken at the same place and with the handheld cameras. The images
were manually cropped to cover essentially the same area. The cropped images
are shown in Figure 4.2.

Features were calculated for each of the 14 images and each image was
compared with all images, giving a total of 196 comparisons. The comparison
was performed using a similarity measure M calculated from r;, a measure for
each individual feature that can vary between 0 (identical features) and 1. The
similarity measure M was calculated as the mean value of r;

1 24
M = o ;r (4.12)

where i denotes the feature number. The measure r; is calculated as a weighted
mean value
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N
ri= T w (4.13)
j=1
for the features that are histograms. For each bin j, r;, is calculated as
c _ fm
’Lj Zj
N RN 4.14
i = nax < ) (4.14)

with ¢ and m denoting the digital camera and the mobile phone respectively.
The above calculation guarantees that r;, € [0, 1]. The weights w; are intro-
duced to put higher weights on the relative differences originating from bins
with a large number of hits. They are calculated as
TRl (4.15)
wj = — 2t —2— .

TS+
with N being the number of bins. For the single value features, when N = 1,
Equations 4.13 - 4.15 can be simplified to

max(ff, f)

and no weights need to be used.

The results from the comparisons are stored in a symmetric matrix that
is illustrated in Figure 4.3 by squares representing the measure M for each
image combination. The first seven rows and columns correspond to the digital
camera and the following seven rows and columns to the mobile phone. Low
M-values from the comparison are represented by dark squares and high M-
values are represented by lighter gray shades. The figure shows two distinct
diagonals. The diagonal starting in the upper left corner is the self-comparison
(features from image 1 are compared with features from image 1 etc.) and all
squares therefore got the M-value 0 (black). The other diagonal represents the
image pairs taken at the same location (image 1 is in pair with image 14, 2 with
13 etc.) and got M-values between 0.092 and 0.205. All other squares represent
pairing of images taken at different locations. The M-values for these squares
were in the interval of 0.28 to 0.54. This result implies that the features from
the image pairs are more similar than the features from any other combination
of images taken with the same camera.

By this test it has been shown that for the selected seven image pairs, the
feature set clearly distinguishes between different scenes instead of different
cameras. The conclusion is therefore that the extracted features are sufficiently
invariant to these cameras meaning that alternating between these cameras
should not affect adversely the performance of the system.
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Figure 4.3: Result of the camera invariance test. Rows/columns 1-7 correspond to the
digital camera and rows/columns 8-14 to the mobile phone. Dark squares show high
similarity.

4.2.5 Assumptions

The calculation of the features is based on the assumptions that the camera
orientation is close to horizontal and that the perspective distortion is small.
Concerning the first assumption, the presented system is not rotational invari-
ant, i.e., it cannot handle images with arbitrary rotational angles. A function
that can estimate the rotational angle can be implemented by identification of
peaks in the edge histograms assuming that the approximate 90 degree dif-
ference between horizontal and vertical edges exists. On the other hand, it is
probably not needed to perform that operation, since an outdoor robot that
is supposed to navigate in non-flat terrain needs to estimate not only position
and orientation, but also pitch and roll angles. It is therefore assumed that the
images can be re-rotated with an accuracy that is sufficient for the system (e.g.
the smallest bin used for edge orientation classifies an edge as horizontal if it is
within £11°).

The second assumption concerns the perspective of the images. It is assumed
that the optical axis of the camera has a limited deviation from the normal of
the object surfaces in the images. If this is not the case the use of histograms for
edge directions is not optimal for the performed task. In the system proposed
in this thesis, small deviations are compensated for by the quantization into
only a few histogram bins and the tolerances in the definition of qualitative
features such as corners. It is possible to transform an image in order to restore
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the perspective of the main surface. One way is to find the vanishing point, but
this is often a costly operation. Another possibility, if 3D-models of the scene
exist, is to use image depth information to obtain the parameters needed for a
perspective correction.

4.3 AdaBoost

AdaBoost is the abbreviation for adaptive boosting. It was developed by Fre-
und and Schapire [Freund and Schapire, 1997] and has been used in diverse
applications, e.g., as classifiers for image retrieval [Tieu and Viola, 2000] and
real-time face detection [Viola and Jones, 2004]. In mobile robotics, AdaBoost
has, e.g., been used in ball tracking for soccer-robots [Treptow et al., 2003]
and to classify laser scans for learning of places in indoor environments [Mozos
et al., 2005]. Mozos’ work is a nice demonstration of the use of machine learn-
ing and a set of generic features to transform sensor readings to human spatial
concepts. A cascaded classifier was developed where the first steps should be
fast and have a very low false negative rate. The following steps include clas-
sifiers with increasing complexity that can resolve the ‘hard cases’ from the set
of positive classifications found in the first steps.

The main purpose of AdaBoost is to produce a strong classifier by a linear
combination of weak classifiers, where weak means that the classification rate
has to be only slightly better than 0.5 (better than guessing). Figure 4.4 shows
pseudo code for the implemented AdaBoost algorithm (see [Schapire, 1999] for
a formal algorithm). The principle of AdaBoost is as follows.

The input to the algorithm is a number, N, of positive and negative exam-
ples. The training phase is a loop. For each iteration t, the best weak classifier
hy is calculated and a distribution D; is recalculated. The boosting process uses
D; to increase the weights of the hard training examples in order to focus the
weak learners on the hard examples. In our case D; has been used to bias the
hard examples by including it in the calculation of a weighted mean value for
the MDC, see Section 4.3.1.

Implementing and using AdaBoost, one should note a few things. First, if
the evaluation of training examples results in 100% correct classification by a
weak classifier, there will be no more change in D; (D11 = D;). If this happens
in the first iteration only one feature will be used in the strong classifier. Second,
the general AdaBoost algorithm does not include rules on how to choose the
number of iterations T' of the training loop. The training process can be aborted
if the distribution D, does not change, or alternatively a fixed maximum num-
ber of iterations T is used. Boosting is known to be not particularly prone to
the problem of overfitting [Schapire, 1999]. T = 30 was used for training in all
the experiments presented and no indications of overfitting were noted when
evaluating the performance of the classifier on an independent test set.
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e Use N training examples (z1,y1) ... (zn,yn), where y, = 1 for N,
positive examples and y, = —1 for N, negative examples (N =
Np + Nn)

e Initialize the distribution: D1 (n,) = 1/N,, for the positive examples
(with indices np) and D1(n,) = 1/N, for the negative examples
(with indices n,,)

e Fort=1,...,T:
1. Normalize distribution Dy
2. Train weak learners using distribution D,

3. Find weak hypothesis h; that minimizes €; and set hy = h; and
e+ = €;. The goodness of a weak hypothesis h; is measured by
its error €; = Zn:hy_(%#yn D¢(n).

4, SetOlt = %lnlziff

5. Update Dy:

Di11(n) = Di(n) exp(—asynhi(zn))

¢ The final strong classifier is given by:

H(z) = sign (Zthl athy (:L’))

Figure 4.4: General AdaBoost algorithm, where ¢; is a measure of the performance of
the best weak classifier h; at ¢. Index j points out the used feature, and oy is the weight
of h: used both in the update of D, and in the final strong classifier H(x).

4.3.1 Weak Classifiers

In its standard form, the weak classifiers in AdaBoost use single value features.
To be also able to handle feature arrays from the histogram data, a minimum
distance classifier (MDC) was used to calculate a scalar weak classifier. D; was
used to bias the hard training examples by including it in the calculation of a
weighted mean value for the MDC prototype vector:

Z{n:l...N\yn:k} f(”’ l)Dt(n)
2 {n=1...N|y,—k} Dt (n)

where my 1, is the mean value array for iteration ¢, class k, and feature [ and
yn 1s the class of the n:th image. The features for each image are stored in
f(n,l) where n is the image number. For evaluation of the MDC at iteration ¢,
a distance value dy ;(n) for each of the two classes k is calculated as

ml,k,t = (4.17)

dii(n) = [[f(n,1) —my

| (4.18)
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and the shortest distance for each feature [ indicates the winning class for that
feature.

4.4 Bayes Classifier

It is instructive to compare the result from AdaBoost with another classifier
and for that Bayes Classifier was selected. Bayes Classifier, or Bayes Optimal
Classifier (BOC) as it is sometimes called, classifies normally distributed data
with a minimum misclassification rate. The decision function is [Duda et al.,
2001]

di(x) = In P(wy) — %ln |Ck| — %[(w —my) ' CL (e — my)) (4.19)
where P(wy,) is the prior probability (in the experiments set to 0.5), my, is the
mean vector of class k, and C, is the covariance matrix of class k calculated on
the training set, and « is the feature value to be classified.

Not all of the defined features can be used in BOC. Linear dependencies
between features give numerical problems in the calculation of the decision
function. Therefore normalized histograms cannot be used, hence features ﬁ,
fa, fo, fr, and fs were not considered. The set of features used in BOC was
represented by the following vector:

F=1ffafo-- fi5, f17, 20, foz) T - (4.20)

This set was constructed by starting with the best individual feature as found
by running AdaBoost (see Figure 4.7, Section 4.5.3) and adding the second best
feature etc., while observing the condition value of the covariance matrices.

4.5 Evaluation of a Virtual Sensor for Buildings

In this section a virtual sensor for building detection is evaluated using images
from two classes; buildings and nonbuildings. For this type of classification it
is generally difficult to define representative negative samples for the training
set. In order to cope with this, nature images were used as the representation
of nonbuildings in the evaluation presented here and, hence, nature is used as
the name of the class nonbuildings. This shall not be seen as a limitation since
the virtual sensor is learned and the training set can be adapted to an intended
operational environment.

Results for AdaBoost are compared with results using BOC and two differ-
ent image resolutions are tested and compared.
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4.5.1 Image Sets

Three different sources were used for the collection of nature and building im-
ages utilized in the experiments. For Set 1, images were taken by an ordinary
consumer digital camera. These images were taken over a period of several
months in outdoor environments that are potential operational areas for a mo-
bile robot. The virtual sensor was designed to be used to classify images taken
by a mobile robot. Therefore, Set 2 consists of images taken on manually con-
trolled runs with a mobile robot, performed on two different occasions. Set
1 and 2 are disjunctive in the sense that the images do not depict the same
buildings or the same nature views.

In order to verify the system performance with an independent set of im-
ages, Set 3 contains images downloaded! from the Internet using Google’s Im-
age Search. For buildings the search term building was used. The first 50 images
with a minimum resolution of 240 x 180 pixels containing a dominant build-
ing were downloaded. For nature images, the search terms nature (15 images),
vegetation (20 images), and #ree (15 images), were used. Only images that di-
rectly applied to the search term and were photos of real environments (no arts
or computer graphics) were used. Borders and text around some images were
removed manually. Table 4.1 summarizes the different sets of images and the
number of images in each set.

All images were converted to gray scale and stored in two different resolu-
tions (maximum side length 120 pixels and 240 pixels, referred to as size 120
and 240 respectively). In this way the performance for different resolutions
can be compared. In the case of comparable performance, using low resolu-
tion images has the advantage of faster computations and decreased demands
on the used equipment or alternatively, sub-images depicting objects at longer
distances will be possible to use.

Examples of images from Set 1 and 2 are shown in Figure 4.5. Note the
difference between the building images in Set 1 and 2. The images taken with
the handheld cameras are most often centred on the view while the optical axis
of the camera on the robot was mostly horizontal. This resulted in images in
Set 2 that only contain building objects in the upper half and where the lower
part shows the ground surface.

4.5.2 Test Description

Five tests have been defined for evaluation of the virtual sensor. Test 1 shows
whether it is possible to collect training data with a consumer camera and use
this for training of a classifier that is evaluated with a different camera on the
intended platform, the mobile robot. Test 2 trains and evaluates on a mixture
of Set 1 and Set 2. Test 3 shows how well the learned model, trained with
images taken in our neighbourhood with known equipment, extrapolates to

I'The images were downloaded 7" Sept 2005.
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Set | Origin Area Buildings | Nature
1 | Handheld digital camera | Urban and nature 40 40
Camera on mobile robot | Orebro Campus 66 24
3 | Internet search Worldwide 50 50
‘ ‘ Total number 156 ‘ 114 ‘

Table 4.1: Summary of the image sets used for the evaluation of the virtual sensor for
buildings. The digital camera is a 5 megapixel Sony (DSC-P92) and the mobile camera
is an analogue camera mounted on the mobile robot Rasmus, see Section 2.3.

images taken around the world by different photographers. Test 4 evaluates the
performance on the complete collection of images. Table 4.2 summarizes the
test cases. These tests have been performed with AdaBoost and BOC separately
for each of the two image sizes. For Test 2 and 4, holdout validation [Kohavi,
1995] is performed. A random function is used to select the training partition
(90% of the images) and the images not selected are used for the evaluation of
the classifiers. This was repeated N,.,, times.

No. | Nyun Train Set Test Set
1 1 1 2
2 100 90% of {1,2} 10% of {1,2}
3 1 {1,2} 3
4 100 | 90% of {1,2,3} | 10% of {1,2,3}
5 100 90% of {1,2} 10% of {1,2}

Table 4.2: Description of defined tests (N, is the number of runs).

A fifth test, Test 5, is designed to test scale invariant properties of the system.
Test 2 is repeated, but now the training is performed with one image size and
the evaluation is performed with the other image size.

4.5.3 Analysis of the Training Results

AdaBoost can compute multiple weak classifiers from the same features by
means of a different threshold, for example. Figure 4.6 presents statistics on the
usage of different features in Test 2. The feature most often used for image size
240 is the orientation histogram ( fg). For image size 120, features f;, fs (cor-
ners), fi3 (rectangles) and fi4 (rectangles related to corners) dominate. Figure
4.7 shows how well each individual feature manages to classify images in Test
2. Several of the histograms based on edge orientation are in themselves close to
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Figure 4.5: Examples of images used for training. The uppermost row shows buildings
in Set 1. The following rows show buildings in Set 2, nature in Set 1, and nature in Set
2.

the result achieved for the classifiers presented in the next section. Comparing
Figure 4.6 and Figure 4.7 one can note that several features with high classifica-
tion rates are not used by AdaBoost to the expected extent, e.g., features fi, f3,
f4, and f5. This is most likely caused by the way in which the distribution D,
is updated. Because the importance of correctly classified examples is decreased
after a particular weak classifier is added to the strong classifier, similar weak
classifiers might not be selected in subsequent iterations.

As a comparison to the results of Test 1 to Test 4 presented in Section 4.5.4,
the result obtained on the training data using combinations of image sets is
also presented in Table 4.3. ®7p is the true positive rate (in this case related
to buildings), ®7 is the true negative rate (related to nature), and @ 4. is the
accuracy?.

4.5.4 Results

Training and evaluation were performed for the tests specified in Table 4.2 with
features extracted from images of size 120 and 240 separately. The result is pre-

2The accuracy ® 4. is based on the sum of the true positives and the true negatives.
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Figure 4.6: Histogram describing the frequency with which features are selected for the
strong classifier by AdaBoost in Test 2 as an average of 100 runs, using image size 120
(upper) and 240 (lower).

sented in Table 4.4 and 4.5 respectively. The tables show ®7p (buildings), ®7x
(nature), and @ .. (the total classification rate with the corresponding standard
deviation). Results from both AdaBoost and BOC using the same training and
testing data are given.

In Test 1 a classification rate of over 92% is obtained for image size 240.
This shows that it is possible to build a classifier based on digital camera im-
ages and achieve very good image classification results with another camera
onboard the mobile robot, even though Set 1 and 2 have structural differences,
see Section 4.5.1.

Test 2 is the most interesting test for us. Here, images that have been col-
lected in the target environment of the mobile robot are used for both training
and evaluation. This test shows high (and highest) classification rates. For both
AdaBoost and BOC they are around 97% using the image size 240. Figure 4.8
shows the distribution of wrongly classified images for AdaBoost compared to
BOC. It can be noted that for image size 120 several images give both classifiers
problems, while for image size 240 different images cause problems. Figures 4.9
and 4.10 show the images that were wrongly classified. The numbers of the im-
ages relate to the image numbers in Figure 4.8.
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Figure 4.7: Histogram of classification rate of individual features in Test 2 as an average
of 100 runs with 7' = 1, image size 120 (upper) and 240 (lower).

Test 3 is of the same type as Test 1. They both train on one set of images
and then validate on a different set. Test 3 shows lower classification rates than
Test 1 with the best result for AdaBoost using image size 240. It is not sur-
prising that lower classification rates are obtained since the properties of the
downloaded images differ from the other image sets. The main difference be-
tween the image sets is that the buildings in Set 3 often are larger and located
at a greater distance from the camera. The same can be noted in the nature
images, where Set 3 contains a number of landscape images that do not show
close range objects. The conclusions from this test are that AdaBoost general-
izes better than BOC and that the classification works very well even though
the training images were taken in our neighbourhood and the images used for
evaluation were downloaded from the Internet.

Comparing the results of Test 2 and Test 4, it can be noted that the classi-
fication rate is lower for Test 4, especially for image size 120. Investigation of
the misclassified images in Test 4 shows that the share belonging to image Set
3 (Internet) is large. For both image sizes 60% of the misclassified images came
from Set 3 although Set 3 only represent 37% of the total number of images.
This shows, once more, that the Internet images are harder to classify due to
their different properties.
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Sets | Size | Classifier || ®7p [%] | 7y [%] || Pace [%]
1 120 | AdaBoost 100.0 100.0 100.0
BOC 100.0 100.0 100.0
1,2 120 | AdaBoost 97.2 100.0 98.2
BOC 95.3 93.8 94.7
1,2,3 | 120 | AdaBoost 89.7 94.7 91.9
BOC 86.5 94.7 90.0
1 240 | AdaBoost 100.0 100.0 100.0
BOC 100.0 100.0 100.0
1,2 | 240 | AdaBoost 100.0 100.0 100.0
BOC 98.1 100.0 98.8
1,2,3 | 240 | AdaBoost 98.7 99.1 98.9
BOC 95.5 98.2 96.7

Table 4.3: Results from evaluation of the virtual sensor on the same image sets as used
for the training. The image sets are defined in Table 4.1.

Test 5 demonstrates the scale invariance of the system by performing a cross
resolution test. Classifiers were trained with images of size 120 and evaluated
with images of size 240 and vice versa. The result is presented in Table 4.6 and
should be compared to Test 2 in Tables 4.4 and 4.5. The conclusion from this
test is that the features used have scale invariant properties over a certain range
and that AdaBoost shows notably better scale invariance than BOC, which
again demonstrates AdaBoost’s better extrapolation capability.
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Test no. | Classifier || ®7rp [%] | Pry [%] D pee [%]
1 AdaBoost 81.8 91.7 84.4
BOC 93.9 58.3 84.4

2 AdaBoost 93.0 91.8 92.6 £5.8

BOC 95.7 89.0 934 +5.5
3 AdaBoost 68.0 90.0 79.0
BOC 72.0 74.0 73.0

4 AdaBoost 86.6 89.8 879+ 6.2

BOC 86.4 88.5 87.3 £ 6.0

Table 4.4: Results for Test 1-4 using images with size 120.

Test no. | Classifier || ®7p [%] | Pry [%] D ace [%]
1 AdaBoost 89.4 100.0 92.2
BOC 95.5 87.5 93.3

2 AdaBoost 96.1 98.3 96.9 + 4.3

BOC 98.1 95.7 9724+ 4.0
3 AdaBoost 88.0 94.0 91.0
BOC 90.0 82.0 86.0

4 AdaBoost 94.1 95.5 94.6 = 3.8

BOC 94.8 93.4 94.2 + 4.7

Table 4.5: Results for Test 1-4 using images with size 240.

Train | Test || Classifier || ®7p [%] | Py [%] D pce [%]
120 240 || AdaBoost 94.2 96.7 95.1 £4.2
BOC 93.0 94.3 93.5+5.3
240 120 || AdaBoost 95.1 90.8 93.6 £ 6.0
BOC 100.0 44.8 80.5 £ 6.7

Table 4.6: Results for Test 3, the cross resolution test where data from Test 2 were used.
Training was performed with images of size 120 and testing with images of size 240 and
vice versa.



68 CHAPTER 4. VIRTUAL SENSOR FOR SEMANTIC LABELLING

0 2 4 6 8 10 12 14 16 18 20
Image number (starting with the most times wrongly classified)

15 T T T T T T T T T

0 Il
0 2 4 6 8 10 12 14 16 18 20
Image number (starting with the most times wrongly classified)

Figure 4.8: Distribution of the 20 most frequently wrongly classified images from Ada-
Boost (gray) and BOC (white) in Test 2, using image size 120 (upper) and 240 (lower).

Figure 4.9: The 16 most frequently misclassified images in Test 2 with image size 120.
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Figure 4.10: The 16 misclassified images in Test 2 with image size 240.
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4.6 A Building Pointer

The learned building detection algorithm has been used to construct a virtual
sensor. This sensor indicates the presence of buildings in different directions
related to a mobile robot. In this case the robot performed a sweep with its
camera (from —120° to +120° in relation to its heading) at a number of points
along its track. The images were then classified into buildings and nonbuildings.
The virtual sensor was trained using AdaBoost and the images in Set 1, see
Section 4.5. The experiments were performed using Tjorven, a Pioneer robot
equipped with GPS and a camera on a PT-head, see Section 2.2 for more details.
Figure 4.11 shows the result of a tour in the Campus area. The arrows show
the direction towards buildings and the lines point toward nonbuildings. Figure
4.12 shows an example of the captured images and their classes from a sweep
with the camera at the first sweep point (the lowest rightmost sweep point in
Figure 4.11).

This experiment was conducted with yet another camera than those used
in Section 4.5 and during winter with no leaves on the trees and snow on the
ground. An estimation of the performance based on the evaluation by a human
expert is shown in Table 4.7. Some images are hard to classify into the two
classes since they include large portions belonging to both of the classes. These
images are denoted ambiguous and are shown in a separate column of the table.
Problems were noted, for example, when a hedge is in front of a building or
when the robot drives close to a bicycle stand and sees buildings and vegetation
through the bikes. A specific error occurred at the second stop (lower middle
stop) when a car stopped in front of the robot. Among the unambiguous images
89% where correctly classified. Note that the good generalization of AdaBoost
together with a suitable feature set is expressed by the fact that the classifier
was trained on images taken in a different environment and during a different
season.

‘ True | False | Ambiguous
| 764% | 9.4% | 142%

Table 4.7: Results for the building pointer. The column of ambiguous data represents
those images that have a mixture of building and nature where neither dominates.
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Figure 4.11: Using a virtual sensor to point out the class buildings along the mobile
robot path. Arrows indicate buildings and lines nonbuildings. (Aerial image ©Orebro
Community Planning Office.)
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B —
Figure 4.12: Example of a single sweep with the camera. The arrows point at images
classified as buildings and the lines point at nonbuildings.



4.7. EVALUATION OF A VIRTUAL SENSOR FOR WINDOWS 73

4.7 Evaluation of a Virtual Sensor for Windows

In the previous sections of this chapter, a virtual sensor has been presented.
To illustrate the concept experiments with the aim of detecting buildings were
presented. This section shows that the general approach defined for the virtual
sensor is not limited to building detection. A third class, windows, is introduced
in order to show that the set of features can be used to distinguish between
classes that have similar structure. Both buildings and windows have a large
content of vertical and horizontal lines, corners and rectangles.

4.7.1 Image Sets and Training

In the evaluation two sets of images, denoted A and B, are used. Set A consists
of images taken by handheld digital cameras and include images of buildings,
windows and nature. All nature images from Set 1 (Section 4.5.1) are included
in Set A. The building images consist of the building images from Set 1 with the
exception that a few images have been added to extend the image set and images
that only contained single windows, and therefore belong to the windows class,
were removed. Half of the window images were collected using a digital camera
and the other half using a mobile phone camera, see Section 2.4. Set B consists
of Set A extended with Set 3 consisting of Internet images of buildings and
nature>. The two image sets and the number of images in each set are listed in
Table 4.8. Examples of images in the window dataset are given in Figure 4.13.

Set | Windows | Buildings | Nature
A 100 50 50
B 100 100* 100*

Table 4.8: The number of images used for the tests. The images were collected with a
digital camera (5 megapixel Sony DSC-P92), with a mobile phone camera (2 megapixel
SonyEricsson K750i) and downloaded from the Internet. (* includes 50 from the Inter-
net.)

One virtual sensor is trained for each image class, i.e., one virtual sensor for
buildings, one for windows and one for nature. In the training process the im-
ages from the other two classes constituted the negative examples. The training
was based on 90% of the positive and negative examples and the evaluation
was performed on the remaining 10%. The selection of the training and test
sets was random and was repeated 100 times in the same manner as described
in Section 4.5.

31t was not as straightforward to search for windows as for buildings and nature images on the
Internet. Hence no images have been collected from the Internet for the windows class.
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Figure 4.13: Examples of images in the window dataset.

4.7.2 Result

The result from the evaluation of the different virtual sensors for image Sets A
and B is presented in Tables 4.9 and 4.10. Table 4.9 shows the true positive
rate, @7 p, the true negative rate, @7, the accuracy, ® 4.., and the normalized
accuracy* ® nqac.. Table 4.10 divides the false positive images into their true
classes. There are three columns with data extracted from the experiments.
One cell in each row refers to the true positive rate, ®7p from Table 4.9, and
the remaining two cells show the false positive rates for the respective classes in
the negative dataset. The diagonals in the tables should contain high numbers
and the other cells should contain low numbers.

Result for Set A The best results of the virtual sensors using the images taken
with the digital camera are achieved for the nature virtual sensor with an ac-
curacy of 98%. This shows that the feature set is able to separate man-made
structures from natural objects with a high detection rate. The accuracy for
the window virtual sensor and for the building virtual sensor is 87% and 89%

4The normalized accuracy ® nqc. is a value that takes the sizes of the positive and negative sets
into account and represents a value for the case when the number of positives equals the number
of negatives in the evaluated set. ® 4. can be calculated as the mean value of ®1p and @7 .
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Test | VS Set | ®rp [%] | @rn [%] | Pace [%] | Pnace [%]
1 Windows | A 94.3 79.1 86.7 7.2 86.7
2 Buildings | A 79.0 92.7 89.3+7.0 85.8
3 Nature A 98.6 97.6 97.8 £3.2 98.1
4 Windows | B 94.6 87.0 89.6 + 4.7 90.8
S Buildings | B 77.9 80.3 79.5 £ 6.9 79.1
6 Nature B 97.5 95.3 96.1 £ 3.3 96.4

Table 4.9: Results from the evaluation of the windows virtual sensor based on 100 runs.
drp is the true positive rate, @7y is the true negative rate, ® ac. is the accuracy, and
® Nqce is the normalized accuracy.

Test | VS Set | Wind. [%] | Build. [%] | Nat. [%]
1 | Windows | A 94.3 35.8 6.0
2 | Buildings | A 11.0 79.0 0.0
3 | Nature A 1.4 4.4 98.6
4 | Windows | B 94.6 23.6 2.3
5 | Buildings | B 24.1 77.9 15.2
6 | Nature B 2.9 6.4 97.5

Table 4.10: Results from the evaluation of the three virtual sensors (windows, buildings,
and nature), using 100 runs, and with the result separated into the three classes.

respectively. It can be noted that the window virtual sensor has a larger true
positive rate than the building virtual sensor. The reason for this is probably
that the building images often include parts of the surroundings like small parts
of vegetation and ground, while the surroundings of the windows are homo-
geneous walls. From Table 4.10 it can be noted that the nature virtual sensor
has a low false positive rate and that the other two virtual sensors show low
false positive rates for nature images (6 % and 0%). The window virtual sensor
has substantially more false positives from the building images than from the
nature images (36% versus 6%).

Result for Set B Test 4-6, which includes additional images from the Internet,
show the same tendency as Tests 1-3. The figures for Test 4 in Table 4.9 are
higher than for Test 1, while Test 5 and 6 show slightly lower results. The
largest change in Table 4.10 between Set A and B occurs for the building virtual
sensor (Test 2 and 5). The true positive rate is approximately the same as for
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Set A, but the false positive rate for windows has increased from 11% to 24%
and for nature from 0% to 15%.

The sets of building images are more closely related to the images of win-
dows and nature than window images are related to nature images. The sepa-
ration between the different classes is therefore harder for the building virtual
sensor, which is more evident when the Internet images with their larger variety
are introduced. For instance, the building images show buildings from larger
distances and some images also include vegetation, compare with Test 3 and 4
in Section 4.5.4.

4.8 Evaluation of a Virtual Sensor for Trucks

In this section, a virtual sensor for trucks is learned and evaluated. The image
sets used in the previous section are extended with images of trucks and trail-
ers. For the evaluation, virtual sensors for the four classes windows, buildings,
nature, and trucks are learned.

A virtual sensor for trucks is useful in outdoor environments since buildings
can be confused with other large objects and it can be beneficial to distinguish
between stationary and movable objects in any mapping process.

4.8.1 Image Sets and Training

Image sets A and B used in Section 4.7 are extended with images of trucks that
were collected manually using handheld digital cameras (Sony DSC-P92 and
SonyEricsson K750i) and downloaded from the Internet’. The new sets were
denoted as C and D, see Table 4.11. Examples of images from the truck dataset
are given in Figure 4.14.

Set | Windows | Buildings | Nature | Trucks
C 100 50 50 50
D 100 100* 100* 100*

Table 4.11: The number of different images used for the tests presented in this section.
The images were collected with a digital camera (5 megapixel Sony DSC-P92), with
a mobile phone camera (2 megapixel SonyEricsson K750i) and from the Internet (*
includes 50 from the Internet.).

As in the previous section, one virtual sensor was trained for each image
class, i.e., one virtual sensor for buildings, one for windows, one for nature
and one for trucks. In the training process the images from the other three
classes constituted the negative examples. The training was based on 90% of

S5Search terms “truck”, “lorry” and “lastbil” (lorry in Swedish) were used.
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Figure 4.14: Example of images in the truck dataset. The upper two rows show trucks
from set C and the lower two rows show truck images found on the Internet.

the positive and negative examples and the evaluation was performed on the
remaining 10%. The selection of the training and test sets was random and was
repeated 100 times in the same manner as described in Section 4.5.

The feature set that has been defined so far (features f; to foa) is based on
straight edges and gray levels. One typical qualitative feature that could be used
to detect vehicles is circular shapes from, e.g., wheels. In order to better capture
properties that can be related to vehicles, new features were introduced for
an additional test. These features aim to detect the vehicle’s tyres and circular

shaped fenders. The features added to the previously defined feature set are
defined as:

25. Number of circle segments in the image that covers at least 75% of a cir-
cle, measured by dividing the length of the edge segment by the estimated
perimeter of a found circle.

26. Number of circle segments in the image that cover between 25% and
50% of a circle.

27. Number of circle segments in the image that cover between 50% and
75% of a circle.
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28. Radius to distance ratio. The mean value of the two most similar radii is
divided by the distance between the circles. This feature is set to zero if
less than two circles have been found.

The search for circles makes use of the Random Sample Consensus (RANSAC)
algorithm [Fischler and Bolles, 1981] to map line segment points to circles.
RANSAC is used to fit a model to data and is known to accept a large portion
of outliers in the data. The used model for a circle is defined as a centre coor-
dinate and the radius of the circle. The algorithm randomly selects three points
from the dataset (three points are needed to define a circle) and calculates the
circle model that fits the selected points. The remaining points in the dataset
are evaluated against this model and those points that are within a tolerance
t; form a subset S;. The process repeatedly performs the random initialization,
compares the obtained subsets and stores the largest subset S;. The final model
of the circle is calculated using the least squares method based on the points in
the largest subset. During the experiments t; = 0.4 was used and the dataset
consisted of individual edge segments. Since straight lines can also be identi-
fied as circles if the radius is infinite, the radii of the circles and circle segments
were limited to half of the image height. A general RANSAC implementation
[Kovesi, 2000] was adapted to find circular shapes.

4.8.2 Result

The result from the evaluation of the different virtual sensors and image sets
is presented in Table 4.12. Test 1-8 refers to tests with the original 24 features
and Test 9-16 to the extended feature set. The rightmost column shows the nor-
malized accuracy (P nqacc), Which is the expected accuracy when using equally
large positive and negative evaluation sets.

Result for Set C From Table 4.12 it can be noted (comparing test 1-4 with
9-12) that the results for both ® 4. and @y, are better for three out of four
virtual sensors when using the feature set with 28 features. A small degradation
is seen for buildings, but more importantly, a notable improvement is seen for
the truck virtual sensor. The true positive rate has in fact decreased, but the true
negative rate has improved more, resulting in an increase of ® 4., from 81.5%
to 87.4%. For test 9-12 ® 4 varies from 86% for buildings up to almost
99% for nature.

Result for Set D Set D includes images collected from the Internet. It was
noted in previous sections that the sets of Internet images are not as consistent
as the images taken manually with digital cameras. This is clearly reflected in
the decreased accuracy for buildings, nature and trucks. The set of window
images does not include images from the Internet and for Test 5 and 13 the



4.8. EVALUATION OF A VIRTUAL SENSOR FOR TRUCKS 79

‘ Test ‘ 'S ‘ Set ‘ Prp [%] ‘ Qrn [%] ‘ P ace [%] ‘ PNace [70] ‘
1 Windows | C 92.9 85.3 88.4+£5.8 89.1
2 | Buildings | C 81.6 91.6 89.6 £5.8 86.6
3 | Nature C 96.6 98.3 98.0 £2.8 97.5
4 | Trucks C 91.6 79.0 8§1.5+7.38 85.3
5 | Windows | D 94.1 87.8 89.4 £ 4.8 91.0
6 | Buildings | D 73.3 82.8 804 £5.7 78.0
7 | Nature D 96.1 95.9 96.0 £ 2.8 96.0
8 | Trucks D 83.9 75.3 774 £5.6 79.6
9 | Windows | C 93.2 85.7 88.7+£5.5 89.4
10 | Buildings | C 81.4 91.0 8§9.1+54 86.2
11 | Nature C 98.4 99.0 98.9 £2.0 98.7
12 | Trucks C 89.6 86.8 8§74+ 7.1 88.2
13 | Windows | D 94.6 87.9 89.6 £4.5 91.3
14 | Buildings | D 78.9 81.9 81.2+£6.5 80.4
15 | Nature D 96.0 95.6 95.7+£3.2 95.8
16 | Trucks D 79.8 81.4 81.0+£5.5 80.6

Table 4.12: Results from the evaluation of the four virtual sensors for 100 runs. Test 1-8
use the original 24 features and Test 9-16 use the extended feature set with 28 features.
®rp is the true positive rate, Pry is the true negative rate, ® .. is the accuracy, and
® Nqce is the normalized accuracy.

accuracy has in fact increased slightly because the window images in Set D
constitute a relatively more homogeneous group of images compared to Set C.

Additional Features A few features intended to capture properties of trucks
were added to the feature set and the results are shown in Table 4.12, Test 9
to 16. For the truck VS the positive detection rate actually decreased, but the
accuracy was increased due to that the true negative rate increased more than
the true positive rate decreased. In Set C, the values of ® 4., are similar for all
virtual sensors except for the truck virtual sensor. Here the value has increased
from 81.5% to 87.4% and it can therefore be concluded that the use of the
additional features actually improved the overall result.

Comparing the results in the previous section, Table 4.9 with the result in
Table 4.12 it can be seen that the introduction of the set of truck images did
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not introduce any major differences to the overall result for the three other
virtual sensors.

To better understand which classes cause problems in the different tests, the
classification results have been separated. Table 4.13 shows the correspond-
ing figures. The first three columns are the same as in Table 4.12. Next, there
are four columns with data extracted from the experiments. One cell on each
row refers to the true positive detection rate (the diagonals), and the remaining
three cells show the false positive rates for the respective classes in the negative
dataset. The diagonals in the tables should contain high numbers and the other
cells should contain low numbers.

From the table it can be noted that the lowest numbers (low false positive
rate) occur for nature images classified by the window virtual sensor and for
window images classified by the nature virtual sensor. This indicates that win-
dows and nature are well separated by the selected features. One can also note
that the introduction of additional features decreased all false positive rates for
the truck virtual sensor (cf. Test 4 with 12 and Test 8 with 16).

| Test | VS | Set | Wind. [%] | Build. [%] | Nat.[%] | Truck [%] |
1 | Windows | C 92.9 29.4 0.0 14.6
2 | Buildings | C 13.9 81.6 1.8 4.0
3 | Nature C 0.4 2.4 96.6 3.4
4 | Trucks C 16.8 18.2 322 91.6
5 | Windows | D 94.1 21.1 0.8 14.7
6 | Buildings | D 24.5 73.3 9.1 18.1
7 | Nature | D 1.9 52 96.1 5.1
8 | Trucks D 26.1 32.1 16.0 83.9
9 | Windows | C 93.2 28.6 0.0 14.4
10 | Buildings | C 13.7 81.4 1.6 6.8
11 | Nature C 0.0 1.8 98.4 2.0
12 | Trucks C 9.9 13.6 19.2 89.6
13 | Windows | D 94.6 21.2 0.8 14.2
14 | Buildings | D 25.5 78.9 9.1 19.6
15 | Nature | D 1.7 52 96.0 6.4
16 | Trucks D 16.6 24.0 15.1 79.8

Table 4.13: Results from the evaluation of the four virtual sensors (windows, building,
nature, and trucks), using 100 runs with the original 24 features (Test 1-8) and the
extended feature set (Test 9-16), separated into the four classes.
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In this section a virtual sensor for trucks was introduced and an evaluation
of the virtual sensors for windows, building, nature, and trucks was performed.
Additional features that notably improved the performance of the truck class
(which was the intention) were introduced, but also the overall classification
result was improved. For Set C, images taken by the handheld cameras, high
accuracies from 87.4% up to 98.9% were achieved.

4.9 Summary and Conclusions

This chapter introduced the concept of a virtual sensor and presented instances
of virtual sensors for four classes: windows, buildings, nature, and trucks.
These virtual sensors use vision to classify the view and were trained using
categorized images (supervised learning). Virtual sensors relate the robot sen-
sor readings to human spatial concepts and are applicable, for example, when
semantic information is necessary for communication between robots and hu-
mans.

First, two classifiers intended for use on a mobile robot to discriminate
buildings from nature were evaluated. The results from the evaluation show
that high classification rates can be achieved, and that Bayes classifier and Ad-
aBoost give similar classification performance in the majority of the performed
tests. The number of wrongly classified images is reduced by about 50% when
the higher resolution images are used. The features that were used have scale
invariant properties, demonstrated by the cross resolution test where the clas-
sifier was trained with one image size and tested on another size. The benefits
gained from using AdaBoost include the highlighting of strong features and its
improved generalization properties over the Bayes classifier. The tests also re-
vealed that histogram of edge orientation is the best single feature in the feature
set for finding building images.

To show the ability to learn other virtual sensors using the defined feature
set, virtual sensors for windows and trucks were also learned and evaluated.
Without extension of the feature set, they performed very well, although the
performance of the virtual sensor for buildings degraded slightly. To even better
distinguish between similar concepts, features that capture specific characteris-
tic properties may be added to the feature set. This was shown for the virtual
sensor dedicated to detection of trucks. With a few new features, the result for
the accuracy of truck detection was notably improved.

It was also shown how a virtual sensor can be used for pointing out build-
ings along the trajectory of a mobile robot. In the performed experiment it
turned out that the feature set could also handle seasonal changes.

The suggested method using machine learning and generic image features
makes it possible to extend virtual sensors to a range of other important human
spatial concepts.






Chapter 5
Probabilistic Semantic Mapping

5.1 Introduction

In Chapter 3 the importance of semantic information and the possibilities that it
gives were discussed. It was noted that semantic information can, for instance,
facilitate human-robot interaction (HRI) but several other application fields
were also presented. A method to extract semantic information was presented
in Chapter 4, where a virtual sensor that relates sensor readings to human
spatial concepts was introduced. As one example, a virtual sensor for building
detection using methods for classification of views as buildings or nature based
on vision was described. The purpose was to detect one very distinctive type
of object that is often used by humans, for example, in textual description of
route directions.

A semantic map is an additional tool to represent semantic information and
can be used, for instance, to improve HRI. This chapter introduces a method
that fuses data from different sensor modalities, range sensors and vision sen-
sors, to create a semantic map of the environment. The method was applied
to an outdoor environment, but it is expected to also apply to indoor envi-
ronments with appropriate classifiers for the desired classes of objects to be
mapped. The introduced method for probabilistic semantic mapping combines
information from a learned virtual sensor with a standard occupancy grid map.
Here, this will be exemplified by using the learned virtual sensor for building
detection presented in Chapter 4. Pose information (location and orientation)
from the mobile robot together with the output from the virtual sensor is used
to estimate the directions to detected buildings. These directions are used to
update the occupancy grid map with semantic information. The result is a se-
mantic map with two classes: ‘buildings’ and ‘nonbuildings’. A probabilistic
approach is applied in order to cope with uncertainty in the output from the
virtual sensor, both uncertainty in the classification and uncertainty regarding
which part of the image caused the classification.

83
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5.1.1 Outline

Section 5.2 describes the process of building a probabilistic semantic map. Im-
ages taken by a mobile robot are fed into a virtual sensor learned for a specific
class. Based on the result from the virtual sensor and the robot pose, local maps
showing connected regions' representing the detected class are created for each
robot position where images have been acquired. The local maps are then fused
into a global probabilistic semantic map.

For the experiments an omni-directional camera mounted on the mobile
robot giving a 360° view of the surroundings was used. From the omni-direct-
ional image N, planar views are created with a horizontal field-of-view of
A degrees (the values of N, and A are provided in Table 5.2). These planar
images are used as input to the virtual sensor. The process of calculating the
planar views and descriptions of the experiments are given in Section 5.3. An
evaluation of the results is given in Section 5.4, followed by a discussion in
Section 5.5 that concludes this chapter.

5.2 Probabilistic Semantic Map

In this section a probabilistic approach to semantic mapping is presented. The
objective is to take an occupancy grid map and introduce semantic labelling
of the occupied cells. The semantic information comes from the output of a
learned virtual sensor. It is assumed that an occupancy grid map including oc-
cupied cells that represent objects of the class of interest exists. An occupancy
grid map can be built using a laser scanner or stereo vision for example.

The result from the virtual sensor applies for the whole input image. This
means that all objects within the view are assumed to belong to the same class.
To focus the attention on the main objects in the view, probabilities assigned
for single objects are adjusted according to their proportions of the view, see
Section 5.2.1.

The process of building the semantic map is divided into two steps. In
the first step connected regions that are within view of the virtual sensor are
searched in the grid map, and a local semantic map is created around the robot.
In the second step the local maps are used to update a global map using a
probabilistic method. The result in this case is a global semantic map where
connected regions for buildings and nature can be distinguished.

Both the local maps and the global map are grid maps of the same size
as the occupancy grid map and with the same cell size. Each cell can have a
value P, in the interval [0, 1]. The maps are initialised with all cells set to
unknown (P = 0.5) and are then incrementally updated as the robot travels
along the trajectory and evaluates the views with the virtual sensor. In this

LA connected region is understood as a connected component in a binarized occupancy grid
representing the real object that caused the occupied area in the map.
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chapter the virtual sensor for building detection is used and the resulting map
will then contain the three following classes; buildings (P > 0.5), nature
(Peey < 0.5) and unknown (P.eyy = 0.5). Empty and unknown cells in the
original occupancy grid map are not affected by the mapping, only the occupied
cells are considered.

5.2.1 Local Semantic Map

Throughout this chapter it is assumed that an occupancy map has been built
or is built during the mobile robot motion. The local semantic map is a prob-
abilistic representation of a sector in the occupancy map as seen by the robot.
The sector is defined by the robot pose, the direction of the virtual planar cam-
era (Section 5.3.1), the opening angle 6 of the sector (related to the classified
camera image) and the expected maximum range Ly s of the virtual sensor, VS.
The horizontal covering angles {a;} = a1, s, ..., ay, of all connected regions
within this sector are calculated. A sector is illustrated in Figure 5.1.

by
v

Figure 5.1: Tllustration of a sector with an opening angle 6, representing the view of the
virtual sensor. Two connected regions are found (the grey rectangles) within the sector
and their respective sizes are represented by a; and «o.

The sum of the horizontal covering angles cannot exceed the value of the sector
opening angle 6:

S <0 (5.1)
i=1

The outlines of the connected regions found in the sector constitute the local
map. These regions shall be assigned a probability based on the classification
performed by the virtual sensor. As previously mentioned it is assumed that
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larger objects are more likely to affect the virtual sensor. The larger regions in
view are therefore given a higher probability than smaller regions.

Probabilities P;(class|VS™*, a;) are assigned to the n regions in view (defined
by the sector) in relation to their perceived size, measured by the horizontal
covering angles «;, using the following expression:

P(class|VST, ;) = % + S (P(class|VS™) - %) (5.2)
where P(class|VS™*) is the conditional probability that a view is class when the
virtual sensor classification at sensor reading T is class. With Equation 5.2, the
probabilities P;(class|VS™, a;) are assigned a value that is within the interval 0
to 1 and proportional to the perceived region sizes and P(class|VS™*).

P(class|VS™ ) is assigned different values depending on the output of the
VS. The two combinations that are interesting for calculating P(class|VS™®),
here examplified with buildings and nonbuildings, are:

P(build[VS=build) > 0.5

P(build[VS=—build) < 0.5 (3:3)

P(class|VS™) = {
With this setting P;(class|VS™*, a;) will always be assigned a value larger than
0.5 when the virtual sensor detects a building, and a value below 0.5 when a
view is classified as a nonbuilding.

One problem in the practical use of the local semantic map is the selection
of the parameters P(class|VS™*). In situations where the performance of the
virtual sensor is well known, the parameters can be determined based on this
performance. The internal relation of the parameters should then reflect the
probability of false readings in order to handle these in the best way. This
approach has not been investigated due to reasons described in Section 5.3.4.
Instead, in the experiments described further on in this chapter the parameters
in Equation 5.3 were learned in a test run with the mobile robot.

5.2.2 Global Semantic Map

The second step deals with the global semantic map, which is updated whenever
a new local semantic map is available. The standard Bayes update equation (as
described in, e.g., Thrun et al. [1998]) is used to update the global semantic map
with the local semantic map produced in the previous step. In the following it
is shown how an individual grid cell at position (x,y) is updated based on a
technique for updating occupancy grid maps.

The probability that grid cell (z, y) is occupied after T sensor readings is de-
noted by P(occ, ,|st, 8%, ..., sT*) where s’ denotes a sensor reading. Assuming
that the conditional probability P(s®*)|occ,.,) is independent of P(s(™)|occ, )
if t # 7 (known as the Markov property), the probability at (x,y) can be com-
puted as:
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—1
1Ty 1 Pyrior Ts P(occy,y|5) 1=Pprior
P(OCCz,y|S ) =1 (1 + Alfpprior HT:]. 1—P(occz y[5T)  Pprior .
(5.4)

A second assumption that the prior probability for occupancy, P,ior, can be
set to 0.5 simplifies Equation 5.4 to:

. T, P z.y s(7) -1
Plocey st T) = 1= (14 12y (Pprer o 05) (5:3)

This equation can be rewritten to a recursive update formula. From Equation
5.5 we can write

Ts—1 P(occg, y|s( o1y —1
Hril 1_1(30((:“’:';5(3)) = (1 — P(OCCm7y|$1 Ts 1)) — 1=

(5.6)

P(occy y|stTs 1

1—P(occy y|stiTs—1)

Substituting Equation 5.6 in Equation 5.5 results in the recursive update for-
mula

P(occy |stTs) =
1 (1+ P(occy y|s5 7571 P(occy,y|s™®) )_1 (5.7)

1—P(occy,y|stTs—1) 1—P(occy,y|sTs)

In our case the sensor reading s+ is the output VS’* from the virtual sensor at
sensor reading Ts and the grid cells are assigned a probability denoting whether
they belong to class. Using these notations Equation 5.7 is rewritten as:

P(class|VS"T+) =
1—(1+ P(class|VS*Ts =) P(class|VS™s) -1 (58)
1—P(class|VSTTs =1) 1— P(class|VSTs)

which is the update formula used for the grid cells of the global semantic map
(the grid cell index (z,y) has been left out). The resulting global semantic map
will contain three different classes:

Building if P(class|VS*T*) > 0.5
Unknown if P(class|VS*"*) = 0.5 (5.9)
Nonbuilding if P(class|VS*"*) < 0.5

where the degree of certainty for Building is higher close to 1 and the degree of
certainty for Nonbuilding is higher close to 0.
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5.3 Experiments

In this section the experiments that have been performed to validate the above
presented method are described. The semantic information comes from the vir-
tual sensor that was trained using AdaBoost. This training was performed using
images with 240 pixels side length, images taken from image set 1 defined in
Section 4.5.1. In the evaluation of the method, images from virtual planar cam-
eras were used as input to the virtual sensor. The virtual planar cameras are
described in Section 5.3.1.

The two datasets that were used in the experiment are described in Section
5.3.2. The calibration of the parameters was based on the first of these datasets.
The validation was performed using three different occupancy grid maps, see
Section 5.3.3. The calibration is described in Section 5.3.4.

5.3.1 \Virtual Planar Cameras

In Chapter 4, a digital camera mounted on a pan-tilt head was used to create
a panoramic view with approximately 280° horizontal field-of-view. A sweep
of the pan-tilt head requires a few seconds, making the data acquisition time-
consuming. In order to acquire a 360° field-of-view panoramic image in one
single shot, an omni-directional camera is used here. As an additional benefit,
the centre of the image plane is now the same throughout the whole panoramic
view.

The robot used in the experiments, a Pioneer P3-AT from ActivMedia, is
fitted with an omni-directional camera. The camera is a standard consumer-
grade SLR digital camera (Canon EOS350D, 8 megapixels). On top of the lens,
a curved mirror from 0-360.com is mounted. Further details on the equipment
are given in Section 2.2.

The camera-mirror combination produces omni-directional images that can
be unwrapped into high-resolution spherical images (also referred to as pano-
ramic images) by a polar-to-Cartesian conversion. From a large spherical image,
smaller planar images are extracted, using projections, as they would appear
for a regular camera. Figure 5.2 shows an example of the omni-directional
image, the unwrapped image, and some planar images. For details on camera
projections, see for example Hartley and Zisserman [2004].
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Figure 5.2: The upper part of the figure is one of the omni-directional images used in the
experiments, the middle part is an unwrapped version of the same image, and the lower
part shows some planar images extracted from the unwrapped image. One can note
that the omni-directional image only uses about 30% of the available 8 megapixels,
giving that the effective number of pixels in the omni-image is about 2.4 megapixels.
The unwrapped image has 2.2 megapixels.
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5.3.2 Image Datasets

Two datasets are used for the experiments described in this chapter, see Table
5.1. The datasets consist of omni-images and pose information acquired by the
mobile robot. Each omni-image was converted into eight planar images, where
each planar image has a resolution of 320 x 320 pixels and covers a horizontal
and vertical field-of-view of 56°. This means that there is a small overlap be-
tween planar images generated from the same omni-image. This overlap was
introduced in order to reduce the probability that information on the image
border would not be taken fully into account. Examples of the planar images
are given in the lower part of Figure 5.2. In total 2384 planar images were
used for the experiments. The images were collected at Orebro Campus and
the mobile robot trajectories are shown in Figure 5.3. Differential GPS (DGPS)
and odometry were used to compute the robot poses (position and orientation)
along the trajectory, see Appendix B.3. Other alternatives for pose estimation,
such as SLAM (Simultaneous Localization and Mapping), could also have been
used.

Figure 5.3: The figure shows the trajectories for the two datasets used for training (Set
1) and evaluation (Set 2) respectively. Set 1 is the right trajectory (dashed) and Set 2
is the left trajectory (solid). The starting points are marked with circles. (Aerial image
©Orebro Community Planning Office.)
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Set | Omni-images | Planar images | Length
1 88 704 146 m
2 210 1680 317 m

Table 5.1: Image datasets used for the semantic mapping experiments.

5.3.3 Occupancy Maps

The evaluation part of the semantic mapping experiment was repeated with
three different occupancy maps. These maps cover parts of the area shown
in Figure 5.3. The first map is a handmade occupancy map. Using the aerial
image presented in Figure 5.3, the occupancy map shown in Figure 5.4 was
constructed. The building outlines and groups of trees around the trajectory
have been marked as filled polygons by hand and this occupancy map is binary,
i.e., a grid cell is either empty or occupied.

p

-
.A
e
P e W v
L "
Figure 5.4: The handmade occupancy map. The two building regions are marked with

a ’B’. All other regions are nonbuildings. This map with the labels also serves as the
ground truth in the evaluation.

The second map covers the last two thirds of Set 2, see Figure 5.5(a). This
map is created using 2D laser readings from the SICK laser range finder, hor-
izontally mounted in front of the robot, see Section 2.2. The resulting map is
shown in Figure 5.5(b). The reason why the first third of the dataset was not
used is that it was not feasible to create a consistent map from the 2D laser
range data since the robot trajectory included elevated terrain.

The third map is based on 3D-scans obtained by tilting the laser range scan-
ner. In this case only readings with a minimum height of 2 meters were consid-
ered in the occupancy map. This eliminates some cars and bushes. The resulting
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(b) The occupancy map based on measurements using a 2D-laser range finder.
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(c) The occupancy map based on measurements using a
3D-laser range finder.

Figure 5.5: The two occupancy maps based on 2D- and 3D-laser range finders.
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occupancy map, shown in Figure 5.5(c), is based on data from the first half of
Set 2 (the part where 3D-data were collected).

In the experiments, binarized occupancy grid maps were used, where either
an empty grid cell (0) or an occupied grid cell (1) is represented. However,
probabilistic occupancy maps could also be used directly with the suggested
algorithm. Since it is assumed that the grid cells in the occupancy map are in-
dependent from the output of the virtual sensor, the values of the grid cells
in the occupancy map can be seen as another sensor reading and the proba-
bilistic semantic map is updated with an expression corresponding to Equation
5.8. Provided that nonbinarized occupancy grid maps are used, an alternative
procedure for definition of objects in the sector has to be defined.

5.3.4 Used Parameters

Table 5.2 lists the important parameters for constructing the planar camera
views and the probabilistic semantic maps. These parameters can be adjusted
to change the desired properties of the system, for instance:

e P(build|VS=build) versus P(build|VS==build) is related to the perfor-
mance of the virtual sensor.

¢ The sector opening angle 6 should be related to the planar camera field
of view. By decreasing 6 the result from the virtual sensor focuses on the
central parts of the planar image.

In our work the last four parameters (planar camera field-of-view - grid cell
size) were set according to Table 5.2. The setting of the first three parame-
ters (the sector opening angle 6 and the probabilities P(build|VS=build) and
P(build|VS==build)) have been varied in order to optimize the performance
of the system. It would be preferable to be able to relate P(build|VS=build)
and P(build|VS=—build) directly to the classification rate of the virtual sensor.
However, in reality there are a lot of views that contain a mix of buildings and
nature that make a proper ground truth evaluation difficult. It was therefore
decided to set the parameters based on the evaluation of the performance of
the complete system including the virtual sensor and the map building algo-
rithm. Set 1 was used for learning the first three parameters in Table 5.2 and
these parameters were then evaluated using Set 2 in Section 5.4.

In total 21 combinations of different field-of-views 6 and probability pairs
were evaluated in order to find a good combination of parameters. This evalu-
ation was performed using dataset 1. The following three 6 were used: 56°, 45°,
and 30° and the following seven probability pairs (P(b|VS=b), P(b|VS=-b)):
(0.8, 0.3), (0.8, 0.4), (0.8, 0.45), (0.9, 0.3), (0.9, 0.4), (0.9, 0.45), and (0.95,
0.48). With 0=56° the field-of-view is the same as for the virtual sensor. With
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Parameter Value Description
P(build|VS=build) | learned (> 0.5) | Building probability
P(build|VS==build) | learned (< 0.5) | 1 - Nature (nonbuilding)
probability
0 learned (30-56) | Sector opening angle [deg]
56 Planar camera field-of-
view [deg]
Npy 8 Number of planar views
Lys 50 VS maximum range [m]
- 0.5 Grid cell size [m]

Table 5.2: Description of parameters used as settings for the planar camera views, sector
size and the probability maps.

6=45° there is no overlap in the local maps belonging to the same position. Us-
ing #=30° it was intended to see how the system works when only the centre of
the virtual sensor’s field-of-view is used and the border parts are neglected.

One can note that P(build|VS=build) was selected to be always proportion-
ally larger than P(build|VS==build). There are several reasons that motivate
this asymmetry. The main reason is that the virtual sensor for building clas-
sification produces substantially more false negatives than false positives (see
Section 4.5.1). A second reason is that it is more common with visible nature
in front of buildings than vice versa. A third reason discovered during the ex-
periments is that open views often were classified as nonbuildings. This affects
the result since as the robot drives along a straight road, both the forward and
backward looking views were classified as nature. The problem with this was
that parts of the building close to the road were included in these sectors giving
many false updates. Accordingly, we tend to have little confidence in classifi-
cations as nonbuilding, expressed by a value of P(build|VS==build) close to
0.5.

For each parameter combination the following measures were calculated:

¢ The true positive building detection rate, ®7p. Number of cells correctly
classified as building / number of building cells included in the sectors.

¢ The true negative detection rate, 7. Number of cells correctly classified
as nature / number of nature cells included in the sectors.

The measures were calculated based on the final global semantic map and use
the sum of the true rates (X = ®rp + ®ry) as the primary selection criterion.
Combination 6 (6 = 56°, P(build|VS=build) = 0.9, P(build|VS==build) = 0.45)
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Test | 6 [°] | P(b[VS=b) | P(b|VS=-b) | ®rp [%] | ®rx [%] | 21 [%]
1 | se 0.80 0.30 33.1 96.0 129.1
2 | s 0.80 0.40 63.8 91.0 154.8
3 | s6 0.80 0.45 76.8 88.2 165.0
4 | se6 0.90 0.30 52.0 94.2 146.2
5 | s6 0.90 0.40 71.2 90.3 161.5
6 | 56 0.90 0.45 80.2 86.6 166.8
7 | s6 0.95 0.48 90.1 73.4 163.5
8 | 45 0.80 0.30 26.5 97.1 122.6
9 | 4s 0.80 0.40 54.9 91.8 146.7
10 | 45 0.80 0.45 71.3 88.0 159.3
11 | 45 0.90 0.30 44.5 94.8 1393
12 | 45 0.90 0.40 65.0 90.5 155.5
13 | 45 0.90 0.45 80.8 87.2 168.0
14 | 45 0.95 0.48 88.3 76.7 165.0
15 | 30 0.80 0.30 22.9 95.6 118.5
16 | 30 0.80 0.40 46.5 91.4 137.9
17 | 30 0.80 0.45 73.8 89.5 163.3
18 | 30 0.90 0.30 35.9 93.6 1295
19 | 30 0.90 0.40 69.1 90.0 159.1

20 | 30 0.90 0.45 75.4 88.6 164.0
21 | 30 0.95 0.48 81.1 79.4 160.5

Table 5.3: Parameters and detection rates for Set 1. The letter b in P(b|VS=b) is short
for building.

and combination 13 (§=45°, P(build|VS=build) = 0.9, P(build|VS=—-build) =
0.45) resulted in the highest detection rate, see Table 5.3, and hence, these com-
binations result in the lowest total false rate.

5.4 Result

We use Set 2 to evaluate the semantic map and present the result for the two
best parameter settings (combination 6 and 13) as found in the previous section.
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5.4.1 Evaluation of the Handmade Map

The semantic map based on the handmade occupancy map and data from Set
2 (combination 6) is presented in Figure 5.6. It can be noted that most of the
outlines of the connected regions were correctly labelled. Small parts that are
not correct are the rightmost part of the building (marked with ‘a’) and a part
of a grove close to the left building (marked with ‘b’). At ‘a’ there is a conifer
in front of the building and at ‘b’ the view shows a building behind some tree
trunks. Both these two problems originate from scenes including a mixture of
building and vegetation.

Resulting map for data set 2

Figure 5.6: The resulting map using dataset 2. The outlines of both building and nature
regions are correct to a large extent.

Table 5.4 presents the detection rates for Set 2. The first row shows the re-
sult for combination 6 and the second row for combination 13. The evaluation
was performed based on all cells in the grid map that are not equal to 0.5. The
true detection rates are all equal to or higher than 96.9% and combination 6

gives a slightly better result than combination 13 (it was the other way around
for Set 1).

5.4.2 Evaluation of the Laser-Based Maps

The semantic maps created using the occupancy maps obtained from the 2D
and 3D laser range measurements are shown in Figures 5.7 and 5.8. From a
qualitative visual inspection, one can note that the main problem in the 2D-
version is that the occupancy map contains connected regions originating from
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Test Orp [%] | @y [%] | Prp [%] | Pry [%]
Handmade (6) 98.3 98.7 1.3 1.7
Handmade (13) 96.9 98.4 1.6 3.1
Laser 2D (6) 87.1 73.1 26.9 12.9
Laser 2D (13) 88.5 72.8 27.2 11.5
Laser 3D (6) 94.1 95.0 5.0 5.9
Laser 3D (13) 96.4 97.3 2.7 3.6

Table 5.4: Results for parameter combination 6 and 13 using dataset 2 with 3 different
occupancy maps. The columns contain the true positive, the true negative, the false
positive, and the false negative rates.

objects with low height, indicated by the ellipses in Figure 5.7. Since the images
from the camera include also buildings behind these objects, which are mainly
bushes, the output from the virtual sensor indicates buildings. These bushes
have therefore been classified as buildings in the semantic map, see the marked
areas in Figure 5.7. These problems do not occur in the 3D-version. In the 2D
map also some single small trees have been classified as buildings where there
are buildings in the background of the image. This again shows the problem of
mixtures of different classes in the image, in this case between small objects in
front of a building.

Quantitatively, the results in Table 5.4 also show that the input of a 2D-
laser based occupancy map does not deliver as high true positive rates as the
handmade map and the 3D-laser based map. The trajectories only partly cover
the same area, so the results are not fully comparable. Still, it can be noted that
the false positive rate is around 27% for the test using the 2D-laser based map,
while it is below 5% for the test using the 3D-laser based map. This difference
originates from the low vegetation mentioned above.

5.4.3 Robustness Test

To evaluate the robustness of the system, two different Monte Carlo simula-
tions [Metropolis and Ulam, 1949] were performed using the handmade oc-
cupancy map. First, the sensitivity to changes in robot pose was tested (pose
noise) and second, the dependency on variations in the detection rate of the
virtual sensor was evaluated (classification noise). The uncertainty is modelled
with zero mean Gaussian noise defined by the standard deviation o for the
position, op,s = 2 m, and direction, og4;; = 5°. The position uncertainty is
approximately the accuracy of standard GPS. Table 5.5 shows the result for
Monte Carlo simulations with 20 runs per test. The first two rows contain
results after introducing additional pose uncertainty. The detection rates are
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Figure 5.7: The semantic map based on the 2D-laser occupancy map. The ellipses mark
bushes classified as buildings.

Figure 5.8: The semantic map based on the 2D-laser occupancy map.

slightly lower than the comparable ones presented in Table 5.4 (and repeated
in Table 5.5). The total average detection rate> has decreased from 98.1% to
96.3%. A degradation is expected when errors are introduced and in this case,
the pose errors resulted in a small degradation showing that the system have a
robust behaviour.

The second two rows contain the result with classification noise. Here 5%
of the classifications obtained from the virtual sensor were randomly changed
(building to nature and vice versa). One can note that the result for building
detection is close to the nominal case (average 97.0% compared to 97.6%), but

2 Average of & p and @7 for parameter combinations 6 and 13.
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that nature detection is clearly affected by the changed detection rates of the vir-
tual sensor (average 81.7% compared to 98.5%). This indicates that the prob-
abilities P(build|VS=build) and P(build|VS==build) are crucial for the system.
Introducing an additional error of 5% to the nature classifications results in a
considerable drop of the correct nature classifications if this additional error is
not reflected in the probability P(build|VS==build).

To demonstrate better handling of false nature classifications the tests with
classification noise were repeated for parameter combinations 3 and 10. With
the lower building probability (0.8) the ® pp-rates were halved, from 15% and
21% to 7% and 9% respectively.

Test Orp [%] | Prn [%] | Prp [%] | Py [%]
6 (pose noise) 95.8+3.6 97.5£1.0 2.5£1.0 4.2+3.6
13 (pose noise) 94.6+2.8 97.2+1.2 2.8£1.2 5.4+2.8

6 (classification noise) 97.6+1.2 84.743.7 | 15.3+£3.7 | 2.4£1.2
13 (classification noise) | 96.54+1.0 78.746.2 | 21.3+6.2 | 3.5+1.0
6 (nominal case) 98.3 98.7 1.3 1.7
13 (nominal case) 96.9 98.4 1.6 3.1
3 (classification noise) | 95.8 £1.6 | 92.6 £4.2 | 74+4.2 | 42+ 1.6
10 (classification noise) | 93.3 £2.5 | 90.5 £3.6 | 9.5+3.6 | 6.7+ 2.5

Table 5.5: Results for dataset 2. The first two rows show the results with pose uncer-
tainty and the second two rows contain the result with classification noise. The results
are presented with the standard deviation over 20 runs per test. The third two rows
contain the nominal values taken from Table 5.4 and the fourth two rows include data
for comparison with a second building probability.

5.5 Summary and Conclusions

In this chapter it was shown how a virtual sensor for pointing out buildings
along the trajectory of a mobile robot can be used in the process of building a
probabilistic semantic map of an outdoor environment. The presented results
show that with the probabilistic mapping algorithm the uncertainty in the se-
mantic labelling can be reduced. The method handles the wide field-of-view of
the planar camera (56°) including objects that can belong to different classes.
Despite the fact that the location of the classified object in the image is not
known, an almost correct semantic map is produced. The map produced was
found to be very robust in the presence of pose uncertainty both for build-
ings and nonbuildings. The experiments where classification noise was added
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showed that a correct selection of prior probabilities is essential for the overall
performance.

From the experiments described in this chapter, several benefits of using
the virtual sensor with its good generalisation properties have been noted. The
virtual sensor produces useful results even though:

1. The training set was quite limited. In total only 80 low resolution images
with side length 240 pixels were used.

2. The resolution of the planar images (320 x 320 pixels) was different com-
pared to the one used in the training phase.

3. The training was performed with images taken with a standard digital
camera, but the images used during the experiment were planar images
extracted from the omni-directional vision system onboard the mobile
robot.

In the evaluation of the semantic map it was noted that one type of occupancy
map did not produce as good results as the others. This was the occupancy
grid map that was based on 2D-laser readings. Such a map, where the data
have been collected in a horizontal plane close to the ground, is not optimal for
finding building outlines. It is therefore recommended that objects represented
by the occupancy grid map should have a minimum height, especially when the
objective is to find objects of a particular height, such as buildings.

An extension to the semantic map presented here would be to refine the
virtual sensor so that it can point out the parts of an image that are mainly
responsible for the classification. This will further improve the separation be-
tween different objects. The problem with the separation was most evident in
the case with the occupancy map based on 2D-laser, since that map included
connected regions representing objects with a low height. For the handmade oc-
cupancy map and the 3D-laser-based map, where only readings above a height
of 2 m were considered, this problem was not observed. To refine the virtual
sensor, classification of sub-images could be used. An example of such a tech-
nique is described in [Morita et al., 2005] where small squares of the upper half
of images are classified as tree, building and uniform regions. The result from
the classifier was used for localization in previously visited areas.

This chapter described the construction of a probabilistic semantic map.
Wide angle views have been used and the results were good. The objects ob-
served in the experiments have a certain size which can explain why the wide
angle views produced good results. If classes of smaller objects should be in-
cluded in a semantic map, views with a smaller field-of-view should be used in
order to better localize the objects of interest. An example of such a map would
be to add information from the virtual sensor for windows.
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Chapter 6
Building Detection in Aerial Imagery

6.1 Introduction

Detection of man-made structures, such as buildings, roads and vehicles, in
aerial or satellite images has been an active research topic for many years.
Aerial images, with their highly detailed contents, are an important source of
information for applications including GIS, surveillance, etc.

This chapter discusses the extraction of man-made objects (buildings) from
aerial imagery and gives examples of existing systems for automatic building
detection. Without aiming at an exhaustive overview, the purpose is to give
a background on extracting information from aerial images and to exemplify
the problems when only monocular aerial images are used. The complexity
of a system handling multiple view or stereo images is beyond our interest.
Monocular images can be accessed more and more easily through the Internet
and avoid complications that would arise from using stereo or multiple view
images.

The content has been restricted to the fields that are of interest for our
research, which include models, strategies, technologies and algorithms for ex-
traction of buildings. Automatic detection of man-made structures is not yet
a fully mature subject. Presented systems are often limited to certain types of
images giving a strong dependence on a specific source of input data to obtain
good performance.

Extraction of man-made structures from aerial images is a difficult task
due to many reasons. Aerial images have a high level of structured and un-
structured contents. Images differ in scale (resolution), sensor type, orientation,
quality, dynamic range, light conditions and due to different weather and sea-
sons. Buildings may have rather complicated structures and can be occluded by
other buildings or vegetation. Together this makes building detection a chal-
lenging problem.
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6.1.1 Outline

The chapter starts by introducing digital aerial imagery in Section 6.2. This
includes aspects of image sensors, carriers, and manual feature detection, in-
tended to facilitate the understanding of the extraction procedure and give ideas
for improvement of existing implementations. Section 6.3 reviews methods for
building detection in aerial images and the use of additional information, e.g.,
maps, to improve the performance is described. The chapter is concluded in
Section 6.4.

6.2 Digital Aerial Imagery

The main information source in this work is a single digital aerial image from
which buildings and other relevant structures should be extracted. Digital im-
ages can be divided in different ways, e.g., (a) panchromatic (monochromatic)
and multi-chromatic, (b) low, medium and high resolution, and (c) stereo and
mono.

Aerial images can be captured by cameras onboard satellites, spacecraft,
aircraft and unmanned aerial vehicles (UAVs). Images may be of multi-band
type including both the infrared (IR) and the visual wavebands. The use of
aerial images for mapping is interesting for several reasons:

e Satellites cover and can photograph most interesting areas on the earth,
even though there are some areas that are always cloudy and cities that
are covered in smog most often.

o Satellite images are regularly updated.

¢ Aerial photos, for instance taken by UAVs, can give real-time coverage
of an area.

6.2.1 Sensors

Our main interest is in aerial images taken with daylight cameras!. The reason
for this is that daylight cameras are probably the most common type of image-
based sensors. There are other image-based sensors that can provide more suit-
able information but these are not so common. In scientific applications sen-
sors are often combined to enhance the operational use. Some properties of
four types of sensors used for remote sensing onboard aerial vehicles are listed
below:

Daylight cameras, usually monochrome or colour CCD cameras, give high res-
olution and high update rate. Monochrome cameras used to be most

IDaylight cameras should be understood as cameras that capture the visual wavebands.
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common in existing systems since they traditionally gave higher reso-
lution, but colour cameras are more frequently used in recent systems.
Drawbacks of daylight cameras are their sensitivity to light conditions
and reduced visibility.

IR cameras are often used in remote sensing tasks, for instance in detection
of green vegetation. With wavelengths of typically 7-12 um IR sensors
operate independently of the light conditions and are well suited for, e.g.,
search operations.

Image radar, SAR (Synthetic Aperture Radar), can give high resolution 3D im-
ages and has all-weather capacity, but low update frequency.

Lidar, light detection and ranging, uses laser to give high resolution 3D images
independent of light conditions. It gives high accuracy in depth measure-
ment and airborne Lidar systems can cover large areas (altitudes from
1500 m up to 3500 m are possible) and are useful for distinction between
buildings and the ground surface.

For frequent updating of aerial images, aircraft and UAVs are typically used as
sensor carriers. The four types of image sensors listed above are available today
for use onboard UAVs.

Additional information that can aid the extraction process may be provided
by, for instance, elevation data, city maps, and GIS. Airborne laser range scan-
ners have been used to build accurate 3D-models [Soderman et al., 2004] and
SAR images, multi-spectral images, and high resolution satellite images have
been used in building detection [Tupin and Roux, 2003, Xiao et al., 1998].

6.2.2 Resolution

The resolution of aerial and satellite images is often divided into ‘low’,
‘medium’, and ‘high’, where the resolution in meters per pixel for satellite im-
ages is: 30 m for low resolution, 10 m for medium resolution and 1 m for high
resolution, and for aerial images: high resolution is below 0.2 m and low res-
olution is above 1 m pixel size. These numbers differ in the literature but the
values given above indicate their normal sizes.

6.2.3 Manual Feature Extraction

When identifying features in an aerial image one has to consider that the photo-
graph is taken from above with the result that the objects do not look familiar.
Below, a number of factors [US Army, 2001] are listed that can be considered
during the recognition phase. For identification of an object several of these
factors have to be used.
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Size The dimension of an object is important in the identification process.
The size, either measured from the image scaling or by comparison with
known objects in the image, can help to classify different types of objects.

Shape Shape can be used to separate man-made structures from natural ones.
Man-made structures often have straight or smooth curved lines while
natural structures are typically more irregular. For example, compare a
canal and a river.

Shadows Shadows can be very helpful since they show a familiar view of the
object, e.g., an antenna tower may be hard to detect in an image but its
shadow is revealing. Shadows can also be used in height estimation of
objects.

Shade Shade refers to the grey tone or texture (surface) of objects as they ap-
pear in the image and can, e.g., be used to find areas with surfacing in an
even tone, such as asphalt.

Site An object can be recognized by its location in the image and its relation to
surrounding objects. For example, the spacing between objects can reveal
man-made influence in a natural environment.

From available papers on automatic extraction, shape, as defined by edges,
seems to be the most popular feature in building detection. Techniques for use
of shading are difficult to apply to real images [Lin, 1996].

6.3 Automatic Building Detection in Aerial Images

A survey by Mayer [Mayer, 1999] focuses on extraction of buildings. Seven
systems developed between 1984 and 1998 were assessed according to a num-
ber of criteria. The author concentrated on models and strategies in this survey
and the survey concludes that scale, context and 3D structure were the three
most important features to consider for object extraction in aerial images.

In the following subsections a few systems that represent different ap-
proaches to automatic building detection are presented. They are divided into
three groups based on the type of information that is used. The first group
deals with systems that use monocular images (2D), the second group are sys-
tems with access to elevation information (3D) and the third group make use
of maps or GIS for the detection of buildings in the aerial images.

6.3.1 Using 2D Information

A basic system for detection of buildings in monocular images taken from a
nadir? view may include i) edge detection in a greyscale image ii) line determi-

2 An image taken from a nadir view is taken from a zenith position. The opposite is an oblique
view where the image is taken at an angle.
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nation, and iii) search for buildings represented as ortho-polygonal lines [Car-
doso, 1999].

In [Persson et al., 2005] we describe a system for automatic detection of
buildings in aerial images, also taken from a nadir view. Our system builds two
types of independent hypotheses based on the image content. A colour based
segmentation process implemented with ESOM, an Ensemble of Self Organiz-
ing Maps, is trained and used to create a segmented image showing different
types of roofs, vegetation and sea. A second type of hypotheses is based on an
edge image produced from the aerial photo. Here, a line extraction process uses
the edge image as input to find straight line segments that represent edges. From
these edges, corners and rectangles that represent buildings are constructed. A
classification process uses the information from both hypotheses to determine
whether the rectangles belong to buildings, unsure buildings or unknown ob-
jects.

In the PhD thesis by C. Lin [Lin, 1996], generic 3D rectilinear models are
used to model building parts. The system uses both wall and shadow infor-
mation to verify hypotheses about modelled buildings. In a nadir image the
shadow information is preferable to use while walls are hardly detectable, and
for an oblique image the walls are more easily found while the shadows may be
hard to use. The image angles therefore control how the verification process of
the hypotheses weights the extracted information. Edges are identified with a
direction, where the direction is dependent on the brightness on the respective
side of the edge. In this way, parallel edges belonging to the same object can
be connected. Shadows are detected by their darker appearance. Lin’s system
work well on images of scale models while real images pose problems due to
the existence of vegetation, roads, and parking lots. The system for building
detection from aerial images has been further improved with a user interface
for interaction with the automatic system [Nevatia et al., 1997].

Fuzzy techniques have also been used in building detection. The FuzzBuRS
[Levitt and Aghdasi, 2000], Fuzzy Building Recognition System, uses fuzzy vari-
ables to describe average region intensity, region size, average edge lengths and
building likelihood. Roofs are often split into two halves due to different in-
tensity and the system is limited to straight lines (as with many other systems)
meaning that only polygon shaped buildings can be detected. The benefits of
the system, compared with the authors’ previous system working on crisp val-
ues, BuRS, are that the new system has a more compact representation and is
easily understandable.

6.3.2 Using 3D Information

Matthieu Cord et al. presented a method for extraction and modelling of urban
buildings [Cord et al., 1999]. By use of high resolution stereo images a Digital
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Elevation Model (DEM?) is created. The elevation information is then used for
classification of the global scene into buildings, ground surface and vegetation.
This is followed by detailed modelling of the buildings. The authors believe
that altitude is one of the most important sources of information for building
detection. This information is necessary to separate buildings from other man-
made structures, e.g., parking lots.

Many other authors also use depth information. In [Guo et al., 2001] the
depth information is combined with a learning-based second step that corrects
false positive detections of buildings. The authors use depth, colour, brightness,
texture, and boundary energy* in a tree classifier. The depth classifier filters out
ground objects and low vegetation. The colour and texture classifier filters out
vegetation that has the same height as the buildings. Finally, a gradient field,
based on a combination of image intensity and depth, is used to determine the
size and orientation of the buildings.

6.3.3 Using Maps or GIS

Methods that use maps or GIS in the extraction process are interesting from our
perspective since these have similarities to the approaches presented in Chapter
7 and 8. One example of such a method is the use of knowledge represented
in digital topographic databases for improvement of automated image analy-
sis regarding extraction of settlement areas [Schilling and Vogtle, 1997]. With
the knowledge a model-driven top-down approach can be integrated into the
commonly data-driven bottom-up process of satellite image analysis. Objects
of the same class stored in the database are used to learn features in the satellite
image, under the assumption that the majority of the objects are correct. These
features are then used in a classification process for extraction of settlement
areas.

Carroll presents a system for change detection, which is used in an ap-
plication for information updating [Carroll, 2002]. The presented prototype,
HouseDiff, combines GIS and edge detection. An edge detection method based
on deformable contours (snakes) is used in the system to find the outline of
new buildings. Such a method overcomes limitations due to the assumption of
rectilinearity in previous works.

In another approach 3D building hypotheses of dense urban areas are gen-
erated using scanned maps’ and aerial images [Roux and Maitre, 1997]. The
maps are analysed in order to obtain a structural description of the scene. This
information is then used for the analysis of a disparity image generated from a
stereo pair of aerial images. Histograms of the disparity image are calculated

3DEM include trees, buildings, the ground surface etc.

4The boundary energy is used to find an initial size and orientation of a rectangle template
model. The best model is the one that maximizes the boundary energy, measured as the average
gradient magnitude along model boundaries.

SMaps scanned by using an image scanner.
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and processed. Buildings are extracted under the assumption that the dispar-
ity of one building is included in only one histogram mode. According to the
authors, other approaches (not using maps) have been shown to perform well
for sparse buildings, but not in dense urban areas. Two reasons that may ex-
plain this are the high image complexity and that there may be several different
interpretations of the same object in the scene.

6.4 Summary and Conclusions

Automatic detection of man-made structures is not yet a fully mature subject.
Developed systems are often limited to certain types of images giving a strong
dependence on the type of input data for good performance. Many systems
in this field use line and edge detection, form hypotheses, and connect them
to 3D models for verification, while colour and texture are not used so often
to extract features for the detection phase. Table 6.1 gives a summary of the
systems discussed in this chapter.

This chapter has pointed out several important things. First, to be able to
truly distinguish buildings from other man-made objects, information about
the elevation of the area in the image is needed, which is why a number of the
systems use Digital Elevation Models (DEM). The required elevation informa-
tion can be obtained by airborne mounted sensors such as laser, radar, stereo
vision or by systems operating on the ground, e.g., an outdoor mobile robot.
Second, multiple view images give different aspect angles which can help an
automated system in the detection phase. Third, an experience from our work
[Persson et al., 2005] is that colour models of roofs in some cases overlap with
other surfaces on the ground in the absence of elevation data. For instance,
roads can be mixed up with gray roofs and tennis courts have the same colour
as the red roofs.
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References Type of images Comments
[Lin, 1996], [Neva- | Nadir or oblique, | 3D-models, works on model-
tia et al., 1997] monocular board images, problems with
real images
[Levitt and Nadir, monocular, | 2D-models, fuzzy approach
Aghdasi, 2000] gray scale

[Cord et al., 1999]

Nadir, stereo

3D-models, extracted from
DEM built by the system

[Guo et al., 2001]

Nadir, stereo, col-
our

Depth, colour and brightness,
texture, and boundary energy
are used

[Carroll, 2002]

Nadir,
colour

monocular,

2D-models, searching for dif-
ferences (HouseDiff)

[Schilling and Vog-
tle, 1997]

Nadir, monocular

Combination of GIS and sat-
ellite images

[Roux and Maitre,
1997]

Nadir, stereo

Combination of GIS in the
form of maps and aerial im-
ages, generates 3D building
hypotheses

[Cardoso, 1999] Nadir, monocular, | Extracts 2D building esti-
gray scale mates, uses shape in the form

of edge detection
[Persson et al., Nadir, monocular, | Extracts 2D building esti-
2005] colour mates, uses both colour and

shape, assumption of rectan-
gular buildings

Table 6.1: Summary of building detection systems.




Chapter 7
Local Segmentation of Aerial Images

This chapter investigates the use of monocular aerial images to extend the sen-
sory range of a mobile robot for outdoor mapping. The suggested method re-
lates an aerial image to ground-level information using building outlines (wall
estimates). This approach addresses two difficulties simultaneously:

1. buildings are hard to detect in monocular aerial images without elevation
data and

2. the limitation that only those parts of the environment that are in line-of-
sight of the sensors onboard the mobile robot can be perceived.

It is shown how wall estimates found by a mobile robot can compensate for the
absence of elevation data in segmentation of aerial images. A virtual sensor for
building detection mounted on a mobile robot is used in combination with an
occupancy map to obtain wall estimates from a ground perspective. These wall
estimates are matched with edges detected in an aerial image. The result is used
to direct a region- and boundary-based segmentation algorithm for building
detection in the aerial image. Experiments demonstrate that the ground-level
based wall estimates can focus the segmentation of the aerial image to buildings
and a semantic map, which covers a larger area than the onboard sensors, can
be built along the robot trajectory.

7.1 Introduction

A mobile robot has a limited view of its environment. Mapping of the opera-
tional area is one way of enhancing this view for visited locations. In this chap-
ter the possibility of using information extracted from aerial images to further
improve the mapping process is explored. Semantic information about build-
ings is used as the link between ground level information and the aerial image.
The method can speed up exploration or planning in areas not yet visited by
the robot.
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Colour image segmentation can be used to extract information about build-
ings from an aerial image. For directed image segmentation it is necessary to
have an input that can point out the image regions (samples) used to train
the segmentation algorithm. Examples of segmentation with manually selected
samples used for building detection are given in [Dogruer et al., 2007] and in
Chapter 6 ([Persson et al., 2005]).

The method presented in this chapter replaces these manually picked train-
ing samples with samples directed by the mobile robot. The virtual sensor for
building detection described in Chapter 4 is used to determine which parts of
an occupancy map belong to a building (wall estimate) resulting in the semantic
map described in Chapter 5. Matching of wall estimates found in the seman-
tic map with edges detected in an aerial image followed by colour segmenta-
tion is utilized to find building hypotheses. The matching is possible since geo-
referenced aerial images are used and an absolute positioning system is installed
onboard the robot. The matched lines are then used in region- and boundary-
based segmentation of the aerial image for detection of buildings. The purpose
is to detect building outlines faster than the mobile robot can explore the area
by itself. Using this method the robot can estimate the size of found building
regions without actually rounding the building. The method does not assume a
perfectly up to date aerial image, in the sense that buildings may exist although
they are not present in the aerial image, and vice versa. It is therefore possible
to use globally available! geo-referenced images.

7.1.1 Outline and Overview

In Section 7.2 a presentation of work related to the use of aerial images in mo-
bile robotics is given. The description of the proposed system is divided into
three main parts. The first part, Section 7.3, concerns the estimation of walls
by the mobile robot and edge detection in the aerial image. At ground level,
wall estimates are extracted from the probabilistic semantic map described in
Chapter 5. This map is basically an occupancy map built from range data and
labelled using a virtual sensor for building detection (Chapter 4) mounted on
the mobile robot. The second part, Section 7.4, describes matching of wall es-
timates from the mobile robot with the edges found in the aerial image. To
determine potential matches between the wall estimates and the roof outlines,
geo-referenced aerial images are used and the mobile robot has an onboard
absolute positioning system (GPS). The third part, Section 7.5, presents the
segmentation of an aerial image based on the matched lines. The matched lines
are used in region- and boundary-based segmentation of the aerial image for
detection of buildings. This segmentation will be referred to as the local seg-
mentation as opposed to the global segmentation presented in Chapter 8. De-
scriptions of the experiments performed and the results obtained are found in

LE.g. Google Earth, Microsoft Virtual Earth, satellite images from IKONOS and its successors.
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Section 7.6. Finally, the chapter is concluded and suggestions for future work
are given in Section 7.7.

7.2 Related Work

Overhead images have been used in combination with ground vehicles in a
number of applications. Oh et al. used map data to bias a robot motion model
in a Bayesian filter to areas with higher probability of robot presence [Oh et al.,
2004]. It was assumed that probable paths were known in the map. Since mo-
bile robot trajectories are more likely to follow these paths in the map, GPS
position errors due to reflections from buildings were compensated using the
map priors.

Pictorial information such as aerial photos and city-maps have been used
for registration of sub-maps and subsequent loop-closing in SLAM [Chen and
Wang, 2006]. Aerial images were used by Frith and Zakhor in Monte Carlo
localization of a truck during urban 3D modelling [Frith and Zakhor, 2004].

A method to detect building outlines, also without elevation data, is to fuse
SAR (Synthetic Aperture Radar) images and aerial images [Tupin and Roux,
2003]. The building location was established in the overhead SAR image, where
walls from one side of buildings can be detected through double reflections on
the ground and a wall. The complete building outline was then found using
edge detection in the aerial image. Parallel and perpendicular edges were con-
sidered and the method belongs to edge-only segmentation approaches. This
work is similar to the work presented in this chapter in the sense that it uses a
partly found building outline to segment a building from an aerial image.

Combination of edge and region information for segmentation of aerial im-
ages has been suggested in several publications. Two papers from which this
work took inspiration are [Mueller et al., 2004] and [Freixenet et al., 2002].
Mueller et al. presented a method to detect agricultural fields in satellite im-
ages. First, the most relevant edges were detected. These were then used to
guide both the smoothing of the image and the following segmentation in the
form of region growing. Freixenet et al. investigated different methods for in-
tegrating region- and boundary-based segmentation, and also claim that this
combination is the best approach for image segmentation.

Commonly used colour image segmentation methods are reviewed in
[Cheng et al., 2001]. Concerning the choice of colour space for segmentation
the authors point out that no single colour space surpasses others for all type
of images.

From the above discussed references and the references presented in Section
8.2, it can be concluded that aerial images contain information that is useful
for mobile robots. For detection of building outlines in aerial images edge in-
formation is the most used feature, which is also confirmed by the references
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presented in Section 6.3. All together there is considerable motivation for the
approach presented in this chapter.

7.3 Wall Candidates

A major problem for building detection in aerial images is to decide which of
the edges in the aerial image correspond to building outlines. The idea of our
approach is to match wall estimates extracted from two perspectives in order to
increase the probability that a correct segmentation is achieved. In this section
the process of extracting wall candidates is described, first from the mobile
robot’s perspective at ground-level and then from aerial images.

7.3.1 Wall Candidates from Ground Perspective

The wall candidates from the ground perspective are extracted from a seman-
tic map acquired by a mobile robot as described in Chapter 5. In Chapter 5
three different occupancy maps (handmade, 2D laser data and 3D laser data)
were used to create probabilistic semantic maps with two classes: buildings and
nonbuildings. In this chapter, the probabilistic semantic map based on the oc-
cupancy grid map built with 2D laser data is used since it is the map built from
robot measurements that covers most buildings. This probabilistic semantic
map is presented in Figure 7.1.

The lines representing probable building outlines are extracted from the
probabilistic semantic map using the same implementation [Kovesi, 2000] as
previously used in Section 4.2. The implementation of the line extraction al-
gorithm and the used parameter setting is described in Appendix B.1. The ex-
tracted lines representing wall estimates are given in Figure 7.2, which also
shows the robot trajectory where data for the probabilistic semantic map were
collected.

7.3.2 Wall Candidates in Aerial Images

Edges extracted from an aerial image taken from a nadir view are used as po-
tential building outlines. The edge image is a binary image from which straight
lines are extracted to be used as wall candidates in the matching process de-
scribed in Section 7.4.

Two common categories of colour edge detection methods are output fusion
methods and multi-dimensional gradient methods [Ruzon and Tomasi, 1999].
In colour edge detection with output fusion, edge detection is performed sepa-
rately on the three components of the colour space used and the resulting edges
are fused. In multi-dimensional gradient methods, the gradients from the three
components are fused and then the edges are defined. Here, the first alternative
with the edge detection performed separately on the three RGB-components
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Figure 7.1: The probabilistic semantic map used in the experiments. White cells denote
high probability of walls and dark cells show outlines of nonbuilding entities.

' ‘LII.IQ.!‘ “‘

Figure 7.2: The trajectory of the mobile robot (dashed), the ground level wall estimates
(solid) and the aerial image used (©Orebro Community Planning Office). The semantic
map in Figure 7.1 covers the upper left part of this figure.
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using Canny’s edge detector [Canny, 1986] is applied. The resulting edge image
I, is calculated by fusing the binary images obtained for the three colour com-
ponents with a logical OR-function. Finally a thinning operation? is performed
to remove points that occur when edges appear slightly shifted in the different
components. For line extraction in I, the same implementation and parameters
as in Section 7.3.1 were used. The lines extracted from the edges detected in the
aerial image in Figure 7.2 are shown in Figure 7.3.

rﬂ'&:m'\‘@? 'w\
wd RN\

LX) Q.% o0 o |0 > %‘A/
LML RN

M .
\/
s20eex PR B INERESENSTT

LY IR A @2‘ RN - - N

Figure 7.3: The lines extracted from the edge version of the aerial image.

The colour edge detection method is used because it finds more edge points
than gray scale edge detection. This is because edges on the border between
areas that have different colours but similar intensity are not detected in gray
scale versions of the same image. In a test where the two methods had the same
segmentation parameters, the colour version produced 19% more edge points
resulting in 17% more detected lines for an aerial image of size ca. 800x1300
pixels (400x650 m). Figure 7.4 gives a close-up from that test to show an
example of the differences. The calculation time of the colour edge detection is
slightly more than three times longer than ordinary gray scale edge detection.
This time is still small in comparison to the routines used for detecting lines in
the edge images (for the same example as above: ca. 20%).

2The Matlab command bwmorph(im, thin’,Inf) was used.
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Figure 7.4: Gray scale (b) and colour edge detection (c) in an aerial image (a). In the top
the colour version finds additional edges where light green vegetation meets light gray
ground, and in the lower part edges are found around the green football field where the
grass meets the red running tracks.

7.4 Matching Wall Candidates

The purpose of the wall matching step is to relate wall estimates, obtained at
ground level with the mobile robot, to the edges detected in the aerial image.
All wall estimates are represented as line segments. A wall estimate found by
the mobile robot is denoted as L, (g indicates ground-level) and the N lines
representing the edges found in the aerial image by L? with i € {1,...,N}
(a indicates aerial). Both line types are geo-referenced in the same Cartesian
coordinate system.

The lines from both the aerial image and the semantic map may be erro-
neous, especially concerning the line endpoints, due to occlusion, errors in the
semantic map, different sensor coverage, etc. A measure for line-to-line dis-
tances that can handle partially occluded lines is therefore needed. Hence, the
length of the lines is not considered and line matching is based only on the
line directions and the distance between two characteristic points, one point on
each line. The line matching calculations are performed in two steps described
below: determination of the two characteristic points and computation of the
distance measure to find the best matches.

7.4.1 Characteristic Points

In this section it is described how the characteristic points on the two lines
compared are determined. For L, the line midpoint, P,, is used. To cope with
the possible errors described above, the point P, on L’ that is closest to P, is
selected as the best candidate to be used in our line distance measure.

To calculate P,, let e, be the orthogonal line to L? that intersects L, in
P,, see Figure 7.5. The intersection between e,, and L! is denoted as ¢ where
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Lt o

Figure 7.5: Selection of characteristic points for the computation of the distance measure
between two lines. The figure shows the line Ly (ground level wall candidate) with its
midpoint Py, the line L, (aerial image wall candidate), and the normal to L%, e,,. To the
left, P, = ¢ since ¢ is on L. To the right, P, is the endpoint of L since ¢ is not on L.

¢ = en x L (using homogeneous coordinates). The intersection ¢ may be
outside the line segment L, see right part of Figure 7.5. It should therefore be
checked if ¢ is within the endpoints and if it is, set P, = ¢. If ¢ is not within
the endpoints, then P, is set to the closest endpoint on L.
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Pa B { o v¢ §é [mminammaz] (71)
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szx,» and sz,,,» denote the x- and y-coordinate of the endpoints of L.

7.4.2 Distance Measure

The calculation of the distance measure is inspired by [Guerrero and Sagiiés,
2003], which describes geometric line matching in images for stereo match-
ing. The complexity in these calculations has been reduced by exclusion of the
line lengths which also results in fewer parameters that need to be determined.
Matching is performed using L,’s midpoint P,, the closest point P, on L and
the line directions 6, and 6,. First, a difference vector is calculated as

ra =[Py, — Pa, . Py, — Pa,.0, — 0,]". (7.5)

Second, the similarity is measured as the Mahalanobis distance
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d=raTR 'ra (7.6)

where the diagonal covariance matrix R is defined as

%, 0 0
R= 0 O%y 0 (7.7)
0 0 o%y

with ogry,0Ry, and oge being the expected standard deviation of the errors
between the ground-based and aerial-based wall estimates. Only the relation
between the parameters in Equation 7.7 influences the line matching. The im-
portant relation is 0%, /0%, and usually 0%, = J%{y for symmetry reasons. Note
that the distance measure is not strictly a metric in a mathematical sense, due
to the non-symmetric method for selecting characteristic points.

7.5 Local Segmentation of Aerial Images

This section describes how local segmentation of the colour aerial image is
performed. Generally, segmentation methods can be divided into two groups;
edge-based and similarity-based [Gonzales and Woods, 2002]. In our case these
approaches are combined by first performing edge based segmentation for de-
tection of closed areas and then colour segmentation based on a small training
area to confirm the area’s homogeneity. Figure 7.6 gives a short description of
the sequence that is performed for each line L,. The process is stopped, either
when a region has been found or when all lines in L, that are close enough to
the present line in L, to be considered, have been checked. The “close enough”
criterion can be 1mplemented using the Euclidean distance between the char-
acteristic points P, and P, defined in Section 7.4.1. However, in the current
implementation this was not activated during the experiment in order to be
able to study whether additional regions were found.

7.5.1 Edge Controlled Segmentation

Based on the edge image I. constructed from the aerial image, a closed area
that is limited by edges is searched for. Since there might be gaps in the edges,
small gaps need to be found and filled [Mueller et al., 2004]. Morphological
operations are used to first dilate the edge image in order to close gaps and then
search for a closed area on the side of the matched line that is opposite to the
mobile robot. When this area has been found it is dilated in order to compensate
for the previous dilation of the edge image. This procedure is further described
by Figures 7.7 and 7.8.
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1. Sort the set of lines L, based on d from Equation 7.6 in increasing
order and set ¢ = 0.

2. Seti=1+1.

3. Define a start area Asiar¢ on the side of LY that is opposite to the
robot.

4. Check if Astart includes edge points (parts of edges in I.). If yes,
return to step 2. This check ensures that a region has a minimum

width and depth.
5. Perform edge controlled segmentation, see Section 7.5.1.

6. Perform homogeneity test, see Section 7.5.2.

Figure 7.6: Description of the local segmentation process.

1. Initialize a starting area, Astart
2. Dilate the edge map

3. Find the closed area Asmqnu that includes the part of Astqrt that is
free from edge pixels

4. Calculate Afina as the dilation of Agpman

Figure 7.7: Edge-based algorithm for finding closed areas and filling in small gaps in the
edges.

7.5.2 Homogeneity Test

The initial starting area Agsqr¢ is used as a training sample for a colour model
and the rest of the region is evaluated based on this colour model. This means
that the colour model does not gradually adapt to the growing region, but
instead requires a homogeneous region on the complete region that is under
investigation. Regions that gradually change colour or intensity, such as curved
roofs, might then be partly rejected.

There are different approaches to represent colour models. One approach
that is popular for colour segmentation is a Gaussian Mixture Model (GMM).
Like Dahlkamp et al. [Dahlkamp et al., 2006] we tested both GMM and a
model described by the mean and the covariance matrix in RGB colour space.
The mean/covariance model was selected since it is faster and it was noted that
the mean/covariance model performs approximately equally well as the GMM
in our case. A limit Oy;,, is calculated for each model so that 95% of the training
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a) b) <) d
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Figure 7.8: Illustration of edge controlled segmentation. a) shows a small part of I. and
Astart. In b) I has been dilated and in ¢) Agsman has been found. Finally, d) shows
Ajfinal as the dilation of Agpmau-

sample pixels (i.e. pixels in Agqrt) have a Mahalanobis distance smaller than
Olim.- Oum 1s then used as the separator limit between pixels belonging to the
class and the pixels that do not belong to the class.

7.5.3 Alternative Methods

Above a two step segmentation method to detect homogeneous regions sur-
rounded by edges was presented. There exist a number of different segmen-
tation methods that could have been applied instead. Two such methods are
discussed in the following. The conclusions presented below are based on pre-
liminary tests performed on the aerial image used in our experiment. For these
tests, the parameters used in the respective algorithms were tuned manually.

The first method tested is a graph-based image segmentation (GBIS) [Felzen-
szwalb and Huttenlocher, 2004]. GBIS can adapt to the texture and can be set
to reject small areas and therefore ignore small-sized disturbances such as shad-
ows from chimneys. For this reason GBIS tends to produce very homogeneous
results. A drawback is that GBIS has a tendency to leak and continue to grow
outside areas that humans would consider to be closed. Therefore, GBIS does
not seem to be an option to replace both steps in our two step method, but it is
an alternative to the homogeneity test. In conjunction with the edge controlled
segmentation it turns out that GBIS produces similar segmentation results to
the mean/covariance model.

The second method tested is a modified flood fill algorithm. The algorithm
takes starting pixels from Ay, and performs region growing limited by colour
difference to the starting pixels and local gradient information. Let C be the
mean value vector (RGB) of the starting pixels, P; any pixel that has been
selected to be inside the region and P,, a neighbouring pixel (4-connected with
P;) to be tested to see whether it should be included in the region. For each P,,
a local value g, is calculated as

Giow = € Dimrign Pl =CON* /%1 0= T s Pu () PiG)*/Thaa (7.8)
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The value of g, is then compared to a threshold to see if P,, should be included
in the region or not. Due to the use of the local gradient this algorithm performs
equally well as the mean/covariance model, both as a replacement for the two
steps and when it is used only for the homogeneity check. This modified flood
fill algorithm can also leak, like GBIS, but only to areas with colours similar to
Astart, since C only depends on the starting pixels.

7.6 Experiments
7.6.1 Data Collection

Data were collected with the mobile robot Tjorven, equipped with differential
GPS, a horizontally mounted laser range scanner, cameras and odometry (Sec-
tion 2.2 gives more details). The robot is equipped with two different types of
cameras, an ordinary camera mounted on a PT-head and an omni-directional
camera. Here, the omni-directional camera is used. From each omni-image
eight planar images (every 45°), with a horizontal and vertical field-of-view
of 56°, were computed. These planar images are the input to the virtual sensor.
The images were taken approximately every 1.5 m along the robot trajectory
and were stored together with the corresponding robot pose. The trajectory of
the mobile robot is shown in Figure 7.2. Since the ground where the robot was
driven during the experiment is mainly flat, inertial sensors were not needed.
This can be confirmed by visual inspection of the resulting occupancy map in
Figure 7.9.

Figure 7.9: Occupancy map used to build the semantic map presented in Figure 7.1.
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7.6.2 Tests of Local Segmentation

The occupancy map shown in Figure 7.9 was used for the experiment. This
map was built from data measured by the laser range scanner (with 180 degrees
field of view) and position data obtained from fusion of odometry and DGPS,
see Appendix B.3. The grid cell size was 0.5 m, the range of the data was
limited to 40 m and the map was built using the known poses and a standard
Bayes update equation as described in [Thrun et al., 1998]. Even though this
2D map works well in our experiments (with exception of the hedge/building
mix-up described in Section 5.4.2), one should note that a fixed horizontally
mounted 2D laser is not the optimal choice of sensor configuration for detection
of building outlines. Alternative methods suitable for capturing large objects in
outdoor environments are 3D laser [Surmann et al., 2001], a vertically mounted
laser range scanner [Frith and Zakhor, 2004] or (motion) stereo vision [Huber
and Graefe, 1994].

The occupied cells in the map (marked in black in Figure 7.9) were labelled
by the virtual sensor giving the probabilistic semantic map presented in Fig-
ure 7.1. The probabilistic semantic map contains two classes: buildings (values
above 0.5) and nonbuildings (values below 0.5). From this semantic map the
grid cells with a high probability of being a building® (above 0.9) were extracted
and converted to the lines L)' presented in Figure 7.2. Matching of these lines
with the lines extracted from the aerial image LY was then performed (see Fig-
ure 7.3). Finally, based on the best line matches, segmentation was performed
as described in Section 7.5, where each ground-level line L, can lead to one
extracted region.

The three parameters in R (Equation 7.7) were set to op, = 1 m,op, =
1 m, and ogg = 0.2 rad. The first two parameters reflect a possible error of 2
pixels between the robot position and the aerial image for the given resolution,
and the third parameter allows, for example, each endpoint of a 10 pixel long
line to be shifted one pixel (parallel edges in the aerial image do not always
result in parallel lines, see roof outline in Figure 7.3). In the tests described
in the following paragraph, it will be shown that the matching result is not
sensitive to small changes of these parameters. In the experiment, the start area
Astart (Figure 7.6) was a 8 x 8 pixels square, equivalent to 4 x 4 m and a square
structuring element of size 3 x 3 was used for the dilations described in Section
7.5.1.

Two different types of test have been performed. The parameters for these
tests are defined in Table 7.1. Tests 1-3 represent the nominal cases where the
collected data are used as they are. These tests intend to show the influence of
a changed relation between o s, 0y and org by varying org. In Test 2 gy is
decreased by a factor of 2 and in Test 3 oy is increased by a factor of 2. In Tests

3The limit 0.9 was chosen with respect to the probabilities used in the process of building the
probabilistic semantic map, see Chapter 5. With this limit at least two positive building readings
are needed for a single cell to be used in Lé”.
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4 and $ additional uncertainty (in addition to the uncertainty already present in
L) and L) was introduced. This uncertainty is in the form of Gaussian noise
added to the midpoints (¢, and 0,) and directions (oy) of Ly and evaluated in
Monte Carlo simulation [Metropolis and Ulam, 1949] with 20 runs.

Test | o, [m] | oy [m] | o6 [rad] | oRre [rad] | Nyun
1 0 0 0 0.2 1
2 0 0 0 0.1 1
3 0 0 0 0.4 1
4 1 1 0.1 0.2 20
5 2 2 0.2 0.2 20

Table 7.1: Parameters used in the local segmentation tests.

7.6.3 Result of Local Segmentation

The local segmentation has a limited range and the ground truth area can be
beyond this range without affecting the resulting segmentation, e.g. by includ-
ing new buildings that are not seen by the robot. A traditional quality measure
such as the true positive rate is therefore not suitable for these tests, since it
depends on the size of the ground truth area. Instead, the positive predictive
value, PPV or precision, was used as the quality measure. PPV is calculated as

TP
" TP+ FP

where TP is the number of true positives and FP is the number of false positives.
The results of Test 1 show a high positive predictive value of 96.5%, see
Table 7.2. The resulting segmentation is presented in Figure 7.10 where the
building regions are found along the robot trajectory. Three deviations from an
ideal result can be noted. At a and b tree tops were obstructing the wall edges in
the aerial image and therefore the area opposite to these walls was not detected
as a building, and a gap between two regions appears at ¢ due to a wall visible
in the aerial image. Finally, a false area, to the left of b, originates from an error
in the semantic map where a low hedge in front of a building was marked as
building because the building was the dominating object in the camera view.
The results of Test 1-3 are very similar, indicating that the algorithm in this
case was not particularly sensitive to the changes in ogy. In Tests 4 and 5 the
scenario of Test 1 was repeated using a Monte Carlo simulation with intro-
duced pose uncertainty. These results are presented in Table 7.2. One can note
that the difference between the nominal case Test 1 and Test 4 is very small.
In Test § where the additional uncertainties are higher, the positive predictive

PPV (7.9)



7.7. SUMMARY AND CONCLUSIONS 125

S |

Figure 7.10: The result of the local segmentation of the aerial image, based solely on the
few wall estimates shown in Figure 7.2. The ground truth building outlines are drawn
in black.

value decreased slightly. Based on these results the approach for local segmen-
tation of the aerial image was found to be very robust.

Test | PPV [%]
1 96.5
2 97.0
3 96.5
4 |96.8+£0.2
N 95.9 £ 1.7

Table 7.2: Results for the tests defined in Table 7.1. The results of Test 4 and 5 are pre-
sented with the corresponding standard deviation computed from the 20 Monte Carlo
simulation runs.

7.7 Summary and Conclusions

This chapter discusses how aerial images can be used to extend the observation
range of a mobile robot. A virtual sensor for building detection on a mobile
robot is used to build a ground level probabilistic semantic map. This map is
used to link semantic information to a process for building detection in aerial
images. The approach addresses two difficulties simultaneously: 1) buildings
are hard to detect in aerial images without elevation data and 2) the limita-
tion of the sensors of mobile robots. Concerning the first difficulty the results
show a high classification rate and it can therefore be concluded that the se-
mantic information can be used to compensate for the absence of elevation
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data in aerial image segmentation. The benefit from the extended range of the
robot’s view can clearly be noted in the presented example. Even though the
roof structure in the example is quite complicated, the outline of large building
parts can be extracted although the mobile robot only has seen a minor part of
the surrounding walls.

There are a few issues that should be noted:

¢ It turns out that a complete building outline is seldom segmented due to
factors such as different roof materials, different roof inclinations and
additions on the roof.

e It is important to check several lines from the aerial image since more
edges than expected could have been extracted. For example, roofs can
have extensions in other colours, and not only roofs and ground can be
seen in the aerial image. When the nadir view is not perfect, walls can ap-
pear in the image in addition to the roof outline. Such a wall will produce
two edges in the aerial image, one where ground and wall meet and one
where wall and roof meet.

e The presented solution performs a local segmentation of the aerial image
after each performed matching of a ground-level line with lines in the
aerial image. An alternative solution would be to first segment the whole
aerial image and then confirm or reject the regions as the mobile robot
finds new wall estimates.

An extension to local segmentation elaborated in the next chapter is to use the
building estimates as training areas for further colour segmentation in order to
make a global search for buildings within the aerial image. This global search
can also utilize the robot’s knowledge of already traversed areas to recognise
other potentially driveable paths.



Chapter 8
Global Segmentation of Aerial
Images

8.1 Introduction

Aerial images contain information that can be used to extend the range of mo-
bile robot sensors. This was shown in the previous chapter where segmentation
of an aerial image to detect building areas near to the path of a mobile robot
(directed by the walls found by the robot) was performed. An extension that
will increase the view further is to use the building estimates as training areas
for colour segmentation in order to make a global search for buildings within
the entire aerial image. Based on the robot’s knowledge of already traversed
areas, it is also possible to recognise other driveable areas.

In this chapter the approach from Chapter 7 is extended. The extension
includes global segmentation of buildings in the aerial image, the introduction
of a new semantic class for ground (that is potentially driveable by the robot)
and the introduction of the concept and framework of the predictive map. The
aim of global segmentation is to build a map that predicts regions such as
driveable ground and buildings. To perform global segmentation colour models
are used. These colour models are acquired from the aerial image, directed
by information from the local segmentation (Chapter 7) and by information
collected with a mobile robot. The purpose with the global segmentation is
to detect building outlines and driveable paths faster than the mobile robot
can explore the area by itself. Using this method, the robot can estimate the
outline of found buildings and “see” around one or several corners without
actually having visited these areas by itself. As for the local segmentation, this
method does not assume a perfectly up-to-date aerial image; buildings may
exist although they are missing in the aerial image, and vice versa. It is therefore
possible to use globally available geo-referenced images from sources such as
Google Earth and Microsoft Virtual Earth, even though up-to-date imagery is
preferable.
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Figure 8.1: Flow chart of the process for calculating the predictive map (PM).

8.1.1 Outline and Overview

In this chapter the range of the robot’s view is increased by prediction of the
surrounding regions using a process that involves segmentation of aerial im-
ages. Trained colour models are used in global segmentation of the entire aerial
image. The purpose is to build a map that predicts different types of areas, e.g.,
ground and buildings, and it is therefore called the predictive map (PM). When
the PM includes both driveable ground and obstacles such as buildings, it can
serve as an input to a path planning algorithm.

The global segmentation of an aerial image using colour models captures
all pixels with the same property as the training sample. For example, if the
buildings that were detected by local segmentation are used as training samples,
buildings with roofs in similar colours as these buildings will be detected. To
complement the detection of buildings an additional class, ground, is utilized
in the experiments of this chapter.

To calculate the predictive map incrementally two main steps are performed;
1) the aerial image is segmented when a new colour model (CM) is available
and 2) the predictive map is recalculated using the result from the latest seg-
mentation. Figure 8.1 shows a flow chart of the updating process.

In Section 8.2 previous work related to mobile robots using aerial images
and on detection of driveable ground is described. The segmentation process
is presented in Section 8.3. This process includes the extraction of training
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samples, calculation of a colour model, and segmentation based on the colour
model. The results from the segmentation process are stored in class layers, one
layer per class. The predictive map and its calculation from the class layers are
described in Section 8.4. In Section 8.5 the combination of the local and global
information, the results obtained in the previous chapter and the predictive map
respectively, is presented and discussed. The experiments performed and the ob-
tained result are presented in Section 8.6. Finally, the chapter is concluded in
Section 8.7 with a summary and a discussion.

8.2 Related Work

In Chapter 6, automatic building detection in aerial images was discussed. In
Section 7.2 work related to aerial images and mobile robots relevant for the
process described in Chapter 7 was presented. In this section these works are
complemented with an overview of works on mobile robots using aerial images
and works on detection of driveable ground.

Information from aerial images can be used to support long range naviga-
tion of autonomous vehicles. Silver et al. discuss a method to produce cost maps
from aerial surveys [Silver et al., 2006]. The aerial surveys give heterogeneous
data (e.g. data recorded with different sampling density) that are registered and
used in classification of ground surface. The used features are image based, both
from visible light and near-infrared light, elevation based (rasterized elevation
data available from multiple sources) and point cloud based (from airborne
laser range scanners).

In a similar example heterogeneous data from maps and aerial surveys are
used to construct a world model with semantic labels [Scrapper et al., 2003].
This model was compared with data from sensors mounted on a ground ve-
hicle. The system uses the semantic labelling to focus a search for particular
features in the vehicle neighbourhood, allowing a fast scene interpretation by
targeting the sensor data processing to regions that are predicted to be most
interesting.

Manually extracted training samples have been used to segment a satel-
lite image for use in mobile robot localization and navigation [Dogruer et al.,
2007]. HSI colour space was chosen in order to reduce the sensitivity to shades
in the classification. Evaluation with a mobile robot has not yet been per-
formed.

In this chapter a class for ground is used, but for the mobile robot it would
be of benefit to know whether the ground is driveable or not. There is a possi-
bility to extract information about the traversability of ground based on mea-
surements performed by an unmanned vehicle. Models of driveable ground can
be extracted in different ways. Laser range scanners are popular and efficient
when it comes to observe the ground close to the vehicle, but for long ranges
it seems that vision is more often used. In the following described works, the
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intention has been to find areas of driveable ground not only as opposed to
obstacles, but with the purpose of obtaining a forecast of the conditions ahead
of the vehicle using vision to extrapolate driveable areas.

The area traversed by a mobile robot has been used as the indicator of ob-
stacle free ground [Ulrich and Nourbakhsh, 2000]. When the robot has driven
over a specific area it knows that this area is driveable. A forward looking cam-
era registers the area that the robot will pass and models in HSI colour space
are calculated from image histograms. The system extrapolates the information
forward and uses this to separate free ground from obstacles.

One can also assume that when a vehicle already is on a road, a forward
looking camera has the road in view (the part of the image showing the ground
closest to the vehicle) [Song et al., 2006]. Song et al. used this to extract in-
formation for a motion planning system used on ill-structured roads during
DARPA Grand Challenge.

Gaussian Mixture Models (GMM) are popular for colour segmentation.
GMM were used in detection of drivable areas in desert terrain [Dahlkamp
etal., 2006] for DARPA Grand Challenge. An algorithm that extends the range
of a laser range scanner by the use of vision was developed. The laser scans the
area close to the vehicle and the obstacle free area is mapped to the camera
image where it is used for training the GMM. The rest of the image can then
be classified as drivable or nondriveable areas. It turned out that the authors
could reduce the complexity of the GMM to only one model described by the
mean and the covariance matrix with only a slight decrease of performance.

AdaBoost was used by Guo et al. to train a system to detect roads in difficult
situations [Guo et al., 2006]. They used two types of weak classifiers, one based
on colour samples that are compared to colour histograms and the other on
rectangular features (reminiscent of Haar basis functions) introduced for face
detection [Viola and Jones, 2004]. The final system detects roads in front of a
vehicle and handles both shadowed regions and water pools.

A recent example to forecast terrain traversability is given by Karlsen and
Witus. They used vision and extracted texture features based on standard de-
viation and entropy [Karlsen and Witus, 2007]. The features observed dur-
ing training were clustered using fuzzy c-means. The system is able to forecast
vehicle-terrain interaction in upcoming terrain.

Based on the above referenced work it can be concluded that several systems
for finding driveable terrain exist. It can therefore be assumed that also with the
omni-directional camera onboard our mobile robot driveable terrain could be
identified and used as a class complementary to the ground class currently used.

8.3 Segmentation

The segmentation of the aerial image is based on colour models. In the example
used in this chapter, models are calculated for the two classes building and
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ground. Figure 8.1 shows a flow chart of the updating process. In this section
the first part, up to the image segmentation, is explained. The algorithm is
adapted to work also in an on-line situation. When a New sample belonging to
class cl is available, a new colour model CM is calculated. Based on the quality
of CM, a measure p,0 < p < 1 should be estimated. The last step is to classify
the pixels in the aerial image with the trained colour model. In summary the
algorithm is as follows:

1. Take a sample (a number of pixels from an area that is expected to belong
to class cl).

2. Train a colour model in RGB colour space.
3. Estimate p.

4. Perform a classification using the colour model.

In the following paragraphs the training samples (step 1), the colour models
(step 2), and the classification (step 4) are described. The parameter p should
reflect the certainty of the classification performed with the colour model and
could also be influenced by the probabilities of the connected regions in the
probabilistic semantic map. Estimation of the parameter p is still an unsolved
issue and left for future work. In our experiments p = 0.7 was used.

8.3.1 Training Samples

The system needs to define training samples of the classes that shall be seg-
mented. Two classes are of interest here, buildings and ground. The method
presented in the previous chapter was used to find local estimates of buildings.
Therefore, to define the colour models for the building class, the building esti-
mates found by local segmentation are used as training areas.

To extract colour models that represent the different ground areas, the oc-
cupancy grid map and the edge version of the aerial image, I., are combined.
The free cells in the occupancy grid map define the regions in I, that represent
ground. The combination of I, and the occupancy grid map can be done either
under the assumption that the navigation is precise giving a perfect registration
or by reduction of the area of free cells with the estimated size of the naviga-
tion error. Only the latter was used in our work. Assuming that the DGPS gave
rather accurate positions and an accurate heading angle could be calculated
from the trajectory, the latter approach was used to remove the small naviga-
tion errors. The area of free cells in the occupancy grid map was reduced by
morphological erosion with a square structuring element of size 5 x 5 pixels
to compensate for errors up to 2 pixels (1 m) in all directions, resulting in a
ground region. An example of the combination of the ground region with the
edges in I, is shown in Figure 8.2. Next, edge controlled segmentation of the
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Figure 8.2: The combined binary image of free points (reduced using morphological
erosion with a square structuring element of size 5 x 5 pixels) and edges in I..

ground region is performed, as described in Section 7.5.1, to find the individual
ground areas with boundaries defined by the I.. The largest areas' found in
the edge controlled segmentation, point out samples in the aerial image that
are used to train mean/covariance models, the same type of colour models as in
Section 7.5.2.

The free space found in the occupancy grid map can be considered to be
driveable ground assuming that there are no negative obstacles or other fea-
tures, which cannot be sensed with the horizontally mounted 2D laser scanner
and prevent the robot from driving safely. However, since it cannot be guar-
anteed that the free space in the occupancy grid map in fact corresponds to a
driveable area, the new class is called ground.

The result from the local building segmentation (an example was presented
in Figure 7.10) and the ground information from the occupancy grid map are
referred to as the local information, since it results from direct observation by
the mobile robot.

8.3.2 Colour Models and Classification

Both the colour models and the classification algorithm follows the same
ideas as the procedure for the homogeneity test used in the local segmen-
tation presented in Section 7.5.2. The training samples are described in a

IThe limit was set to 50 pixels (12.5 m2) in order to avoid small areas that could represent
movable objects such as cars and small trucks.
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mean/covariance model in RGB space and the segmentation is based on the
Mahalanobis distance to classify the aerial image:

1. Set a limit Oy, based on how many outliers that are expected in the
model (here Oy, represents 95% of the training sample pixels).

2. Calculate the Mahalanobis distances between the colour model and the
pixels in the sample. Set dj;,, to the distance that represent Oy,

3. Use the Mahalanobis distance in the segmentation of the aerial image,
with dy;,, as the separator between pixels belonging to ¢/ and the pixels
that don’t.

8.4 The Predictive Map

This section describes the layout of the predictive map (PM) and the method
used to calculate incremental updates of it.

The PM is designed to handle multiclass problems and updating this map
can be performed incrementally. The PM is a grid map of the same size as
the aerial image that is segmented. For each of the n classes, a separate layer
l;, with ¢ € {1,...,n}, is used to store the accumulated segmentation results.
These layers also have the same size as the aerial image. The colour models used
to segment the aerial image define a subset of a class through a binary classifier.

To calculate the predictive map incrementally two main steps are performed:

1. When the aerial image has been segmented with a new colour model, the
layer of that class is updated.

2. The predictive map is recalculated using the result from the updated lay-
ers.

From the segmentation of the aerial image a temporary layer for class is ob-
tained. The old layer of class, I, is fused with the temporary layer using a max
function. Alternative methods to fuse the layers, such as a Bayesian method,
should be evaluated when a method to calculate the parameter p has been de-

cided.

8.4.1 Calculating the PM

The predictive map is based on voting from separate layers I; for the n classes,
one layer for each class. The voting is performed on the layers cell by cell using
IF-THEN rules biased with c¢;;:

IF 7Y > 13Y + ¢ij ¥ j # i THEN pm™ = class; (8.1)
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where [ denotes cell (z, y) in layer ¢ and pm®¥ denotes cell (z,y) in PM. If the
condition cannot be fulfilled due to conflicting information, pm® is set to un-
known. To evaluate the similarity between cells, buffer zones are introduced in
the voting process. The buffer zones are collected in the off-diagonal elements
of a matrix C where ¢;; > 0,7 # j,i = {1,2,...,n},j = {1,2,...,n}. Intro-
ducing the buffer zones makes it possible to adjust the sensitivity of the voting
individually for all classes. If ¢;; = 0 the rules in Equation 8.1 will turn into
ordinary voting where the largest value wins and where ties give unknown.

During the experiments presented in this chapter two layers were used (n =
2); one building layer and one ground layer, and C was set to

— 0.1
oo™

(the values of the diagonal elements are not used).

All in all, the PM contains information about n + 2 categories. First there
are the n different classes, then the unknown cells due to ambiguous class val-
ues and finally the unexplored cells that represent the remaining pixels, which
cannot be explained by any of the trained colour models.

8.5 Combination of Local and Global Segmentation

The approaches described above and in the previous chapter result in two sets
of information. The first is the local information that has been confirmed by
the mobile robot and the second is stored in the PM. Where these sets overlap
they can be fused into one final estimate. Since the local information has been
confirmed by the mobile robot it is reasonable to let the local information have
precedence over the PM by giving it a higher probability p. Fusion of the PM
and the local information is carried out using the method described in Section
8.4.1.

8.6 Experiments
8.6.1 Experiment Set-Up

The experiment reported in this chapter makes use of the same set-up as was
described in Section 7.6.1. The additional information used is the ground esti-
mation obtained from the occupancy grid map as described in Section 8.3.1.

8.6.2 Result of Global Segmentation

The result of the global segmentation is shown in Figures 8.3 and 8.4. Visual
inspection of the result illustrates the potential of the approach. The PM based
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on ground colour models from regions in Figure 8.2 and building colour models
from the regions in Figure 7.10 is presented in Figures 8.3(a) (cells classified as
ground and buildings) and 8.3(b) (unexplored and unknown cells).

Compared with the aerial image in Figure 7.2 the result is promising. One
can now follow the outline of the main building and most of the paths, includ-
ing paved paths, roads and beaten tracks, have been found. The main problem
experienced during the work is caused by shadowed ground areas that look
very similar to dark roofs resulting in the major part of the unknown cells.

If areas representing the unknown cells have already been classified by the
mobile robot, as in Figures 7.9 and 7.10, that result has precedence over the
PM (see discussion in Section 8.5). The final result is obtained when the PM is
combined with the local information. For these pixels p is set to 0.9 and another
update of the PM (using the method described in Section 8.4) is performed
resulting in the map shown in Figure 8.4.

A formal evaluation of the ground class is hard to perform. Ground truth
for buildings can be manually extracted from the aerial image, but it is hard
to specify in detail the area that belongs to ground. Based on the ground truth
of buildings and an approximation of the ground truth of ground as the non-
building cells, statistics of the result are presented in Table 8.1. In the table all
values in the right column, where the results from the combined PM and local
information are shown, are better than those in the middle column (only PM).

As in Chapter 7, the positive predictive value, PPV or precision, has been
used as the quality measure. PPV is calculated as

TP
TP+ FP
where TP are the number of true positives and FP are the number of false
positives. Since the PPV depends on the actual presence of the different classes
in the aerial image, normalized values are also presented. The normalized values
are calculated as

PPV (8.3)

TP,

TP, + FP, NGgﬁl

PPVnm’m = (84)

where TP,; and F P, are the numbers of true and false positives of class ¢/
respectively. GT,; is the number of ground truth cells of class ¢/ and NGTy
(not ground truth) is the difference between the total number of cells in the PM
and GT,;. The area covered by buildings is smaller than the ground area giving
an increase in the normalized PPV for buildings and a decrease for ground,
compared to the nominal PPV.
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Descriptions PM (Fig. 8.3) [%] | PM + local (Fig. 8.4) [%]
PPV buildings (norm) 66.6 (88.6) 73.0 (91.3)

PPV ground (norm) 96.8 (88.6) 97.3 (90.4)
Building cells 12.3 13.8

Ground cells 21.7 25.8
Unclassified cells 55.5 52.4
Unknown cells (ties) 10.5 8.1

Table 8.1: Results of the evaluation of the predictive map, PM, displayed in Figure 8.3
and the fusion of PM and the local information in Figure 8.4. The last four rows show
the actual proportions of the cells.
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(a) Ground (gray) and building (black) estimates. The white cells are unexplored or unknown.

(b) Ties or unknown cells (black), not classified cells (gray), and classified cells (white).

Figure 8.3: The result of the global segmentation of the aerial image (see Section 8.4)
using both ground and building models.
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(b) Ties or unknown cells (black), not classified cells (gray), and classified cells (white).

Figure 8.4: The PM combined with the local information (see Section 8.5).
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8.7 Summary and Conclusions

This chapter presented a method to segment aerial images with the purpose of
extending the observation range of a mobile robot. The inputs to the method
are information about ground taken from an occupancy grid map and building
samples obtained from the local segmentation described in the previous chapter.
The benefit from the extended range of the robot’s view can clearly be noted in
the presented example:

¢ The outline of the main building and additional building parts have been
found.

® Most of the paths and roads have been found.

¢ The PM clearly shows the regions where more information needs to be
collected in order to build a complete map.

In the local segmentation step it was noted that it can be hard to extract a
complete building outline due to factors such as different roof materials, dif-
ferent roof inclinations and additions on the roof, specifically when the robot
has only seen a small portion of the building outline. The global segmentation
is a powerful extension here. Even though the roof structure in the example
is quite complicated, the outline of a large building could be extracted based
on the limited view of the mobile robot, which had only seen a minor part of
surrounding walls.

The introduction of ground as a new class confirms the potential of using
information from aerial images for planning tasks. Good estimates of where
ground can be expected have been achieved and it is believed that planning
algorithms can take advantage of this information to improve navigation in
unknown environments.

8.7.1 Discussion

Oh et al. assumed that probable paths were known in a map and used this
information to bias a robot motion model towards areas with higher probabil-
ity of robot presence [Oh et al., 2004]. Using the approach suggested in this
chapter these areas could be automatically found from aerial images.

Son et al. derived building structures from blueprints and correlate the in-
formation with satellite images [Son et al., 2007]. Dogruer et al. used manually
extracted training samples to segment a satellite image for use in mobile robot
localization and navigation [Dogruer et al., 2007]. Both these works are ex-
amples that could make use of our approach where the needed information,
instead of being extracted from blueprints and manual samples, would be col-
lected automatically by a mobile robot.
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With the presented method, changes in the environment compared to an
aerial image that is not perfectly up-to-date are handled to a certain degree.
Assume that a building, present in the aerial image, has been removed after the
image was taken. It may therefore be classified as a building in the PM if it had
a roof colour similar to a building already detected by the mobile robot. When
the robot approaches the area where the building was situated, the building will
not be detected. If the mobile robot classifies the area as ground, the PM will
turn into unknown (of course depending on ¢;; and p), not only for that spe-
cific area but also globally, with the exception of areas where local information
exists.

What about the other way around? Assume that a new building is erected
and this is not yet reflected in the aerial image. If the wall matching indicates an
edge as a wall this can, of course, introduce errors. However, there are several
cases where it would not be a problem. When the area is cluttered, e.g., a forest,
several close edges will be found and no segmentation is therefore performed.
The same result is obtained if the building is erected in a smooth area, for
example an open field, since there are no edges to be found. The result of these
cases is that the building will only be present in the probabilistic semantic map
in the form of a possible wall.

The uncertainties in the robot pose and association problems between the
probabilistic semantic map and the aerial image have to be handled. The pre-
sented work requires that the robot information can be associated (registered)
with the aerial image. This was solved by using global positioning provided by
GPS. An alternative method for registration is to use multi-line matching.

Multi-line matching, in comparison to the single line matching used here,
can relax the need for accurate localization of the mobile robot. An example of
successful matching between ground readings and aerial image for localization
is given in [Frith and Zakhor, 2004] and for matching of building outlines in
[Beveridge and Riseman, 1997] and [Zhang et al., 2005].
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Chapter 9
Conclusions

This chapter summarizes and concludes the thesis. First, the achievements of
the work are summarized. Second, the limitations of the suggested methods are
discussed and finally some important directions for future work are given.

9.1 What has been achieved?

The research presented in this thesis deals with semantic mapping of outdoor
environments for unmanned ground vehicles. The semantic information is ac-
quired mainly by a vision-based virtual sensor, though laser-based information
is also used. Semantic information from the virtual sensor is then combined
with an ordinary occupancy grid map to construct a probabilistic semantic
map. This map is used in turn as the link to information extracted from aerial
images about both major obstacles in the form of buildings and ground that is
potentially traversable by the vehicle.

Semantic Information Semantic information is typically used in the mobile
robotics community in the context of human robot interaction (HRI). In HRI
it is obvious that the semantics of a scene are crucial for successful operations.
In order to be compatible with humans, the robots have to transform their
sensor readings and relate them to human spatial concepts. Even though HRI
is in the focus of attention, there are a number of other applications where
semantics can play an important role, for example;

¢ semantic mapping [Wolf and Sukhatme, 2007, Calisi et al., 2007, Ross
et al., 2006],

e execution monitoring to find problems in the execution of a plan
[Bouguerra et al., 2007],

¢ localization through connection of human spatial concepts to particular
locations [Galindo et al., 2005, Mozos et al., 2007],

143
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¢ path following in conjunction with aerial images [Oh et al., 2004],

e improving 3D models of indoor environments [Niichter et al., 2003,
Weingarten and Siegwart, 2006, Niichter et al., 2005], and

¢ model validation by forming the link between measurements and ground
truth data [Wulf et al., 2007].

This list of applications shows the importance of semantic concepts in mobile
robotics. Our work falls into the semantic mapping category and provides tools
and algorithmic approaches that can be used also in the other application do-
mains listed above.

Semantic Information Extraction To extract semantic information the concept
of a virtual sensor based on visual input was developed. This virtual sensor is
a generic approach that utilizes machine learning to adapt to given concepts.
The virtual sensor makes use of a set of features extracted from gray scale
images. The AdaBoost algorithm is used to select features and learn a classifier.
The experiments showed that virtual sensors can be learned for several classes
of objects using the same feature set. Virtual sensors for buildings, windows,
trucks and nature were evaluated and the virtual sensor for buildings was used
for building a probabilistic semantic map. The feature set can be extended to
further improve the classifier and to handle more concepts.

The presented experiments demonstrated that the selected feature set han-
dles variations in seasons and is robust towards the choice of camera. The
suggested method using machine learning and generic image features makes it
possible to extend virtual sensors to a range of other important human spatial
concepts.

Probabilistic Semantic Mapping In Chapter 5, a method to build probabilis-
tic semantic maps based on semantic and occupancy information is presented.
A virtual sensor for pointing out buildings along a mobile robot’s track is used
together with information from an ordinary occupancy grid map. The method
handles the wide field-of-view of the planar camera (56°), which may contain
different sized objects that can belong to different classes. Despite the large un-
certainty about the location of the classified object in the image, a very accurate
semantic map is produced.

From the experiments described in Chapter 5, several benefits of using the
virtual sensor with its good generalisation properties are noted. The approach
was found to be very robust even though

e the training set was quite small,

e different resolutions were used in the training phase and in the map build-
ing phase, and
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e different cameras were used in the training phase and in the map building
phase.

Aerial Image Segmentation The results from the probabilistic semantic map
are used as the link to building outlines in aerial images. Both local and global
segmentation in the aerial image are performed in order to detect buildings and
ground. Fusion with ground information, which is found from an occupancy
grid map, then results in a local information map and a predictive map (see
description of the relations between the semantic maps below).

With this approach two difficulties are addressed simultaneously: 1) build-
ings are hard to detect in aerial images without elevation data and 2) the limi-
tation in range of the sensors onboard the mobile robots. Concerning the first
difficulty the results show a high classification rate and we can therefore con-
clude that the ground-level semantic information can be used to compensate
for the absence of elevation data in aerial image segmentation. Second, the in-
formation gained from the aerial image segmentation results in an extended
range of the robot’s view into areas that have not been visited by the robot.
The benefits from this extended range include

¢ detection of building outlines and areas that could be obstacles,

¢ detection of paths and roads that are potentially driveable and therefore
important from a planning perspective, and

e clear indication of where more information needs to be collected in order
to complete the maps.

Relation Between the Semantic Maps Three different types of grid maps con-
taining semantic information have been defined in this thesis:

The probabilistic semantic map is a grid map where cell values in the interval
[0, 1] represent the probability that the cell belongs to a particular class.
The probabilistic semantic map is based on occupancy information and
it is only the outline of objects that are represented. The probabilistic
semantic map is presented in Chapter 5.

The local information map is a grid map where occupied cells represent re-
gions belonging to a semantic class. By contrast with the probabilistic
semantic map, the cells in the local information map represent the es-
timated area of objects and not only their partial outlines. All classified
object regions are spatially connected to the input information used in the

creation of the map. The local information map is described in Chapter
7.
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The predictive map, PM, is a global semantic grid map that predicts the pres-
ence of different classes in an entire aerial image. The classified regions
are therefore not necessarily spatially connected with the input informa-
tion, but rather found via the colour models utilized in the segmentation
process. The PM is described in Chapter 8.

The probabilistic semantic map is only based on ground level information
collected by the mobile robot while the local information map shows objects of
particular classes close to the robot’s path, based also on information extracted
from aerial images. The PM predicts the surroundings of the mobile robot in
a much larger area. The quality of these predictions depends on how homo-
geneous the aerial image is, i.e., if the colour models manage to separate one
class from the other classes. The PM is based on classified regions in the local
information map, which in turn is based on information from the probabilistic
semantic map. The local information map therefore has precedence over the
PM in the sense that in the case of conflicting entries, the local information
map is treated as being more credible.

9.2 Limitations

The key objectives of the work performed were outdoor semantic mapping
and to show how semantic information can be used in conjunction with aerial
imagery to extend the robot’s understanding of the surrounding world. The
presented system has deliberately been divided into three modules with the pur-
pose of making parts of the system exchangeable. In this way three objectives
are addressed. First of all, the system can be adapted to utilize other sensor
modalities. Second, the system can be easily improved through improvement of
the individual modules. Third, the modules may be used individually for situa-
tions when only parts of the system are needed. With this said, the limitations
of the system can be discussed and it is my belief that these shortcomings can
be handled by future research and work.

Starting with the virtual sensor, the main limitation is that the classification
is performed on the entire image. Even though the results from using this virtual
sensor in the probabilistic semantic map were promising, improved and more
robust results can be expected if the virtual sensor was extended so that it
could define which parts of an image belong to the specified class. Methods to
overcome this issue include windowing techniques, where windows of varying
size divide the image into sub-images that are individually classified. By this
the location of the object in the image could be estimated more accurately.
The virtual sensor has showed resolution independence within a certain range,
which indicates that it can be used on sub-images.

The probabilistic semantic map currently handles two classes. One can fore-
see that in the future a need for more classes will arise. It should be possible
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to handle more classes by building one semantic map for each class of interest
utilizing the virtual sensors for the respective classes, and letting these maps
represent separate layers. The different maps can then be fused into one single
semantic map, e.g., by the use of the same fusing technique as for the PM.

In the evaluation of the probabilistic semantic map it was noted that the
occupancy grid map where the data have been collected in a horizontal plane
close to the ground is not optimal for finding building outlines. Therefore, to
build accurate maps that include objects of a certain vertical scale, it is rec-
ommended that the sensor readings should be able to reflect objects within that
scale. Alternative solutions include the use of 3D-lasers, e.g., vertically mounted
laser range scanners, or vision only solutions using stereo cameras or motion
stereo.

The derived semantic maps are limited to two dimensions, i.e., they are 2D
maps with the 3D-world information projected onto a layer at ground level.
Situations where the 2D-information is not enough to describe the environment
may therefore occur, for instance when information from several overlapping
spatial layers is of interest. Consider a situation where the mobile robot detects
driveable ground under trees, while the aerial image only shows the trees, since
only the top layer is visible from above. If the robot detects that objects such
as tree tops may obstruct the view of the ground in the aerial image, training
samples for colour models of ground cannot be taken in these areas. If the
forest is considered to be dense at tree top level, colour models of trees can
be extracted. One way to represent this type of overlapping information is to
introduce layered maps.

9.3 Future Work

Based on the limitations of the system presented and the suggestions mentioned
earlier in the respective chapters, the most promising directions for future work
are discussed for each module as follows.

Virtual Sensor The introduction of a method to refine the virtual sensor so
that it can point out which parts of an image are mainly responsible for the
classification could be used to further improve the separation of different classes
in the probabilistic semantic map. To refine the virtual sensor, classification of
sub-images could be performed, exploiting the robustness of the virtual sensor
to changes in resolution. An example of a sub-image technique is described
in [Morita et al., 2005] where small squares of the upper half of images are
classified as tree, building and uniform regions.

Probabilistic Semantic Mapping A natural extension of the work on the prob-
abilistic semantic map is to introduce other object classes and refined ground
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classification. An example would be drivable areas that can be detected using
the onboard sensor system.

Aerial Image Segmentation The segmentation to produce the predictive map
is pixel based. It is therefore likely that post-processing of the PM, e.g., with
filters taking neighbouring cells into account, could improve the results. Post-
processing with Hidden Markov Models and Markov Random Field has been
used in similar applications [Mozos et al., 2006, Wolf and Sukhatme, 2007].

It is further expected that shadow detection, which merges shadowed areas
with corresponding areas in the sun, can reduce the number of false positive
building pixels from the segmentation and decrease unknown areas caused by
ties.

Multi-line matching should be evaluated as an alternative method for regis-
tration. Multi-line matching can relax the demands on accurate global naviga-
tion of the mobile robot. An example of successful matching between ground
readings and aerial image for localization is given in [Frith and Zakhor, 2004]
and for matching of building outlines in [Beveridge and Riseman, 1997].

The accuracy of the PM can probably be further improved by using a mea-
sure of the colour model quality to assign a value to the parameter p (the quality
parameter for the layers in the PM), see Chapter 8. Also the probabilities from
the semantic map from which the ground wall estimates are extracted and the
certainty of the virtual sensor could be used in the calculation of p. When the
parameter p is in use, alternatives to the max-function used to update the indi-
vidual layers should be investigated.

The use of automatic systems in different forms will be more and more com-
mon in future. The area of mobile robotics is expected to grow fast and the
trends in the automotive industry aim at more automatic functions and will
probably result in driverless cars. If these types of systems can understand hu-
man concepts their usability will be greatly improved and it is therefore ex-
pected that utilization and extraction of semantic information will play an im-
portant role in the future.

Aerial images are nowadays globally available via the Internet and several
types of systems can make benefit of the rich information they contain. Utiliza-
tion of overhead information in the form of aerial images brings, in combina-
tion with semantic knowledge, a new dimension to mobile robot mapping. The
examples given in this thesis show the potential of semantic maps that can be
used for planning and exploration.

In this sense, the ideas and work presented in this thesis take us one step fur-
ther towards systems that use multimodal inputs and transform their internal
representations into human spatial concepts.
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Appendix A
Notation and Parameters

A.1 Abbreviations

Abbreviations used in the thesis are explained in the following.

AdaBoost  Adaptive Boosting
BIRON Bielefeld Robot Companion

BOC Bayes Optimal Classifier

CCD Charge-Coupled Device (electronic light sensor)

CM Colour Model

DGPS Differential GPS

DEM Digital Elevation Model

ESOM Ensemble of Self-Organizing Maps

GBIS Graph-Based Image Segmentation

GIS Geographical Information System

GMM Gaussian Mixture Model

GPS Global Positioning System

HMM Hidden Markov Model

HRI Human-Robot Interaction

HSI Hue, Saturation, Intensity (colour space)

ICP Iterative Closest Point

IMU Inertial Measurement Unit

INS Integrated Navigation System

IR Infra-Red

JPEG Joint Photographic Experts Group (still image compression
standard)

LIDAR Light Detection and Ranging
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MCL
MDC
MRF
PCA
PM
PPV
PT
RFCH
RGB
SAR
SIFT
SLAM
SLR
SSH
SVM
TIFF
UAV
A
WGS

APPENDIX A. NOTATION AND PARAMETERS

Monte Carlo Localization

Minimum Distance Classifier

Markov Random Fields

Principal Components Analysis
Predictive Map

Positive Predictive Value

Pan-Tilt

Receptive Field Cooccurence Histograms
Red, Green, Blue (colour space)
Synthetic Aperture Radar

Scale-Invariant Feature Transform
Simultaneous Localization And Mapping
Single-Lens Reflex (camera)

Spatial Semantic Hierarchy

Support Vector Machine

Tagged Image File Format

Unmanned Aerial Vehicle

Virtual Sensor

World Geodetic System, WGS84 is the latest revision

A.2 Parameters

Below is a list of parameters and their notation used in equations etc. through-
out the thesis. The values of the parameters are presented where appropriate.

oy covering angle of object ¢ in a sector

Bdev corner tolerance [deg] +20
A planar camera field-of-view [deg] 56
drp true positive rate

Oy true negative rate

drp false positive rate

dpry  false negative rate

0

—

0

sector opening angle [deg] 30-56

edge orientations

Astart  start area [pixels] 8 x 8
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Cus number of corners with direction of

d
D,

fa
h

H
H

x

~

e
Lys
n

N
Npy
N,

rTUun

P(build|VS=build)

P(build|VS=—build)

Peeu
S

t

T

T

w

90n + 45 degrees,n € 1,...,4
Mahalanobis distance

distribution that weight training samples

in AdaBoost
feature number x

the best weak classifier from iteration ¢

in AdaBoost

the strong classifier (AdaBoost)
histogram with x bins

edge image

VS maximum range [m]
number of objects in a view
number of instances

number of planar views
number of Monte Carlo runs

building probability given that
the VS indicates building

1 - nonbuilding probability given
that the VS indicates nonbuilding
value of a cell in a grid map
sensor reading

iteration (AdaBoost)

max number of iterations (AdaBoost)

number of sensor readings

50

> 0.5

< 0.5

30






Appendix B
Implementation Details

B.1 Line Extraction

This section gives a short overview of the line extraction implementation used
to find straight line segments in a binary image. This binary image may be the
result of an edge detection operation but can also originate from other sources.

For line extraction, Matlab functions implemented by Peter Kovesi [Kovesi,
2000] have been used. These functions are implemented in m-files described in
the following:

edgelink.m This function links edge points in a binary image into chains. If
an edge diverges at a junction the function tracks one of the branches. Broken
branches can be remerged by mergeseg.m.

lineseg.m This function forms straight line segments from the edge list calcu-
lated by edgelink.m. The function breaks down each array of edgepoints in the
edge list to straight lines that fulfill the tolerance TOL. An edge merging phase
is performed to connect lines that may have been separated in the edge linking
phase.

mergeseg.m Function used by lineseg.m. The function scans through the list
of line segments to check if any segments can be merged. Segments are merged if
the orientation difference is less than ANGTOL and if the ends of the segments
are within LINKRAD of each other.

The parameter setting for the line extraction, as used in the experiments, is
described in Table B.1.
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Name Value | Description

TOL 2 pixels | Maximum deviation from a straight line before a

segment is broken in two

ANGTOL | 0.05 rad | Angle tolerance used when attempting to merge

line segments

LINKRAD | 2 pixels | Maximum distance between end points of line

segments for segments to be eligible for linking

Table B.1: Parameters used for line extraction.

B.2 Geodetic Coordinate Transformation

The GPS receiver outputs position data in the form of longitude and latitude
coordinates represented in WGS84. WGS84 is the world geodetic system dating
from 1984. It is the reference system used by GPS and uses a reference ellipsoid
representing the earth.

The WGS84 coordinates are appropriate for a system that covers the whole
earth. In smaller areas a metric system is preferable. The aerial images are regis-
tered in local coordinate systems, closely connected to the Swedish coordinate
system RT90 2.5 gon V 0:-15. The WGS position data therefore have to be
transformed. For this a transformation function from SWEREF 99 to RT90
has been used. WGS 84 and SWEREF 99 are, in principle, interchangeable!.
The difference is in the order of 0.1 m but these systems are slowly diverging
due to the motion of the European plate.

The transformation makes use of Gauss conformal projection according to

[Lantmateriet, 2005]. The parameters used by the transformation are listed in
Table B.2.

B.3 Localization

The robot was localised using DGPS and odometry. Since the trajectory is close
to buildings, the positions from the DGPS suffer from multipath signals result-
ing in errors from a few meters up to 100 m. When these errors occur intermit-
tently they can be filtered out using a motion model of the mobile robot. The
robot can only move with a certain velocity and therefore many of the erro-
neous positions can be removed. The main problem occurs when the multipath
signals result in a constant shift of the position. If the start of the shift is not
detected it is no longer possible to remove the false positions.

National land survey of Sweden, www.lantmateriet.se
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Parameter Value

Type of projection Transverse Mercator (Gauss-Kriiger)
Reference ellipsoid GRS 80

Semi-major Axis (a) 6378137

Inverse flattening (1/f) 298.257222101

Central meridian 15°48°227.624306 East Greenwich
Latitude of origin 0°

Scale on central meridian | 1.00000561024

False Northing, -667.711 m

False Easting, yo 1500064.274 m

Table B.2: Parameters used for transformation from SWEREF99 to RT90.

The pose data used in the experiments of this thesis have been manually
calibrated in the following way. Using only five parameters, the odometry data
have been tuned to fit with the DGPS positions. As has been discussed above
odometry suffers from drift. However, it is possible to achieve accurate posi-
tions by calibration of the odometry as long as the properties of the ground
surface are constant and the trajectory length is limited. The five parameters
that were used in the calibration are:

¢ Start position in X (north)
e Start position in Y (east)

¢ Initial heading

¢ Length scale

e Turn scale

The first three parameters are used to set the position and orientation of the
robot at the first GPS-fix. The last two parameters handle the wheel sizes (length
scale) and the difference in left and right wheel radii (turn scale). The length
scale is used as a factor multiplied to the odometry increments before integra-
tion. The turn scale parameter is multiplied with the current velocity and added
to the heading increment before integration. For the performed experiments this
gives good pose estimates of the robot.

The robot heading is calculated from the obtained trajectory. The calibrated
pose data are linearly interpolated to obtain the pose for each image. This is not
a limitation since the images are taken either during forward motion or when
the robot does not move.
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