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Semi-supervised Gas Detection Using an Ensemble
of One-class Classifiers

Han Fan, Victor Hernandez Bennett, Erik Schaffernicht and Achim J. Lilienthal
Mobile Robotics & Olfaction Lab, AASS Research Center, Orebro University. SE-701 82. Orebro, Sweden

Abstract—Detecting chemical compounds using electronic
noses is important in many gas sensing related applications.
Existing gas detection methods typically use prior knowledge
of the target analytes. However, in some scenarios, the analytes
to be detected are not fully known in advance, and preparing
a dedicated model is not possible. To address this issue, we
propose a gas detection approach using an ensemble of one-
class classifiers. The proposed approach is initialized by learning
a Mahalanobis-based and a Gaussian based model using clean
air only. During the sampling process, the presence of chemicals
is detected by the initialized system, which allows to learn a one-
class nearest neighbourhood model without supervision. From
then on the gas detection considers the predictions of the three
one-class models. The proposed approach is validated with real-
world experiments, in which a mobile robot equipped with an
e-nose was remotely controlled to interact with different chemical
analytes in an open environment.

Index Terms—metal oxide semiconductor sensor, electronic
nose, gas detection, gas sensing, open sampling systems

I. INTRODUCTION

Portable, low-cost electronic noses (e-noses) are widely
used to perform gas sensing in many applications, among
others environmental monitoring, gas leakage detection, ex-
ploration of toxic or explosive areas. Gas detection is a
fundamental step in gas sensing tasks, which allows to indicate
a significant event such as the presence of new chemical com-
pounds, or a noteworthy change of concentration levels. Gas
detection in complex environments is carried out with Open
Sampling Systems (OSS), which pose different challenges than
using gas sensors in laboratory set-ups, where the gas sensors
are hosted in a chamber to interact with chemical compounds
at a constant concentration over a prolonged time. In a
continuous sampling process in uncontrolled environments,
the concentration levels reflected by the sensor readings are
often fluctuating due to the turbulence and advection in gas
dispersal or the movement of the sensing platform, which
prevents the applicability of the well-established three-phase
sampling strategy [1]. Moreover, when an OSS is deployed to
an unknown environment, accurate concentration estimation in
absolute gas concentration units, e.g. ppm, could be infeasible,
especially if the gases present are not known in advance. In
such cases, gas detection is addressed by finding specific pat-
terns in instantaneous responses caused by the presence of gas
in an array of metal oxide (MOX) sensors [2]. A typical strat-
egy is to model the MOX sensor response. For example, the
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approach reported in [3] can overcome the slow recovery time
of MOX sensors. This approach is based on the knowledge of
the nature of the target gas, and requires a corresponding pre-
calibration of the detection system. In [4], the authors modeled
the MOX sensor responses as a piecewise exponential signal
to detect change points as the junctions between consecutive
exponentials. Although [3] and [4] achieve success in detection
performance, both approaches are supervised in the sense that
they rely on some prior knowledge on the response pattern of
the target analyte. This drawback cannot be avoided by model-
free methods either. For instance, Smulko and co-authors used
regression to estimate concentration levels as the basis of
gas detection in [5]. Their approach is sufficient to predict
gas concentrations with acceptable accuracy, but its model
training requires measurements of the target analytes at various
concentration levels.

In some scenarios, e.g. emergency responses, OSSs have
to deal with unknown chemicals, or there is not sufficient
time to prepare a supervised gas detection model. In such
cases, the applicability of the aforementioned gas detection
approaches is limited. One work that partially overcomes
this problem is an adaptive classification model based on
the artificial immune system proposed by Martinelli and his
co-authors [6]. Their classification model is learned from
unbalanced data and without prior assumption on the drift
model, which significantly reduces the dependence on training
data. However, their work is not a direct approach for gas
detection as its purpose is sensor drift mitigation. In this paper,
we propose a semi-supervised gas detection approach that
does not assume the response patterns of the target analytes
are known. Our approach can be initialized with clean air
measurements only, and then learns an unsupervised model of
gas exposure from the acquired measurements. We validated
the proposed approach with real-world experiments.

II. METHOD

Using an ensemble of diverse classifiers aims to improve the
detection performance [7]. We propose an ensemble one-class
classification system that consists of three models, namely, a
Mahalanobis-based One-Class Model (MOCM) and a One-
Class Gaussian Model (OCGM) together to model baseline
responses, and a One-Class Nearest Neighbor model (OCNN)
to model gas exposure. Since the MOX sensors are usu-
ally partially sensitive to various chemical compounds, the
Mahalanobis-based MOCM is applied to consider the correla-



tions of the sensor responses. Since we do not have accurate
prior information of the correlation between the sensors when
they are exposed to the target analytes, the OCGM is included
to compensate the MOCM model as the OCGM does not take
the correlation into account.

As shown in the block diagram in Fig. 1, the model learning
of the ensemble system is as follows: first, the MOCM and
the OCGM model are learned with an amount of baseline
responses B in the beginning of a gas sensing task. This
training phase takes place when the e-nose is ensured to
interact with clean air. As predictive models, the OCGM and
the MOCM estimate test measurements with two indices,
syp and sgpy, to indicate their likelihoods of being clean
air. Based on the indices, these two models determine if
the considered measurements are clean air accordingly with
two corresponding pre-defined thresholds Ay;p and Agas
respectively. Measurements detected as not clean air are used
to train the OCNN model ad its parameters of the decision
function for prediction. Finally, the resulting OCNN together
with the MOCM and the OCGM form the proposed ensemble
one-class classification system to perform gas detection. In the
rest of this section, we will describe each one-class model in
details.
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Fig. 1. The schematic diagram of the gas detection system using an ensemble
of one-class classifiers.

A. Mahalanobis-based one-class model

The Mahalanobis distance dj;p can be used as a indicator
of class separability [1]. Here we use dp;p as a metric
to quantify the similarity between a measurement and the
baseline response distribution. To do so, first, the similarity
level within the baseline responses is estimated with du/p.
Given a group of baseline responses B, i.e., clean air mea-
surements, we compute the Mahalanobis distance between B
and the estimated mean vector of the baseline responses c,
denoted as dj;p(c, B). Since the value of dj;p(c, B) reflects
the similarity level between the baseline responses [8], we
consider it as a reference (denoted by <) to evaluate the
similarity between a test measurement r and the set of baseline

responses. Based on the reference v and the Mahalanobis
distance, the score sp;p of r is defined as follows:

{SMD =7/(dup(r,B) —v), if dup(r,X)>=2y
sup =1, otherwise
(D
Note that spsp is always in the range of 0 to 1 by definition.
The decision function of the MOCM model considers the
test measurement as clean air if sy;p >= Ay p, Where the
threshold Ay;p can be set empirically as Apyp = 0.995 - .

B. One-class Gaussian model

A typical one-class Gaussian classifier is a density-based
model that assumes that the data of the target class form a mul-
tivariate Gaussian distribution [9]. For a given n—dimensional
measurement r, its probability of belonging to the target class
can be estimated with the probability density function (PDF)
of the Gaussian distribution. This Gaussian model assumes the
data are unimodal, but it is not suitable here due to the cross-
sensitivity of the MOX sensors. Instead, we model the baseline
responses as a linear combination of several equally weighted
single Gaussians [9]. The score sgjs of a test measurement is
defined as follows:

1 1
sam = Z(l - ﬁ/o P(r)dr) (2a)
j=1
. 1 _ (I —pi)?
P(r!)= ——e 27 (2b)

v 2m(a)?

where 1/ is the mean of jth sensor responses of B, and P(r7)
is the PDF of the distribution estimated by the jth sensor
response. « is a free parameter that determines the boundaries
of the Gaussian model for each sensor. Intuitively, baseline
responses used as training data are expected to have absolute
high values of sgas. This expectation is used as a guideline to
set «, which is fit so that sgas > 0.995 holds for all baseline
responses in B. Similar to the MOCM model, a decision
function is predefined with a threshold, i.e., Agps. Given
the learned OCGM model and the set of baseline responses,
we let Agyr = 0.995 - sgp(max(B)), where max(B) is the
measurement with highest averaged sensor readings in B.

C. One-class nearest neighbor classifier

After the MOCM and the OCGM are learned with baseline
responses, gas detection can be performed to recognize the
measurements that significantly deviate from clean air. These
different measurements, corresponding to chemical analytes,
are used to learn a One-Class Nearest Neighbor (OCNN)
model, which can further improve the performance of rec-
ognizing baseline responses. The OCNN developed in this
work is based on a two-layer-neighborhood one-class model
proposed in [10]. Fig. 2 depicts the consideration of two-layer-
neighborhood.

We consider that the measurements detected as chemicals
simply belong to one class “non-air”. In this way, they can be
used to learn the OCNN model as follows:



Fig. 2. An example of considering two layers of neighborhoods for a given
measurement r. The data points in red correspond to the first layer neighbors,
and the data points in blue correspond to the second layer neighbors. The
data points in green are outside the two layers of neighborhoods of r. In this
example, the first layer was selected with neighborhood size J = 4 and the
second layer was selected with neighborhood size K = 3. NN (y) is the set
of K nearest neighbors of the data point y.

1) The detected non-air measurements are taken as the
representative data of the target class for the OCNN
model.

2) A test measurement is assigned with a score sy using
the following algorithm:

Input: the data of the target class X, the test sample r
Output: the OCNN score of the test sample sy
1: Compute the distances between r and its J nearest
neighbors in X, and find the median value M,
2: for all nearest neighbors y € NN (r) do
3:  Compute the distances between y and its K
nearest neighbors NN(y) in X, and find the
median M,
4: if M, < M, then
5: SNN<—($NN+1)/J.
6: end if
7: end for
8: return sypy

3) Use the OCNN model to process the data in B, and find
the mean p v and variance o of the outputted sy
scores. The test measurement is identified as baseline
response if its sy falls inside the interval [uyy —
30NN, UNN + 30N N].

Once the OCNN is learned, the ensemble classification
system is formed up. For a test measurement, it will be
recognized as a baseline response if it satisfies sgar >
Aoy and syp > Aymp, or syn falls in the interval of
[unN — 30NN, NN + 30NN

III. EXPERIMENTS AND RESULTS

We conducted six experiments in a basement with a narrow
corridor connecting two rooms. A ground robot equipped with
three MOX sensors was driven into plumes of ethanol (95%
pure) and 1-propanol (99.5% pure)/acetone (100% pure) at

different locations. The MOX sensors used in our experiments
are sensitive to these chemical analytes [11]. The gaseous
chemicals were released from a beaker filled with liquid of
the chemicals, and bubbler was used to facilitate evaporation.
Before the experiments were started, the sensor arrays were
heated up for 10 to 30 minutes. During the sampling processes,
the robot was commanded to pause at several locations that
were near the gas sources (within 1 m) as well as distant from
any gas source (more than 2 m away). The data sets of the
above experiments are used and reported in [12].

Fig. 3 is an example of the incorporation of the three
classifier. As shown in Fig. 3(a), from the time series of
the MOX sensor responses one can observe that two gas
exposures interacted with the e-nose. These two gas exposures
took place when the robot paused in front of the ethanol and
the propanol source respectively. Fig. 3(b) to Fig. 3(d) show
the incorporation of the three one-class models. The sgas
and s);p decreased as the e-nose began to interact with the
the first gas source. According to the intersections between
the threshold Aga/Aqam and the curve of sga/syp (see
Fig. 3(b) and Fig. 3(c)), one can find that the OCGM has
better detection performance than the MOCM, but the latter is
more robust to the selection of j;p in detecting gas exposure.
In Fig. 3(d), once the OCNN is finished learning (marked
with the blue vertical line), the outputted sy scores stayed
in the interval [uyy + 30NN, tyy —30n ] when the sensors
did not exhibit significant responses. As the sensors became
exposed to the second gas source, most sy fell outside of the
decision interval. After the second gas exposure, the baseline
responses will be recognized by the OCNN after 2500 s as
sy went back to the decision interval. Another experimental
trial is shown in Fig. 4, in which three gas exposures were
set to interact with the e-nose. In this case, the MOCM only
contribute to the detection of the first gas exposure because the
corresponding parameter p;p was set too large. Nevertheless,
the composite prediction from the OCGM and the OCNN
together managed to respond to the gas exposures occurred
after 1500 s.

Fig. 3. A representative example of the incorporation of the ensemble one-
class classifier gas detection system. In this experimental trial, the e-nose
encountered two gas exposures. The details of each subplot are mentioned in
the text.



Fig. 4. Another example of the incorporation of the ensemble one-class clas-
sifier gas detection system. In this experimental trial, the e-nose encountered
three gas exposures.

IV. CONCLUSIONS

In this paper, we propose an ensemble one-class classifica-
tion system for gas detection using an e-nose, which reduces
the reliability on prior knowledge of the target analytes.
The proposed approach has a twofold learning phase. The
Mahalanobis-based and the Gaussian-based one-class model
are initialized with clean air only. The resulting models allow
subsequent model learning for one-class nearest neighbor clas-
sifier in an unsupervised process. We validated the ensemble
classifiers with the data sets collected by an open sampling
system in real-world experiments. As a trade of reducing
dependency on prior knowledge, it does not overcome long
recovery time (recognize clean air before the responses are
fully recovered), which is a limitation compared to sensor
modeling approaches such as [3].

Regarding the future work, since the proposed approach
includes several free parameters, i.e., Agar, Aarp, and «, the
sensitivity to the parameter selection should be fully tested.
We will have a thorough investigation on the stability and
adaptivity of the detection performance of our approach, e.g.
evaluating the measures such as true alarm ration, false alarm
ration, and delay of detection in experiments that more types
of gases are considered and the experimental parameters such
as sensor heating time, the time and distance of the interaction
between the gas source and the e-nose are strictly controlled.
For some real-world applications such as environmental mon-
itoring, the potential issue of sensor drift should be addressed
since the drifts in signals might have a negative impact on the
performance of the classification model [6].
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