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Abstract

This thesis addresses the problems of registration, localisation and simultane-
ous localisation and mapping (SLAM), relying particularly on local visual fea-
tures extracted from camera images. These fundamental problems in mobile
robot navigation are tightly coupled. Localisation requires a representation of
the environment (a map) and registration methods to estimate the pose of the
robot relative to the map given the robot’s sensory readings. To create a map,
sensor data must be accumulated into a consistent representation and there-
fore the pose of the robot needs to be estimated, which is again the problem of
localisation.

The major contributions of this thesis are new methods proposed to address
the registration, localisation and SLAM problems, considering two different
sensor configurations. The first part of the thesis concerns a sensor configura-
tion consisting of an omni-directional camera and odometry, while the second
part assumes a standard camera together with a 3D laser range scanner. The
main difference is that the former configuration allows for a very inexpensive
set-up and (considering the possibility to include visual odometry) the realisa-
tion of purely visual navigation approaches. By contrast, the second configu-
ration was chosen to study the usefulness of colour or intensity information
in connection with 3D point clouds (“coloured point clouds”), both for im-
proved 3D resolution (“super resolution”) and approaches to the fundamental
problems of navigation that exploit the complementary strengths of visual and
range information.

Considering the omni-directional camera/odometry setup, the first part in-
troduces a new registration method based on a measure of image similarity.
This registration method is then used to develop a localisation method, which
is robust to the changes in dynamic environments, and a visual approach to
metric SLAM, which does not require position estimation of local image fea-
tures and thus provides a very efficient approach.

The second part, which considers a standard camera together with a 3D
laser range scanner, starts with the proposal and evaluation of non-iterative
interpolation methods. These methods use colour information from the cam-
era to obtain range information at the resolution of the camera image, or even
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with sub-pixel accuracy, from the low resolution range information provided
by the range scanner. Based on the ability to determine depth values for local
visual features, a new registration method is then introduced, which combines
the depth of local image features and variance estimates obtained from the 3D
laser range scanner to realise a vision-aided 6D registration method, which does
not require an initial pose estimate. This is possible because of the discrimina-
tive power of the local image features used to determine point correspondences
(data association). The vision-aided registration method is further developed
into a 6D SLAM approach where the optimisation constraint is based on dis-
tances of paired local visual features. Finally, the methods introduced in the
second part are combined with a novel adaptive normal distribution transform
(NDT) representation of coloured 3D point clouds into a robotic difference de-
tection system.

Keywords: mobile robotics, registration, localisation, SLAM, mapping, omni-
directional vision, 3D vision, appearance based
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Chapter 1

Introduction

1.1 A World with Robots

Considering the large amount of fiction literature, TV-series and movies con-
taining mobile robots, one could argue that there is no need for an introduction
chapter to robotics. Which other research topic has more or less an own index
(sci-fi) in the library? This is a very nice property since many people find this
topic fascinating. The vast amount of fiction has, however, also raised a quite
large misconception of what is the state of the art in mobile robotics. Compared
to the robots in science fiction literature, current research is lagging far behind.
My aunt, for example, used to say: “I would like to have a personal service
robot to help me in the kitchen, something like a C-3PO would be nice since
he is also very polite.” (C-3PO - gold coloured humanoid from the Star Wars
movies, see Fig. 1.1). Obviously there is no C-3PO available on the market. But
how far away from a C-3PO are we? What is the current state of the art in
mobile robotics?

Most of the work carried out in mobile robotics today is still about finding
solutions to the fundamental problems. Some of these fundamental problems
address the core building blocks required to give a mobile robot the skills to
navigate in its environment (go from A to B). The word navigation originates
from Latin: navis-’ship’ and agere -’to move’ or ’to direct’. The processes in-
volved to move a ship between A and B are indeed similar to the processes
required to move a robot. To navigate a ship, the first step would be to get a
nautical chart, a map, covering the region of interest. Based on this map, the
second step would be to plan the voyage based on the current location and the
goal, i.e. to determine a path. The path would typically be represented by a set
of way-points or sub-goals. Path following can then be accomplished by mov-
ing along the way-points towards the current goal. To determine the heading
and distance to way-points, it is beneficial to know the position during the voy-
age (this problem is called localisation in mobile robotics). Finally, we cannot
solely follow the planned path without watching out for other ships or obsta-
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Figure 1.1: Robots, both fiction and non-fiction, used as examples in the discussion.
Top: C-3PO, the humanoid from Star Wars (fiction). Bottom left: Trilobite - the vacuum
cleaner robot from Electrolux. Bottom right: AutoMower - the lawnmower robot by
Huskvarna.
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cles (obstacle avoidance) during the trip, and consequently it might even be
necessary to re-plan parts of the path. In the ship navigation example the maps
were available, which is typically true in the case of nautical charts. However,
for mobile robots, it is very rare that up-to-date maps exist with the required
accuracy. Hence, one large research area in mobile robotics is how to create
suitable maps.

An overview of the fundamental building blocks for mobile robot naviga-
tion can be seen in Fig. 1.2. How the problems corresponding to these building
blocks can be addressed is to a large extent dependent on the environment and
the available sensor modalities.

Basically what is achievable nowadays is for a mobile robot to move from
position A to B in a planar structured terrain and to perform simple manip-
ulation of objects. This has been done for quite some time in controlled envi-
ronments, such as car factories, where automatic guided vehicles (AGVs) carry
around parts to various assembly stations by following magnetic stripes buried
in the floor. More recently it became possible to do the same task without the
need to modify the environment. One of the first successful mobile robot appli-
cation of this kind was a tour guide, back in 1997, that showed visitors around
a museum [20]. No modifications (e.g. adding magnetic stripes in the floor)
were required in the museum to aid the robot’s navigation. Localisation, path
planning and obstacle avoidance were done on the robots on-board computer.

Given the current state of the art, a C-3PO seems obviously quite far away,
so in what kind of situations is it desirable to use our current mobile robots?
In the mobile robotics community, as well as in many other fields, the three D’s
(dumb, dull and dangerous) are often mentioned. In addition to these three D’s,
one might want to add other factors such as complexity and cost (two C’s). In
addition to being suitable for robots, the task must of course also be feasible to
perform (complexity) and secondly, at a reasonable cost. Even though, the task
of making the bed, for example, might be considered dull, the complexity of the
skills involved are far beyond what any robot can perform today. This example
highlights the difficulties for consumer robotics. There are enough applications
that fit the three D’s and are suitable for mobile robots, but most are too dif-
ficult for the current state-of-the-art systems, and at the same time the cost of
a commercially successful robot needs to be modest, hence the two C’s are the
main limiting factors. Basically only two consumer applications have been suc-
cessful so far; vacuum cleaning and lawn mowing, see Fig. 1.1. The reason why
these applications are successful is first that neither requires any higher level
of navigation and second, both devices are specialised for a single task. Typ-
ically both vacuum cleaning and lawn mowing can be performed reasonably
well based on random walk, meaning that the robot select the next control
command based in a random fashion, and purely reactive obstacle avoidance
(if the robot observes an obstacle, it simply does a random rotation and contin-
ues straight ahead). Since there is no need for the robot to know where it is by
sensing the environment, the sensors utilised in these robots can be very limited
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(for example, only a bump sensor, which tells if the robot ran into an obstacle)
and the same is true for the computational demands. These robots can be pro-
duced at a low cost. These two examples also show ways of simplifying the task
(vacuum cleaning and lawn mowing) by designing a robot which solves only a
specific sub-task. A generic or multi-purpose robot, such as C-3PO, would be
able to perform vacuum cleaning and lawn mowing by using a regular vacuum
cleaner and lawnmower. However, trying to create a C-3PO like robot is indeed
much more complex. The same approach of simplifying the problem by design-
ing robots for one specific task could, for example, be applied to simplify the
problem of making the bed. However, although simplified, it is still extremely
complex. Making the bed doesn’t require any special device (compared to vac-
uum cleaning which requires a vacuum cleaner). The step of adding functions
to an already existing device (vacuum cleaner becomes a vacuum cleaner robot)
seems more straight forward than to introduce a completely new device (bed
making robot). Probably there are some additional specific robotic devices that
will be used in everyday households in the near future. One could argue though
that it is unlikely to be a robot specialised in making the bed.

If we instead look at the commercial areas: production assembly, agricul-
ture, mining, warehouses, stores, harbours, etc., the cost factor has a much
lower impact than on the consumer market and also devices already exist
(trucks, loaders, forklifts, tractors, harvesters, etc.). There are a large number
of applications where going from A to B is an essential step in the production
process (i.e. transporting goods, containers, crops, etc. from A to B). What is
missing, except for additional sensors and computers, is to accomplish the task
autonomously.

Another area that mobile robots can be used in is to collect sensory data
with the aim to learn about the environment. Sensor networks are addressed in
a research area where the basic idea is to place (many) stationary sensors in an
environment and by monitoring the data from all these sensors (humidity, tem-
perature, gas concentration, wind, for example) to extract various properties
of the environment such as gas concentration maps. The size of the environ-
ment can vary from small scale, for example, gas detection in a building (i.e.
fire-alarms) up to a global scale such as the weather. By instead mounting sen-
sors onto mobile robots, larger areas can be covered or fewer sensors may be
required. The main motivation for using robots in this context is cost. Each
sensor can be very expensive and to cover a reasonable area with a sensor net-
work many sensors are required. Another application within the same context
is to use a robot to distribute sensors in a hazardous environment. In the near
future, these are the areas (production and environmental monitoring) where
mobile robots either will or have just started to be utilised.
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Figure 1.2: Fundamental building blocks for mobile robot navigation. The focus of this
thesis is on the building blocks Registration, Localisation, Mapping and SLAM consid-
ering different sensor modalities, in particular vision, and non-trivial environments.

1.2 Fundamental Problems

The focus of this thesis is on navigation in a non-trivial environment (essentially
a non-planar non-artificial 3D world). In particular, the following fundamental
problems or ‘building blocks’ are addressed (see Fig. 1.2):

• Registration

• Localisation

• Simultaneous Localisation and Mapping (SLAM)

• Mapping

Localisation, is the problem of estimating the current position of the mobile
robot. The position estimate can either be relative to a global coordinate frame
as in GPS, which will be discussed later, or relative to a given map. Localisation
with respect to a map provides an answer to the question “Where am I (given
this map)?” [74].

To create a map, called mapping, is another fundamental problem, “What
is my map?” [45]. Mapping can be described as to combine a set of sensory
readings into a spatial, consistent representation of the environment - a map.
Simultaneous Localisation and Mapping (SLAM) [108, 32] is the problem of
simultaneously determining the robot’s location while constructing the map.
SLAM is often referred to as a chicken and egg problem, since, to localise an
accurate map and at the same time good estimates of the robot’s pose (position
and orientation), are needed to build the map.
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Registration is the problem of determining relative pose estimates between
two sensory readings, for example, between two laser range scans. When range
data is used, registration is often called scan-matching. Relative poses are used
in both localisation and mapping, therefore registration can be seen as an even
more fundamental block.

Other fundamental building blocks, not covered in this thesis, are path plan-
ning and obstacle avoidance. Path planning corresponds to the question “How
do I get there?” [72]. Of course the path planning task typically include a repre-
sentation of the world (a map) and a position estimate (“I know where I am”),
which basically means that localisation and mapping as described above have
to be solved. Path planning can also be incorporated within the mapping and
localisation process. For example, exploration, to autonomously create a map,
requires that the robot both moves to and detects unvisited locations [123]. For
a complete autonomous navigation system we need all of the building blocks,
see Fig. 1.2.

1.3 Sensors

Previously a few sensors have been mentioned, for example, the 2D laser range
scanner. Another common range sensor is the sonar, where both resolution,
accuracy and cost are much lower compared to a laser range finder. Generally,
time-of-flight (TOF) range sensors work by emitting a signal, then measure
the time until the ’echo’ bounces back. By knowing the speed of sound for
sonar and speed of light for laser, the distance to the reflected surface can be
obtained. In addition to the measured time, the phase shift between submitted
and received signals are used to improve the resolution in most light based
systems. The SwissRange 3000 [1] relies solely on the phase shift of modulated
signals. Other non-TOF range sensors works commonly by triangulation, as
for example, a stereo camera.

One common sensor that most mobile robots have is odometry. Odometry
provides an estimate of the robot pose by estimating the ego-motion, also called
dead reckoning. This is most often done by integrating encoder values on the
wheels of the robots (most mobile robots nowadays have wheels). The problem
is that errors quickly accumulate over time. The benefits are that this kind of
sensor is typically accurate over a short distance. Also odometry sensors only
give estimates of 2D motion and cannot directly cope with motion in 3D. To
address the problem of determining motion in 3D, inertia sensors, gyros and
inclinometers can be used. However these sensors, except for the inclinometer
(which only measures the pitch and roll angle relative to the gravitation vector)
also deteriorate over time.

The Global Positioning System (GPS) gives a position estimate in a global
coordinate frame and would ideally solve one of the fundamental blocks di-
rectly - localisation. However, GPS has several limitations. First it does not
work in many cases, for example, indoor, underground and underwater. Sec-
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ond, the accuracy varies heavily depending on the environment, for example
in cities (where buildings are blocking and reflecting satellite signals) and other
non-open areas. An example of position accuracy, taken from the specification
for the GPS receiver located on one of our robots (Novatel ProPak G2), is
1.8 CEP. CEP (Circular Error Probable) measures a horizontal radius from the
ground truth position of where half of the position measurements from the GPS
are expected to be inside (and half are outside). 1.8 CEP gives approximately a
95% confidence value of 4.5 meters (95% of the position estimates are within
4.5 meters). The vertical accuracy of a GPS is less then the horizontal. Due to
these limitations no robot (except for a flying robot or one that operates on the
surface of the sea) can solely rely on GPS to localise. Please note that differen-
tial GPS (DGPS) and Real Time Kinematic GPS (RTK-GPS), although typcially
providing higher accuracy, have the same problems with weak and reflecting
signals as the standard GPS.

Another important sensor is the vision sensor (camera). Cameras have a
large potential due to the rich amount of data an image contains. The res-
olution, accuracy and frame rate of this sensor increases dramatically on a
yearly basis while the cost decreases. The cost of a camera is much lower than
for a laser range scanner, for example. Typically laser range scanners have a
large field of view (FOV) compared to a standard camera. To extend the FOV
of a camera, various mirrors and lenses can be used. For example, an omni-
directional lens gives a 360 degrees panoramic view, which, due to the richness
of the information, is found to be suitable for localisation tasks. Also, as the
eyes are the primary sensor for humans and many other animals, there already
exist solutions to the fundamental building blocks, although these solutions
are coded in ’wetware’ - brain and spinal tissue. This motivates why robots
nowadays and in future should rely more on cameras.

1.4 Proposed Approaches

A lot of research has been done, especially in indoor environments, using a 2D
laser range scanner on a mobile robot. Much of the current research in mobile
robotics is now focusing on developing the fundamental building blocks to fit
different sensors such as cameras, 3D laser range scanners, etc. and to move
from indoor to outdoor environments. This thesis addresses the fundamental
problems of registration, localisation and SLAM by using vision sensors as a
foundation of the various proposed methods.

Two groups of different methods are proposed where the difference lies in
which sensors are utilised: first, a setup where only camera images are used
together with odometry, and second, a combination of vision and a 3D laser
range scanner. The latter setup does not require any pose sensor as odometry.

The key part of the work, which is common to all the proposed approaches,
is the utilisation of cameras and the application of local visual features. In
essence, local features means that the whole image is used at once, but instead
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only the interesting parts of an image are looked at. To only look at smaller
parts of an image gives several advantages, especially when comparing two im-
ages to determine if they were taken at a similar position. For example, if the
scene has partly changed, there are still interesting regions in the unchanged
area which can be detected. Also, minor changes of the viewpoint (the loca-
tion of the robot) can be tolerated in that the local features move relative to
each other, but their appearance remains similar. Local visual features and their
properties will be discussed further in Chapter 3.

An overview of the methods proposed in this thesis can be found in Chap-
ter 2.

1.5 Contributions

This work addresses some of the fundamental problems in mobile robotics
by using vision sensors in two completely different set-ups. The proposed ap-
proaches can be seen to be at two different ends of the axis representing re-
search in mobile robotics, where the axis represents both complexity in terms
of computational requirements and cost in terms of price of the used sensors.

Two new approaches regarding registration are proposed. One is solely
based on a measure of how similar two omni-directional images appear us-
ing local features together with the robots odometry. The key part and the
innovation in this approach is that position estimates of each local feature can
be avoided, which can be computationally expensive. The other registration
method uses a standard CCD camera and a 3D laser scanner, where the accu-
rate initial pose estimates required in pure 3D laser scanner based methods can
be avoided.

Based on these two registration blocks, localisation and SLAM / Mapping
methods are proposed. For each type of sensor setup, a SLAM and localisation
approach is proposed based on visual appearance. By exploiting the registration
method that does not requires any initial position estimate a difference detec-
tion systems is also developed, both as an interesting robot sequirity application
but also as an evaluation of the proposed methods.

To be able to actively fuse the high resolution images that standard mod-
ern cameras can provide with the comparably low resolution of state-of-the-art
3D range scanner sensors, required as a preprocessing step by registration and
therefore also the localisation and SLAM methods, yet another building block
is presented in this thesis named interpolation. Interpolation is how to actively
fuse the depth values obtained from 3D laser scanner and the camera image.
The interpolation can also be seen as a separate application, since, by combin-
ing these two sensor modalities it is possible to obtain range data at a higher
resolution, however, interpolation in this work is used to obtain a depth esti-
mates of local visual features extracted from camera images.
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1.6 Publications

Some parts of this thesis work have been presented in a number of journal
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specifying which chapter it relates to. The publications are available on-line at
http://www.aass.oru.se/∼han.
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Interpolated Local Image Features”. Robotics and Autonomous Systems,
submitted.
Main part in Chapter 8 and Chapter 9
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tic Approach to Appearance based Visual SLAM”. IEEE Transaction on
Robotics - Special Issue on Visual SLAM, accepted as a regular paper.
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• Henrik Andreasson, Rudolph Triebel and Achim Lilienthal. “Non-iterative
Vision-based Interpolation of 3D Laser Scans”. Autonomous Robots and
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in Non-Stationary Environments using Omni-directional Vision”. Robotics
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using Particle Filter and iterative SIFT”. Robotics and Autonomous Sys-
tems, 2006.

Conference Proceedings

• Henrik Andreasson, Martin Magnusson and Achim Lilienthal. “Has Some-
thing Changed Here? Autonomous Difference Detection for Security Pa-
trol Robots”. Proc. IEEE/RSJ International Conference on Intelligent
Robots and System (IROS07), San Diego, CA, USA, 2007.

Main part in Chapter 10 and Chapter 9
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Registration”. Proc. European Conference on Mobile Robots (ECMR07),
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• Henrik Andreasson, Tom Duckett and Achim Lilienthal. “Mini-SLAM:
Minimalistic Visual SLAM in Large-Scale Environments Based on a New
Interpretation of Image Similarity”. Proc. IEEE International Conference
on Robotics and Automation (ICRA07), Rome, Italy, 2007.

Main part in Chapter 6 and parts of Chapter 4

• Henrik Andreasson, Rudolph Triebel and Achim Lilienthal. “Vision-based
Interpolation of 3D Laser Scans”. Proc. International Conference on Au-
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2006.
Chapter 7

• Hashem Tamimi, Henrik Andreasson, André Treptow, Tom Duckett and
Andreas Zell. “Localization of Mobile Robots with Omnidirectional Vi-
sion using Particle Filter and Iterative SIFT”. Proc. European Conference
on Mobile Robots (ECMR05), Ancona, Italy, 2005.

• Henrik Andreasson, Rudolph Triebel and Wolfram Burgard. “Improv-
ing Plane Extraction from 3D Data by Fusing Laser Data and Vision”.
Proc. IEEE/RSJ International Conference on Intelligent Robots and Sys-
tem (IROS05), Edmonton, Alberta, Canada, 2005.

• Henrik Andreasson, André Treptow and Tom Duckett. “Localization for
Mobile Robots using Panoramic Vision, Local Features and Particle Fil-
ter”. Proc. IEEE International Conference on Robotics and Automation
(ICRA05), Barcelona, Spain, 2005.

Main part in Chapter 5 and parts of Chapter 4

• Sven Fleck, Florian Busch, Peter Biber, Henrik Andreasson and Wolfgang
Strasser. “Omnidirectional 3D Modeling on a Mobile Robot using Graph
Cuts”. Proc. IEEE International Conference on Robotics and Automa-
tion (ICRA05), Barcelona, Spain, 2005.

• Peter Biber, Henrik Andreasson, Tom Duckett and Andreas Schilling. “3D
Modeling of Indoor Environments by a Mobile Robot with a Laser Scan-
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gent Robots and Systems (IROS04), Sendai, Japan, 2004.

• Henrik Andreasson and Tom Duckett. “Object Recognition by a Mobile
Robot using Omni-directional Vision”. Proc. Eighth Scandinavian Con-
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Workshop and Symposium Papers

• Henrik Andreasson and Tom Duckett. “Topological Localization for Mo-
bile Robots using Omni-directional Vision and Local Features”. Proc.
The 5th Symposium on Intelligent Autonomous Vehicles (IAV04), Lis-
bon, Portugal, 2004.

Chapter 5

• Tom Duckett, Grzegorz Cielniak, Henrik Andreasson, Li Jun, Achim Lilien-
thal, Peter Biber and Tomás Martínez. “Robotic Security Guard - Au-
tonomous Surveillance and Remote Perception (abstract)”. Proc. IEEE
International Workshop on Safety, Security, and Rescue Robotics, Bonn,
Germany, 2004.

• Tom Duckett, Grzegorz Cielniak, Henrik Andreasson, Li Jun, Achim Lilien-
thal and Peter Biber. “An Electronic Watchman for Safety, Security and
Rescue Operations (abstract)”. Proc. SIMSafe 2004, Improving Public
Safety through Modelling and Simulation, Karlskoga, Sweden, 2004.

1.7 Outline of the Thesis

The thesis is divided into three parts. The first part covers the basic algorithms
and methods, which are common for the rest of the thesis. Part II covers the
proposed omni-directional vision and odometry based approaches, and Part III
contains methods that use the combination of vision and 3D laser range scanner
data.

The remaining chapters are as follows:

• Chapter 2 gives an overview of all the proposed methods presented in this
thesis and how they fit together.

• Chapter 3 contains vision algorithms and methods regarding local fea-
tures, which are used in all the presented approaches.

• Chapter 4 covers the similarity based registration approach using omni-
directional vision and odometry.

• Chapter 5 describes the visual appearance based localisation framework.

• Chapter 6 describes the omni-directional vision and odometry based SLAM
approach (Mini-SLAM).

• Chapter 7 explains the interpolation process, which actively fuses two dif-
ferent sensor modalities (camera and 3D laser range scanner) to estimate
depth values in images.
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• Chapter 8 is about registration in 3D using local visual features to deter-
mine correspondences and depth estimates from a 3D laser range finder.

• Chapter 9 describes the proposed SLAM and localisation methods using
vision and 3D laser range scanners.

• Chapter 10 describes a difference detection application, which detects
both structural changes in 3D and changes in colour.

• Chapter 11 concludes the thesis and discusses future work.



Chapter 2

Overview of Proposed Methods

This chapter gives an overview of the methods presented in the following chap-
ters. It also aims to give a brief introduction to the various problems and con-
cepts. Each of the following chapters will focus more on details, therefore re-
lated work is only briefly mentioned in this chapter and can be found in each
subsequent chapter. As mentioned in the introduction, this thesis addresses fun-
damental problems in mobile robot navigation using local image features: reg-
istration, localisation, mapping and SLAM considering two different configura-
tions of sensors. An overview of how the different methods relate to each other
is given in the following sections.

2.1 Sensory Equipment

Two different sensory configurations have been utilised in this thesis, where the
common sensor is the vision sensor (camera), see Fig. 2.1. The motivation for
considering different sensor setups is to cover a range of vision-based sensor
systems available for mobile robot applications from the complex, expensive,
heavy and accurate end of the spectrum to inexpensive, lightweight and small
solutions.

The first sensor configuration - denoted Omnivision, is considered within
Part II. It consists only of a single camera, equipped with an omni-directional
lens and odometry. Part II describes how this configuration can be used to
create large maps and to perform localisation. For many low cost, lightweight
and small robot platforms used in applications relying on moving from A to B,
this setup would be suitable.

If we instead have an application where we want to accurately measure
the spatial distribution of a certain quality of the environment, for example,
to determine the temperature distribution, we would need to resort to a more
expensive sensor set-up. In Fig. 10.2 (p. 153) a 3D-thermal map is shown,
created by utilising a thermal camera to detect the temperature in different
areas, which is used in combination with spatial data obtained from a 3D laser

13
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Figure 2.1: Overview of the proposed methods and applications with chapter references.
The boxes on top show the type of sensors used for each setup. Boxes with rounded cor-
ners are the methods, whereas the boxes with a polygonal shape shows applications. The
left area contains the Omnivision sensor setup considered in Part II of this thesis. Here
the methods only rely on odometry and omni-directional images as input. The right area
refers to Part III, where a sensor configuration (3D− vision) is considered that delivers
standard images and 3D laser range data but no internal pose estimates from odometry
are assumed. The left side corresponds to the less expensive sensor configuration and
the approaches proposed for this configuration are computationally less complex. The
gap between the left and the right area indicates that the approaches developed on the
right side are far away from those on the left in terms of cost and complexity.
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Figure 2.2: The two mobile robots used for data collection. Left: People-Bot, named
PeopleBoy. Right: P3-AT, named Tjorven (from one of the characters of the author
Astrid Lindgren). Both robots were used for the experiments with the omni-directional
vision sensory system, discussed in Part II, whereas only the robot Tjorven was used
for the 3D vision experiments in Part III. Both these robots are manufactured by
MobileRobots Inc.

range scanner. Another example is an application where the aim is to detect
changes in the environment,see Fig. 10.8 (p. 161). In both examples, a sensor
which can obtain 3D range measurements is required, which is used in the
second configuration - denoted 3D− vision (Part III) together with a standard
colour camera.

2.1.1 Omnivision sensor configuration considered in Part II

The two types of sensors considered in Part II are odometry - which gives an
internal estimate of the robot’s pose by incrementally adding encoder values
from the wheels of the robot, and an omni-directional camera - an ordinary
camera with a special lens, which gives a 360◦ field of view (FOV). The odom-
etry values are obtained directly from the on board controller of the robots.
The omni-directional lens is manufactured by 0-360.com and is attached to
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Figure 2.3: The equipment used in the Omnivision sensor configuration (Part II). Left:
odometry, illustrated by an encoder. Middle: the omni-directional lens, produced by
0-360.com. Right: The standard consumer camera (Canon EOS350D) that the omni-
directional lens is attached to.

a standard consumer 8 megapixels digital camera (Canon EOS350). Fig. 2.3
shows the sensors used on the mobile robot Tjorven (Fig. 2.2). The mobile
robot PeopleBoy (Fig. 2.2), equipped with similar sensors (odometry and an
omni-directional camera), was used for the localisation experiments described
in Chapter 5. The omni-directional camera is further described in Chapter 4.

All the methods proposed in Part II are, apart from using also the robots
odometry, appearance based, meaning that images are match based on their
similarity and not by extracting any geometrical properties. Since the proposed
methods work without extraction of geometrical properties, a significant bene-
fit is that no calibration of the imaging system is needed.

2.1.2 3D Vision sensor configuration considered in Part III

To obtain 3D range data together with camera images, a 2D laser range scan-
ner is attached to a pan / tilt wrist together with a standard CCD camera, see
Fig 2.4. The laser scanner, a SICK LMS-200, has a 180◦ FOV with a max-
imum range of 80 meters in good conditions and a range resolution of 10
mm ± 15 mm. The resolution can be set to either 1, 2 or 4 readings per
1◦. In the highest angular resolution, the FOV is reduced to 100◦. In addi-
tion to the returned range estimates, remission values measuring the amount of
light reflected back to the sensor can be obtained. The camera is a standard 1
megapixel (1280×1024) CCD camera, ImagingSource DFK 41F02, connected
through firewire. The camera has a FOV of 26◦ using a standard 6 mm lens
from Pentax. Both the camera and the laser range scanner are mounted on a
pan/tilt wrist, Amtec PW070, which is in turn mounted onto the robot Tjorven,
see Fig. 2.2.
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Figure 2.4: The different sensors used in the 3D vision sensor configuration, 3D −

vision, used in Part III. Left: the 2D laser range scanner, LMS200 produced by SICK
GmbH. Middle: the 1 megapixel standard CCD camera (DFK 41F02) by ImagingSource
GmbH. Right: the wrist PW070, by Amtec Robotics GmbH, which is used to move the
2D laser to create 3D data and to direct the camera.

An important aspect of combining a 3D laser range scanner and a camera is
to determine the geometrical properties of both sensors and their relative posi-
tion with respect to each other. To obtain these parameters a special calibration
routine was developed, which is detailed in Appendix B. An example of the
data obtained with the 3D− vision sensor configuration is shown in Fig. 2.10.
The data can be described as coloured point clouds where the colour is a pos-
sibly multi-dimensional vector, which may contain additional dimensions for
temperature or remission values.

2.2 Registration

To enable a mobile robot to perceive the environment external sensors, for ex-
ample laser range finders and cameras, are used. As a robot navigates around,
several sensor readings are obtained from different locations. Registration ad-
dresses the problem of how these measurements are related in terms of position
and orientation. Since, as will be shown later, both localisation and SLAM
methods rely to some extent on registration, it can be seen as a fundamental
problem.

Registration, also called scan-matching when range sensors are used, is
sometimes further divided into [112]:

• global registration, and

• local registration.

Global registration is related to the mapping or SLAM problem (more spe-
cific an approach to mapping / SLAM called graph or relation based), where
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Figure 2.5: An example of two panoramic images illustrating the data association (or
correspondence) problem: These two panoramic images were taken at a similar posi-
tion. However, due to changes in the environment, such as moved objects and occluded
persons, it can be difficult to detect that these two images relate to the same physical
location (c.f. perceptual aliasing in Fig. 2.6).

robot poses are estimated in a global frame and not only relative to each other
as in local registration. This will be discussed further on in section 2.4.

In local registration the overlap of the sensor data recorded at different
poses is used to determine the relative pose. Local registration typically uses a
pair of sensory readings [12, 24, 15] meaning that the relative pose is deter-
mined from one set of sensory data to the other. One exception is [16] where
multiple (local with overlap) readings are registered. Throughout the rest of
this thesis, registration refers to local registration.

A closely related issue is to determine which sensor readings are overlapping
(whether or not local registration can be performed) known as the data associa-
tion or the correspondence problem. Data association aims to find which sensor
readings correspond to the same physical object [9], see Fig. 2.5. Hence, if mul-
tiple objects (locations) have a similar appearance, also known as perceptual
aliasing, the perception can fail so that data association becomes very diffi-
cult. Perceptual aliasing typically occurs in indoor environments and especially
in corridors (Fig. 2.6). Other examples can be observed in hotel or hospital
rooms. Both registration and data association depend highly on which sensors
are used. For example, cameras seem to be better suited to handle the corre-
spondence problem than laser range based approaches [92], which is probably
due to the difference in amount of data provided by the sensors in combina-
tion with the extensive research performed in the vision community addressing
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Figure 2.6: An example of perceptual aliasing: Although these two panoramic images
appear similar, they are in fact obtained at completely different locations.

data association. Also, due to the strong connection to the sensors used, some
authors avoid addressing the data association problem [45] to instead focus on
simulated data with known correspondences.

Registration can be formulated as: given sensory readings Ra and Rb taken
at robot pose xa and xb respectively, determine the relative pose xa,b between
xa and xb. The relative pose xa,b is now known, (this is the registration task
to estimate), however, what we might have is an estimate of xa,b denoted x̂a,b.
This estimate can be determined by odometry or an inertial sensor. An initial
relative pose estimate will reduce the search space (by an amount depending on
the accuracy of the sensor) of probable relative poses, and therefore will reduce
the correspondence problem. However, in some cases there are no initial pose
estimates available or the pose estimates have deteriorated to the point where
they are not usable, which typically occurs when a robot revisits a location. For
example, say the robot takes a tour around a building block and returns to a
similar pose xB compared to the starting pose xA. The estimate of the pose xB

does not depend on the Euclidean distance from the starting pose xA but on
the distance travelled by the robot (around the building block). Therefore the
pose estimate x̂B and the relative pose estimate x̂A,B may contain large errors.
In the robotics literature, to revisit a location (and to detect it) is called to close
the loop and will be discussed further on.

Registration does not necessarily have to be against another sensor reading,
but can also be done relative to a map, which leads us into the next section.
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2.3 Localisation

Localisation is to determine the pose relative to a map, which depending on the
availability of an initial pose estimate can be divided into [41]:

• pose tracking, and

• global localisation.

Pose tracking or local localisation is the problem of determining the robot’s
pose when the initial pose is known. The problem is to continuously update
(track) the pose estimate of the robot while it is navigating around. Global lo-
calisation, also called the wake up robot problem, is when the robot initially
does not have any pose knowledge at all and, hence, could be located anywhere
within the map. In addition, one can also distinguish a third problem very sim-
ilar to global localisation: the kidnapped robot problem [37] where the robot
initially knows its position and then is “blindfolded” and moved to another
location (kidnapped). A kidnapped robot also has to re-localise from scratch
(global localisation) but in addition needs to detect that it has been moved.

Localisation is often further divided into topological and metric localisation.
Basically the difference lies in that topological localisation refers to a specific
place, for example: “the coffee room”, “my office”, “node 11”, etc., while
metric localisation output refers to the origin of the coordinate system. For
example, a topological localisation result may be : “I’m in the lab” whereas
the metric localisation returns “14.33, 123.15, 0.32” meaning that the robot
location is 14.33 meters “up” and 123.15 meters to the “right” of the map
origin with a heading of 0.32 radians. The type of localisation applied is highly
dependent on the map used and can be classified into:

• topological maps,

• metric maps,

• appearance based maps, and

• hybrid maps.

Topological maps consist of a set of locations and relations between loca-
tions, which can be represented by a connected graph. The nodes in the graph
correspond to locations and each link corresponds to a relation between two
locations. For example, a map where the relations denote whether two nodes
are traversable [125] is suitable for path planning. A typical example is a rail-
road map where stations correspond to nodes and links correspond to tracks
(between stations), see also Fig. 2.7 showing a bus route map. Topological maps
can be augmented with metric properties, such as a pose of each node or other
properties which, for example, can be used to calculate a cost parameter for
evaluating paths.
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Figure 2.7: Left: Metric map of Sweden and Norway created by Robert de Vaugondy
in 1750. Right: Topological map of the local bus routes in Örebro.

Metric maps or geometric maps contain geometrical information of the en-
vironment, see Fig. 2.7. A typical metric map is a blue print or CAD drawing
of a building or a city map. Depending on how the environment is represented,
metric maps can further be divided into:

• grid maps, and

• feature maps.

Grid maps [89] are a discrete representation created by dividing the world
into (small) cells. Each cell then stores belief about certain properties of the
environment. The occupancy grid contains the likelihood of the cells being oc-
cupied (non-traversable), or empty (traversable). 2D occupancy grids are often
created using range sensors such as sonars or lasers, but also stereo imaging
has been used as in [61]. Occupancy grid maps are most often used to rep-
resent environments in 2D but have also been extended to 3D [114]. Another
property represented by the grid cells can be gas concentration [76] or semantic
information [86], for example.

Feature maps contain a set of features (or landmarks) that represent the
world. Features can either be natural (already existing), or artificial (added to
the environment specifically for the purpose of simplifying the localisation),
which means that the environment has to be modified. Artificial landmarks can
either be active (also called beacons), which actively send out signals, or pas-
sive [73, 29], which do not send out any signals, such as bar-codes or reflective
markers. Natural landmarks typically consists of different geometrical prop-
erties extracted from the environment, for example, walls (corresponding to
lines) and their intersections (corners) are commonly used for sonars and laser
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scanners [24]. Cameras often use vertical edges or local feature points (which
can be represented as a 3D point [102], or a bearing [62]).

In appearance maps [69] the focus is not on extracting geometrical proper-
ties of the sensor data (compared with the feature based representation above),
but to find a representation that is suitable for matching based on how similar
the sensor data (locations) are. An appearance-based map commonly contains
metrical [69] or topological [96, 118] information, where typically the topo-
logical information is extracted using the appearance-based measures. Cameras
and especially panoramic cameras, are often used in appearance-based locali-
sation approaches, due to the richness of the obtained information, however
both sonar [30] and laser [18] data have also been exploited.

Finally, a hybrid map [21] consists of a combination of other maps, most of-
ten a combination of topological and metric maps. Different types of maps have
different properties and are therefore suitable for different tasks and may have
complementary strengths. By combining different maps strengths can further
be exploited. For example, if we have a topological map and a occupancy grid
(metric map), the topological map is more suitable for path planning, whereas
the occupancy grid can instead be used for (metric) localisation.

2.3.1 Synergies in Maps

By adding metric information to each node in a topological map, i.e. ‘14.33,
123.15’, 0.32 refers to the lab, another example of synergies occurs. Topo-
logical localisation can be performed directly from the metric localisation and
metric localisation can in a similar way be accomplished, if (and only if) there
exists a metric position for each place in the topological map. It is also possible
to obtain a higher accuracy in metric localisation using a topological map (with
metric information) than the resolution of the nodes in the topological map. An
example of metric localisation can be formulated as: imagine the robot is lo-
cated in the lab and the coffee room is directly connected, and the robot now
starts to move towards the coffee room. When the coffee room and the lab are
visible at the same time, both are indicated as possible locations. A highly naive
approach could then be to draw a line between the metric position of the node
“lab” and the metric position of the node “coffee room” and to assume that the
robot is located on the middle of this line. Even though this indeed is a naive
approach, the metric localisation results are likely to be improved then solely
using the metric positions of each place. This basically means that by adding
the metrical position of each node in a topological map, metrical localisation
can be achieved at a higher resolution than the number of nodes in the map.

The maps used in this thesis are represented using topological, metric and
appearance information. Basically the maps are topological, where each node
consists of a metric pose, a set of visual features from an image and relations
(links) to other nodes. The relations are created from incremental pose esti-
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mates (as odometry) and from pairs of nodes with a high appearance similarity,
where appearance similarity is measured by matching the visual features.

2.3.2 Global Localisation

The first step in addressing the global localisation problem (either topological
or metric) is to be able to evaluate how well a specific sensor reading fits a spe-
cific location in the map. This evaluation or similarity measure can directly be
used as a global localisation approach by comparing all possible poses in the
map with the current sensory reading and selecting the pose which has the best
fit. To only take the highest similarity measure has an evident problem: what if
two locations have similar appearance? This was described as perceptual alias-
ing in the previous section. Another highly relevant problem in localisation,
as-well as in registration, is the data association or correspondence problem,
that is to determine whether or not the current location is in fact the same lo-
cation within the map, even in the case of occluding persons, robots and other
changes. Data association is especially important in localisation since the map
was obtained in an earlier stage and is subject to various changes to the environ-
ment. Typically humans (and other robots) are not merely “dynamic obstacles”
that may occlude the robot’s sensors, they also make changes to the world. For
example, they may leave temporary objects such as packages, or move the fur-
niture. In addition to these sudden changes, there may be gradual changes such
as plants growing, coloured paint fading, etc. Outdoor environments typically
have much higher dynamics where the environmental changes are substantial
over different seasons and may change very abruptly, for example, during snow
fall. The global appearance-based localisation approach of using the highest
similarity measured was used in Chapter 5 to compare different methods used
to calculate similarities between two locations.

To address the problem of perceptual aliasing, the problem of localisation
can be considered over a time period with robot movements and multiple sen-
sory readings, and not only a single instance. An example of perceptual aliasing
can be seen in Fig. 2.6, where two images taken at two different locations are
shown. In this case, due to the high similarity between the images, it would
be difficult to infer different locations. By using multiple hypothesis, (that the
robot can be at either location) and reevaluating the hypothesis after the robot
has moved (updating the new location estimate for each hypothesis using, for
example, odometry) the number of likely hypothesis will, unless the environ-
ment continues being symmetrical, decrease. For example, in Fig. 2.8, the robot
has travelled a distance of 5 meter (forwards) compared to the pose shown in
Fig. 2.6, and the locations are now distinguishable due to the low similarity of
the images. Hence, given a non symmetrical environment, it is possible to deter-
mine a single location hypothesis, see Fig. 2.9, where a particle filter is used to
handle multiple hypotheses, where each hypotesis is a cluster of particles. If we
instead, for example, have a symmetric corridor two hypotheses will persist,
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Figure 2.8: Addressing the perceptual aliasing problem using multiple sensory readings
over time: These figures relate to Fig. 2.6 with the difference that the robot in these
figures has moved 5 meters (relative to Fig. 2.6) and are now likely to be classified as
different positions.

since there is no possible way to separate or distinguish the two ends of the
corridor. Also data association can benefit from using multiple sensory read-
ings, for example, if the robot receives a high similarity measure relative to the
map at a certain position, and at the next step the field of view of the camera
is blocked by a number of persons. Even though appearance-based localisation
fails to give a location, the robot is probably at a similar location as before and
can use its odometry (metric information) to update the location hypotheses.

Localisation, using multiple sensory readings over time, has successfully
been approached with probabilistic techniques [110]. A common method is
Monte-Carlo localisation [26], which utilises a particle filter [3] to maintain
a probability distribution of the robot position, see Fig. 2.9. Another proba-
bilistic approach, is Markov-localisation [43], which also has successfully been
utilised in mobile robot applications [20]. The main difference is that Markov
localisation typically maintain the location hypotheses on a discrete grid space
to allow multi-modal distributions whereas Monte-Carlo methods instead use
the distribution of the samples directly.

The method proposed in Chapter 5 incorporates odometry together with
a Monte-Carlo scheme to accomplish metric localisation against a given map.
The map representation is topological with metric pose information and visual
features (for appearance-based similarity matching) for each node. The registra-
tion between the map and the current sensory reading uses the visual features
and returns an estimate of the robot’s relative orientation. The general idea is



2.3. LOCALISATION 25
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Figure 2.9: Monte-Carlo localisation (MCL) - localisation using multiple sensory read-
ings and robot motion within a particle filter framework. The map (occupancy grid)
consist of an almost symmetric environment. The images shows the location hypothe-
ses, drawn as clusters of red lines (dark grey) representing particles, at different times
whereas the pink area represents the covariance (light grey). Left: The robot sees a wall
straight ahead, removes two unlikely hypotheses and the number of hypothesis is about
to be reduced from 4 to 2. Middle: Directly before the diagonal wall is seen, two hy-
potheses remains. Right: The diagonal wall is seen and the pose is about to uniquely
be determined and (only one weak hypothesis still remains in the bottom right corner).
Note: the displayed robot position in the first 2 frames are incorrectly guessed by the
system.
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to extend the strong correlation that can be achieved with similarity based im-
age matching using local features with metric localisation but to also address
perceptual aliasing.

The method proposed in Part III relying on the 3D− vision sensory config-
uration do not rely on an internal pose estimation sensor, like odometry, for ex-
ample. Instead, the assumption is that accurate range measurements are avail-
able from a 3D laser range scanner. The metric localisation is possible with this
configuration due to the registration method, which relies on the visual features
to handle the correspondence problem. As mentioned in the previous section,
visual features enable the registration to be handled without initial position esti-
mates. Also, based on the similarity measures it is possible to determine which
node is most similar to the sensory readings from the current position. The
registration can thereafter be done from the current position to the position
determined by the global topological localisation. Note, even though there is
no incremental sensor used in Part III, there is a possibility to obtain incremen-
tal pose estimates from the registration of subsequently measured data. This
basic principle makes it possible to use all methods proposed in Part II to be
applicable to the sensor setup 3D− vision used in Part III.

2.4 Mapping / SLAM

Registration can be used not only for localisation but also while building a
representation of the environment, i.e. a map. The registration method can (in
small scales) be applied in an incremental way to create a map. This works in
principle as an incremental sensor (for example, an odometry sensor), if the
current sensory reading Rt at time t is registered relative to the previous sen-
sor reading Rt−1. This method has the same drawback as any other incremental
sensor since the error of subsequent registrations accumulates and the pose esti-
mate deteriorates over time. With accurate sensors, such as a laser range finder,
the error made in each registration is typically much lower than odometry or
many other incremental sensors directly. However, it is simply a matter of the
scale of the environment before the errors increase to an extent where the map
becomes useless.

What mapping is all about is to create as correct maps as possible and there-
fore these errors have to be reduced, but how is this achieved? The answer to
this question is to close the loop. The only way to decrease the uncertainty in
the position estimates is to visit a previously visited place [109] and, equally
important, to detect that it is the same place. There are two main problems
here: the first question to address is how to incorporate the knowledge that the
robot has revisited a location, and secondly to enable the robot to be able to
recognise previously visited places (data association). These two problems can
be distinguished as: continuous and discrete components of SLAM [28, 109].
The continuous component consists of determining the robot poses (and land-
marks in case they are used) given a certain data association and the discrete
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component is the data association. Both these problems are highly depending
on the representation, or map, used. Therefore the discussion that follows will
focus on the representation used in this thesis. As previously described, the map
consists of a set of nodes (associated with a set of local visual features with or
without depth estimates) and links (relative position estimates). This map rep-
resentation is a graph and SLAM / Mapping approaches working on this type
of structure are called graph based SLAM methods, which will be the topic
here.

The discrete aspect expressed in the question: “How to detect a previously
visited place?”, is highly related to localisation. Hence the same difficulties (as
with localisation) will also occur. If the robot detects that the current node is
very similar to a node previous visited, this may be due to the fact that the
robot is at a similar position or due to perceptual aliasing. On the other hand,
given the fact that the robot is truly located at a similar position as a previously
visited one, the robot might still fail to detect this (correspondence problem
or data association). The problem of perceptual aliasing is addressed in the
Omnivision sensory configuration (Part II) utilising the metric properties of
the map. By only evaluating the similarity of nodes in the map in the proximity
of the current location, only a subset of all nodes has to be compared to the
current pose. Since only a subset of all nodes is used, the approach can handle
perceptually similar locations if they are not part of the selected subset. An
additional benefit is that the approach becomes faster.

The continuous aspect of the SLAM problem instead relates to the ques-
tion: “How to incorporate knowledge about loop-closing?”. Before any loop is
closed, the position of each node has to be directly determined from the posi-
tion of the previous node and the relative pose estimate. What happens when
the robot detects a previously visited place for the first time is that the graph
will contain more links (relative pose estimates) than nodes (locations). This
means that when a loop is detected, there is not a direct method to determine
the pose of each node, since there are links which typically do not agree on
where the nodes should be located. What we have obtained is an overdeter-
mined equation system, and this is basically what graph-based SLAM methods
need to solve. The key issue here (since solving large equation systems is very
time consuming) is to exploit various properties of the equation system to lower
the computational burden (computational time and memory storage) while re-
taining consistence and accuracy of the map. See Chapter 9 for more details.

2.5 Interpolation

An important issue when combining cameras and 3D laser scanners is how to
actively fuse the depth values obtained from the 3D laser scanner with the cam-
era image, that is to utilise the colour / intensity pixel data from the image to se-
lect how the laser range data should be interpolated. In this thesis interpolation
is the problem of determining a depth estimate for any given pixel (or sub-pixel)
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Figure 2.10: Difference in resolution comparing 3D laser range data and image data
from a CCD camera from the 3D − vision sensory setup, visualised in 3D. The image
data are projected from the image plane to a plane at a distance of 10 meters from the
robot centre (located roughly in the middle of the image) to illustrate the difference in
spatial resolution.
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in the image. All the methods in Part III rely on the interpolation method, see
Fig. 2.1, which make the interpolation method highly important. For example,
the registration method utilises extracted local visual features from the image
with the estimated depth obtained from the interpolation. Note that the reso-
lution of 3D laser scanner data is typically much lower than the resolution of a
camera image, see Fig. 2.10.

If vision-based interpolation is applied to determine a depth estimate for all
pixels (or even at the sub-pixel level) we obtain Super Resolution [27].

Notice that interpolation is not used in Part II where 3D range data are not
available.

2.6 Non-navigation Methods

The overview figure 2.1 shows two methods, which do not classify as naviga-
tion methods, namely “Difference detection” and “Super Resolution”. Super
Resolution is mentioned in the previous section.

2.6.1 Difference Detection

The difference detection method developed in Chapter 10 uses all methods pro-
posed in Part III and is a vital part in security applications. A typical security
scenario is to detect differences between the current environment and a previ-
ous state defined as “normal”.

This method can be seen as a “find five error” puzzle where the task is to
determine 5 differences in two images. The task in the proposed difference de-
tection method is somewhat similar but with the exception that the method
runs in real 3D environments. To detect differences in 3D is obviously a more
challenging problem for a person compared to looking at two images, mostly
because there is physically no possibility to alternate between the unchanged
and the changed environment. Hence, there is no simple way of directly com-
paring the two environments and unless the human is equiped with additional
sensors, the unchanged environment only exists in the person’s own memory.

The method combines both range data from a 3D laser range scanner and
vision, which makes it possible to detect changes which is not possible to de-
termine in range data alone. For example, if a poster is mounted onto a wall, it
will not be visible in the range data but will indicate difference in colour in the
camera data.
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Basic Methods





Chapter 3

Image Matching Algorithms

All methods proposed in this thesis have the vision sensor in common. One of
the key elements is to utilise local features to address data association and to
determine a measure of similarity between two images. This chapter presents
the image matching methods covering both the calculation and matching of
local features and the computation of a similarity measure from the number of
matches.

3.1 Introduction

To be able to compare two images, all methods (except pixel by pixel compar-
ison) start with transforming each image into a specific description - either a
single descriptor or a set of descriptors. This description should be compact,
unique and at the same time invariant to changes in contrast, illumination and
also to small pose changes between the images (that is, if two images were taken
at slightly different poses, the description should only undergo minor changes).
The description is typically much more compact than the complete image and
enables an easy comparison, e.g. Euclidean distance, between two images. The
description of an image can be divided into two categories:

• global features, and

• local features.

Global features condense information from the whole image into a single
descriptor. Hence, for each image only one descriptor is created for each global
feature. Several global features have been proposed, for example colour his-
togram, see Section 5.3.

Local features are instead calculated from (many) different salient sub-
regions in the image. For each sub-region a descriptor is obtained, see Fig 3.1.
To compare two images using local features is therefore typically more time

33
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Figure 3.1: Two images with extracted local features (SIFT) and corresponding matches
indicated by connecting lines. The orientation of the squares relates to the assigned
orientation of the interest points and the size relates to the scale σ. That is, the descriptor
window in Fig. 3.4b) used to calculate a descriptor, is illustrated in this figure by squares
with different sizes and orientations.
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consuming than matching a single global descriptor, since each feature has to
be compared to the many features extracted from the other image.

The motivation for using local features in this work is the better invariance
and occlusion performance obtained compared to global methods. This differ-
ence follows directly from the fact that a global feature is computed from the
whole image. For example, if parts of the image are occluded the global feature
will be affected. With local features, many feature points with corresponding
descriptors are extracted both in the occluded and non-occluded areas in the
image. The difference lies in the fact that many of the local features will remain
similar for the descriptors for which the salient sub-region is not affected and
therefore local features typically shows better robustness towards dynamic en-
vironments compared to global features. Also, as seen in Fig. 3.1, where the
distance between the two matched images is several meters, local feature based
approaches that considers scale are not as sensitive to changes in the camera
view point. Local features are also suitable for handling data association, that
is, to determine which sensory readings (parts of the camera images) overlap
with the same physical region, which are especially utilised in the registration
method presented in Chapter 8.

The remaining parts of this chapter cover the local feature extraction, the
image matching and the similarity calculations used in the rest of this thesis. A
basic work flow of the methods described in this chapter can be seen in Fig. 3.2.

3.2 Local Features

As a local feature the famous SIFT method developed by Lowe [81] is used
throughout this thesis with the exception of the omni-vision localisation chap-
ter (Ch. 5) where a modified SIFT (MSIFT) version is used. The MSIFT method
is however based upon parts of the standard SIFT method.

3.2.1 Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT), developed by Lowe [81], is a lo-
cal feature extraction method invariant to image translation, scaling, rotation,
and partially invariant to illumination changes and affine 3D projection. The
extraction of SIFT features relies on the following stages:

1. Creation of scale-space [77]: The scale-space is created by repeatedly
smoothing the original image with a Gaussian kernel.

2. Detection of scale-space extrema (interest point detection): This is done
to find peaks in the scale space of image (pixel) positions p = [x,y], and
the scales σ. This is done by searching the (x, y, σ) space for extrema,
which are filtered using stability criteria (step 4).
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Figure 3.2: Left: Extraction of local features; interest point detection and descriptor
calculation. The dashed box represent the different stages that are included within the
SIFT method. Right: Feature matching.

3. Accurate interest point localisation: In the previous step, the interest points
were detected in a discrete space. This step determines the location of in-
terest points with sub-pixel and sub-scale accuracy.

4. Rejection of weak interest points: All interest points that have low con-
trast and are lying on an edge are removed.

5. Orientation assignment: To obtain rotational invariance, each interest
point is assigned an orientation determined from the image gradients of
the surrounding patch. The size of the patch is determined by the selected
scale.

6. Calculation of descriptor histogram: Given the position, scale and ori-
entation of each interest point, a patch is selected where magnitude and
orientation of gradient is used to create a representation which allows, to
some extent, affine and illumination changes.

These steps are discussed in more detail below.
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Figure 3.3: Creation of the DoG: The stack of blurred images, the scale-space repre-
sentation, created by convoluting the Gaussian function G with different scales σ with
the original image (to the left). These blurred images are subtracted from each other to
create the DoG stack (to the right). This figure shows an octave consisting of 2 scales
(s = 2), where the scale of the lowest image is σ0.

Creation of scale-space

Given an original grey-scale image I, the scale space is defined as a function L,
which is calculated as:

L (x,y,σ) = G (x,y,kσ) ∗ I (x,y) , (3.1)

where ∗ is the convolution operation in x and y, and

G(x,y,σ) =
1

2πσ2
e− (x2 + y2)

σ2
(3.2)

is a variable-scale Gaussian.
The scale space is represented as a set of smoothed images, see Fig. 3.3 (left).

To discretise the resolution in scale σ (the pixel coordinates x,y are already
discretised from the image), a constant factor k = 21/s is used, where s is the
number of images until the scale parameter σ is doubled. The scale for the first
smoothed images i = [1..n] can be created by convolving with G(x,y,kiσ).

To decrease both the computational cost and storage, the image is resampled
by taking every second pixel in each row and column when σ is doubled, that
is, every s images. Each block of images with the same size is denoted as an
octave, hence for each octave s scales are used. Typically 3 scales per octave are
used.
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Detection of scale-space extrema

One important aspect of the SIFT method is the detection of interest points (x,
y, σ) in the scale space. This is done efficiently by directly using the calculated
scale space representation to create Difference of Gaussian (DoG) images. The
scale space described above is not only used for creating the DoG but is also
needed to both calculate the orientation and the descriptor of each feature. The
DoG is calculated as:

D (x,y,σ) = (G (x,y,kσ) −G (x,y,σ)) ∗ I (x,y) ,

= L (x,y,kσ) − L (x,y,σ) . (3.3)

To determine the extrema locations, each pixel in the scale space is com-
pared with its 26 neighbours in a 3x3x3 block (8 neighbours in the current
scale-space image and 9 neighbours in the scale-space image above and be-
low). A candidate interest point location is selected if the DoG value is smaller
or larger than all of its neighbours. To be able to determine interest points in
n different scales, n + 3 blurred images are required in total. Two additional
images (above and below) are needed in the extrema location detection and
one additional to determine the DoG. Hence, each octave has to contain s + 3
images.

Accurate interest point localisation

From the previous step, an interest point is found in a discrete space at a pixel
position (x,y) and at a specific scale σ. To obtain a higher resolution the interest
point position is determined at sub-pixel and sub-scale accuracy by fitting a
3D quadratic function to the DoG function and determining the interpolated
maxima. The quadratic function to fit is the second order Taylor-expansion of
the DoG function D(x,y,σ):

D(x) = D+
∂DT

∂x
+

1
2

xT ∂
2D

∂xw
x, (3.4)

where x is the discrete interest point position. The location of the extrema x̂ is
determined by ∂D(x)/∂x = 0, giving

x̂ = −
∂2D−1

∂x2

∂D

∂x
. (3.5)

The final position of the interest point is determined as x + x̂.

Rejection of weak interest points

The key objective of extracting interest points is to obtain a set of stable points
that can repeatedly be detected in other images, therefore each interest point
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is checked to make sure it fulfils this objective. Two criteria are used to reject
interest points: weak contrast and interest points with an edge response. As a
contrast measure, the interpolated function value at the interest point, D(x̂), is
obtained as:

D(x̂) = D+
1
2
∂DT

∂x
x̂. (3.6)

An interest point with a value of |D(x̂)| < 0.03 is rejected, the threshold value
which is also used by Lowe [81].

To determine edge responses, the Hessian matrix H is used:

H =

[

Dxx Dxy

Dyx Dyy

]

, (3.7)

where the derivatives are calculated from neighbouring points. By looking at
the eigenvalues of H the property of the interest point can be determined. For
example a corner is found if both eigenvalues are large, whereas an edge is
found if only one of the eigenvalues is large. Eigenvalues, however, are expen-
sive to compute and only the ratio r between the larger eigenvalue denoted α
and the smaller eigenvalue denoted β is required. To determine the ratio r only
the determinant and trace of H are required. The sum of the eigenvalues can
be computed from the trace of H, whereas the product of the eigenvalues is
obtained from the determinant of H:

Tr(H) = Dxx +Dyy = α+ β (3.8)

Det(H) = DxxDyy − (Dxy)2 = αβ. (3.9)

By using the equations above and α = rβ, the following quadratic equation
is obtained:

Tr(H)2

Det(H)
=

(α+ β)2

αβ
=

(rβ+ β)2

rβ2 =
(r+ 1)2

r
. (3.10)

To check the ratio to determine the edge properties of the interest point,
only the determinant and trace of H is required. Interest points are discarded if
f is lower than 10, the threshold value which is also used in [81].

Orientation assignment

To determine the interest point’s orientation, a gradient orientation histogram
is computed over the neighbourhood of the interest point. The idea is to deter-
mine a consistent orientation for each interest point to obtain image rotation
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invariance. Based on the interest point scale σ, the corresponding smoothed im-
age L(x,y) = L(x,y,σ) is selected. For each pixel [x,y] the gradient magnitude
m(x,y) and orientation θ(x,y) is calculated as:

m(x,y) =

√

(L(x+ 1,y) − L(x− 1,y))2 + (L(x,y+ 1) − L(x,y− 1))2 (3.11)

θ(x,y) = tan−1 L(x,y+ 1) − L(x,y− 1)

L(x+ 1,y) − L(x− 1,y)
. (3.12)

The contribution of each neighbouring pixel is weighted by the gradient
magnitudem and a Gaussian window Go with a value of σo = 1.5σ where σ is
the scale of the interest point. Peaks in the histogram correspond to dominant
orientations. For all bins peaks that reach at least 80% of the maximum value,
additional interest points are created at the same location and scale, but with
an orientation according to the respective peak.

The orientation histogram contains 36 bins, i.e. 10 degrees per bin. To in-
crease the orientation resolution, a parabola is fitted to three bins; the bin of
the peak and the bins to the left and to the right.

Descriptor Calculation

The descriptor is used as a signature for each interest point. Descriptors are
used to determine whether two interest points correspond to the same physi-
cal location, i.e. for data association. The ideal descriptor should therefore be
highly distinctive as well as invariant to changes in view point and illuminance.
Note that the scale, pose and orientation are obtained in the interest point se-
lection operations.

Around each interest point, a window is selected where the size and ori-
entation depend on the scale and orientation of the interest point. Gradient
magnitude m and orientation θ, see Fig. 3.4a, are calculated (Eq. 3.11, 3.12)
for each pixel using the scale space image with the most similar scale as the
interest point.

The magnitude m is weighted with a Gaussian function to reduce changes
in the descriptor due to small changes of the position of the sub-window and
to reduce the impact of magnitudes far from the centre of the interest point.

The weighted magnitude and orientation values are then accumulated into
16 orientation histograms summarising the contents of the whole sub-window
corresponding to the 16 squares in Fig. 3.4b (these histograms constitute the
so-called interest point descriptor or feature vector used for matching features).
Each histogram has 8 bins, i.e. the orientation information is discretised into 8
possible values. Each bin accumulates the total weighted magnitude informa-
tion for a particular orientation. To avoid boundary effects when gradients are
changing from one histogram area to another, each pixel gradient is stored in
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c)

a) b)

Figure 3.4: Descriptor used in SIFT features. a) Rotation θ and gradient magnitude
m for each pixel. The circle in b) represents the Gaussian weighting function. Note
that the histograms in c) are created by bi-linear interpolation from surrounding pixels
represented as a dashed square in b).

the four closest histograms with bi-linear interpolation using the distance to the
centre of each histogram (Fig. 3.4c). The descriptor contains 4 × 4 histograms
with 8 bins, which gives a descriptor histogram vector H of 128 elements.

The descriptor vector is then normalised to a unit length. To further increase
robustness towards non-linear illumination changes, each feature vector bin is
limited to 0.2 which is followed by another normalisation step.

3.2.2 Modified SIFT (MSIFT)

This section describes the modified SIFT (MSIFT) feature approach used in the
localisation approach in Chapter 5.

The SIFT method, described above, generates features which are invariant
to image translation, scaling and rotation, and partially invariant to illumi-
nation changes and affine or 3D projection. These properties make SIFT very
suitable for mobile robots because landmarks can be observed from different
angles, distances and illumination [102].

However, for the purpose of self-localisation, we actually do not want full
invariance to translation and scale: we would like view matching to be success-
ful only in the vicinity of the location where the original image was recorded
in the database. Therefore, a number of changes were introduced, described as
follows.
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p

θr

Figure 3.5: Creation of the neighbourhood N(F) drawn as a dashed square. Before
matching, the feature F and the surrounding pixels are rotated by angle θ to a fixed
heading (facing forwards relative to the robot). This means that matching of two fea-
tures in different images will be independent of the heading of those points.

Selection of Interest Points

The selection of interest points in MSIFT is not done in scale space. Instead it
is based on the eigenvalues of the Hessian matrix H (Eq. 3.7). A large small-
est eigenvalue β indicates that the intensity changes substantially in both di-
rections, e.g. corners. A non-maxima suppression is performed and the pixels
with the highest values of β are then selected as interest points. If two interest
points are closer than a distance of 5 pixels the weakest point is removed, see
also [105] or the function cvGoodFeaturesToTrack in the OpenCV library [19].

The number of features extracted from each images is set to a constant. By
sorting the features using β as an indicator, only the strongest features will be
used. By using a constant number of features an approximate constant pro-
cessing time required to match two images is obtained. For example, in the
localisation experiments in Chapter 5 the number of features was set to 100.

Descriptor Calculation

To create a rotationally invariant descriptor in the image plane, the sub-window
N(F) is created by rotating the surrounding pixels the same angle θ as the
feature F is rotated, see Fig. 3.5, using bi-linear interpolation. By doing this,
N will be independent of the rotation θ. This step is necessary since MSIFT is
used directly on an omni-directional image.

The descriptor is based upon the standard SIFT descriptor. Since no scale is
selected, the size of the sub-window N is set as a fixed value, which was 32×32
in the experiments reported here.
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In the SIFT algorithm, the histogram H is normalised to have unit length.
However, for MSIFT the localisation performance was improved on our data
by omitting the normalisation step, which is used partly to reduce illuminance
changes but mostly to cancel out effects due to different scales. Since scale
invariance has been removed, the normalisation factor is no longer needed for
this purpose, and the magnitude of the histograms can provide additional useful
information for matching.

3.3 Image Matching Using the Features

The described descriptors constitute the features used for matching images.
Consider two images, Ia for frame a, and Ib for frame b. For both images,
local features are extracted (using one of the methods described above), which
results in two sets of features, Fa and Fb. Each feature F = [x,y],H comprises
the pixel position [x,y] and a histogram H containing the SIFT descriptor. The
similarity measure Sa,b is based on the number of features that match between
Fa and Fb.

The feature matching algorithm calculates the Euclidean distance between
each feature in image Ia and all the features in image Ib. A potential match is
found if the smallest distance is smaller than 60% of the second smallest dis-
tance. This criterion was found empirically and also used in [49]. It guarantees
that interest points match substantially better compared to the other feature
pairs, see Fig. 3.1. In addition, no feature is allowed to be matched against
more than one other feature. If a feature has more than one candidate match,
the match with the lowest Euclidean distance among the candidate matches is
selected. Note that the number of matched features will depend on the order
that the features are matched, that is, if each feature in Ib is instead matched
with all features in Ia the number of matches may differs. This can be avoided
if the matching is done in both ways, where a match is only considered valid if
the match occurs twice. The feature matching step results in a set of matched
feature pairs Pa,b, with a total number of Ma,b.

To decrease the matching time more efficient search structures are com-
monly applied. Due to the high dimensionality of the descriptor vector an ap-
proximate search is often used, for example the Best Bin First (BBF) search [11].

3.3.1 Similarity Measure

A high similarity measure gives an indication that we are at a perceptually sim-
ilar position. Since the number of extracted features varies heavily depending
on the image if SIFT is used (not MSIFT), the number of matches is normalised,
hence the similarity measure Sa,b ∈ [0, 1] is defined as:

Sa,b =
Ma,b

1
2 (nFa

+ nFb
)

(3.13)
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Figure 3.6: Similarity matrix, brighter elements indicate higher similarities. Diagonal
elements are black, self-similarities (Sa,a) are not considered.

where nFa
and nFb

are the number of features in Fa and Fb respectively.

3.3.2 Similarity Matrix

The mutual similarity measures in a set of images I1..N constitutes the similarity
matrix M. Each element Ma,b corresponds to the similarity measure Sa,b for
a pair of images a and b, see Fig. 3.6 containing a similarity matrix obtained
from the lab data set in Chapter 6. The similarity of the image Ia with itself
(Sa,a) does not provide any useful information and is therefore not considered.
The same type of similarity matrix can be generated for multiple sequences of
images, see Fig. 3.7 where the similarity matrix M is shown for three different
image sequences (data sets lab, studarea and lab−studarea from Chapter 6).
In each sequence of images, each successive image is collected at a position close
to the position of the previous image (and might contain relative pose estimates
from odometry) and each sequence of images was collected using the same
camera. In Fig. 3.7, the complete similarity matrix between all three data set is
shown with lines drawn to separate each data set, for example, Mi+iii indicates
the similarity matrix between the data set lab(i) and lab− studarea(iii).
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Figure 3.7: Similarity matrix of three different data sets indicated with i, ii and iii. Mi+i

is the similarity matrix of the data set i with itself, whereas Mi+ii is the similarity matrix
between data set i and ii, etc.
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Chapter 4

Omni-vision Based

Registration

This chapter describes the vision-based registration process to determine the
relative pose between two robot poses using an omni-directional camera. The
process is divided into:

1. Feature extraction (MSIFT or SIFT).

2. Feature matching.

3. Estimation of relative pose and pose uncertainty.

Contrary to most other vision-based registration methods, the presented
approach does not rely on tracking and position estimation of each feature.
Please note that different feature extraction methods are used for the localisa-
tion approach in Chapter 5 and the mapping approach in Chapter 6. In the
localisation experiments scale-invariance was not considered (MSIFT) whereas
it was used in the mapping experiments (SIFT). The reason is that longer dis-
tances were travelled between successive images in the mapping experiments
and the omni-directional lens had a larger field of view (FOV), which results in
a larger variance in the appearance of the features in different images compared
to the localisation setup. SIFT and MSIFT, together with the feature matching
method, are described in the previous chapter (Ch. 3).

4.1 Sensors

The registration method described in this chapter relies on an omni-directional
vision system combined with odometry as the egomotion sensor. In our setup,
the omni-directional image is created by using a concave mirror placed on top
of a standard digital camera, see Fig. 2.3. Typically the concave mirror is de-
signed to create a spherical image, meaning that emitted light into the camera

49
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Figure 4.1: Left: The polar representation of an omni-directional image. Right: The
spherical representation, where each point in the world (x,y, z) can be projected down
to the surface of a sphere. The corresponding pixel coordinate is then obtained using the
r(ϕ) function. For example, by projecting points lying on a plane a planar image can be
obtained, see also Fig. 4.2.

will be towards a single point (physically located inside the concave mirror
approximately 20 cm above the camera lens in our setup). This single point
can be seen as the centre of a sphere from where the camera image pixels can
be projected onto the sphere’s surface. To convert the pixel coordinates into
spherical coordinates both the centre Cx,y of the omni-directional image and a
transformation from the radius r to the angle ϕ has to be known, see Fig. 4.1.
Examples of the raw omni-directional image together with two unwrapped or
reprojected images can be seen in Fig. 4.2.

In addition to the omni-directional images, odometry is used in the estima-
tion of the relative pose uncertainty. Odometry works by incrementally inte-
grating the rotations of the wheels obtained from encoder readings over time.
This is often provided by the robot platform directly, however typically a few
calibration parameters have to be set such as the number of encoder ticks per
mm, the number of differential encoder ticks to finish a complete turn of the
robot and a drift factor to compensate for a size difference between the right
and the left wheels. Odometry deteriorates over time, but is accurate over short
distances, see for example Fig. 5.6 (p. 69).

4.2 Estimating the Relative Pose and Uncertainty

The relative pose between two frames (omni-directional images) µ is divided
into relative position µx,y and relative orientation µθ. The uncertainty of the
relative robot pose covariance matrix C is decomposed into a covariance ma-
trix of the robot position Cx,y and a variance of the orientation σ2

θ, i.e. the
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Figure 4.2: Top left: An omni-directional image created by using the lens and camera
shown in Fig. 2.3. Top right: An image generated by projecting a part of the image data
onto a plane. Bottom: A panoramic image created by using pixel coordinates x = kθ

and y = kϕ, where both θ and ϕ are defined in Fig. 4.1 and k is a scaling factor.



52 CHAPTER 4. OMNI-VISION BASED REGISTRATION

 0

 2

 4

 6

 8

 10

 12

 14

 16

−3 −2 −1  0  1  2  3

N
um

be
r 

of
 m

at
ch

es

Relative orientation (rad)

Relative rotation histogram

bins
selected angle

fitted polynom

Figure 4.3: Relative orientation histogram created from two omnidirectional images
taken 2 meter apart. The dotted line marks the relative orientation estimate µθ.

covariance matrix is assumed to have a block structure. This section describes
how both the relative pose µ and the uncertainty C of the pose is estimated.

4.2.1 Estimating the Relative Rotation and Uncertainty

The relative rotation between two panoramic images Ia and Ib can be esti-
mated directly from the horizontal displacement of the matched feature pairs
Pa,b since the width of a panoramic image encloses a complete revolution of
the scene. When an omni-directional image is used directly, as in MSIFT, the
relative rotation is obtained from the difference in orientation θ as described in
Section 3.2.2. Here, the relative rotations θp for all matched pairs p ∈ Pa,b are
accumulated in a 10 bins histogram and the relative rotation µθ is determined
as the maximum point of a parabola fitted to the largest bin and its left and
right neighbour, see Fig. 4.3.

To evaluate the accuracy of the relative rotation estimate θp, we collected
panoramic images in an indoor laboratory environment and computed the rel-
ative orientation with respect to a reference image I0. Panoramic images were
recorded at a translational distance of 0.5, 1.0 and 2.0 meters to the refer-
ence image I0. The ground truth rotation was obtained by manually measuring
the displacement of corresponding pixels in areas along the displacement of the
camera. The results in Table 4.1 demonstrate the good accuracy obtained. Even
at a displacement of 2 meters the mean error is only 7.15 degrees.
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Table 4.1: Errors of relative rotation θ estimate in radians.
transl (m) errorθ σerrorθ

0.5 0.100 0.0630

1.0 0.104 0.0500

2.0 0.125 0.0903

Figure 4.4: The physical distance to the features will influence the number of features
that can be detected from different poses of the robot. The filled squares represent fea-
tures that could be matched in all three robot poses while the unfilled squares represent
the features were the correspondence cannot be found from all poses. The left wall in the
figure is closer to the robot. Thus, due to the faster change in appearance, the number
of features of the left wall, which can be matched over successive images, tends to be
less compared to the number of matched features of the right wall.

The relative rotation variance σ2
θ is estimated by the sum of squared differ-

ences between the estimate of the relative rotation µθ and the relative rotation
of the matched pairs Pa,b as

σ2
θ =

1
Ma,b − 1

∑

p∈Pa,b

(µθ − θp)2, (4.1)

where Ma,b is the total number of matched pairs. To increase the robustness
towards outliers, a 10% Winsorized mean is applied. For the evaluated data
this only had a minor effect on the results compared to using an un-truncated
mean.
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Figure 4.5: Left: Full similarity matrix for the lab data set (Sec. 6.3.3). Brighter entries
indicate a higher similarity measure S. Right: Zoomed in image, the left area (enclosed
in a the blue frame) corresponds to a sequence of similarity measures that give a larger
position covariance than the right sequence (dark red frame).

4.2.2 Estimating the Relative Position and Uncertainty

The registration approach proposed in this chapter does not attempt to de-
termine the position of the detected features. Therefore, the relative position
between two frames a and b cannot be determined very accurately. Instead we
use only image similarity of the surrounding images to estimate the relative po-
sition [µx,µy] as described below. It would be possible to use an estimate based
on multiple view geometry, for example, but this would introduce additional
complexity that we want to avoid.

Instead, geometric information is obtained from an estimate of the co-
variance of the relative position between a current frame b and a previously
recorded frame a. This covariance estimate is computed using only the similar-
ity measures S (described in Sec. 3.3.1) of frame b with a and the neighbouring
frames of a.

The number of matched features between successive frames will vary de-
pending on the physical distance of the extracted features, see Figs. 4.4, 6.2
(p. 86) and 6.3 (p. 87). Consider, for example, a robot located in an empty
car park where the physical distance to the features is large and therefore the
appearance of the environment does not change quickly if the robot is moved a
certain distance. If, on the other hand, the robot is located in a narrow corridor
where the physical distance to the extracted features is small, the number of
feature matches in successive frames tends to be smaller if the robot was moved
the same distance.
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Figure 4.6: Gaussian fitted to the distance travelled d (as obtained from odometry) and
the similarity measures between frame b and the frames of the neighbourhood N(a) =

{a−2,a−1,a,a+1,a+2}. From the similarity measures, both a relative pose estimate µ
and a covariance estimate C are calculated between node a and node b. The orientation
and orientation variance are not visualised in this figure.
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Figure 4.7: Examples of different position covariances created by fitting a 2D Gaussian
using the similarity measures of the frames N(a) (drawn in red). The estimated robot
pose is drawn with white background in the left figure to illustrate the possibility to
estimate an orientation. The orientation variance is not shown in these figures.

The covariance of the robot position estimate

Cx,y =

[

σ2
x σxσy

σxσy σ2
y

]

(4.2)

is computed based on how the similarity measure varies over the set N(a),
which contains frame a and its neighbouring frames. The analysed sequence of
similarity measures is indicated in the zoomed in visualisation of a similarity
matrix shown in Fig. 4.5. In order to avoid issues estimating the covariance
orthogonal to the path of the robot if the robot was driven along a straight path,
the covariance is simplified by setting σ2

x = σ2
y and σxσy = 0. The remaining

covariance parameter is estimated by fitting a 1D Gaussian to the similarity
measures SN(a),b and the distance travelled as obtained from odometry, see
Figs. 4.6 and 4.7. Two parameters are determined from the nonlinear least
squares fitting process: mean (dµ) and variance (σ2

x). An estimate of the relative
position [µx,µy] is calculated as

µx = cos(µθ)dµ (4.3)

µy = sin(µθ)dµ, (4.4)

where dµ is the calculated mean of the fitted Gaussian and µθ the estimated
relative orientation (Sec. 4.2.1).

In the experimental evaluation the Gaussian was estimated using five con-
secutive frames, e.g. using [Sa−2,b,Sa−1,b...Sa+2,b]. In addition, a Gaussian was
only fitted to a neighbourN(a) if the similarity measure had its peak in Sa,b and
the similarity measure for frames further away were smaller than closer ones.
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Table 4.2: Statistics of the error ǫ between the Gaussian fit and the similarity measure
Sa−2,b,Sa−1,b...Sa+2,b for each node for which the fit was performed in the outdoor /
indoor data set.

node pair ǫ σǫ

< a− 2,b > 0.031 0.0441

< a− 1,b > 0.029 0.0348

< a,b > 0.033 0.0601

< a+ 1,b > 0.026 0.0317

< a+ 2,b > 0.028 0.0388

To evaluate whether the evolution of the similarity measure in the vicinity of a
visual relation can be reasonably approximated by a Gaussian, the mean error
between the 5 similarity measures and the fitted Gaussian was calculated for
the outdoor / indoor data set, which is described in Section 6.3.1). The results
in Table 4.2 indicate that the Gaussian represents the evolution of the similarity
in a reasonable way. Please note that frame b is taken at a later time than frame
a meaning that the covariance estimate Ca,b can be calculated directly without
any time lag.

The complete covariance matrix C of the relative pose (µ = [µx,µy,µθ]) is
calculated as

C =





σ2
x 0 0

0 σ2
y 0

0 0 σ2
θ



 . (4.5)

4.3 Determining the Image Density

The distance between the successive frames [da−2,a−1,da−1,a, ...,da+1,a+2] has
previously been used to determine the relative pose estimate. This distance can
either be kept constant by taking pictures whenever the robot has travelled
a certain distance, which is the approach used in the experiments presented in
Chapters 5 and 6. However, by utilising the similarity measure between the pre-
viously taken image and the current image the system could determine whether
to add the current image. This would result in fewer images to represent the
environment in open areas where the scene is typically rather stable compared
to narrow areas where more images should be used.

4.4 Conclusion

This chapter has given a description of how relative pose estimates and the
corresponding uncertainty can be calculated without using any depth informa-
tion. The experimental verification of the proposed approach is described in
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the localisation chapter (Ch. 5) and the SLAM chapter (Ch. 6). The main ad-
vantage of this registration method is that it uses only a small set of similarity
measures in combination with metric data obtained from relative odometry
readings as input. Only relative odometry readings are used between successive
nodes or between the neighbours N. Odometry is fairly accurate over the rela-
tively short distances that are considered here. Although local features are used
in this chapter, it would be possible to extend the proposed registration method
to use global feature based similarity meassures.



Chapter 5

Omni-vision Based

Localisation

This chapter presents an image-based approach for localisation in non-static
environments using local feature descriptors, and its experimental evaluation
in a large, dynamic, populated environment where the time interval between
collecting the data was up to two months. By using local features together
with panoramic images, substantial changes in the environment can be handled.
Results from global place recognition with no evidence accumulation and a
Monte Carlo localisation method are presented. To test the robustness of the
approach, experiments were conducted with up to 90% virtual occlusion in
addition to the dynamic changes in the environment.

5.1 Introduction

5.1.1 Background

There has been much research on using accumulated sensory evidence to im-
prove localisation performance, including a highly successful class of algo-
rithms that estimate posterior probability distributions over the space of possi-
ble locations [59, 22, 107, 31, 42, 26]. These approaches enable both position
tracking and localisation from scratch, for example, when the robot is started
(no prior knowledge of its position) or becomes lost or “kidnapped” (incorrect
prior knowledge).

In vision based approaches, panoramic or omni-directional cameras have
become popular for self-localisation because of their relatively low cost and
large field of view. This makes it possible to extract features that are invariant
to the robot’s orientation, for example, using various colour histograms [117,
17, 49] or Eigenspace models [69, 120, 6]. Other approaches create multiple
images from the same location by shifting the panoramic view [119] or by rota-
tion [63], which increases the amount of data several times. Another approach

59
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is to only take pictures at the same orientation [6], e.g., when the robot is facing
north.

Other innovations include methods to increase robustness to lighting vari-
ations [120] and multi-view registration to deal with occlusions [95]. Some
authors have combined panoramic vision with particle filters for global local-
isation, including feature matching using Fourier transform [33], PCA [119]
and colour histograms [54].

5.1.2 Dynamic Environments

Most previous work on robot mapping and localisation assumes a static world
[14], i.e. that there are no changes to the environment between the time of
mapping and the time of using the map. However, this assumption does not
hold for typical populated environments. Humans (and other robots) are not
merely “dynamic obstacles” that may occlude the robot’s sensors – they also
make changes to the world. For example, they may leave temporary objects
such as packages, or move the furniture. In addition to these sudden changes,
there may be gradual changes such as plants growing, coloured paint fading,
etc.

Our approach to self-localisation in non-static environments uses an image
matching scheme (Ch. 3) that is robust to many of the changes that occur under
natural conditions. The robustness is achieved by looking at parts of the images
(local features) instead of the whole images at once, meaning that partial oc-
clusions or changes will only affect a subset of all features. Our hypothesis is
that a map that is out of date can still contain much useful information. Thus
the important question is how to extract features that can be used for matching
new sensor data to a map that is only partially correct. This chapter presents
an appearance-based approach to matching panoramic images that does not
require calibration or geometric modelling of the scene or imaging system, thus
it should be applicable to any mobile robot using omni-directional vision for
self-localisation. The hypothesis is validated through experiments using sensor
data collected by a mobile robot, PeopleBoy (see Sec. 2.1.1), in a real dynamic
environment over a period of two months.

5.1.3 Overview

The image matching algorithm, described in Chapter 3, uses local features ex-
tracted from many small subregions of the image rather than global features
extracted from the whole image, which makes the method very robust to vari-
ations and occlusions. For example, Fig. 5.1 shows some of the local features
that were matched between two different panoramic images of a laboratory
environment, recorded 56 days apart, despite changes such as a television ap-
pearing, chairs moving and people working. Our proposed method is similar to
other approaches that use local features for self-localisation [121, 7, 68], with



5.1. INTRODUCTION 61

Figure 5.1: Matching a new image (left) against the corresponding database image
recorded 56 days earlier (right).

Robot

Feature Matching

Filter

Particle

Feature Extraction
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particle weights
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particle poses
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Figure 5.2: An overview of the proposed method. Input: the current omni-image and
the current odometry reading. The database consists of poses (x, y, θ) of the database
images together with the extracted features. For every pair of sensory inputs (panoramic
image and odometry) features are extracted and the poses of the particles are updated
with the odometry. Thereafter the weight of each particle is updated with the feature
match value of the closest database location. Output: the current estimate of the robot
position based on the weight and distribution of particles.
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the differences that the method proposed here is adapted for panoramic images
and was specifically designed and tested to work in long-term experiments con-
ducted in a real dynamic environment. The results demonstrate that the robot
is able to localise itself from scratch, including experiments in “kidnapping”,
and that the performance shows a graceful degradation to occlusions (validated
for up to 90% of the robot’s field of view).

Our localisation methods assume that the database (map) has been already
created. To be able to match the current image with the images stored in the
database, each image is converted into a set of features. The matching is done
by comparing the features in the database with the features created from the
current image, see Chapter 3. The database is constructed from another set
of images collected by the same robot. For each stored image, the database
contains a set of extracted local feature descriptors (Sec. 3.2.2) and the cor-
responding location (x, y, θ) of the robot, which in our case was estimated
using a SLAM method [47] (see Sec. 5.4 for further details). In our experi-
ments, 100 features were selected for each panoramic image. The diameter of
the panoramic view is approximately 576 pixels. For each feature, the radius r
and orientation θ are also stored (Fig. 3.5) for subsequent processing.

A novel scheme is introduced for combining local feature matching with a
particle filter for global localisation (Sec. 5.2), which minimises computational
costs as the filter converges. See also Fig. 5.2 for a brief overview of the method.
To evaluate the method, we also compare the performance with several other
types of features, including both global and local features (Sec. 5.3). How im-
age matching performance can be further improved by incorporating informa-
tion about the relative orientation of corresponding features between images is
shown in Section 5.3.1. Our experiments were designed to test the system un-
der a wide variety of conditions, including results in a large populated indoor
environment (up to 5 persons visible) on different days under different lighting
conditions (Sec. 5.4).

5.2 Monte Carlo Localisation

Monte Carlo methods such as particle filters [3] have become popular in recent
years for estimating the state of a system at a certain time based on the current
and past measurements. The probability p(Xt|Z1:t) of a system being in state
Xt given a history of measurements Z1:t = {z0, ..., zt} is approximated by a set
of N weighted particles:

St = {x
(i)
t ,π(i)

t }, i = 1...N. (5.1)

Each particle x(i)
t describes a possible state together with a weight π(i)

t ,
which is proportional to the likelihood that the system is in this state. Particle
filtering consists of four main steps:
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1. Create a new particle set St+1 by resampling from the old particle set St

based on the particle weights π(i)
t , i = 1...N

2. Predict the next particle states based on the dynamic model p(x(i)

t+1|x
(i)
t ,ut)

with incremental pose estimate (odometry) ut, i = 1...N

3. Calculate the new weights by application of the measurement model:
π

(i)

t+1 ∝ p(zt+1|Xt+1 = x
(i)

t+1), i = 1...N.

4. Normalise the weights π(i)
t so that

∑N
i=1 π

(i)
t = 1.

The estimate of the system state at time t is the weighted mean over all
particle states:

X̂t = E(St) =

N
∑

i=1

π
(i)
t x

(i)
t . (5.2)

In our case the state is described by a three dimensional vector xt = (x,y, θ)t

containing the robot pose consisting of the position (x,y) and the orientation θ
of the robot. The x and y coordinates are initialised randomly within a radius
of one meter around a randomly selected database pose to assure that the robot
pose can be in the surrounding of the database poses, for example, between two
database locations or orthogonal to the path the robot was driven during cre-
ation of the database. The orientation θ is calculated as the orientation of the
database pose added to the relative orientation between the current frame and
the selected database frame. The relative orientation is estimated as described
in Section 4.2.1 with an added random value drawn from a normal distribution
with standard deviation π/8 radians to allow particles located close to the same
database pose to have different orientations. The prediction and measurement
steps are described in the following sections.

5.2.1 Dynamic Model

All state variables x(i)
t = (x,y, θ)t are updated according to the odometry read-

ings ut from the robot. To cope with the additional uncertainty due to odom-
etry error (the magnitude of the odometry error can be seen in Fig. 5.6), the
odometry values are updated with small random values drawn from a normal
distribution, using a standard deviation of 0.1 radians for the rotation and
a standard deviation of 2% of the measured distance for the translation. To
use a standard deviation which is not dependent on the rotation avoids that
the model underestimates the rotational error while the robot according to the
odometry follows a straight path.
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Figure 5.3: Number of database locations (in total 603) to match against distance trav-
elled for Run1 with 50% occlusion.

5.2.2 Measurement Model

To calculate the weight of particles only the location of the database image
that is closest to the current particle is used (see also the experimental setup,
Sec. 5.4.1). This means that the computation time will decrease as the parti-
cles converge around the true location of the robot, since fewer images in the
database need to be matched to the current image. Fig. 5.3 shows the decreasing
number of matched database locations against distance travelled after initialisa-
tion of the particle filter. In the experimental evaluation the number of database
locations was 603.

The particle weight π(i) is based on the similarity measure S(i) = Sa,b be-

tween the current image a and the closest database image b for particle x(i)
t

(see Sec. 3.3). Hence, all particles that are closest to the same database loca-
tion will have the same match value independent of the actual distance to the
database position. Therefore, to avoid that the particles drift away from the
mapped area, the weighting function fw(d) is applied:

fw(d) =

{

exp
(

−
(d−σ)2

τ2

)

(d > σ)

1 (d 6 σ)
(5.3)

where d is the Euclidean distance between the particle and the database po-
sition. In the experiments, σ and τ were set to 2T where T is the minimum
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distance between database positions (see Sec. 5.4.1). The new weight is then
calculated as

π
(i)
t = fw(d) · S(i). (5.4)

5.2.3 Inertia Models

For images with a large amount of occlusion, the number of matches could be
low and possibly zero, even for the correct position. To increase the inertia of
particles in order to survive through sections of the map with few matches, two
additional approaches were evaluated in addition to the standard method, see
Fig. 5.4.

Standard Method (No Inertia) In the standard approach, the weights π(i)

t+1 of
the new set of particles St+1 are assigned from the measurement model with-
out using the previous weight. If the number of matches is low for the correct
location (for example, due to major changes in the environment), the number
of particles at the correct location will decrease rapidly.

Forgetting Factor By only updating the weight of the particle if it is similar
or better compared to the previous iteration, the “inertia” of the distribution is
increased. To allow the weight to decrease a ‘forgetting factor’ fforget is used.
The new weight is used only if

π
(i)

t+1 > π
(i)
t · fforget · fw(d),

otherwise
π

(i)
t · fforget · fw(d)

is used instead. To evaluate the performance of the method, different values
were used, with the best results obtained with fforget ∈ [0.8, 0.9].

Keep Random By randomly keeping weights for some particles from the pre-
vious iteration, the inertia of the distribution is increased. With a probability
p(fkeep), the weight of a particle is not updated. Instead the weight of that
particle keeps its previous value,

π
(i+1)
t = π

(i)
t .

The performance was evaluated using different values of fkeep. The best results
were obtained with fkeep ∈ [0.2, 0.3].

5.3 Alternative Feature Methods

Together with MSIFT, three other features for image matching were evaluated,
one global feature and two local features.
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Figure 5.4: Localisation errors for the different inertia models with 50% occlusion and
a kidnapped robot scenario where the robot was virtually moved to a new random
position after approx. 4.5 meters, marked as an ’*’. f - “Forgetting Factor” (fforget),
p - “Keep Random” (fkeep). Note, for the increased inertia models the convergence is
slower but the performance is better.

Normalised Colour Histogram - NCH NCH is a global feature and is included
for performance comparison with the other methods. All pixels covered by the
reflective mirror (i.e. not the black centre and outer parts seen in Fig. 5.1) in the
omni-directional image are used. The RGB values of each pixel are normalised,
i.e. Rnorm = R

R+G+B
. Three histograms of normalised intensity are created, one

for each colour. The histograms are matched by squared Euclidean distance.

Average Squared Difference Correlation - ASD ASD matches two local fea-
tures F and F ′ in two different images I and I ′ by the sum of the squared differ-
ences of intensity in a surrounding neighbourhood window N as

ASD(F, F ′) =
1
N

∑

n∈N(F),n′∈N(F′)

[I(n) − I ′(n ′)]2, (5.5)

where N is the size of the neighbourhood N.
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Variance Normalised Correlation - VNC VNC is defined for local features F
and F ′ as

VNC(F, F ′) =
1

N

√

σ2
I(F)σ

2
I′(F ′)

∑

n∈N(F),n′∈N(F′)

[I(n) − I(F)][I ′(n ′) − I ′(F ′)],

(5.6)

where I(F) and σ2
I(F) are the mean and variance over intensity of the neigh-

bourhood of N. VNC was shown to give high invariance to changes in view
point orientation [38].

Matching of local descriptors was done as described in Section 3.3, where
the match score is based on the total number of matched features between
two images. The neighbourhood N was set to 12×12 pixels giving a feature
vector of length 144. To determine the interest point, the same feature detection
approach as in MSIFT was used, see Section 3.2.2.

5.3.1 Improved Image Matching

To improve image matching, the position of each point in the image could also
be used. This could be extended all the way to extracting and matching full
3D information between images, but this would require geometric modelling
and a higher computational cost, as in [13]. However, one common property
of omni-directional imaging systems for mobile robot navigation is symmetry
about the z-axis, meaning that it should be possible to incorporate information
about the relative orientation of matched features between images without loss
of generality.

As described in Section 3.3, the rotation φ between matched images is esti-
mated using a histogram of the respective rotations θF − θF′ between matched
features F and F ′, where θ is the direction to the feature shown in Fig. 3.5. This
histogram is used here to obtain an additional certainty measure, by counting
the number of points that lie in the winning bin and the two adjacent bins to
the left and right. For each feature match where |θF − θF′ − φ| < π

16 , one extra
match is added and therefore the similarity measure S(i) is increased.

This method can only be applied to local features. In the result section the
results with the improved matching are denoted MSIFT*, ASD* and VNC*. In
the Monte Carlo localisation using MSIFT*, the improved similarity measure
is used to update the weights of particles.

5.4 Results

The results are divided into two parts, one considering the location and orien-
tation recognition performance with no prior knowledge (Sec. 5.4.2) and the
other evaluates the full Monte Carlo localisation scheme (Sec. 5.4.3).
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Figure 5.5: Robot platform in the test environment.

5.4.1 Experimental Set-up

Robotic platform and environment

The robot used in the experiments is an ActivMedia PeopleBot called PeopleBoy
equipped with a LMS-200 SICK laser range scanner and an omni-directional
lens from RemoteReality together with an ordinary CCD camera mounted on
top of the robot, see Fig. 5.5 and 2.2. The localisation system consists of a
database of features where one set of features is stored for each database po-
sition. The features were calculated from images taken at known positions. To
obtain these positions and the ground truth data for performance evaluation, a
SLAM implementation was applied as described in [47]. A total of 603 images
were collected covering an area of approximately 60×55 meters, as shown in
Fig. 5.6. New laser scans and images were recorded if the rotation since the pre-
vious image exceeded 15 degrees or when the translation exceeded 0.5 meters.
For each image the corresponding pose estimate from the SLAM algorithm was
stored.

All data sets used in the experiments are visualised as occupancy maps in
Fig. 5.6 and Fig. 5.7. Run1 and Run4, which mainly cover the student area and
the labs. Run2 is from a corridor, see Fig. 5.8, which contains a lot of similar
features, e.g., doors to office rooms, and a lack of furniture or objects. Run3

passes parts of the office corridor, the coffee room and the secretary offices.
Each run was recorded at a different time compared to the database. Run1 was
recorded 2 days before the database, both Run2 and Run3 were recorded 56
days later, while Run4 was recorded 64 days later. Run4 and most of Run3, see
Fig. 5.7, right, were collected with the robot driving in the opposite direction
compared to when collecting the images for the database. The distance between
each successive image for the test runs was 0.25 meters.
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Figure 5.6: Left: Area covered by the database. Right: Two of the test sequences with
ground truth and raw odometry data, Run1 (above) and Run2 (below) with the number
of days between each run was collected compared to the database.
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Figure 5.7: Left: Test sequence Run3. Middle: Test sequence Run4. Right: Paths trav-
elled by the robot, Run4 (black) and the database (grey), the arrows indicate the path
direction.
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Building the database

Since image feature matching does not depend on the orientation of the images,
it is only necessary to use images with different location, i.e. when the robot
is travelling back and forward along a corridor it is sufficient to save the data
in one direction. The building of the database starts after the run is completed
and optimised with SLAM. The images are used in the same order as they were
recorded. An image is added to the database if the metric distance to the nearest
stored image exceeds a threshold T . In this chapter, a value of T = 0.4 meters
was used. For each image included in the database, a feature set is calculated
and the 100 strongest features are stored, as described in Sections 3.2.2 and 5.3
except for the global NCH method, see Section 5.3.

5.4.2 Location and Orientation Recognition

Different features were evaluated using the described method on a set of test
runs that overlap with the area covered by the database, as shown in Fig. 5.6.
Comparative performance statistics for the different matching algorithms are
given in Tables 5.1 – 5.4. Note that all results presented are for the global
localisation robot problem without any prior knowledge of the robot’s location.

To calculate performance, the positions of the test image and the image
found in the database estimated from SLAM were compared. Only matches
that had a Euclidean distance smaller than a certain value rmax were consid-
ered to be a correct match. In some experiments the accuracy of the rotation
estimates φ was also considered (see the rightmost columns of Tables 5.1– 5.4).
The results show that the performance of all algorithms in all runs was signif-
icantly better using the improved image matching scheme (a paired t-test with
p < 0.05 was used for the statistical evaluation), and that the best performance
was achieved by MSIFT*.

Table 5.1: Run1, parts of the student area and the labs.
rmax φmax (rmax = 4.0)

2.0 4.0 6.0 ±π
2 ±π

4 ±π
8

NCH 2.2% 4.4% 8.6% n/a n/a n/a

ASD 49.7% 57.9% 62.7% 55.4% 53.2% 51.3%
VNC 3.8% 8.2% 11.4% 7.6% 5.4% 2.5%

MSIFT 96.2% 98.1% 99.7% 98.1% 98.1% 98.1%
ASD* 70.0% 75.6% 77.5% 73.7% 71.8% 71.8%

VNC* 3.5% 7.9% 13.3% 7.0% 5.4% 3.2%
MSIFT* 98.1% 99.4% 100.0% 99.4% 99.4% 99.4%
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Table 5.2: Run2, Ph.D. corridor, part of the labs.
rmax φmax (rmax = 4.0)

2.0 4.0 6.0 ±π
2 ±π

4 ±π
8

NCH 15.4% 23.0% 28.7% n/a n/a n/a

ASD 28.0% 36.6% 40.9% 30.2% 27.7% 25.0%
VNC 0.6% 3.7% 4.9% 0.6% 0.3% 0.3%

MSIFT 60.4% 71.0% 74.7% 64.0% 62.5% 59.4%
ASD* 39.3% 47.6% 52.7% 41.8% 39.6% 35.7%

VNC* 1.2% 3.4% 4.6% 1.5% 0.3% 0.0%
MSIFT* 67.0% 76.2% 80.2% 71.3% 71.0% 68.3%

Table 5.3: Run3, parts of the labs and Ph.D. corridor, coffee room, secretary corridor.
rmax φmax (rmax = 4.0)

2.0 4.0 6.0 ±π
2 ±π

4 ±π
8

NCH 10.5% 16.4% 20.2% n/a n/a n/a

ASD 40.6% 50.9% 54.3% 45.7% 42.3% 40.6%
VNC 1.7% 5.1% 12.6% 3.4% 2.3% 1.7%

MSIFT 56.6% 70.3% 74.3% 65.7% 62.3% 57.7%
ASD* 56.0% 63.4% 67.4% 60.0% 59.4% 56.6%

VNC* 0.6% 5.1% 11.4% 3.9% 1.7% 1.1%
MSIFT* 68.0% 79.4% 83.4% 74.9% 72.0% 68.6%

Table 5.4: Run4, parts of student area and the labs.
rmax φmax (rmax = 4.0)

2.0 4.0 6.0 ±π
2 ±π

4 ±π
8

NCH 10.5% 16.4% 20.2% n/a n/a n/a

ASD 15.4% 24.0% 26.3% 18.9% 17.7% 13.1%
VNC 3.4% 6.9% 13.7% 4.6% 2.3% 1.1%

MSIFT 81.1% 85.7% 88.6% 85.1% 85.1% 83.4%
ASD* 27.4% 37.1% 38.9% 33.7% 32.6% 28.6%

VNC* 4.6% 6.3% 12.0% 4.6% 3.4% 2.3%
MSIFT* 87.4% 92.6% 93.1% 92.0% 92.0% 90.9%
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Figure 5.8: Virtual occlusion: valid regions for extracting features. Left: no added oc-
clusion (a small sector of the omni-image is removed because of occlusion by the stand
on which the camera is mounted). Right : 50% added occlusion. The image is taken
from Run2.

5.4.3 Monte Carlo Localisation

In the experiments, a total of 500 particles was used and the 10% of the par-
ticles with the lowest weights were reinitialised (see Sec. 5.2) at each iteration
to enable localisation. The inertia model used is the Forgetting Factor with
ffactor = 0.9, see Section 5.2.3. To calculate performance, the Euclidean dis-
tance between positions of the test image and the median value of 90% of the
particles with the highest fitness value was used, in order to increase robustness
against outliers.

The database map and the maps for the different runs (see Fig. 5.6) were
manually fitted and ‘placed’ on top of each other. To obtain more evaluation
data, each dataset was used multiple times by dividing it into smaller runs. The
new runs contained 30 images each covering approximately 9 meters, where
each run has a different starting position. To test the robustness, additional lev-
els of occlusion were simulated by removing features. The occlusion percentage
indicates the proportion of the current image (field of view) where features
were deleted (see Fig. 5.8). For the global localisation problem, the particles
were reinitialised after each completed run (see Fig. 5.9 and 5.10). To evaluate
the kidnapped robot scenario a randomly selected run was used to accumulate
evidence before the robot was ‘virtually’ moved by randomly selecting another
run (see Fig. 5.11 and 5.12).

A comparison between MSIFT and MSIFT* can be seen in Table 5.5, where
the distance travelled until the localisation error falls below 2 and 5 meters re-
spectively is shown together with the standard deviation. Interestingly, in con-
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Table 5.5: Distance travelled in meters until localisation error is less than 2 and 5 meters,
no occlusion.

error < 2m error < 5m No. of
MSIFT MSIFT* MSIFT MSIFT* expts.

Run1 0.48±0.56 0.42±0.50 0.34±0.47 0.30±0.41 265
Run2 3.16±1.55 2.91±1.50 1.88±1.26 1.90±1.28 277
Run3 3.59±1.62 3.18±1.52 2.10±1.27 1.90±1.21 124
Run4 0.90±0.77 0.85±0.73 0.64±0.64 0.63±0.63 229

Table 5.6: Distance travelled in meters until localisation error is less than 5 and 10
meters with 50% occlusion.

error < 5m error < 10m No. of
MSIFT MSIFT* MSIFT MSIFT* expts.

Run1 1.20±1.07 0.63±0.90 0.83±0.92 0.43±0.77 265
Run2 3.29±1.59 2.31±1.49 2.14±1.45 1.53±1.31 277
Run3 3.87±1.78 2.86±1.64 3.12±1.72 2.56±1.61 124
Run4 2.18±1.46 1.02±1.09 1.71±1.34 0.82±1.02 229

trast to the previous experiments in location and orientation recognition, the
differences in performance between the two systems using Monte Carlo local-
isation were not significant (p < 0.05, unpaired t-test), except for one case
(Run3, error < 2m).

As an additional evaluation on the difference between MSIFT and MSIFT*
the same comparison was done but with an occlusion rate of 50% and localisa-
tion error threshold set to 5 and 10 meters. The results are shown in Table. 5.6,
where all the differences in performance between MSIFT and MSIFT* were
statistically significant.

This would suggest that the accumulation of sensory evidence, including
relative odometry, in the non-occlusion case has a greater influence on overall
localisation performance than the improved measurement model using rota-
tion information. The improved measurement model gave better performance
regarding convergence with a higher occlusion rate.

Localisation errors against distance travelled for MSIFT and MSIFT* with
0% and 50% occlusion rate are shown in Fig. 5.13 and 5.14.

5.5 Conclusion

This chapter presented a self-localisation algorithm for mobile robots using
panoramic images. The methods consist of existing state-of-the-art algorithms
for creating local descriptors [80] and probabilistic state estimation [3] with
an omni-directional imaging system on a mobile robot, and the experimental
evaluation of the entire system in a real dynamic environment over an extended
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Figure 5.9: Localisation errors against distance travelled for global localisation exper-
iments using MSIFT with different levels of occlusion. Top: results from Run1. Bot-
tom: results from Run2.



5.5. CONCLUSION 75

Figure 5.10: Localisation errors against distance travelled for global localisation ex-
periments using MSIFT with different levels of occlusion. Top: results from Run3. Bot-
tom: results from Run4.
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Figure 5.11: Localisation errors against distance travelled for the kidnapped robot sce-
nario using MSIFT. Top: results from Run1. Button: results from Run2.
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Figure 5.12: Localisation errors against distance travelled for the kidnapped robot sce-
nario using MSIFT. Top: results from Run3. Bottom: results from Run4.



78 CHAPTER 5. OMNI-VISION BASED LOCALISATION

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  2  4  6  8  10  12  14  16

Lo
ca

tio
n 

er
ro

r 
−

 (
m

)

Distance − (m)

MSIFT*
MSIFT

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  2  4  6  8  10  12  14  16

Lo
ca

tio
n 

er
ro

r 
−

 (
m

)

Distance − (m)

MSIFT* f(0.9)
MSIFT f(0.9)

Figure 5.13: Localisation errors for MSIFT and MSIFT*. Top: results from Run2.
Bottom: results from Run2 with 50% occlusion. With no occlusion, both MSIFT and
MSIFT* performs similarly, however with more occlusion the improved matching shows
better performance.
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Figure 5.14: Localisation errors for MSIFT and MSIFT*. Top: results from Run4.
Bottom: results from Run4 with 50% occlusion. With no occlusion, both MSIFT and
MSIFT* performs similarly, however with more occlusion the improved matching shows
better performance.
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period of time. By using experiments with data collected on different days over
a period of several months, it has been shown that even if the room has gone
through some changes regarding location of furniture, objects and persons, or
severe occlusion (virtual occlusions tested up to 90%), it is still possible to
extract good position estimates.



Chapter 6

Omni-vision Based SLAM

This chapter presents a vision-based approach to SLAM in indoor / outdoor
environments with minimalistic sensing and computational requirements. The
approach is based on a graph representation of robot poses, using a relaxation
algorithm to obtain a globally consistent map. Combined indoor and outdoor
experiments demonstrate that the approach can handle qualitatively different
environments (without modification of the parameters), that it can cope with
violations of the “flat floor assumption” to some degree, and that it scales well
with increasing size of the environment, producing topologically correct and
geometrically accurate maps at low computational cost. Further experiments
demonstrate that the approach is also suitable for combining multiple over-
lapping maps, e.g. for solving the multi-robot SLAM problem with unknown
initial poses.

6.1 Introduction

This chapter presents a new vision-based approach to the problem of simul-
taneous localisation and mapping (SLAM). Especially compared to SLAM ap-
proaches using a 2D laser scanner, the rich information provided by a vision-
based approach about a substantial part of the environment allows for dealing
with high levels of occlusion [5] and enables solutions that do not rely strictly
on a flat floor assumption. Cameras can also offer a longer range and are there-
fore advantageous in environments that contain large open spaces. It is further
argued that vision can enable solutions in highly cluttered environments where
laser range scanner based SLAM algorithms might fail [99].

The proposed method is named “Mini-SLAM” since it is minimalistic in
several ways. On the hardware side, it relies solely on odometry and an omni-
directional camera as the external source of information. This allows for less
expensive systems compared to methods that use 2D or 3D laser scanners.
Please note that the robot used for the experiments was also equipped with

81
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a 2D laser scanner. This laser scanner, however, was not used in the SLAM
algorithm but only to visualize the consistency of the created maps.

Apart from the frugal hardware requirements, the method is also minimal-
istic in its computational demands. Map estimation is performed on-line by a
linear time SLAM algorithm on an efficient graph representation. The main dif-
ference to other vision-based SLAM approaches is that there is no estimate of
the positions of a set of landmarks involved, enabling the algorithm to scale up
better with the size of the environment. Instead, a measure of image similarity is
used to estimate the relative pose between corresponding images (“visual rela-
tions”) and the uncertainty of this estimate. Given these “visual relations” and
relative pose estimates between consecutive images obtained from the odometry
of the robot (“odometry relations”), the Multilevel Relaxation algorithm [47]
is then used to determine the maximum likelihood estimate of all image poses.
The relations are expressed as a relative pose estimate and the corresponding
covariance. A key insight is that the estimate of the relative pose in the “vi-
sual relations” does not need to be very accurate as long as the corresponding
covariance is modeled appropriately. This is because the relative pose is only
used as an initial estimate that the Multilevel Relaxation algorithm can adjust
according to the covariance of the relation. Therefore, even with fairly impre-
cise initial estimates of the relative poses it is possible to build geometrically
accurate maps using the geometric information in the covariance of the relative
pose estimates. Mini-SLAM was found to produce consistent maps in various
environments, including, for example, a data set of an environment containing
indoor and outdoor passages (path length of 1.4 km) and an indoor data set
covering five floor levels of a department building.

Further, the Mini-SLAM approach is extended to address the multi-robot
SLAM problem, demonstrating its ability to combine multiple overlapping maps
with unknown initial poses. We also provide an evaluation of the robustness of
the suggested approach with respect to poor odometry or a less reliable measure
of visual similarity.

6.1.1 Related Work

Using a camera as the external source of information in SLAM has received in-
creasing attention during the past years. Many approaches extract landmarks
using local features in the images and track the positions of these landmarks. As
the feature descriptor, Lowe’s scale invariant feature transform (SIFT) [80] has
been used widely [102, 10]. An initial estimate of the relative pose change is of-
ten obtained from odometry [10, 62, 66], or where multiple cameras are avail-
able, as in [36, 100], multiple view geometry can be applied to obtain depth
estimates of the extracted features. To update and maintain the position of vi-
sual landmarks, Extended Kalman Filters (EKF) [25, 62], Rao-Blackwellised
Particle Filters (RBPF) [36, 10] are among the most popular methods applied.
The visual SLAM method in [25] uses a single camera. Particle filters were
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utilised to estimate the path, while the landmark positions were updated with
an EKF. In order to obtain metrically correct estimates, initial landmark po-
sitions had to be provided by the user. A similar approach described in [66]
also uses a single camera but applies a converse methodology. The landmark
positions were estimated with a Kalman filter and a particle filter was used to
estimate the path.

Due to their suitability for addressing the correspondence problem, vision-
based systems have been applied as an addition to laser scanning based SLAM
approaches for detecting loop closure. The principle has been applied to SLAM
systems based on a 2D laser scanner [57] and a 3D laser scanner [92].

Other mapping approaches have combined omni-directional vision for place
recognition with odometry for obtaining geometric information in a graph. For
example, Ranganathan and Dellaert [98] use odometry information to eval-
uate the likelihood of topological map hypotheses in a Markov-chain Monte
Carlo (MCMC) framework. However, the emphasis of their work is on select-
ing the correct topology using very coarse visual features, and their approach
is unlikely to scale to environments of the size presented here.

In the approach proposed in this chapter, the SLAM optimization problem
is solved at the graph-level with the Multilevel Relaxation (MLR) method of
Frese and Duckett [47]. This method could be replaced by alternative graph
based SLAM methods, for example, the online method proposed by Grisetti et
al. [52] based on the stochastic gradient descent method proposed by Olson et
al. [94].

The rest of the chapter is structured as follows. Section 6.2 describes the
proposed SLAM approach. It includes a overview of the SLAM optimisation
technique (Sec. 6.2.1), a description of the way in which relations are computed
from odometry (Sec. 6.2.2), and from visual similarity (Sec. 6.2.3). Then the
experimental set-up is detailed and the results are presented in Section 6.3.

6.2 Mini-SLAM

The Mini-SLAM approach is based on two principles. First, odometry is fairly
precise if the distance travelled is short. Second, by using visual matching, cor-
respondence between robot poses can be detected reliably even though the co-
variance of the current pose estimate, i.e. the search region, is large.

We therefore have two different types of relations r; relations based on
odometry ro and relations based on visual similarities rv.

6.2.1 Multi-Level Relaxation

The SLAM problem is solved at the graph-level, where the Multi-Level Relax-
ation (MLR) method of Frese and Duckett [47] is applied. A map is repre-
sented as a set of nodes connected in a graph structure. An example is shown in
Fig. 6.1. Each node corresponds to the robot pose at a particular time and each
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Figure 6.1: The graph representation used in multi-level relaxation (MLR). The figure
shows the frames (nodes) and the relations (edges) both from odometry ro and visual
similarities rv. Each frame a contains a reference to a set of features Fa extracted from
the omni-directional image Ia, an odometry pose xo

a, a covariance estimate of the odom-
etry pose Cxo

a
, the estimated pose x̂a and an estimate of its covariance Cx̂a

. See also
Fig. 6.2, which shows images from the region that is represented in the graph shown
here.
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link to a relative measurement of the spatial relation between the two nodes
it connects. A node is created for each omni-image in this work and the terms
node and frame are used interchangeably.

In this method, a map is represented as a set of nodes connected in a graph.
Each node or frame corresponds to the robot pose at a particular time (in our
case when an omni-image was taken), and each link corresponds to a relative
measurement of the spatial relation between the two nodes it connects, see
Fig. 6.1.

The function of the MLR algorithm can be explained as follows. The input
to the algorithm is a set R of m = |R| relations on n planar frames (x,y, θ) (i.e.
a two-dimensional representation is used). Each relation r ∈ R describes the
likelihood distribution of the pose of frame a relative to frame b. It is modelled
as a Gaussian distribution with mean µr and covariance Cr. The output is the
maximum likelihood (ML) estimation vector x̂ for the poses of all the frames.
In other words, the purpose of the algorithm is to assign a globally consistent
set of Cartesian coordinates to the nodes of the graph, based on local (relative),
inconsistent (noisy) measurements, by maximising the total likelihood of all
measurements.

6.2.2 Odometry Relations

By using odometry to add a relation ro, the relative position change µro
can be

directly extracted from the odometry readings and the covariance Cro
can be

estimated by a motion model. In the implementation of Mini-SLAM the model
suggested in [34] is used where the covariance is modelled as

Cro
=





d2δ2
Xd

+ t2δ2
Xt

0 0
0 d2δ2

Yd
+ t2δ2

Yt
0

0 0 d2δ2
θd

+ t2δ2
θt



 (6.1)

where d and t are the total distance travelled and total angle rotated by the
mobile robot between the two frames. The δX parameters relate to the forward
motion, the δY parameters the side motion and the δθ parameters the rota-
tion of the robot. The six parameters adjust the influence of the distance d and
rotation t in the calculation of the covariance matrix. They were tuned man-
ually once and kept constant throughout the experiments. Please note that an
odometry relation ro is only added between successive frames.

6.2.3 Visual Similarity Relations

Adding a relation rv, which relies on visual similarities, requires to estimate
the likelihood distribution between two frames using the method described in
Chapter 4, see also Figs. 6.2 and 6.3. In addition, the following two steps are
performed.
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Figure 6.2: Example of loop closure detection outdoors. The distance to the extracted
features is comparably large. The top figure shows feature matches at a peak of the
similarity value S678,758 = 0.728, whereas the middle figure shows the matches two
steps away S680,758 = 0.286 (∼3 meters distance). The pose standard deviation σxrv and
σyrv was estimated to be 2.059 m and the mean dµ to 0.199 m. The lowest figures
shows the similarity measures S with the distances obtained from odometry together
with the fitted Gaussian curve.
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Figure 6.3: Example of loop closure detection indoors. Here the distance to the features
is smaller compared to Fig. 6.2. The top figure shows matches at the local peak with a
similarity value S7,360 = 0.322, whereas the middle figure shows the matches two steps
away S9,360 = 0.076 (∼3 meters distance). The pose standard deviation σxrv and σyrv

was estimated to be 1.090 m and the mean dµ to -0.534. The lowest figures shows the
similarity measures Swith the distances obtained from odometry together with the fitted
Gaussian curve.
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Figure 6.4: Number of similarity calculations performed at each frame in the out-
door/indoor data set. The first frames were compared around frame 240, since up to
then none of the previous frames were within the search area around the current pose
estimate defined by the estimated pose covariance. The diagonal line indicates the linear
increase for the case that the frames to match are not pre-selected.

Selecting Frames to Match

In order to speed up the algorithm and make it more robust to perceptual
aliasing (the problem that different regions have similar appearance), only those
frames are selected for matching that are likely to be located close to each other.

Consider the current frame b and a previously recorded frame a. If the simi-
larity measure was to be calculated between b and all previously added frames,
the number of frames to be compared would increase linearly, see Fig. 6.4. In-
stead, frames are only compared if the current frame b is within a search area
around the pose estimate of frame a. The size of this search area is computed
from the estimated pose covariance.

From the MLR algorithm (see Sec. 6.2.1) we obtain the maximum like-
lihood estimate x̂b for frame b. There is, however, no estimate of the corre-
sponding covariance Cx̂ that could be used to distinguish whether frame a is
likely to be close enough to frame b so that it can be considered a candidate for
a match, i.e. a frame for which the similarity measure Sa,b should be calculated.
So far, we have defined two types of covariances: the odometry covariance Cro

and the visual relation covariance Crv
. To obtain an overall estimate of the rel-

ative covariance between frame a and b we first consider the covariances of the
odometry relations ro between a and b and compute relative covariance Cxo

a,b

as

Cxo
a,b

=
∑

j∈(a,b−1)

RjCroj
RT

j . (6.2)
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Rj is a rotation matrix, which is defined as

Rj =





cos(x̂θ
j+1 − x̂θ

j ) −sin(x̂θ
j+1 − x̂θ

j ) 0
sin(x̂θ

j+1 − x̂θ
j ) cos(x̂θ

j+1 − x̂θ
j ) 0

0 0 1



 , (6.3)

where x̂θ
j is the estimated orientation of frame j.

As long as no visual relation rv has been added, either between a and b or
any of the frames between a and b, the relative covariance Cx̂a,b can be deter-
mined directly from the odometry covariance Cxo

a
and Cxo

b
as described above.

However, when a visual relation ra,b
v between a and b is added, the covariance

of the estimate Cx̂b
decreases. Using the covariance intersection method [116],

the covariance for frame b is therefore updated as

Cx̂b
= Cx̂b

⊕ (Cx̂a
+ C

r
a,b
v

), (6.4)

where ⊕ is the covariance intersection operator. The covariance intersection
method weights the influence of both covariances Ca and Cb as

CA ⊕ CB = [ωC−1
A + (1 −ω)C−1

B ]−1, (6.5)

The parameter ω ∈ [0, 1] is chosen so that the determinant of the resulting
covariance is minimized [65].

The new covariance estimate is also used to update the frames between a
and b by adding the odometry covariances Cxo

a..b
in opposite order (i.e. simulate

that the robot is moving backwards from frame b to a). The new covariance
estimate for frame j ∈ (a,b) is calculated as

Cx̂j
= Cx̂j

⊕ (Cx̂b
+ Cxo

b,j
). (6.6)

Visual Relation Filtering

To avoid adding visual relations with low similarity, visual similarity relations
r
a,b
v between frame a and frame b are only added if the similarity measure

exceeds a threshold tvs : Sa,b > tvs. In addition, similarity relations are only
added if the similarity value Sa,b has its peak at frame a (compared to the
neighbouring frames N(a)), see also Section 4.2.2. There is no limitation on
the number of visual relations that can be added for each frame.

6.2.4 Fusing Multiple Data Sets

Fusion of multiple data sets recorded at different times is related to the prob-
lem of multi-robot mapping [67], where each of the data sets is collected con-
currently with a different robot. The motivation for multi-robot mapping is
not only to reduce the required time to explore an environment but also to
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merge the different sensor readings in order to obtain a more accurate map.
The problem addressed is equivalent to “multi-robot SLAM with unknown ini-
tial poses” [58] because the relative poses between the data sets are not given.
The exploration problem is not considered here.

Only a minor modification of the standard method described above is nec-
essary to address the problem of fusing multiple data sets. The absence of rel-
ative pose estimates between the data sets is compensated for by not limiting
the search region for which similarity calculations S are performed. This is
implemented by incrementally adding data sets and setting the relative pose
between consecutively added data sets initially to (0,0,0) with an infinite pose
covariance. Such odometry relations appear as long, diagonal lines in Fig. 6.16
representing the transition between lab to studarea and studarea to lab −

studarea.

6.3 Experimental Results

In this section, we present results from five different data sets.

• Outdoor / indoor data set - a 1.4 kilometre run with both indoor and
outdoor images

• Multiple floors - contains 5 different floors using 3 elevators, contains
loops in the “level dimension”

• Partly overlapping data - 3 different data sets, indoor environment where
one data set overlaps the other two

An overview of all data sets is presented in Table 6.1. All data sets were
collected with our mobile robot Tjorven, see Fig. 2.2. The platform uses “skid-
steering”, which is prone to bad odometry. In the different data sets different
wheel types (indoor / outdoor) were used. The robot’s odometry was calibrated
(for each wheel type) by first driving forward 5 meters to obtain a distance per
encoder tick value, and second by completing one full revolution to determine
the number of differential encoder ticks per angular rotation. Finally the drift
parameter was adjusted so that the robot would drive forward in a straight
line, i.e. to compensate for the slightly different size of the wheel pairs.

The omni-directional images were first converted to panoramic images with
a resolution of 1000 x 289 pixels. When extracting SIFT features the initial
doubling of the images was not performed, i.e. SIFT features from the first
octave were ignored, simply to lower the amount of extracted features.

The results are presented both visually with maps obtained by superimpos-
ing laser range data using the poses estimated with Mini-SLAM and quanti-
tatively by the mean squared error (MSE) from ground truth data. Since the
corresponding pose pairs < x̂i, xGT

i > between the estimated pose x̂i and the
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Figure 6.5: The influence of threshold parameter tvs.

ground truth pose xGT
i are known, rigid transformation can be applied directly;

we apply the method suggested by Arun et al. [8].
To investigate the influence of the threshold tvs, described in Section 6.2.3,

the MSE was calculated for all data sets for which ground truth data were
available. The result in Fig. 6.5 shows that the value of the threshold tvs can
be selected so that it is nearly optimal for all data sets and that there is a region
in which minor changes of the tvs do not strongly influence the accuracy of the
map. Throughout the remainder of this section a constant threshold tvs = 0.2
is used .

In order to give a better idea of the function of the Mini-SLAM algorithm,
the number of visual relations per node depending on the threshold tvs is shown
in Fig. 6.6. The overview of all data sets presented in Table 6.1 also contains
the number of similarity calculations performed and the evaluation run time
on a Pentium 4 (2GHz) processor with 512 MB of RAM memory. This time

Table 6.1: For each data set: number of nodes #x̂, visual relations #rv, performed
similarity calculations #S, average number of extracted visual features µF per node with
variance σF, evaluation run time T (excluding the similarity computation).

#x̂ #rv #S µF σF T (s)

outdoor / indoor 945 113 24784 497.5 170.0 66.4

multiple floor levels 409 198 13764 337.9 146.7 21.0

lab 86 60 443 571.5 39.6 3.6

studarea 134 31 827 426.6 51.1 9.4

lab− studarea 86 10 101 459.8 125.8 3.8
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Figure 6.6: The amount of visual nodes added to the graph depending on the threshold
tvs.

does not include the time required for the similarity computation. Each similar-
ity calculation (including relative rotation and variance estimation) took 0.30
seconds using a data set with an average of 522.3 features with standard devi-
ation of 21.4. Please note, however, that the implementation used for feature
matching was not optimised for computational efficiency.

6.3.1 Outdoor / indoor data set

A large set of 945 omni-directional images was collected over a total distance of
1.4 kilometers with height differences of up to 3 meters. The robot was driven
manually and the data were collected in both indoor and outdoor areas over a
period of 2 days (due to the limited capacity of the camera battery).

Visualised results

To visualise the maximum likelihood (ML) estimate x̂ of the robot poses, laser
scans acquired at the same time (and pose) as the omni-images were used to
render an occupancy map. See Fig. 6.7 for the whole map using grid cells of
size 25x25 cm2 grid size. In Fig. 6.8 only the centre part is shown with a grid
size of 10x10 cm2.

Comparison to ground truth obtained from DGPS

To evaluate the accuracy of the created map, the robot position was mea-
sured with differential GPS (DGPS) while collecting the omni-directional im-
ages. Thus, for every SLAM pose estimate there is a corresponding DGPS posi-
tion < x̂i, xDGPS

i >.
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Figure 6.7: Visualised map using laser range data for each image node. Note that the
laser data are used only for visualisation. The grid size is 25x25 cm2.

DGPS gives a smaller position error than GPS. However since only the sig-
nal noise is corrected, the problem with multipath reflection still remains. DGPS
is also only available if the radio link between the robot and the stationary GPS
is functional. Thus, only a subset of pose pairs < x̂i, xDGPS

i >i=1..N can be
used for ground truth evaluation. DGPS measurements were considered only
when at least five satellites were visible and the radio link to the stationary GPS
was functional. The valid DGPS readings are indicated as light (blue) dots in
Fig. 6.9. The total number of pairs used to calculate the MSE for the whole
map was 377 compared to the total number of frames which was 945. To mea-
sure the difference between the poses estimated with Mini-SLAM x̂ and the
DGPS positions xDGPS (using UTM WGS84, which provides a metric coordi-
nate system), the two data sets have to be aligned. Since the correspondence of
the filtered pose pairs is known, < x̂i, xDGPS

i >, an optimal rigid alignment can
be determined directly with the method by Arun et al. [8] as described above.

The mean square error (MSE) between xDGPS and x̂ for the data set shown
in Fig. 6.9 is 4.89 meters. To see how the MSE evolves over time when cre-
ating the map, MSE was calculated from the new estimates x̂ after each new
frame was added. The result is shown in Fig. 6.10 and compared to the MSE
obtained using only odometry to estimate the robot’s position. Please note that
the MSE was evaluated for each frame added. Therefore, when DGPS data are
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Figure 6.8: Visualised map using laser range data for the centre parts of the map. The
grid size is 10x10 cm2.
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Figure 6.9: DGPS data xDGPS with aligned SLAM estimates x̂ displayed on an aerial
image. The darker (red) squares show the Mini-SLAM poses and the lighter (blue) the
DGPS poses for which the number of satellites was considered acceptable. The deviation
seen at the bottom (the car park) is mainly caused by the fact that the car park is elevated
compared to the rest of the environment.
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Figure 6.10: Evolution of the MSE between the ground truth position obtained from
DGPS readings xDGPS and the Mini-SLAM estimate of the robot pose x̂ as frames are
added to the map. Drops in the MSE indicate that the consistency of the map has been
increased. The final MSE of the raw odometry was 377.5 m2.
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Figure 6.11: Environment images from floor levels 1-5.

not available, the odometry MSE xo will stay constant for these frames. This
can be seen, for example, between frames 250 − 440 in Fig. 6.10. For the same
frames, the MSE of the SLAM estimate x̂ is not constant since new estimates
are computed for each frame added and loop closing also occurs indoors or
generally when no DGPS is available. The first visual relation rv was added
around frame 260. Until then, the error of the Mini-SLAM estimate x̂ and the
odometry MSE xo were the same.

6.3.2 Multiple floor levels

This data set was collected inside the technology department building at Öre-
bro University. It includes all (five) floor levels and connections between the
floor levels by three elevators, see Fig. 6.11. The data contain loops in 2-d co-
ordinates and also loops involving different floor levels. This data set contains
419 panoramic images and covers a path with a length of 618 meters. The ge-
ometrical layout differs for the different floors, see Fig. 6.12. No information
about the floor level is used as an input to the system, hence the robot pose is
still described using (x,y, θ).

Visualised results

There are no ground truth data available for this data set. It is possible, how-
ever, to get a visual impression of the accuracy of the results from Fig. 6.13.
The figure shows occupancy grid maps obtained from laser scanner readings
and raw odometry poses (left), or the Mini-SLAM pose estimates (right), re-
spectively. All floors are drawn on top of each other without any alignment. To
further illustrate the Mini-SLAM results, an occupancy map was also created
separately for each floor from the laser scanner readings and Mini-SLAM pose
estimates, see Fig. 6.12. Here, each pose was assigned to the corresponding
floor level manually.

This experiment mainly illustrates the robustness of data association that
is achieved using omni-directional vision data. The similarity matrix and a
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Figure 6.12: Occupancy maps for floor levels 1-5 drawn using the laser data at each
estimated pose. The assignment of initial poses to floor levels was done manually and is
only used to visualise these maps.

Figure 6.13: Occupancy grid map of all five floors drawn on top of each other. Left:
Gridmap created using pose information from raw odometry. Right: Using the estimated
robot poses from Mini-SLAM.
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Figure 6.14: Left: Pose similarity matrix for the “Multiple floor levels” data set. Right:
Similarity access matrix showing which similarity measures were used in the Mini-
SLAM computation. Brighter pixels were used more often where as black indicates that
the similarity measure is not used.

similarity access matrix for the “Multiple floor levels” data set are shown in
Fig. 6.14.

6.3.3 Partly overlapping data

This data set consists of three separate indoor sets: lab (lab), student area
(studarea) and a combination of both (lab − studarea), see Fig. 6.15. Sim-
ilar to the data set described in Section 6.3.2, omni-directional images, 2D
laser range data and odometry were recorded. The ground truth xGT is deter-
mined by using laser scanner and odometry together with the MLR approach
as in [47].

Visualised results

Fig. 6.16 shows parts of the final graph where different colours represent the
different data sets. In Fig. 6.17 laser readings generated from raw odometry
and the estimated poses from the proposed method are drawn together with
the estimated path.

Fig. 6.18 shows the similarity matrix and the similarity access matrix for
the lab− studarea data set.
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Figure 6.15: Sub-maps for the partly overlapping data. Left: lab. Middle: studarea.
Right: lab− studarea, overlapping both lab and studarea.

Figure 6.16: Parts of the final MLR graph containing the three different data set coloured
with red (lab), green (studarea) and blue (lab− studarea).
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Figure 6.17: Results using the partly overlapping data set. Left: Laser based map using
the raw odometry and Right: Laser map using the poses from the proposed method.

Figure 6.18: Left: Pose similarity matrix for the lab−studarea data set. Right: Similar-
ity access matrix showing which similarity measures are used in the proposed method.
Brighter pixels were used more often.
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Table 6.2: MSE results before and after merging of the data sets and using odometry
only.

lab studarea lab− studarea

before fusing 0.002 0.029 0.036

after fusing 0.002 0.029 0.013

raw odometry 0.065 0.481 1.296

Table 6.3: MSE results (mean and stddev) after adding a random variable drawn from
N(0,σ) to each similarity measure Sa,b.

σ mean stddev

0.02 0.03 0.004

0.05 0.03 0.011

0.10 0.11 0.074

0.20 0.94 0.992

0.40 1.35 1.304

0.80 1.49 1.240

Comparison to ground truth obtained from laser based SLAM

As described in Sec. 6.2.4 fusion of multiple maps was motivated both by the
multi-robot mapping aspect and the increased accuracy of the resulting maps.
Instead of simply adding the different maps onto each other, the fused maps
also use the additional information to improve the accuracy of the sub-maps.
This is illustrated in Table 6.2 which shows the MSE (again obtained by deter-
mining the rigid alignment between x̂ and xGT ) before and after the fusion was
performed. While the data sets lab and studarea shows a negligible change in
accuracy, lab− studarea clearly demonstrate a large improvement.

Robustness evaluation

The suggested method relies on incremental pose estimates (odometry) and a
visual similarity measure S. The robustness of the method is evaluated by cor-
rupting these two inputs and evaluating the performance. The studarea data
set is used and each evaluation was repeated 10 times.

In the first test, the similarity measures S were modified by adding a random
variable drawn from a Gaussian distribution N(0,σ) with varying standard
deviation σ, see Table 6.3. The amount of added noise has to be compared to
the range of [0, 1] in which the similarity measure S lies, see Eq. 3.13.
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Figure 6.19: MSE results (mean and stddev) for x (odometry) and x̂ (estimated poses)
after corrupting the odometry using random variables drawn from N(0,σ). The plot
also shows the MSE when the odometry covariance is increased with the added noise.

The robustness evaluation with respect to the similarity measure S shows
that the system can handle additional noise to some extent, but incorrect visual
relations will affect the accuracy of the final map. This illustrates that the pro-
posed method, as many others, would have difficulties in perceptually similar
locations in case the uncertainty of the pose estimates Cx̂ is high.

In the second test, the odometry values were corrupted by adding additional
noise to the incremental distance d and the orientation θ. The corrupted incre-
mental distance d ′ is calculated as

d ′ = d+ 0.1dN(0,σ) + 0.2θN(0,σ), (6.7)

and the orientation θ ′ as

θ ′ = θ+ 0.2dN(0,σ) + θN(0,σ). (6.8)

Since the odometry pose estimates are computed incrementally the whole later
trajectory is affected when adding noise at a particular time step.

The results of the robustness evaluation with the corrupted odometry are
shown in Fig. 6.19 together with the MSE of the corrupted odometry. These
results show that the system is robust to substantial odometry errors. A failure
case is shown in Fig. 6.20.
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walls
corresponding

Figure 6.20: A failure case where the corrupted odometry error became too large re-
sulting in a corrupted map. Left: SLAM map. Right: raw odometry.

6.4 Conclusions

Mini-SLAM combines the principle of using similarity of panoramic images to
close loops at the topological level with a graph relaxation method to obtain a
metrically accurate map representation and with a novel method to determine
the covariance for visual relations based on visual similarity of neighbouring
poses. The proposed method uses visual similarity to compensate for the lack
of range information about local image features, avoiding computationally ex-
pensive and less general methods such as tracking of individual image features.

Experimentally, the method scales well to the investigated environments.
The experimental results are presented by visual means (as occupancy maps
rendered from laser scans and poses determined by the Mini-SLAM algorithm)
and by comparison with ground truth (obtained from DGPS outdoors or laser-
based SLAM indoors). The results demonstrate that the Mini-SLAM method is
able to produce topologically correct and geometrically accurate maps at low
computational cost. A simple extension of the method was used to fuse multiple
data sets so as to obtain improved accuracy. The method has also been used
without any modifications to successfully map a building consisting of 5 floor
levels.

Mini-SLAM generates a 2-d map based on 2-d input from odometry. It
is worth noting that the “outdoor / indoor” data set includes variations of
up to 3 meters in height. This indicates that the Mini-SLAM can cope with
violations of the flat floor assumption to a certain extent. We expect a graceful
degradation in map accuracy as the roughness of the terrain increases. The
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representation should still be useful for self-localization using 2-d odometry
and image similarity, e.g. using the global localization method in [5], which in
addition could be used to improve the robustness towards perceptual aliasing
when fusing multiple data sets. In extreme cases, of course, it is possible that
the method would create inconsistent maps, and a 3-d representation should be
considered.
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Chapter 7

Vision and 3D Laser Scanner

Interpolation

This chapter addresses fusion of the input from a (planar) camera and a 3D
laser scanner by means of vision-based interpolation of the low resolution,
depth information obtained from the 3D range sensor. 3D range sensors, partic-
ularly 3D laser range scanners, enjoy a rising popularity and are used nowadays
for many different applications. The resolution provided by 3D range sensors in
the image plane is typically much lower than the resolution of a modern colour
camera. In this chapter the focus lies on methods to derive a high-resolution
depth image from a low-resolution 3D range sensor and a colour image. The
main idea is to use colour similarity as an indication of depth similarity, based
on the observation that depth discontinuities in the scene often correspond to
colour or brightness changes in the camera image. Five interpolation methods
are presented and compared with an independently proposed method based
on Markov Random Fields. The proposed algorithms are non-iterative and in-
clude a parameter-free vision-based interpolation method. In contrast to previ-
ous work, ground truth evaluation with real world data and analysis of both
indoor and outdoor data are presented. We further suggest and evaluate four
methods to determine a confidence measure for the accuracy of interpolated
range values.

7.1 Introduction

3D range sensors are getting more and more common and are found in many
different areas. A large research area deals with acquiring accurate and very
dense 3D models, where potential application domains include, for example,
documenting cultural heritage [75], excavation sites and mapping of under-
ground mines [111]. A lot of work has been done in which textural informa-
tion obtained from a camera is added to the 3D data. For example, Sequeira
et al. [104] present a system that creates textured 3D models of indoor envi-

107
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Figure 7.1: Left: Image intensities plotted with the resolution of the 3D scanner. The laser
range readings were projected onto the right image and the closest pixel regions using
Euclidean distance were set to the intensity of the projected pixel for better visualisation.
Right: Calibration board used for finding the external parameters of the camera, with
a chess board texture and reflective tape (grey border) used to locate the board in 3D
using the remission / intensity values from the laser scanner.

ronments using a 3D laser range sensor and a camera. Früh and Zakhor [48]
generate photo-realistic 3D reconstructions from urban scenes by combining
aerial images with textured 3D data acquired with a laser range scanner and a
camera mounted on a vehicle.

In most of the approaches that combine a range scanner and a camera, the
vision sensor is not actively used during the creation of the model and is instead
only used to add texture to the extracted model. An exception is the work by
Haala and Alshawabkeh [55], in which the camera is used to add line features
detected in the images into the created model.

To add a feature obtained with a camera to the point cloud obtained with
a laser range scanner, it is required to find the mapping of the 3D laser points
onto pixel coordinates in the image. If the focus instead lies on using the camera
as an active source of information, which is the problem considered in this
chapter, the fusion step also addresses the question of how to estimate a 3D
position for each pixel or sub-pixel in the image. The resolution that the range
sensor can provide is much lower than that sobtained with a modern colour
camera. This can be seen by comparing Fig. 7.1, left, created by assigning the
intensity value of the projected laser point to its closest neighbours, with the
corresponding colour image in Fig. 7.1, right. See also Fig. 7.2 containing an
image with projected laser range readings.

The only approach that uses colour information from a camera image to
obtain a high-resolution 3D point model from a low-resolution 3D range scan
seems to be the algorithm by Diebel et al. [27], where both colour information
and the raw depth information are used. Their method is also compared with
the methods proposed in this chapter and is further described in Section 7.3.
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Figure 7.2: An image with projected laser range data. Note that the projected data are
displayed with a 3×3 pixels rectangle to be more clearly visible. The ‘gaps’ in the scan
are due to the physical displacement of approx. 0.2 meters between the origin of the
laser and the origin of the camera. Basically the difference in origin means that the
laser and the camera have slightly different views, which makes the angular resolution
of the projected range data (shown in this figure) dependent on the actual range. For
example, the camera origin is located forwards (and upwards) relative to the laser. This
can especially be seen at the left/right side in the image when the projected range data
changes horizontally with changing range values. Since the camera is mounted above
the laser, gaps will also occur vertically. In addition, there are a few vertical ‘gaps’ due
to missing range measurements.
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7.2 Proposed Vision-based Interpolation Approaches

The main idea is to interpolate low-resolution range data provided by a 3D
laser range scanner under the assumption that depth discontinuities in the scene
often correspond to colour or brightness changes in the camera image of the
scene.

For the problem under consideration, a set of N laser range measurements
r1..rN is given where each measurement ri = (θi,πi, ri) contains a tilt angle θi,
a pan angle πi and a range reading ri corresponding to 3D Euclidean coordi-
nates (xi,yi, zi).

The image data consists of a set of image pixels Pj = (Xj,Yj,Cj), where
Xj,Yj are the pixel coordinates and Cj = (C1

j ,C2
j ,C3

j ) is a three-channel colour
value. By projecting a laser range measurement ri onto the image plane, a pro-
jected laser range reading Ri = (Xi,Yi, ri, (C1

i ,C2
i ,C3

i)) is obtained, which as-
sociates a range reading ri with the coordinates and the colour of an image
pixel.

The interpolation problem can now be stated, for a given pixel Pj and a
set of projected laser range readings R, as to estimate the interpolated range
reading r∗j as accurately as possible. Hence we denote a query point R∗

j =

(Xj,Yj, r∗j ,C1
j ,C2

j ,C3
j ).

Five different interpolation techniques are described in this section and com-
pared with the MRF approach described in Section 7.3.

7.2.1 Nearest Range Reading (NR)

Given a pixel Pj, the interpolated range reading r∗j is assigned to the laser range
reading ri corresponding to the projected laser range reading Ri which has the
highest likelihood p obtained as

p(Pj, Ri) ∝ e−
(Xj−Xi)2+(Yj−Yi)2

σ2 , (7.1)

where σ is the point distribution variance. Hence, the range reading of the
closest point (regarding Euclidean pixel distance) will be selected.

7.2.2 Nearest Range Reading Considering Colour (NRC)

This method is an extension of the NR method using colour information in
addition. Given a pixel Pj, the interpolated range reading r∗j is assigned to the
range value ri of the projected laser range reading Ri which has the highest
likelihood p obtained as

p(Pj, Ri) ∝ e
−

(Xj−Xi)2+(Yj−Yi)2

σ2
d

−
||Cj−Ci||2

σ2
c , (7.2)

where σd and σc is the variance for the pixel point and the colour respectively.
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Figure 7.3: Natural neighbours R1...R5 of R∗

i . The interpolated weight of each natural
neighbour Ri is proportional to the size of the area which contains the point’s Voronoi
cell and the cell generated by R∗

j . For example, the nearest neighbour R1 will have
influence based upon the area of A1.

7.2.3 Multi-Linear Interpolation (MLI)

Given a set of projected laser range readings R1...RN, a Voronoi diagram V is
created by using their corresponding pixel coordinates [X,Y]1...N. The natural
neighbours NN to an interpolated point R∗

j are the points in V, which Voronoi
cell would be affected if R∗

j is added to the Voronoi diagram, see Fig. 7.3.
By inserting R∗

j we can obtain the areas A1...n of the intersection between the
Voronoi cell due to R∗

j and the Voronoi cell of Ri before inserting R∗

j and the
area AR∗

j
. The areas A1...n are used to compute a normalisation factor. The

weight of the natural neighbour Ri is calculated as

wi(R
∗

j ) =
Ai

AR∗

j

. (7.3)

The interpolated range reading r∗j is then calculated as

r∗j =
∑

i∈NN(R∗

j )

wiri. (7.4)

This interpolation approach is linear [106]. One disadvantage is that nearest
neighbourhood can only be calculated within the convex hull of the scan-points
projected onto the image. However, this is not considered as a problem since
the convex hull encloses almost the whole image, see Fig. 7.4, bottom left.

7.2.4 Multi-Linear Interpolation Considering Colour (LIC)

To fuse colour information with the MLI approach introduced in the previous
subsection, the areas ARi

and AR∗

j
are combined with colour weights wc

1...n for
each natural neighbour based on spatial distance in colour space.
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Figure 7.4: Top left: Depth image generated with the NR method. Top right: Depth im-
age generated with the NRC method, small details are now visible. Note that a depth
image generated from a similar viewpoint as the laser range scanner makes it very diffi-
cult to see flaws of the interpolation algorithm. Bottom left: MLI. Bottom right: LIC.
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Similar as in Section 7.2.2, a colour variance σc is used to compute a colour
weight wc

i as

wc
i (R∗

j ) = e
−

||Ci−Cj||2

σ2
c . (7.5)

The colour based interpolated range reading estimation is then done with

r∗j =
∑

i∈NN(Rj)

wiw
c
i

Wc
(7.6)

where Wc =
∑n

i=1w
c
i is used as a normalisation factor.

7.2.5 Parameter-Free Multi-Linear Interpolation Considering

Colour (PLIC)

One major drawback of the methods presented so far and the approach pre-
sented in Section 7.3 is that they depend on parameters such as σc. To avoid
the need to specify colour variances, the intersection area ARi

defined in Sec-
tion 7.2.3 is used to compute a colour variance estimate for each nearest neigh-
bour point Ri as

σci
=

1
ni − 1

∑

j∈Ai

||µi − Cj||
2 (7.7)

where µi = 1
ni

∑

j∈Ai
Cj and ni is the number of pixel points within the region

Ai. σci
is then used in Eq. 7.5.

This results in an adaptive adjustment of the weight of each point. In the
case of a large variance of the local surface texture, colour similarity will have
less impact on the weight wc

i .

7.3 Related Work

To our knowledge, the only work using vision for interpolation of 3D laser data
is [27] where a Markov Random Field (MRF) framework is used. The method
works by iteratively minimising two cost functions: ψ stating that the raw laser
data and the surrounding estimated depths should be similar and φ stating that
the depth estimates close to each other with a similar colour should also have
similar depths. The first constraint is obtained as

ψ =
∑

i∈N

k(r∗i − ri)
2 (7.8)
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Figure 7.5: The robot Tjorven with a close up part which shows the displacement
between the camera and the laser, which causes parallax errors.

where k is a constant and the sum runs over the set ofN positions which contain
a laser range reading ri and r∗i is the interpolated range reading for position i.
The second constraint is obtained as

φ =
∑

i

∑

j∈N(i)

e(−c||Ci−Cj||2)(r∗i − r∗j )
2, (7.9)

where c is a constant, C is the pixel colour and N(i) are the neighbourhood
pixels around position i.

The function to be minimised is the sum ψ+ φ.

7.4 Evaluation

The experimental evaluation was performed using both simulated and real
data. All data sets D were divided into two equally sized parts D1 and D2. One
dataset, D1, is used for interpolation and D2 is used as the ground truth where
each laser range measurement is projected onto image coordinates. Hence for
each ground truth point Ri we have the pixel positions [X,Y]i and the range
ri. The pixel position [X,Y]i is used as input to the interpolation algorithm and
the range ri is used as the ground truth. The performance of the interpolation
algorithms is analysed based on the difference between the interpolated range
r∗i and the range ri from the ground truth.
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δ 

Figure 7.6: When the laser range finder spot covers an area which contains different
depths (blue and white areas), the range reading returned might be unreliable and vary
anywhere between the closest to the furthest range (shown as the region δ).

7.5 Experimental Setup

7.5.1 Hardware

The scanner used is a 2D SICK LMS-200 mounted together with a 1 megapixel
(1280x960) colour CCD camera on a pan-tilt unit from Amtec. The sensors
are more thoroughly described in Section 2.1.2. The displacement between the
camera’s optical axis and the laser is approx. 0.2 m, see Fig. 7.5. The SICK
scanner has a larger spot size compared to many other laser scanners and often
gives wrong range estimates close to edges where the laser spot covers multiple
objects at different distances, see Fig. 7.6. Of course, this flaw of the sensor
will be reflected in the ground truth data as well. The angular resolution of the
laser scanner is 0.5 degrees. Half of the readings were used as ground truth,
so the resolution of the points used for interpolation is 1 degree. The verti-
cal resolution depends on the wrist movements but iss rescaled to approx. 0.5
degrees.

The camera displacement was determined using the calibration procedure
found in Appendix B.

7.6 Results - Interpolation

7.6.1 Colour spaces investigated

The most common colour spaces were compared to evaluate whether better
illuminance/shading invariance could be useful. The colour spaces compared
were standard RGB, Normalised RGB (r/(r+g+b),g(r+g+b),b/(r+g+b)),
HSV and YUV. In HSV the V component and for YUV the Y component is
set to a constant, see Fig. 7.7. Since a consistent improvement could not be
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Figure 7.7: Left : HSV colour space, where the V component is set to a constant. Right :
YUV, where the Y component is set to a constant, colour-space. The RGB colour space
can be found in Fig. 7.1.

observed for any of the colour spaces tested, only results based on standard
RGB normalised to [0,1] are presented in this chapter.

In all experiments the colour variance σc = 0.05 and the pixel distance
variance σd = 10mm were used, which were found empirically. The parame-
ters used within the MRF approach described in Section 7.3 were obtained by
extensive empirical testing and were set to k = 2 and C = 10. The optimi-
sation method used for the MRF method was the conjugate gradient method
described in [97] and the initial depths were estimated with the NR method. In
all experiments the full resolution (1280x960) of the camera image was used.

7.6.2 Simulated Data

The simulated data are shown in Fig. 7.8, which were created from a model
based on a set of coloured planes. Each point was obtained by finding the
intersection between the simulated scanner ray and the model. The simulated
scans show the benefits of using the distance and colour for interpolation, see
Table 7.1. By using colour information the selection of interpolation points is
improved. In the results the LIC method gives the lowest mean error. However
the NRC gives the lowest maximum error which is likely to have been caused
by an overestimation of the colour variance in LIC meaning that scan points
with differing colour too have to much influence on the interpolation.

This would be avoided if the colour variance estimation were to be used
(PLIC). Note that both PLIC and MRF requires a full image and are therefore
not considered. Since the simulated environment consists only of planes, the
multi-linear approaches work fairly well.
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Figure 7.8: The simulated 3D scan, which provided 4165 scan points as ground truth
data.

Table 7.1: Distance error using the simulation data.
NR NRC LI LIC

mean 0.039 0.028 0.017 0.007

max 1.685 0.198 1.112 1.095
σ2 0.120 0.020 0.096 0.028
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Figure 7.9: Left: The third indoor evaluation scan, Indoor3. Right: Scans taken in
winter time with some snow, Outdoor1 −Outdoor3.
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Table 7.2: Results from Indoor1, Indoor2 and Indoor3 data sets.
NR NRC MLI LIC PLIC MRF

e 0.065 0.054 0.052 0.048 0.049 0.048

o0.1 0.161 0.117 0.149 0.118 0.123 0.136
o0.2 0.112 0.083 0.069 0.076 0.077 0.063

o0.5 0.034 0.029 0.016 0.022 0.023 0.012

o1.0 0.000 0.000 0.000 0.000 0.000 0.000
o3.0 0.000 0.000 0.000 0.000 0.000 0.000

e 0.123 0.134 0.109 0.107 0.109 0.106

o0.1 0.148 0.143 0.172 0.140 0.149 0.154
o0.2 0.095 0.097 0.108 0.090 0.092 0.094
o0.5 0.056 0.068 0.050 0.051 0.053 0.047

o1.0 0.013 0.034 0.026 0.028 0.027 0.025
o3.0 0.006 0.006 0.004 0.004 0.004 0.004

e 0.088 0.072 0.067 0.060 0.060 0.067
o0.1 0.109 0.096 0.143 0.110 0.107 0.132
o0.2 0.080 0.071 0.097 0.072 0.071 0.093
o0.5 0.061 0.048 0.021 0.036 0.034 0.031
o1.0 0.011 0.010 0.008 0.007 0.009 0.009
o3.0 0.004 0.002 0.002 0.002 0.001 0.003

7.6.3 Experimental Data

All the interpolation algorithms described in this section were tested on real
data consisting of three indoor scans and three outdoor scans, see Fig. 7.9. The
outdoor scans were taken in winter time with snow, which presents the addi-
tional challenge that most of the points in the scene have very similar colours.

The results are summarised in Tables 7.2 and table 7.3, which show the
mean error with respect to the ground truth e, and the percentage of outliers ot

for different thresholds t. The percentage of outliers is the percentage of points
for which the interpolated range value deviates from the ground truth value by
more than a threshold t (specified in meters in Tables 7.2 and 7.3).

For the indoor data sets, which comprise many planar structures, the lowest
mean error was found with the multi-linear interpolation methods, particularly
LIC and PLIC, and MRF interpolation. LIC and PLIC produced fewers (but
larger) outliers.

With the outdoor data the results obtained were more diverse. For the data
set Outdoor1, which contains some planar structures, a similar result as in the
case of the indoor data was observed. For data sets with a very small portion of
planar structures, such as Outdoor2 and Outdoor3, the mean error was gener-
ally much higher and the MRF method performed slightly better compared to
the multi-linear interpolation methods. This is likely to be due to the absence of
planar surfaces and the strong similarity of the colours in the image recorded at
winter time. It is noteworthy that in this case, the nearest neighbour interpola-
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Table 7.3: Results from Outdoor1, Outdoor2 and Outdoor3 data sets.
NR NRC MLI LIC PLIC MRF

e 0.067 0.068 0.056 0.059 0.054 0.054

o0.1 0.147 0.160 0.156 0.146 0.138 0.150
o0.2 0.076 0.080 0.078 0.073 0.068 0.076
o0.5 0.032 0.032 0.016 0.020 0.015 0.016
o1.0 0.005 0.002 0.001 0.001 0.002 0.001

o3.0 0.000 0.000 0.001 0.001 0.000 0.000

e 0.219 0.294 0.235 0.322 0.275 0.218

o0.1 0.196 0.240 0.242 0.269 0.264 0.187

o0.2 0.096 0.152 0.140 0.168 0.160 0.098
o0.5 0.047 0.088 0.077 0.094 0.083 0.051
o1.0 0.036 0.057 0.043 0.059 0.049 0.030

o3.0 0.016 0.023 0.019 0.028 0.022 0.017

e 0.526 0.584 0.522 0.574 0.500 0.498

o0.1 0.222 0.232 0.296 0.258 0.268 0.242
o0.2 0.157 0.170 0.224 0.193 0.205 0.181
o0.5 0.102 0.115 0.156 0.125 0.130 0.106
o1.0 0.078 0.085 0.091 0.083 0.086 0.067

o3.0 0.027 0.029 0.029 0.030 0.026 0.026

tion method without considering colour (NR) performed as well as MRF. The
interpolation accuracy of the parameter-free PLIC method was always better or
comparable to the parameterised method LIC.

7.7 Confidence Measure

The interpolated range reading r∗j may be a good estimate of the actual range or
it might deviate substantially from the true value. Therefore a confidence mea-
sure for the correctness of the interpolated range reading estimate is desirable,
allowing to detect and handle erroneous measures appropriately.

In this section four different confidence measures were proposed and evalu-
ated.

7.7.1 Proximity to the Nearest Laser Range Reading (NLR)

This confidence measure is based on the distance between the pixel position
of the interpolated point R∗

j and the nearest projected laser range reading Ri.
The idea is that if the interpolated pixel point is close to a point where a range
measurement is available the interpolation is considered more trustworthy.

NLR(R∗

j , Ri) = e−
√

(X∗

j −Xi)2+(Y∗

j −Yi)2
(7.10)
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Figure 7.10: Visualisation of the confidence measures proposed. From left to right: NLR
indicating the distance to the closest point, NLRC indicating colour distance, PS indicat-
ing the plane factor of the neighbourhood of the interpolated point and AON indicating
the angle difference between the normal of the extracted local plane and the camera
axis. The parameter free method (PLIC) was used for interpolation.
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7.7.2 Proximity to the Nearest Laser Range Reading

Considering Colour (NLRC)

This confidence measure is based on the distance between the colour of the
pixel of the nearest projected laser range reading Ri and the colour of R∗

i . The
NLRC confidence measure is based on the principle that the confidence value
should decrease if the two points have different colour.

NLRC(R∗

j , Ri) = e−||Cj−Ci|| (7.11)

7.7.3 Degree of Planar Structure (PS)

Our confidence in the range interpolation also depends on how well a planar
surface can be fitted to the local neighbours NN(R∗

j ) of the interpolation point
R∗

j since planar surfaces support a linear interpolation technique very well. The
neighbours are either determined from the grid defined by the projected laser
range readings or the nearest neighbours found in the Voronoi tessellation. The
parameters of the planar surface are obtained from the 3D covariance matrix
of NN(j) where the two main eigenvectors are extracted, which span a planar
surface Sj with the normal vector nj. The confidence measure is then calculated
from the average distance of the local neighbours to the fitted plane as

PS(R∗

j ) = e
− 1

NN

∑

i∈NN(R∗
j

) ||ri·nj−dj||
, (7.12)

where dj is the distance of the plane Sj to the origin and ri = (xi,yi, zi) is the
3D position of point i.

7.7.4 Angle Between the Optical Axis and the Fitted Plane

Normal (AON)

This confidence measure considers the orientation of the planar surface Sj de-
scribed in the previous section relative to the optical axis of the camera zcam. If
the angle between the normal vector nj and the optical axis is small, the confi-
dence should be high since we expect only one reflection from the laser scanner
and the displacement between the laser and the camera will have a negligible
impact.

AON(R∗

j ) = zcam · nj (7.13)

7.8 Result - Confidence Measure

With the exception of the NLR method, a distinct negative correlation was
found for all the confidence measures proposed in this section, see Fig. 7.11.
Due to the experimental setup where the evaluation points were taken from
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Figure 7.11: Behaviour of the confidence measures introduced in this chapter. The graphs
show the ratio of the number of outliers / number of inliers, depending on the confidence
in the interpolated points. All points with a depth error > 0.03 meter are considered
outliers in the upper image and in the lower graph the threshold was 0.1 meter. Top:
Indoor1 data set with method NRC. Bottom: Outdoor2 with method LIC.
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the laser scanner in an evenly spaced grid, meaning that the distance to the
closest neighbour for all evaluation points in the grid should be the same and
in fact each evaluation point should have at least two neighbours with the
exact same distance. However, the parallax errors caused by the displacement,
see Fig. 7.5, will move the evaluation point and therefore result in a lower
distance between R∗

j and Ri, which made the proposed NLR method give high
confidence correlated with large parallax errors. A large parallax error indicates
a large depth difference compared to its neighbour’s depth values, which instead
should indicate a low confidence. However, in a non-evenly spaced evaluation
grid, this method seems likely to give good confidence measures.

Figure 7.11 shows the inlier/outlier ratio depending on the confidence cal-
culated with the NLRC, PS, and AON methods. Interpolated range values were
classified as outliers if the deviation from the ground truth value was larger than
a third of the mean error obtained with the particular interpolation method.
The same general trend of a clear negative correlation, however, was observed
with all interpolation methods and for all data sets.

7.9 Conclusions

This chapter is concerned with methods for deriving a high-resolution depth im-
age from a low-resolution 3D range sensor and a colour image. We suggest five
interpolation methods and compare them with an alternative method proposed
by Diebel and Thrun [27]. In contrast to previous work, we present ground
truth evaluation with simulated and real world data and analyse both indoor
and outdoor data. The results of this evaluation do not allow us to single out
one particular interpolation method that provides a distinctly superior interpo-
lation accuracy, indicating that the best interpolation method depends on the
content of the scene. Altogether, the MRF method proposed in [27] and the
PLIC method proposed in this chapter provided the best interpolation perfor-
mance. While providing basically the same level of interpolation accuracy as the
MRF approach, the PLIC method has the advantage that it is a parameter-free
and non-iterative method, i.e. that a certain processing time can be guaranteed.
Another advantage of the proposed methods compared to the MRF method is
that depth estimates can be obtained without calculating a full depth image.
For example, if interpolation points are extracted in the image using a vision-
based method (i.e. feature extraction), we can directly obtain a depth estimate
for each feature, which is used in the registration method in Chapter 8.

In addition four methods to determine a confidence measure for the ac-
curacy of interpolated range values are proposed and evaluated. Three of the
proposed confidence values showed a distinct negative correlation with the oc-
currence of outliers. This was observed independent of the scene content and
the interpolation method applied.



Chapter 8

Vision-aided 3D Laser Scanner

Registration

This chapter describes a novel registration approach that is based on a combi-
nation of visual and 3D range information. To identify correspondences, local
visual features are obtained from the images of a standard color camera and
the depth of these features is determined from the range measurements of a
3D laser scanner. The range measurements are also used to estimate the posi-
tion covariance of the visual features. To exploit these covariance estimates, the
registration constraint is based on the Mahalanobis distance between the cor-
responding visual features. Experimental results are presented in both outdoor
and indoor environments.

8.1 Introduction

Registration or scan-matching is a popular approach in robotics to obtain rela-
tive pose estimates, and as such a core component of many SLAM algorithms.
Most work published in the past considers 2D-motion in an indoor environ-
ment, however, nowadays more attention is directed towards complete 6DOF
methods.

Since vision is particularly suited to solve the correspondence problem (data
association), vision-based systems have been applied as an addition to laser
scanning based SLAM approaches for detecting loop closing. This principle
has been applied to SLAM systems based on a 2D laser scanner [57] and a 3D
laser scanner [92]. When using registration methods which rely on a weaker
criterion for correspondence, i.e. point to point distance as in [12], a good ini-
tial estimate is very important for the robustness of the system. By instead using
the strong correspondences visual features can provide, a good initial estimate
is not necessary [92]. It is further argued that vision can enable solutions in
highly cluttered environments where pure laser range scanner based methods
fail [99].

125
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This chapter presents a registration method which relies on the sensory con-
figuration described in Section 2.1.2, which utilises a 2D SICK LMS-200 laser
range finder mounted together with a 1 megapixel (1280x960) colour CCD
camera on a pan-tilt unit from Amtec. The key aspect is to utilise the strong
visual correspondences with the depth accuracy obtained from the laser scan-
ner. The benefits of using vision come at almost no extra cost since a camera is
much less expensive than a 3D laser scanner.

8.2 Related Work

To combine the discriminant property of local visual features with a 3D laser
scanner has be utilised in a related approach by Newman et al. [92], where SIFT
features were used to detect loop closure events in a 3D SLAM approach. In
contrast to their method where SIFT features are used to obtain an initial pose
estimate (by determining the essential matrix between two images) and the full
point cloud is considered afterwards, registration in our approach is carried out
using only 3D points that are associated with matching visual features.

Since this work incorporates both visual and 3D laser information there
is some overlap in the proposed method compared to approaches using only
one of the sensor modalities. Methods that utilise 3D laser data are commonly
based on the ICP algorithm [93, 115]. Another 3D laser based approach is the
3D-NDT method by Magnusson et al. [84]. Common to all 3D laser based reg-
istration methods is that the output consists of a relative position between two
scan poses, and in addition, that initial estimates are available. In ‘pure’ vision
based solutions, based on multiple-view geometry, the problem of determining
the relative pose also includes determining the scale of the motion (in transla-
tion) [56]. One approach to determine the scale is to use a predefined pattern
with known geometrical properties as part of the first image [25]. However,
unless an object with known geometrical properties is shown again, this gives
problems with scale drift. Another commonly used approach is to have multiple
cameras and uses triangulation to get a depth estimate for each visual feature
as, for example, in [102]. To obtain a relative pose, estimation using stereo im-
ages has, for example, been done using Colour ICP [64], an ICP version which
also incorporates the colour as part of the distance function. In [90], the stan-
dard ICP method is combined with a constraint based on the optical flow. What
seems to be the standard nowadays, compared to generatings dense stereo im-
ages that are matched using ICP based methods, is to use visual features that
are tracked over several images. By using multiple images (i.e. a sequence of
images), and not only images from two poses, the depth estimate of each visual
feature will improve [56]. To use multiple images taken at different poses to
improve the position of each visual feature and at the same time determine the
pose of each image is directly related to the SLAM problem or, if the number of
frames to search for corresponding features is limited, related to visual odom-
etry, for example, used in the Mars rovers [85]. In addition, many approaches
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that use a sequence of images relys on initial pose estimates from, for example,
odometry [85, 10, 62, 66].

However, to directly apply the registration using the visual features together
with an estimated position and position covariance obtained from a 3D laser
scanner without any requirement of initial pose estimates has to our knowledge
not yet been exploited.

8.3 Method

The proposed approach is based on local visual features for which the depth
and position covariance are estimated. The visual feature used here is the SIFT
feature described in Section 3.2.1. The position covariance for visual features
is obtained from the laser range measurements surrounding the visual feature
location. For example, if the detected feature is located on a poster, a planar
surface, the feature’s position covariance will be smaller (especially perpendic-
ular to the surface) compared to a feature extracted from a branch.

As stated in the previous section, most current approaches to scan regis-
tration depend on reasonably accurate initial pose estimates. In the proposed
method, the correspondences are solely determined by the visual features and
not from spatial distance. As a result, no initial pose estimates is required.
Therefore, no initial pose estimate is required.

The registration procedure can be described as follows: first, SIFT features
are computed in the planar images recorded within the current scan data Sc

and compared to the SIFT features found in the images belonging to previous
scan Sp using the feature matching scheme (Sec. 3.3). Next, depth values r∗

are estimated for all matching feature pairs P in Sp and Sc, using the Nearest
Range Reading (NR) method (Sec. 7.2.1), i.e. using the closest projected 3D
laser point. Pairs of 3D points corresponding to matching feature pairs P are
then used together with the feature position covariance to obtain the relative
pose estimate between Sp and Sc. The relative pose is expressed as (R, t) where
R is the rotation matrix and t is the translation vector (see Sec. 8.3.5).

8.3.1 Estimating the Visual Feature Depth

To obtain a 3D position estimate of an extracted feature F = [X,Y],H, where
[X,Y] is the pixel position of the feature, an interpolation step is performed us-
ing the NR method, described in Section 7.2.1, to obtain an estimated range
reading r∗. By back-projecting the estimated range r∗ using the pixel coordi-
nates [X,Y] the 3D position µF = (x,y, z) of the feature F is obtained.
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Figure 8.1: Laser points used to estimate the covariance. The × represents a visual
feature. Circles represent range readings, where the filled dots p0..M represent range
readings used to obtain the covariance estimate. The central filled dot p0 represents the
laser point from which the depth of the visual feature was determined. The horizontal
lines indicate the 2D laser reading scanning plane and the vertical lines the tilt movement
of the wrist.

8.3.2 Estimating the Visual Feature Covariance

To obtain a covariance of each visual feature point CF, the closest projected
laser point p0 relative to the visual feature F in the image plane is used together
withM surrounding laser points p1..M. The covariance CF is then calculated as

CF =
1

M− 1

M
∑

i=0

(pi − µ)2, (8.1)

where µ = 1
M

∑M
i=0 pi. In our experimental evaluation we used M = 8, see

Fig. 8.1.

8.3.3 Rigid Iterative Closest Point

The iterative closest points (ICP) algorithm [12, 23], finds a rigid body transfor-
mation (R, t) between two scan poses Sp and Sc by minimising the following
constraint

J(R, t) =

N
∑

i=1

||pc
i − Rp

p
i − t||2, (8.2)

where pp
i and pc

i are the corresponding (closest) points from scan poses Sp and
Sc. The selection of the corresponding pairs in the standard version of ICP is
done by using a distance metric to search for the closest point. This search is
the most time consuming part of the algorithm, and to decrease the search time
a common approach is to use a Kd-tree [44]. ICP as well as other least squares
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methods assumes that the measurements contain an identical and independent
Gaussian noise.

To obtain the rigid transformation that minimises the above equation, there
exist various closed-form solutions. In our approach we have adopted the sin-
gular value decomposition method proposed by Arun et al. [8].

In our approach, the correspondence is detected using visual features, i.e. an
exhaustive search is not required in the spatial domain. In addition, since the
proposed method relies on a vision based approach, the assumption of identical
and independent noise of the feature point is a problematic approximation as
discussed below.

8.3.4 Rigid Generalised Total Least Squares ICP

Generalised Total Least Square ICP (GTLS-ICP) has been proposed by San-Jose
et al. [101] as an extension of ICP. This method is similar to standard ICP but
also incorporates a covariance matrix for each point. Instead of minimising
Eq. 8.2, GTLS-ICP utilises the following function:

J(R, t) =

N
∑

i=1

(qi − pc
i )TC−1

qi
(qi − pc

i ) +

N
∑

i=1

(pc
i − qi)

TC−1
pc

i
(pc

i − qi), (8.3)

where qi = Rp
p
i + t. The covariance matrix Cqi

is obtained by rotating the
eigenvectors of the covariance matrix Cp

p
i
, obtained from Eq. 8.1, with the

rotation matrix R. However, there is no closed-form solution to minimise this
function and the method instead iteratively estimates the rigid body transfor-
mation R and t. In our implementation we first use the standard ICP method
(Sec. 8.3.3) and after convergence then apply a conjugate gradient method to
minimise Eq. 8.3.

8.3.5 Rigid Trimmed Extension

Since visual features are used to establish corresponding scan points, no fur-
ther means of data association, (such as searching for closest data points in
ICP) is necessary. Although the SIFT features were found to be very discrim-
inative (see for example [87]), there is of course still a risk that some of the
correspondences are not correct. To further decrease the possibility of erro-
neous point associations, only a set fraction of the correspondences with the
smallest spatial distance between corresponding points is used for registration.
In the experiments presented in this chapter the fraction was set to 70%. Be-
cause the fraction of data points that is used to estimate the relative pose [R, t]t
between two scans depends on the previous estimate [R, t]t−1 (since the rela-
tive pose estimate affects the spatial distance between corresponding points),
the minimisation needs to be applied in an iterative manner. Thus relative pose
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updates are calculated repeatedly with the minimisation using the previous es-
timate [R, t]t−1 as input to the next iteration step until a stopping criterion is
met. Any initial pose estimate can be used (in the experiment presented in this
work, the method always start with the assumption of an identical pose). The
stopping criterion used is the experiments in this chapter is the change of the
mean squared error (MSE) of the spatial distance between the corresponding
points compared to the previous iteration. The optimisation was stopped if the
difference was less than 10−6 m2.

Note that the spatial distance between the corresponding points is used also
together with the covariance based ICP method to select the 70% fraction of
the corresponding points. Otherwise points with a large covariance tend to
be selected as members of the 70% fraction with the smallest Mahalanobis
distance, which was found to decrease registration accuracy.

8.4 Setup and Experimental Results

8.4.1 Data Collection

The scanner used is a 2D SICK LMS-200 mounted together with a 1 megapixel
(1280x960) colour CCD camera on a pan-tilt unit from Amtec. The sensors
are mounted on the mobile robot Tjorven (Fig. 2.2) and the complete system
are more thoroughly described in Section 2.1.2. The robot is manually driven
around and was stopped for data collection. For each robot pose, 3D range
and image data were collected as follows. First, three sweeps are carried out
with the laser scanner at -60, 0 and 60 degrees relative to the robot orienta-
tion (horizontally). During each of these sweeps, the tilt of the laser scanner
is continuously shifted from -40 degrees (looking up) to 30 degrees (looking
down). After the three range scan sweeps, seven camera images were recorded
at -90, -60, -30, 0, 30, 60, and 90 degrees relative to the robot orientation (hor-
izontally) and at a fixed tilt angle of -5 degrees (looking up). The full data set
acquired at a single scan pose is visualised in Fig. 8.2. The angular resolution
of the laser scanner was set to 0.25 degrees with a 100 degrees field of view.

8.4.2 Indoor Experiment

To evaluate the registration performance, a data set “registration − indoor”
consisting of 22 scan poses, i.e. from 66 laser scanner sweeps and 154 camera
images (as described in Section 8.4.1) was collected in an indoor lab environ-
ment. The first scan pose and the last scan pose were collected at a similar
position. An example of the registration result can be seen in Fig. 8.3.

The performance metric chosen to evaluate the registration method is the
translation and angular distance between the final pose estimated from the reg-
istration and the ground truth final pose. Since the first and the last scan pose
were taken at a similar position, the ground truth was determined by matching
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Figure 8.2: Top: Full data set acquired for a single scan pose comprising three sweeps
with the laser scanner fused with colour information from seven camera images, where
the first four images (marked with dark arrows in the top figure) are shown at the
bottom.
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Figure 8.3: Result of sequential registration of 22 scan poses. The visualised data com-
prise of 3 × 22 registered scans and the corresponding colours from 7 × 22 camera
images.
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the first scan pose with the last scan pose using the trimmed ICP version. The
estimated position was calculated by sequentially registering all 22 scan poses,
which means that only one small failure in one of the registrations can heavily
influence the estimate of the final pose.

For further evaluation, the number of corresponding matches N that were
used in the registration was also investigated.

Table 8.1 show the euclidean pose error d (in meters) together with the
rotational error α (in radians). Since corresponding matches were selected ran-
domly, each sequential registration was repeated 5 times. These results show
that the performance of Tr.GTLS − ICP is better compared to Tr.ICP when
there are fewer corresponding matches and N is low. When the number of
available matches increases the two methods show more similar results. The
increased error with a higher number of corresponding points N is likely to
depend on the random selection of points.

Table 8.1: Registration results given in meters and radians using the trimmed registration
versions

Tr. ICP Tr. GTLS− ICP

N d± σd α± σα d± σd α± σα

10 1.14±0.54 0.30±0.18 0.84±0.33 0.25±0.11

15 0.76±0.83 0.17±0.24 0.70±0.85 0.18±0.22

20 0.30±0.11 0.05±0.02 0.24±0.14 0.06±0.04

30 0.09±0.05 0.04±0.02 0.11±0.08 0.04±0.01

40 0.14±0.07 0.03±0.01 0.19±0.10 0.04±0.02

60 0.13±0.03 0.03±0.01 0.15±0.06 0.03±0.02

8.4.3 Outdoor Experiment

An outdoor data set “registration − outdoor” consisting of 32 scan poses
was collected outdoors close to a building (see Fig. 8.4). However, in this data
set there is no ground truth available and therefore the conclusions are drawn
from visual inspection alone. Looking at Fig. 8.5, for example, the left wall ap-
pears much clearer when using Tr. GTLS− ICP indicating that the registration
results are better. Also the lamp post appears to be duplicated in Tr. ICP but
not when using Tr.GTLS − ICP. This can be explained by that the number of
outdoor features which has a high covariance is difficult to predict, for example
features lying on thin objects such as branches. If the depth variance is high, the
Tr. GTLS − ICP method uses the bearing to the feature rather than the actual
estimated feature position. Of course other problems occur with larger feature
distances, for example, calibration errors will have a larger impact.
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Figure 8.4: An outdoor registration result using Tr. GTLS − ICP visualised with 1.5
millions of coloured laser range readings.
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Figure 8.5: Outdoor registration results using Tr. ICP (top) and Tr. GTLS − ICP (bot-
tom) without using any limits of corresponding points N. It can be seen that the building
wall is more accurately constructed in the Tr. GTLS − ICP method, also the lamp post
to the right is duplicated in the Tr. ICP method.
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8.5 Conclusions

In this chapter we have proposed a registration method that uses visual features
to handle the correspondence problem. The method integrates both vision and
a 3D laser to obtain depth estimates and does not rely on any initial estimate
for registration. The 3D laser scanner is in addition used to obtain a covari-
ance estimate for the extracted visual features, which is incorporated into the
registration algorithm.



Chapter 9

Mapping and Localisation with

Vision and Range Sensing

This chapter addresses the mapping and the localisation problem in 3D using
vision and a 3D laser scanner. Two appearance based approaches are proposed
which utilise visual features to determine correspondences between two scans
consisting of both 3D laser data and camera images. A major difference to
most other mapping and localisation algorithms is that no initial estimate of
the robot pose is required.

9.1 Vision and 3D Laser Scanner based 3D-SLAM

Depending on how sensor data or rather the map are represented, typical
SLAM methods can be divided into:

• landmark tracking based methods,

• pose-relation based methods (or graph-based), and

• grid-map based methods.

In landmark tracking based approaches, the position of both the landmarks
and the robot are determined from multiple observations (of the landmarks).
Given the position of each landmark, the robot pose can be estimated through
its observations of the landmarks and in a similar way, the landmark positions
can be updated using a new observation from the robot. Extended Kalman
Filters (EKF) are commonly applied to update the position of each feature [124,
45].

Pose relation based (commonly called “graph-based” or “network-based”)
methods instead focus on relative pose estimates. The input consists of a graph
where each node represents a robot pose and each vertex represents a rela-
tive pose estimate between two nodes (relation), see Fig. 9.1. For example, the

137



138 CHAPTER 9. MAPPING AND LOCALISATION

method for obtaining the Maximum Likelihood (ML) estimate in Mini-SLAM
(Ch. 6) uses this approach.

Grid-map based methods have been widely used in 2D whereas it is a very
uncommon approach in 3D. One large group of methods are particle-filter
based approaches, for example Fast-SLAM [88]. Each particle represent a tra-
jectory and the particle filter evolves by sub-sampling the particle set (set of
trajectories) which best fits the current measurements. A major difficulty for
grid-map based methods in 3D environments is the increased complexity when
dealing with 6 degrees of freedom (DOF), instead of 3 DOF for the 2D case,
which requires an increased number of particles to handle the larger state-space.
In addition, the time to evaluate each trajectory and to update and maintain a
grid-map is substantially more demanding in 3D compared to the 2D case.
However, in 2D environments, particle-filter based grid-map approaches are
known to have produced large and consistent maps [53]. Fairfield et al. [39]
recently developed a 3D particle filter based grid approach for underwater
mapping of tunnels. In their work they utilised depth sensors and an inertial
measurement unit (IMU) which “gives excellent measurements for all but x
and y”. To cope with the computational demands of the update and storage re-
quirement of each particle a special data structure is created called a Deferred
Reference Counting Octree (DRCO).

9.1.1 Landmark/Feature Tracking Based Methods

A key part of many vision based SLAM methods is to determine positions of
landmarks and these methods would therefore be sorted into the landmark
based approach bin. Determining the positions of landmarks is commonly done
by tracking each feature over multiple frames, integrating the measurements to
decrease the position variance. To obtain initial relative pose estimates, odom-
etry is either used directly from the robot or derived directly from the camera
images. As stated in Section 8.2, stereo-cameras are often used to avoid scale
ambiguities and scale drift. In [25], a SLAM method is suggested using a sin-
gle camera. In this case the scale ambiguity is addressed by first presenting an
object with known geometric properties. Popular methods to update poses of
visual features are Extended Kalman Filters (EKF) [25, 62], Rao-Blackwellised
Particle Filters (RBPF) [36, 10].

Not only vision methods rely on landmarks. Several laser scan based SLAM
approaches have been proposed which typically use landmarks or features such
as corners and walls.

One complete framework which can handle and update landmark positions
in a computationally very efficient way is the Tree-Map algorithm [46]. The
key aspect of this method is the tree structure which allows multiple ’blocks’ of
landmarks to be updated simultaneously.

For a more extensive overview, please refer to [45, 109].
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9.1.2 Pose Relation Based Approaches

In contrast to most vision based methods, the “Mini-SLAM” method proposed
in Chapter 6 and the method proposed in this chapter work without the need
to track features over different poses. Both proposed SLAM methods consider
only similarities without the need to track and update each feature position,
which is typically computationally expensive [45].

Compared to the few vision based methods relying on relation based meth-
ods there exist a variety of 2D and 3D laser range scanner based approaches.
One of the first examples using 2D data is the work by Lu and Milios [82]. A
relaxation based method, using Gauss-Seidel iteration, was originally proposed
by Duckett et at. [30] which uses gradient descent (GD). This approach was
later extended to Multi-Level Relaxation (MLR) by Frese et al. [47], using a
multigrid approach to improve performance in loop closing and to handle lin-
earization errors due to robot rotation (which was addressed using a compass
in [30]). MLR however is currently only implemented in 2D. Wulf et al. [122]
compare the most common relaxation based methods for 3D data.

Olson et al. [94] use an approach based on stochastic gradient descent
(SGD) to optimise the global poses. Note that the main difference compared
to the work in [30] is that a constraint (vertex) is selected to move a set of
nodes instead of selecting a single node and move it due to its connected nodes.
In the work by Olson, only 2D data were evaluated, however due to their as-
sumption of linear angular subspaces, which does not hold in the case of 3D
data, their approach is not directly applicable in 3D [112]. The problem of lin-
ear subspaces has recently been addressed by Grisetti et al. [51], who present a
pose relation based method that works in 3D. In their approach a variant of the
gradient descent method is applied together with incremental spherical linear
interpolation (SLERP), to address the non-commutativity property of rotation
in 3D. In Triebel et al. [113], global constraints are used based on extracted
planar surfaces from 3D data together with local constraints from the corre-
spondent point in the interest closest point (ICP) based registration. In their
approach the robot poses are estimated with a conjugate gradient method. In
another approach by Triebel et al. [115], the constraints in a global pose net-
work were optimised using LU (Lower Upper triangular) decomposition. An
approach similar to our proposed method is the work by Newman et al. [92],
in which vision techniques and 3D range data are combined. Loop closure is
detected by using appearance based similarity measures. The successive regis-
tration is done using 3D laser data and odometry.

9.1.3 Comparison Between Vision and 3D Laser Scanner

Based Methods

An important observation regarding visual SLAM methods is that relation
based methods hardly exist. The reason is most likely that, for typical vision
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systems, the measurement noise of the feature pose estimates is simply too high
to use the features directly. Therefore each feature has to be tracked over several
frames to increase the certainty in the feature pose. By contrast, pose relation
based methods are most common for laser scan based systems. This is likely
due to the accuracy that the laser provides, which makes it unnecessary to ex-
tract and track features (handle correspondences) in 3D laser data. Also many
registration methods such as the standard ICP [12, 23] and NDT [15] do not
rely on extracted features.

In general, vision based systems are well suited to address the data associa-
tion problem, possibly better compared to 3D laser based systems, as suggested
in [92, 57, 71]. One exception is the data association results shown in the work
by Bosse et al. [18], who detect correspondences between 2D local maps gen-
erated with a 2D laser range scanner. The method converts each local map
into histograms, and the histogram are then matched using correlation. Worth
noting is that the data set used to validate the approach contains a very small
amount of self similar local maps that could cause perceptual aliasing.

Table 9.1: Comparison of vision and laser range finder (LRF) based methods,
√

- good,
× -weak.

Vision LRF
pose relation methods ×

√

handle correspondences
√

×

9.1.4 A Method Combining Vision and 3D Laser Scanner

In the same manner as the registration approach in Chapter 8, the method
proposed here uses local visual features with estimated 3D positions. The pro-
posed method, called 3DVF-SLAM has several similarities compared to the
Mini-SLAM method in Chapter 6. Both Mini-SLAM and 3DVF-SLAM rely
on visual similarity measures between images to determining correspondences,
e.g. to detect loop closing. The difference is the usage of an accurate range
sensor (3D laser range scanner) to obtain depth estimates. This allows to de-
termine a good position estimate µF and covariance CF for each feature F (see
Section 8.3.1). In comparison, stereo-vision based approaches do not have the
same accuracy and typically need to track the feature over several frames to im-
prove the position estimate. Basically this adds the possibility to use appearance
based approaches using local visual features but with much higher geometrical
accuracy.

The proposed method can be described as follows: Given a set P of n robot
poses x1..n together with a set of extracted features Fx1..n at each robot pose,
an initial estimate of all poses can be calculated by performing successive regis-
tration of each scan pair, i.e. registering the last scan xi with the previous one
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Figure 9.1: An example of a pose graph in 3D, seen from above, consisting of data used
also in Fig. 9.3. Each sphere represents a robot pose x and each line represents a relation
r.

xi−1 as done in the evaluation experiments in Chapter 8. With this approach,
however, the errors will accumulate. One solution is to introduce additional
registration results as constraints (relations). If the current pose xi is registered
to a previous pose xj but not its direct predecessor (i.e. j < i − 1), commonly
called “loop closure”, the uncertainty of the pose estimates decreases. Hence,
after the first loop closing occurs, an additional relation is added and for the
x1..n robot poses there exist r1..m relations where m = n + 1. Basically what
happens is that an overestimated equation system is obtained (m > n). By
adding more relations or constraints the pose of each node will be determined
more accurately since more measurements are incorporated. A pose graph con-
taining both robot poses x = [a,b, ..., i] and relations r can be seen in Fig. 9.1.
Different relations will have different impact on pose errors since the error
grows with the number of poses (assuming that the distance between successive
poses is similar). A relation which connects two nodes which previously were
separated by many relations generally provides more information in terms of
pose error reduction than a relation which connects two nodes which are sep-
arated with few relations. For example, the relation ri,b in Fig. 9.1 reduces the
number of relations between a to i to two, compared to nine if only successive
relations were used.

To detect whether or not a relation r should be added, the similarity mea-
sure S is used. Hence the proposed approach 3DVF-SLAM is in this manner
similar to the Mini-SLAM approach (Ch. 6) with the difference that there is
only one type of relation r, which is based on the optimisation constraint in
the registration method described in Chapter 8. Given two robot poses xi, xj

and a set of matched feature pairs < Fk
xi

, Fk
xj
>k=1..N the constraint caused by
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the relation rxi,xj
is obtained by minimising the following function (see also

Sec. 8.3.4):

J(Rxi,xj
, txi,xj

) =

N
∑

k=1

(µqk
− µFk

xi
)TC−1

qk
(µqk

− µFk
xi

) +

N
∑

k=1

(µFk
xi

− µqk
)TC−1

Fk
xi

(µFk
xi

− µqk
), (9.1)

where µqk
= Rxi,xj

µFk
xj

+ txi,xj
and where Rxi,xj

and txi,xj
are the relative rota-

tion and translation from pose xi to xj. The covariance matrix Cqk
is obtained

by rotating the eigenvectors of the covariance matrix CFk
xj

.

By rewriting the optimisation constraint as

K(xi, xj) = J(Rxi,xj
, txi,xj

) (9.2)

the problem of determining the robot poses given the relation constraints can
now be defined as minimising

L(x1..n) =

n
∑

i=0

n
∑

j=i+1

V(i, j)K(xi, xj), (9.3)

where V(i, j) is a binary variable that decides whether the similarity measure
Si,j is above a preselected threshold T. The total number of summations needed
in Eq. 9.3 is the number of relations m. For the optimisation of Eq. 9.3 the
Fletcher-Reves conjugate gradient optimisation method [40] is applied.

9.2 Experimental Results

To evaluate the proposed 3DVF-SLAM method, a data set (indoor 3D−SLAM)
was obtained by manually driving the robot around in our lab collecting 23
different scans at 23 locations. At each location 3 laser scanner sweeps and 7
images were recorded, i.e. 69 laser scanner sweeps and 161 camera images for
the whole data set, see also Section 8.4.1. A generated “bird’s eye view” figure
of the data set can be seen in Fig. 9.2, where coloured 3D laser data is drawn
at the estimated poses x1..23. In Fig. 9.3 and Fig. 9.4 the difference between
using successive registration to obtain poses and the 3DVF-SLAM method is
visualised.

Qualitative results are obtained by calculating the planeness of the estimated
poses x1..23, since the data was collected indoors the ground truth assumption
is that all poses should be lying in a plane, see also Fig. 9.4. The plane P is
obtained by spanning the two largest eigenvectors λ1,2 calculated from the co-
variance matrix C of all poses. The mean squared error (MSE) is calculated
using the distance of each pose x to the plane P, see Table 9.2.
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Figure 9.2: The result using 3DVF-SLAM with the test data set consisting of 3 × 23
registered scans and 7 × 23 camera images. This “bird’s eye view” figure shows the
point cloud created by using the laser range measurements at the estimated poses x1..23.
The colour is obtained from the camera images by projecting the range measurement
onto the image plane.

Table 9.2: MSE comparison between successive registration and the proposed 3DVF-
SLAM method.

successive registration SLAM
MSE 1.172 · 10−3 0.187 · 10−3
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Figure 9.3: Comparison between using the 3DVF-SLAM technique (top) and using the
(odometry-like) successive registration (bottom). The difference can, for example, be
seen at the screen and the office chair.
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Figure 9.4: Comparison of the pose relation graphs seen from the side. Since the robot
was driven on an indoor flat surface the nodes should appear on a straight line in a
side view, please note that the difference in scale is created for clarity proposes. See also
Table 9.2. Top: successive registration. Bottom: 3DVF-SLAM.

9.3 Vision and 3D Laser Scanner based Localisation

Global localisation is to determine the pose estimate of a robot with respect to
a previously learnt or given map without any initial pose estimate, essentially
answering the question “where am I?”. Since the goal here is to determine the
position in 3D, geometrical and not topological localisation is discussed.

The most apparent difference between localisation in 2D and localisation in
3D is the much larger state space. In 2D localisation, a planar world, particle
filters are a very common approach which were also utilised in Chapter 5.

9.3.1 Vision-based Methods

A 3D stereo vision approach using a particle filter has been suggested by Elinas
et al. [35]. The motion of the robot is derived from vision and uses multi-
ple view geometry, the Essential matrix and reprojection to obtain the visual
odometry readings. Motion estimation from cameras or visual odometry has
been well-studied in computer vision. One reason for using stereo-vision com-
pared to monocular (single camera) systems is the scale ambiguity and scale
drift which occurs while using a single camera [56].

9.3.2 3D Laser Scanner-based Methods

An approach suggested by Kümmerle et al. [70] uses a 3D laser scanner where
the environment is represented with a Multi-Level Surface (MLS) 3D-map [115].
In these experiments the laser was only pointing horizontally, i.e. using only
2D-laser data. Feature based methods that rely on laser data are also suggested
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Figure 9.5: Overview of similarity based global localisation. The global pose is obtained
by first determining the scan pose with the most similar appearance using the similarity
measure obtained from the images and then adding the registration result to the selected
scan pose from the map. The map consists of a set of scan poses which consist of a set of
extracted visual features in 3D. The pose of each scan is determined by the 3DVF-SLAM
method.

in the literature, for example, Adams et al. [4] rely on detecting tree trunks or
similar cylindrical shapes as landmarks. Another feature based approach was
proposed by Lingemann et al. [78] who utilise a fast scan-matching approach
based on filters and a polar representation to obtain distinguishable landmarks.
Please note that their localisation only handles 2D range data as input, then the
localisation results are then used as initial pose estimates to a 6D SLAM algo-
rithm. A completely different approach for outdoor localisation in 3D, regard-
ing sensory equipment, is the work by Shmitz et al. [91] who use an Inertial
Measurement Unit (IMU), odometry and DGPS receivers to update a Kalman
filter. The system gives rough estimates of the position, without using either
vision or laser scanners.

9.3.3 Similarity-based 3D Global Localisation

The main difference with previous approaches and the proposed method is
to use a laser range scanner, which typically produces much higher accuracy
than, for example, a stereo-camera, to extract the depth estimates of the vi-
sual features. The method, called 3DVF-localisation, uses the correspondences
between the visual features and their 3D position to accurately determine the
relative displacement (registration) between two robot poses in 3D. In addition
to registration, the visual features are also used to find the most visual similar
scan pose in the map, hence to determine which of the scan poses in the map
the current scan Sc is registered against, called appearance based localisation.
Hence, the proposed global localisation method relies on the following two
parts:
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• appearance based localisation,

• registration without initial pose estimate.

For a brief overview of the method, see Fig. 9.5.
The similarity measure S is used in the appearance based localisation to

determine the most similar scan pose Ss in the map. In Fig. 9.6 a similarity
matrix is shown for two data sets where the most similar scan for each column
is marked with a ×. No accumulation of evidence to handle multiple hypothe-
sis was done in the expereiments although the method could easily be extended
with the particle filter based approach suggested in Chapter 5, where the odom-
etry reading is replaced with successive registration as described in Chapter 8.

The appearance based localisation returns a scan pose without any relative
pose estimate. Hence, a required key property of the registration method is to
register without any initial pose estimate. In the proposed method we apply the
registration method described in Chapter 8, where a relative pose estimate can
be obtained by using the extracted visual features in 3D.

The global localisation pose is finally calculated by adding the global pose
of the most similar scan Ss with the relative pose from Ss to the current scan
Sc obtained from the registration.

9.3.4 Experimental Results

Two data sets were used in the experimental evaluation. First, the map was cre-
ated using the 3DVF-SLAM method described above using the indoor 3D −

SLAM data set. For each scan pose in the indoor 3D − localisation data set
the pose was determined by the proposed method. Visual results can be seen in
Fig. 9.7, showing a coloured point cloud created from sensor data from each
estimated pose obtained from the 3DVF-localisation method. In Fig. 9.8 the
global position obtained from the localisation is drawn upon the map, repre-
sented as the grey point cloud.

Please note that both the 3DVF-SLAM and 3DVF-localisation methods are
used in the difference detection (Ch. 10).
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Figure 9.6: A similarity matrix of two different data sets: indoor 3D − SLAM, the
map (rows), and indoor 3D− localisation, localisation test data (columns), collected
at different times in the same area. Each cell shows the visual similarity of two scan
poses, where brighter regions corresponds to a higher similarity. The × illustrates the
appearance based localisation results, hence which map scan pose each scan in the
indoor localisation data set should be registered against.

Figure 9.7: Localisation result created by using coloured laser scan data, where the pose
of each scan is obtained from the proposed global localisation method.
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Figure 9.8: Localisation results showing only one scan pose. The laser scanner data for
the scan pose that is localised is drawn in dark (red) together with the grey point cloud
representing the map.





Chapter 10

Difference Detection using

Vision and 3D Range Sensing

This chapter presents a system for autonomous change detection with a secu-
rity patrol robot. Difference detection or change detection can be described in a
more popular way as an automated “find five errors”, see Fig. 10.1, but instead
of comparing two pictures, the task is to detect changes in a real 3D world envi-
ronment over time. The main difficulties for humans to detect changes probably
lies in the fact that the two states of the environment cannot co-exists and there-
fore the difference has to be spotted using our memory alone. The autonomous
application shown in this chapter utilises methods previously introduced in ear-
lier chapters. In an initial step a reference model of the environment is created.
After a certain time period, when changes have occurred, data is collected and
compared to the reference model. The difference detection is based on coloured
3D point clouds obtained from a 3D laser range scanner and a colour CCD
camera. The proposed approach introduces several novel aspects, including a
registration method that utilises local visual features to determine point corre-
spondences (thus essentially working without an initial pose estimate) and the
3D-NDT representation with adaptive cell size to efficiently represent both the
spatial and colour aspects of the reference model. A qualitative experimental
evaluation in an indoor lab environment is presented, which demonstrates that
the proposed system is able to register and detect changes in spatial 3D data
and also to detect changes that occur in colour space and are not observable
using range values only.

10.1 Introduction

An important task for robotic security systems is surveillance of a specified area.
Typical security patrol missions require detection of changes in the environment
and description of detected differences with respect to a previously determined
reference state. A human watchman is first shown around the premises to learn
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Figure 10.1: “Find five errors” example. The task is to detect five areas that are different
in the two images.

the reference state of the environment. The mission of the security patroller
is then to check for changes in the environment, e.g. looking for open doors,
open windows, water leaks, blocking of fire hoses, etc. [2]. Due to their dull
and potentially dangerous character it is desirable to delegate security patrols
to mobile robots. Current approaches often require teleoperation [79]. Accord-
ingly, research has focused on adjustable autonomy or semi-autonomy to de-
crease the amount of “cognitive burden” to the operator (Seeman et al. [103],
Goodrich et al. [50], for example).

This chapter presents a system for autonomous change detection with a
security patrol robot. As for its human counterpart the robot watchman is ex-
pected to determine the reference state of the environment (the reference model)
in an initial phase. The actual mission requires discovering changes with respect
to the reference model and describing the differences. An alarm may be trig-
gered whenever changes are detected or detected differences can be reported to
a human operator for further analysis.

An effective system for autonomous difference detection needs to fulfil a
couple of demands. First, creation of the reference model should be simple and
require minimal effort by a user. Ideally the robot would acquire and update
the reference model of the environment autonomously. The problem of updat-
ing the reference model is related to the dynamic mapping problem that inves-
tigates continuous adaptation of maps over time [14]. Here we assume that the
mobile security robot is first guided by a human operator in order to learn a
model of the original, unmodified environment. A second major requirement
especially with regards to large environments is that the reference model is rep-
resented efficiently but nevertheless allows determination of small changes in
the environment. Representing the environment at a high resolution so as to
avoid the need to inspect all parts of the environment from a small distance can
be seen generally as the third major requirement of an autonomous difference
detection system.

Difference detection has been studied in the context of recognising parked
vehicles by Ishikawa et al. [60]. In their work, Ishikawa et al. use an omni-
directional camera together with GPS and INS (Inertia Navigation System) to
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Figure 10.2: An example of a spatial distribution assigned with colour from a thermal
camera (instead of a standard CCD camera). By utilising thermal information one re-
lated approach to difference detection could be to detect changes in temperature. To
detect changes in temperature could be useful, for example, in monitoring machinery or
improving energy consumption in buildings.

obtain depth estimates, which were subsequently compared with a pre-built
model.

By adding additional sensor modalities to the system such as a thermal cam-
era (see Fig. 10.2), additional monitoring applications emerge from the system.
For example, one application where thermal information could be used is to
monitor machinery such as turbines (to monitor bearings, etc.). A mobile com-
bination of a thermal camera with a 3D range scanner could cover large regions
and therefore be a more cost efficient method compared to covering the area
with multiple thermal cameras. One other promising approach is to create 3D
heat models of buildings to observe heat dissipation with the goal to obtain less
energy consuming houses.

10.2 Overview of the Difference Detection System

An overview of the proposed difference detection system is shown in Fig. 10.3.
Corresponding to the two columns in the figure, the approach decomposes into
two parts: acquisition of the reference model (shown to the left of the dashed
line) and pre-processing of new data (shown to the right of the dashed line) for
the actual detection of differences between new data and the reference model
(indicated by the box below the dashed line).
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Figure 10.3: Overview of the difference detection system. Acquisition of the reference
model is shown on the left side of the dashed line and pre-processing of new data for
the actual difference detection to the right of the dashed line.

The proposed difference detection approach comprises three main compo-
nents described in Sections 10.3 – 10.5 below. A very important aspect is ac-
curate registration of the data, see Section 10.3. The requirement of the regis-
trations method is to produce accurate results even under the condition that a
reasonable relative pose estimate is not available (when there is essentially no
estimate of the relative pose between two data sets other than that they were
recorded in the same environment). This is achieved by using local visual fea-
tures extracted from the camera images to solve the data association problem
in the registration process, see Chapter 8.

In order to represent the environment efficiently, we apply the Normal
Distribution Transformation (NDT) with adaptive cell splitting (Sec. 10.4.1)
to the spatial point distribution and the colour distribution (Sec. 10.4.3 and
Sec. 10.4.3). Finally, based on the 3D-NDT representation, and respectively
the Colour 3D-NDT representation, difference probabilities are calculated as
described in Sections 10.5.1 and 10.5.2.

A visualisation of the difference probabilities in a fairly trivial case where
two 3D laser scan sweeps are compared can be seen Fig. 10.4. The correspond-
ing 3D-NDT representation is shown in Fig. 10.5 using ellipsoids to indicate
the eigenvalues of the respective covariance matrices.
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Figure 10.4: Top, middle: 3D range scans recorded at a relatively small displacement of
approx. 1 m. Bottom: Difference probability corresponding to a chair that was placed
in the scene before the second scan was recorded. Brighter regions indicate a higher
difference probability. The displacement between the two scans was obtained using the
registration method described in Section 8.3.3.
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Figure 10.5: Visualisation of the 3D-NDT representation corresponding to the scan in
Fig. 10.4, top. Ellipsoids indicate the eigenvalues of the respective covariance matrices.

Figure 10.6: The scan shown in Fig. 10.5 divided into a set of cells C represented as
transparent green boxes used in the 3D-NDT representation.
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10.3 Registration

A very important aspect of the difference detection system is that the relative
position [R, t] between the current Sc and previous scans Sp is precisely known.
Accurate registration is therefore a fundamental requirement. Since the mea-
surements (3D range scans and colour images) to be compared will be obtained
not only at different poses but also at substantially different times, registration
should be robust to a certain level of changes in the environment. In addition,
it cannot be expected in general that the security patrol robot maintains a con-
sistent coordinate system in-between acquisition of the reference model and a
difference detection request. As opposed to most current approaches to scan
registration we therefore need a registration method that does not depend on
reasonably accurate initial pose estimates.

In order to cope with the condition that initial pose estimates may not be
available, local visual features are used to establish correspondences between
data points (data association) within the entire set of measurements as de-
scribed in Section 9.3.3. This localisation approach (Sec. 9.3.3) to determine
the global pose is used throughout this chapter.

10.4 Normal Distribution Transform (3D-NDT)

One of the major requirements for an autonomous difference detection system
is that is scales well with the size of the environment. This demands an effi-
cient representation of the reference model that compresses the data (to be able
to store and maintain representations of large environments) and is yet able
to represent small details allowing for detection of small changes. To address
this issue, the normal distribution transform (NDT) is used to represent the
environment. The NDT was introduced by Biber et al. [15] and first used to
register 2D laser scans. The method has been extended to 3D scan registration
by Magnusson et al. [83]. However, in this work we use a different approach
to registration since visual information is used and no initial pose estimates are
available, as discussed in Section 10.3.

The basic principle of NDT and 3D-NDT is to represent the environment
by using a set of Gaussian distributions. First, the considered space is divided
into cells, see Fig. 10.6. Each cell that contains a certain minimum number
of points is represented by a Gaussian with the mean value and covariance
matrix computed from the points in the respective cell (Fig. 10.5). To make
sure that the covariance is representative of the spatial content of each cell, the
minimum number of points was set to 5 in the experiments presented in this
chapter. More formally 3D-NDT can be described as follows. We consider a
point cloud P = p1,p2, ...,pn with points p = (x,y, z) given in 3D Cartesian
coordinates. The environment is divided into a set of cells C = c1, c2, ..., ck

and for each cell ci the number Nci
of points pci

which lie within the cell’s
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boundaries are used to calculated the spatial distribution. For each cell c, the
mean µc and covariance Cc are calculated as

µc =
1
Nc

Nc
∑

i=1

pci
(10.1)

Cc =
1

Nc − 1

Nc
∑

i=1

(pci
− µc)2. (10.2)

Note that the NDT representation does not require evenly spaced data and
hence can be calculated without further sub-sampling. In order to keep the
storage requirements within the limits of the computer with which the com-
putations were made (i.e. 512 MB of RAM memory), however, all scans were
sub-sampled with a 3D-grid resolution of 0.1×0.1×0.1 m3.

10.4.1 Adaptive Cell Splitting

The level of detail that is maintained by the NDT depends on the chosen cell
size. In order to select the resolution of the NDT representation according to the
local content of a scene, we use an adaptive cell size approach that determines
whether or not to split a cell c according to its covariance matrix Cc.

From the picture of the covariance matrix as an ellipsoid (Fig. 10.5), it is
clear that a single Gaussian, i.e. one covariance matrix, can efficiently describe
planes (one of the ellipsoids axis is small) and lines (two of the ellipsoid axis
are small). Therefore, a large volume vc of this ellipsoid, indicating that none
of the principal axis is small, was chosen as the criterion for cell splitting:

vc = |λ1||λ2||λ3|, (10.3)

where λi are the different eigenvalues of the covariance matrix. A higher value
indicates a higher need to divide the cell. In the experiments presented in this
work, the splitting threshold was set to 0.001 m3.

The decision about where to split a cell is made using the mean value µc

and the direction of the eigenvector emax
c with the highest eigenvalue λmax

c .
The points pci

in the cell ci that is to be split are assigned to new cells ca
i and

cb
i according to the sign of

pci
(emax

c − µc). (10.4)

Consequently, the cell is split at the plane through the centre µc and orthogonal
to the largest eigenvector emax

c .
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10.4.2 Colour 3D-NDT

In order to be able to detect changes that do not reveal themselves through the
range readings but which are observable in the planar images recorded along
with the range readings, colour information is also incorporated into the NDT
representation. This allows detection of changes caused by thin objects, for
example, a poster that has been removed from the wall, as long as the colour
differs sufficiently from the background.

In addition to points p = [x,y, z] in 3D space, we now also consider cor-
responding colour values p̆ = [C1,C2,C3]. Accordingly, the cells in the colour
3D-NDT representation are described by a mean value µ̆ and covariance C̆ in
addition to the spatial mean µ and covariance C introduced above. The colour
mean µ̆ and covariance C̆ are calculated using Eq. 10.1 and Eq. 10.2 replacing
the points pci

with their associated colour values p̆ci
= [C1,C2,C3].

The RGB colour space is used in the proposed difference detection system.
To obtain some degree of invariance against changing illumination, RGB values
are converted to the YUV colour space, the intensity Y is set to a constant value
of 0.5, and then the YUV values are converted back to RGB.

10.4.3 Adaptive Cell Splitting with Colour

Colour cell splits are generally performed in the same way as the cell splits in the
spatial domain as described above. However, in the colour space the criterion
for a split is only dependent on the highest eigenvalue λ̆max

c of the covariance
matrix C̆c. A colour split is carried out if λ̆max

c is larger than a predefined
threshold. This threshold was set to 10 in this chapter referring to RGB values
between 0 and 255. Compared to the volume measure in Eq. 10.3, a modi-
fied criterion is used since lines and planes in colour space do not generally
correspond to consistent structures in the environment.

10.5 Difference Probability Computation

10.5.1 Spatial Difference Probability

A probabilistic value of the point p being different from the reference model is
computed using the 3D-NDT representation of the reference model. First, the
cell c is determined that contains the point p. Using the mean µc and covariance
Cc of this cell, the spatial difference probability is calculated as

pdiff(p) ∝ 1 − e−(p−µc)T C−1
c (p−µc). (10.5)

If adaptive cell splitting is used and therefore each grid cell can contain multiple
mean and covariance values, the difference probability pdiff is calculated for
all sub-cells using Equation 10.5 and the lowest probability is assigned to point
p.



160 CHAPTER 10. DIFFERENCE DETECTION

Figure 10.7: The reference model created in our evaluation experiment consisting of 3
× 22 registered scans and the corresponding colours from 7 × 22 camera images.

Note that the difference probability will depend on the structure of the point
cloud used to generate the 3D-NDT representation of the reference model. In
the case of planar regions, for example, the covariance matrix in Equation 10.5
will emphasize differences orthogonal to the planar structure so that even very
small deviations can be detected there.

10.5.2 Colour Difference Probability

In the same way as the spatial difference probability, the colour difference prob-
ability is calculated as

pcolourdiff(p̆) ∝ 1 − e−(p̆−µ̆c)T C̆−1
c (p̆−µ̆c). (10.6)

As described in the previous section, the difference probability will vary de-
pending on the colour distribution of the selected cell, giving higher probabili-
ties to colour changes in regions of very uniform colour distribution.

10.6 Validation Experiment

The data were collected as described in Section 8.4.1.
To evaluate the proposed difference detection system, a reference model of

an indoor lab environment was created from the data set recorded at 22 robot
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Figure 10.8: Difference probability as found in 24 scans compared to the reference
model shown in Fig. 10.7. Brighter regions indicate a higher difference probability. Dif-
ference probability was computed from range values only using Eq. 10.5. The pictures
in the lower part of the figure show the changes that occurred at the marked region. The
left picture in the pairs is the previous state (reference) and the right one contains the
change. A - a drawer has been opened. B - a chair is moved. C - a chair is moved. D - a
chair is moved. E - a blue box is added.
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a
b

Figure 10.9: Difference probability as found in 24 scans compared to the reference
model shown in Fig. 10.7. Brighter regions indicate a higher difference probability. Dif-
ference probability was scomputed from colour information using Eq. 10.6. The pictures
in the lower part of the figure show the changes that occurred at the marked region. The
left picture in the pairs is the previous state (reference) and the right one contains the
change. a - two similar boxes with different colour were swapped. b - a coloured paper
stripe has been placed on the floor. There are a few parts of the images which indicate
non-existing changes (false alarms), which is probably due to different camera view-
points that caused different illumination and different reflections from ceiling lamps.
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poses (reference data set), i.e. from 66 laser scanner sweeps and 154 camera
images. The reference model is shown in Fig. 10.7. Then, controlled changes
(described in the Results section 10.6.1) were introduced and a new data set
was recorded at 24 different poses (difference detection data set). The two data
sets overlap with each other and the difference detection data set were treated
independently from each other, i.e. an a priori unknown position was assumed
for the 24 poses in the difference detection data set.

10.6.1 Results

Fig. 10.8 shows the result of the evaluation experiment: the point cloud of
the combined difference detection scans (registered for better visualisation) are
shaded according to the computed difference probability. Brighter regions in-
dicate a higher probability of changes in the environment. Fig. 10.8 shows the
difference probability obtained from spatial data only, i.e. applying Eq. 10.5.
Fig. 10.9 shows the difference probability obtained from colour data only, i.e.
using Eq. 10.6.

All the changes to the reference model can be found in the difference prob-
ability point clouds. The changes are indicated with an alphabetic character in
Fig. 10.8: a sliding door that was opened (A), three chairs that were moved
(B,C,D), and a relatively small box of approx. 0.15×0.25×0.4 m3 that was re-
positioned (E). Further changes are not detectable using range data only but can
be found when using colour data, see Fig. 10.9. These changes are two equally
sized boxes (approx. 0.4×0.4×0.5 m3) that were swapped (a) and a coloured
paper stripe (approx. 0.1×0.7 m2) that was fixed to the floor (b).

10.7 Conclusion

In this chapter a system for autonomous change detection suitable for a secu-
rity patrol robot was presented. The method uses vision and 3D range data to
build a reference model of the environment and detect changes with respect to
this model. The approach was verified in a real world experiment in an indoor
lab environment, demonstrating that the proposed system is able to register 3D
scans and to detect changes in spatial data and also to detect changes that occur
in colour space and are not observable using range values only. Apart from the
description of this system for autonomous difference detection, the particular
contribution is the introduction of novel methods including the 3D-NDT rep-
resentation with adaptive cell size to efficiently represent both the spatial and
colour aspects of the reference model.
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Chapter 11

Conclusions and Future Work

This chapter summarises the scientific contributions presented in this thesis and
suggests directions for future work.

11.1 Summary

The basic skills required by mobile robots for navigation in a real world envi-
ronment include the capability to create and maintain a useful representation
of the environment, typically in the form of map, and to determine the robot’s
pose within the map. These fundamental skills, or fundamental problems are
therefore a central topic in mobile robotics research. How these problems can
be addressed depends to a large extent on the sensor modalities used.

This thesis addresses the fundamental problems of registration, localisation
and simultaneous localisation and mapping (SLAM) using cameras as the pri-
mary sensor modality in combination with odometry or a 3D laser range scan-
ner. A major principle used is to consider local features obtained from camera
images. These features describe small parts of an image instead of the whole
image at once, which has several benefits especially regarding robustness to en-
vironmental changes. A second key attribute of the methods proposed in this
thesis is that the local features do not have to be tracked over a sequence of
images. The majority of alternative methods that use local features for mobile
robot navigation track a large number of local features over successive frames
in order to improve the accuracy of the position estimate and this tends to be
computationally expensive. To avoid tracking local visual features, the work
presented in this thesis partly relies on appearance based approaches, which
compute how similar two images are without extracting geometrical proper-
ties of the environment. Here the key idea is to relate image similarity with
the hypothesis that the images were taken at a similar position. The measure
of similarity used in this thesis is based on the number of corresponding local
visual features between two images.
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Two different sensory setups are considered in this thesis. The first, referred
to as Omni-directional sensor configuration, consists of an omni-directional
camera and the robot’s odometry. The second sensory setup, referred as 3D
Vision sensor configuration, consists of a standard planar CCD camera and a
2D laser range scanner, both mounted on a pan/tilt unit attached to a mobile
robot. These two sensory setups cover together a wide application area in mo-
bile robotics. The first configuration is very minimalistic both in terms of size
and weight, which makes it suitable for cheap and small robots. The second
sensory setup is more costly and sophisticated and covers another segment of
the mobile robot application domain with high demands on accuracy but not
so hard financial constraints.

11.1.1 Omni-directional sensor configuration

This sensor setup consists of odometry and an omni-directional camera, re-
alised by a special mirror attached to a standard camera. Despite the inex-
pensive hardware, the SLAM method proposed in Chapter 6 “Mini-SLAM”
was found to create consistent maps in medium- to large-scale indoor and
outdoor environments (robot path lengths up to 1.4 km) in a computational
efficient manner. Odometry is used to obtain relative pose estimates between
successive frames, meaning that it is only used over small distances where it
is sufficiently accurate. Apart from the accuracy of odometry over short dis-
tances, Mini-SLAM relies on the discriminative power of local visual features
that allow robust data association and thus large-scale map correction through
closed loops. To avoid unnecessary image comparisons and to improve robust-
ness with respect to perceptual aliasing, a covariance estimate of the mobile
robot’s pose is used to limit the area in which potential matches are expected.
The robustness of the method was evaluated by corrupting the input consisting
of odometry readings and appearance based similarity measures. Mini-SLAM
was shown to be especially stable against odometric errors showing a graceful
degradation of the performance. To the best knowledge of the author, the com-
bination of a purely appearance based approach with odometry is completely
new in the context of visual-SLAM.

The Mini-SLAM method was used to address the multi-robot mapping
problem, that is to fuse data collected by multiple robots into a single map
without knowing the relative poses between the data sets. It was shown to not
only consistently fuse the data sets but also to improve the consistency of the
joint map.

The same appearance based similarity measure computed from the number
of matching local visual features was used for global localisation with respect to
an existing map, i.e. for localisation without any initial pose estimate. The map
consists of local visual features extracted from a set of omni-directional images
with known positions (the positions could be the output of the Mini-SLAM
method, for example). A particle filter approach was used that accumulates
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sensor evidence possibly supporting multiple pose hypotheses over time. Apart
from the methodological achievement, the main contribution of this work is
the long term investigation in a dynamic populated environment over several
months, and the robustness evaluation with up to 90% virtual occlusions. The
results show that even if the environment has gone through changes after the
map was created, for example, by moved objects or simulated by virtual occlu-
sions, it is still possible to obtain good position estimates.

11.1.2 3D Vision sensor configuration

The second sensory setup considered in this thesis consists of a standard 1
megapixel CCD camera mounted together with a 2D laser range finder onto a
pan/tilt unit (to obtain 3D range data) fitted to a mobile robot. Odometry was
available but not used in this sensor configuration. By not relying on pose sen-
sors such as odometry, which incrementally integrate measurements over time,
it is demonstrated that the methods can process sensor data from two poses
for which no relative position is available. They would therefore be suitable to
handle sensory readings from multiple robots, for example.

Local image features are central to many of the approaches proposed in this
thesis. An important task is therefore to combine high-resolution camera im-
ages with the low-resolution 3D laser range data to obtain depth estimates for
each pixel (or sub-pixel) by an image dependent interpolation of the 3D laser
range values. The main idea is to use colour similarity as an indication of depth
similarity, based on the observation that depth discontinuities in the scene of-
ten correspond to colour or brightness changes in the camera image. A set of
interpolation methods using colour information is proposed and evaluated us-
ing real world indoor and outdoor data. The results showed that the accuracy
is dependent on the scene content. This is particularly striking comparing in-
door and outdoor environments. In addition to the interpolation methods, four
measures of the confidence of the interpolation accuracy are proposed. The
evaluation shows a clear correlation between the interpolation accuracy and
the confidence measure. By using the interpolation method for each pixel in the
camera image it is possible to obtain range estimates with a resolution that is an
order of magnitude higher than provided from the laser scanner data alone. To
obtain “Super Resolution” in this way constitutes an application area in itself.
With respect to the application of local visual features for robot navigation,
non-iterative interpolation methods are proposed, which allow to obtain depth
estimates in predictable, constant time for a set of sub-pixel coordinates repre-
senting the image position of the extracted local visual features. It was found
that non-iterative methods gave a similar performance as the iterative method.

Using the discriminative property of local visual features together with their
3D position estimated with the proposed interpolation method creates a novel
possibility to register 3D point clouds and thus to obtain the relative position
between two robot poses. The key aspects of the proposed registration method
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is that it uses local visual features to handle correspondences, which makes the
registration work without initial relative pose estimates assuming that there is
some overlap between the data and no perceptual aliasing. Most registration
methods, and especially laser based approaches, rely on initial pose estimates
that in many cases are not available at all or not with the required accuracy.
The performance usually degrades quickly with the quality of the initial pose
estimates. The proposed method was shown to accurately register successive
data collected both in indoor and outdoor environments. By considering the
covariance estimate of each local visual feature in addition to the position esti-
mate produced higher registration accuracy outdoors and in cases where only a
few corresponding features were found, for example, due to a small overlap. A
large depth covariance means that the position is likely to be inaccurate. Even
so, the accuracy of the bearing angle is not related to the accuracy of the depth
estimate and contains useful information.

The proposed 3D registration method, which combines an appearance based
approach with 3D metric data, has also been used for 3D metric mapping and
3D metric global localisation. Both the mapping and localisation methods ex-
ploit the property that no initial pose estimates are required to obtain accurate
relative poses from registration. To select candidate robot poses for registra-
tion an appearance based measure of image similarity is used. The mapping
problem is then treated as an optimisation problem where the distance between
corresponding local visual feature pairs, weighted with a covariance estimate
(a large covariance corresponds to a lower weight), is minimised. The mapping
method was shown to improve the consistency of an indoor map by an order
of magnitude compared to using incremental registration alone.

The corresponding localisation method uses a combination of global ap-
pearance based localisation, which determines the map pose with the most
similar appearance, followed by a local visual feature based registration. This
method was able to accurately localise the robot globally without any initial
pose estimates in an indoor environment.

Finally, an approach to difference detection is proposed that combines all
the methods developed for the “3D Vision sensor configuration” (interpolation,
registration, mapping and localisation). The purpose is to determine changes
in real 3D environments. This task is very difficult to perform for a human
and very useful for security robots. An additional contribution developed for
the proposed difference detection approach is the combination of spatial and
colour coordinates. This makes it possible to detect spatial changes but also
changes that only occur in colour space. The method was shown to both detect
rather small spatial changes but also to detect colour changes alone. In order to
detect the changes correctly, it is essential that the registration method is very
accurate. Thus, the results also demonstrate the accuracy of both the generated
map and the localisation methods. Another property, which is important for
change detection, is that the registration method does not rely on good initial
pose estimates. Such pose estimates will often not be available because this
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would require to maintain a consistent coordinate system over the potentially
long duration between building the reference model of the environment and the
detection of changes.

11.2 Conclusions

A central observation applied and confirmed in this thesis is that local visual
features are very discriminative and therefore particularly suitable to address
the problem of data association. An important contribution of this work is to
demonstrate that tracking of these local visual features over multiple frames
as it is used in standard approaches is not necessary neither to obtain metric
maps, nor to perform metric localisation. This is achieved by a combination
of visual appearance based similarity measures with rough relative pose esti-
mates to obtain accurate metric maps. Because the local features are not tracked
over multiple frames, the SLAM problem can be addressed using a graph based
structure, which can be optimised in an efficient manner. A graph structure
where each node is a robot pose is commonly used in laser based approaches
but rarely in vision based approaches. The novel aspect lies in the appearance
based visual registration method that is used to incorporate visual relations into
the graph. Two different cameras with different resolution and with different
curved mirror lenses have been utilised. This demonstrates that the proposed
visual appearance based methods works directly without any additional modi-
fications such as tedious calibration.

Another contribution of this work is the combination of a vision sensor
with a 3D laser scanner to obtain accurate position (and covariance) estimates
at the sub-pixel level, for example of the position of local visual features. Sev-
eral non-iterative methods were proposed to obtain an interpolated depth value
for an arbitrary (sub)-pixel position in the camera image and to determine a
confidence value of the performed interpolation. Outdoor environments typi-
cally involve longer range measurements, which means that the resolution is
decreased while natural outdoor objects, such as trees, have a comparably thin
and complex structure. Therefore to properly exploit the principle that colour
and intensity changes correlate with changes in depth, it is important that the
resolution of the laser is high enough to be able to handle the structure of natu-
ral objects. This implies that to fully utilise the interpolation methods outdoors
(with natural objects) would typically require a higher angular resolution of the
laser range scanner compared to indoor environments.

In the proposed 6DOF registration method, only a small degradation in per-
formance was observed at the turning points of the robot, which means that the
overlap between the successive scans can be small. In case of a pure laser based
systems, a small overlap between scans rises problems especially related to data
association. However, if only small, the observed degradation demonstrates
that even with the comparatively reliable data association obtained from the
local visual features, the amount of overlap will influence the registration accu-
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racy. In our case, the size of the overlap will influence the number of matched
features, but also the angular distribution of the matched features, which es-
pecially affects the angular accuracy. A small overlap means that the feature
matches are located within a narrow “cone” and that the number of feature
matches is comparably low.

11.3 Future Work

One important question that needs further investigation is how to combine
the two different sensory setups and associated approaches so as to exploit
their complementary strengths. The first sensory setup (Omni-directional sen-
sor configuration) corresponds to methods that rely on visual appearance and
odometry information for mapping and localisation in an efficient way rather
than with high accuracy. The second sensory setup (3D Vision sensor config-
uration) instead gives high accuracy in a comparatively complex, costly and
time consuming manner. Many robotic applications do not require an accurate
global pose estimate. Instead the accuracy of the relative pose estimate between
the robot and an object to be manipulated is of higher interest. For example,
a high relative pose accuracy is needed for an autonomous forklift truck to
pick up pallets and to unload them in a pallet rack. In the area between the
docking locations, the accuracy of the localisation estimate is less crucial. A
sensible approach for this scenario would be to utilise the methods proposed
in Part II (using the Omni-directional sensor configuration) for global localisa-
tion whereas relative poses would be estimated using the methods from Part III
(using the 3D Vision sensor configuration). In general, the methods from Part
II are suitable for large-scale navigation, whereas the methods from Part III are
more suitable for accurate small-scale, high-resolution navigation.

Though the proposed approaches are different in terms of accuracy and effi-
ciency they share many fundamental aspects and therefore the 3D Vision sensor
configuration can be utilised together with the methods from Part II (not the
other way around since the methods in Part III also rely on metric information
about the local visual features). For example, the global localisation approach,
using the 3D Vision sensor configuration can easily be extended to use the par-
ticle filter based approach proposed using the Omni-directional sensor setup
in Part II, Section 5.2. This can be done without changing the representation
of the map (the map consists of a set of visual features for each node, which
are used to determine the image similarity and, together with the position and
covariance estimate, to determine the relative pose between two frames). Simi-
larly, the “Mini-SLAM” approach proposed in Part II can be used to obtain a
map based on visual appearance and odometry only and this map could then
be used to initialise the mapping method proposed in Part III.

The current bottleneck in all methods is the time to calculate the similarity
measure, that is, to match the local visual features. This has been addressed
by using the likelihood of the robot pose to decrease the amount of required
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comparisons. Other approaches to speed up the comparisons need to be inte-
grated. This includes faster search methods, for example, approximate nearest
neighbour or to utilise dedicated hardware, for example, FPGAs or GPUs. Also
alternative visual features could be considered with a smaller size of the de-
scriptor, for example, the SURF feature. A further possibility to be investigated
is to utilise global features as a filtering step before the more computationally
demanding local visual feature comparisons are carried out.

Currently, the similarity measure used is based on the number of matched
features which means that local features occurring from repetitive structures,
for example, a brick wall are treated in the same way as features that occur very
rarely. Hence, by weighting the visual features based on how often they occur
will increase the robustness towards problem related to perceptual aliasing.

A problem not addressed in this thesis is how to create an optimal map. This
includes the problem to determine when a new omni-directional image, or new
data from the 3D laser range scanner and the planar camera, should be added
into the map. This should be done adaptively to keep the map small while
assuring that it contains a sufficient amount of data in areas where changes
occur rapidly, for example. A related topic for future work is to investigate
how to determine where the robot should move to (exploration), to increase
the information content (resolution and coverage) and the consistency of the
created map.

A further related topic, is the issue of handling dynamic changes, such as
moved objects but also variations due to illumination and seasons, in an effi-
cient manner. This can be addressed by determining for each potential new node
if it should directly be added to the map, if an old node should be replaced or
if the candidate node should only be used for localisation purposes.

11.3.1 Omni-directional sensor configuration

The methods proposed in Part II were all tested with omni-directional cameras,
therefore it would be interesting to extend the proposed methods to work with
other types of sensors, for example, to use a planar camera equipped with a
wide angle lens or even to solely use a 3D-laser range scanner in an appearance
based manner.

Another line of research would be to aim at a pure vision-based system,
by replacing odometry by estimating relative pose estimates directly from the
camera (visual-odometry).

Even though the tested environment contained modest elevation changes,
the proposed methods have so far only been using a 2D representation of the
world. A natural extension is therefore to implement and test the proposed
methods in full 6DOF environments, for example, using a helicopter or an
underwater platform.
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11.3.2 3D Vision sensor configuration

Local visual features are very robust to changes in the environment. What
would be interesting is to evaluate whether the proposed appearance based reg-
istration method using local visual features, is more robust to environmental
changes than, for example, the commonly used ICP method using range data.

The proposed difference detection method currently uses the full image res-
olution only to obtain the local visual features, whereas the actual difference
detection is performed at the resolution of the range data. It would be pos-
sible to either use the interpolation method so as to obtain a high resolution
(coloured) 3D point cloud or to extend the difference detection to do difference
detection in the image. Also, the difference detection should be evaluated in an
outdoor environment. Difference detection is closely related to the problem of
dynamic mapping. For example, one could present incremental differences over
a time frame, which could be suitable for monitoring the progress of a construc-
tion site. To use and evaluate other sensor modalities such as thermal cameras
for difference detection could, for example, be used to monitor machinery and
heat dissipation in houses over time.
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Appendix B

External and Internal Camera

Calibration

This appendix describes the calibration method to automatically estimate both
the internal and external parameters of the camera. The internal parameters
describe how a 3D point in the camera coordinate system is projected to 2D
pixel coordinates. The external parameters contains the relative rotation and
translation of another coordinate system, in this case the wrist joint. Hence,
the external parameters is used to describe how a 3D point given in the in wrist
joint coordinates is projected to a 3D point in the camera coordinate system.

B.1 Introduction

The methods described in Part III are all using projection of 3D coordinates
into 2D pixel coordinates and vice verse. Therefore, the accuracy in calibration
results directly affect the results in those methods. The calibration routine pro-
posed in this appendix is done using a special calibration board, see Fig.B.1.
The calibration board contains a chessboard pattern and has reflective stripes
on the side. This combination makes it easy to both detect the board (using
the corners of the chessboard squares) in the camera image and (using the re-
mission values, i.e. the intensity value of the returned laser beam) in the laser
range data. The external parameters for the camera is obtained by optimising
the SSD between the chessboard corners location obtained from the camera
images and the laser data. In the laser range data the location of the chessboard
corners are inferred from the location of the reflective stripes.

B.2 Internal Calibration

The main principle of determining the internal parameters is to combine mul-
tiple images containing the chessboard pattern, Fig. B.2, taken from various
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Figure B.1: Calibration board, consisting of a standard chessboard pattern and reflective
stripes (grey).

Figure B.2: Calibration pattern.
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Figure B.3: Overview of a camera coordinate system.

viewpoints and for each image to determine the pixel coordinates of the inter-
secting squares. The distance dsquare between each chessboard corner point
(the length of the square) is known and is in this case 54mm.

The set of internal parameters to be obtained in the camera calibration [56]
consists of a calibration matrix K and a distortion vector d.

The calibration matrix K consists of 4 parameters

K =





αx x0

αy y0

1



 (B.1)

where αx and αy is the focal length of the camera in pixel coordinates. Two
variable are used to express the focal length due to the fact that cameras sensor
array elements are typically not formed as perfect squares. The principle point
(x0,y0) is given by the pixel coordinates of the point where the principle axes
passes through the image plane, see Fig. B.3.

To handle lens distortion, a distortion vector d is used. The distortion vec-
tor d consists of 4 parameters. d = [k1,k2,p1,p2] where k1 and k2 are radial
distortion coefficients and p1 and p2 are tangential distortion coefficients in
polynomials (see Eq. B.4-B.5).

The chessboard pattern provides geometrical constraints dsquare, the inter-
nal parameters, calibration matrix K and the distortion vector d can therefore
be found by minimising the distance between the chessboard corners located in
the image and the projected ones as recorded by the camera, see Fig. B.4. Note
that the K matrix is relative to the cameras own coordinate system therefore
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Figure B.4: Location of the chessboard corner points in 3D.

the rotation Rn and translation tn of the chessboard pattern in each calibra-
tion image n has to be determined.

Given a 3D point X = (x,y, z) in the camera coordinate system (Xc,Yc,Zc),
see Fig. B.3, the projected point X̃ = (x̃, ỹ, 1) is defined as

x̃ = x/z (B.2)

ỹ = y/z (B.3)

To get the point in the distorted image X̃
′

= (x̃
′

, ỹ
′

, 1) (in camera 3D coor-
dinates) the distortion coefficients are used

x̃
′

= x̃(1 + k1r
2 + k2r

4) + 2p1x̃ỹ+ p2(r
2 + 2x̃2) (B.4)

ỹ
′

= ỹ(1 + k1r
2 + k2r

4) + p1(r
2 + 2ỹ2) + 2p2x̃ỹ (B.5)

where r2 = x̃2 + ỹ2.
Finally X̃

′

is converted into the pixel coordinate system Xp as

Xp = KX̃
′

. (B.6)

This method uses the principal point (x0,y0) as the centre of the radial
distortion calculations.

B.3 External Calibration

Up to now, the rotation matrix R and translation vector t has be used to denote
the pose of the calibration board with respect to the camera, which from now
on is denoted Rimage and timage.

The external parameters typically contains information about the orienta-
tion (rotation matrix Rcam) and location (translation vector tcam) of a camera
in a robot coordinate frame. One issue here is that the camera is not fixed in the
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Figure B.5: Coordinate system of the robot. The dotted lines indicate the two rotation
axis (pan/tilt) of the wrist at its current position.

robot coordinate frame since the camera location is dependent on angles of the
wrist joint. The calibration parameters are therefore selected to be the relative
to the wrist joint. The robot coordinate system is then defined to have the same
origin as the wrist joint, see Fig. B.5.

The robot coordinate system is defined in Fig. B.5. It was selected following
the convention commonly used to describe image coordinates that is, the top
left (0,0) and the depth are denoted z.

Because the laser scanner is also mounted on the wrist, the external param-
eters for the laser is also relative to the wrist joint. Hence, four different sets of
parameters has to be found; two for the laser scanner (Rlaser, tlaser) and two
for the camera (Rcam and tcam).

B.3.1 Laser Calibration

The laser offset with respect to the wrist joint is currently not calibrated, instead
it has been estimated based on the cad drawings obtained from the manufac-
turers. The external parameters are set to: Rlaser = I where I is the 3x3 unit
matrix and tlaser = [0, −0.1378, 0.0605].

B.3.2 Camera Calibration

To find the Rcam and tcam we exploit the fact that the laser calibration param-
eters (Rlaser, tlaser) are known. It is therefore possible to use the laser data
transformed into the robot coordinate system. One key problem is to find the
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Figure B.6: Segmented scan data based on remission values. Note that all the points
from the reflective area are present (and only a few points remains from the rest of the
scan data). The data are clustered to remove any extra outliers.

pose of the calibration board Rboard and tboard within the laser data with re-
spect to the the robot coordinate system. The pose of the calibration board is
obtained by using the remission values from the laser scanner since the calibra-
tion board has reflective stripes on the edges (see Fig. B.1), it is possible to find
these edges by thresholding the remission values, see Fig. B.6.

To assure that the thresholded scan data only contain data points from the
calibration board, the scan data are clustered and only the cluster with the
largest amount of laser points is kept. Defining this subset of highly reflective
points as Scalib and n = |Scalib|, the plane which contains the calibration
board can be extracted by calculating the covariance matrix Ccalib for the
scan Scalib as

Ccalib =
1

n− 1

n
∑

i=1

(pi − µcalib)2 (B.7)

where

µcalib =
1
n

n
∑

i=1

pi. (B.8)

The eigenvectors ~e1,2,3 and the corresponding eigenvalues λ1,2,3 for Ccalib

are calculated and sorted based on the eigenvalues so that λ1 > λ2 > λ3. The
calibration board is estimated to be located in a plane P with normal vector
~n = ~e3 containing the point µcalib.
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Figure B.7: The external parameters to be found are Rcam and tcam. All other rotation
matrices and translation vectors have been determined.

The size of the board is found by projecting all points Scalib on to the
vectors ~e1..3 and finding the min1..3 and max1..3 value for each vector. The
translation tboard (to the top left corner), see Fig. B.7, is then calculated as

tboard = µcalib +min1~e1 +max2~e2 + 0.5(min3 +max3)~e3. (B.9)

The goal is to exact the chessboard points from the laser scanner, we need to
get the correct orientation of the board. Because the board is not symmetrical,
see Fig. B.8 the orientation of the board can be found by comparing the centre
of the board with the centre µcalib calculated from Scalib. To be sure that the
calibration board was not accidentally positioned upside down, we look at the
min2 and max2 value (corresponds to the ~e2 vector). If |min2 > max2| the
translation is instead calculated (compared to Eq. B.9 and Fig. B.8) as

tboard = c+min1~e1 +max2~e2 + 0.5(min3 +max3)~e3. (B.10)

The rotation matrix Rboard for the calibration board is calculated as

Rboard =









~e1x
~e2x

~e3x

~e1y
~e2y

~e3y

~e1z
~e2z

~e3z

.









(B.11)

To find the pose of the calibration board the orientation of the plane created
by ~e1 and ~e2 has to be estimated, see Fig. B.9. The parameter θ is therefore
determined by minimising the area A of the rectangle containing all scan points
Scalib calculated as

A(θ) = |(max1 −min1)Rθ~e1| · |(max2 −min2)Rθ~e2|, (B.12)
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Figure B.8: The reflective areas on the calibration board, shown in grey, and the mean
value of the chessboard pattern ◦ and the reflective material ×. Since the reflective area
is not symmetrical the mean value of the scan points located on the reflective material
will not be located in the centre of the calibration board.

e
2

e
1

θ

Figure B.9: The angle θ of the orientation of the board used to obtain an orientation
estimate of the calibration board. In this case the optimal solution is when θ = 0.
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Figure B.10: A result of calibration. The points represent estimated positions of the
chessboard corners extracted from camera images shown in white (using the obtained
parameters Rcam and tcam) and laser scan data shown in red.

where the rotation matrix Rθ describes a rotation by the angle angle θ around
the ~e3 axis.

We have now two different measurements of the location of the board, one
from the camera image Rimage and timage (see Section B.2) the one extracted
from the laser scanner data, Rboard and tboard.

What is left is to find the tcam and Rcam parameters which is now fairly
strait forward (we now have the parameters for the image, the board and the
wrist parameters, see Fig. B.7).

The parameters Rcam and tcam are found by minimising the SSD of the
chessboard corners found in the images with the calculated position of the
chessboard corners obtained from the laser scan data. The chessboard corners
in the laser scan data are easily obtained from the board position (the location
of the chessboard pattern offset is known as well as the size of each square).
The distance d is the distance from one point to the corresponding point. The
optimisation method used is the Fletcher-Revies gradient method. A calibration
result is presented in Fig. B.10.
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Figure B.11: Calibration result using multiple calibration scans (seen from top / down
perspective). The points shows estimated positions of the chessboard corners extracted
from camera images shown in white (using the obtained parameters Rcam and tcam)
and laser scan data, shown in red, for all calibration board poses. In this case all data
are used simultaneously to find Rcam and tcam.
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3D− vision, 15
3DVF-SLAM, 140
3DVF-localisation, 146

AGV, 3
AON, 122
ASD, 66

C-3PO, 1
CEP, 7
close the loop, 26, 141
correspondence problem, see data as-

sociation

data association, 18, 26, 35
data sets

Run1, 68
Run2, 68
Run3, 68
Run4, 68
indoor 3D− SLAM, 142
lab, 98
lab− studarea, 98
registration− indoor, 130
registration− outdoor, 133
studarea, 98
difference detection data set, 163
indoor scans, 119
multiple floor levels, 96
outdoor / indoor, 92
outdoor scans, 119
overlapping, 98

reference model, 160
simulated data, 116

descriptor, 33
DGPS, 7, 92
DoG, 38
dynamic mapping problem, 152

EKF, 137
exploration, 6
external sensor, 17

features, 21
artificial, 21
global, 33
local, 33, 60
matching, 43
natural, 21

FOV, 7
fundamental problems, 1

GPS, 6
GTLS-ICP, 129
gyro, 6

ICP, 128
inclinometer, 6
inertia sensor, 6
initial pose estimate, 19
interest point, 35
interpolation, 8, 27, 110

kidnapped robot problem, 20

landmarks, see features
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laser range scanner, 6, 16
LIC, 111
local features, 7
localisation, 5, 20

3DVF, 146
appearance-based, 22
global, 20, 145
global 3D, 146
local, 20
Markov, 24
metric, 20
Monte-Carlo (MCL), 24
similarity based, see appearance b.
topological, 20

loop closure, 141

map, 5
appearance, 22
feature, 21
grid, 21
hybrid, 22
metric, 21
occupancy grid, 21
topological, 20

mapping, 5
Markov Random Field (MRF), 113
MCMC, 83
Mini-SLAM, 81
MLI, 111
MLR, see multi-level relaxation
MSIFT, 35
MSIFT*, 67
multi-level relaxation (MLR), 83, 139
multi-robot mapping, 89

NCH, 66
NDT, 157
NLR, 120
NLRC, 122
NR, 110
NRC, 110

octave, 37
odometry, 6, 15, 50

calibration, 50
omni-directional

camera, 15
image, 49
lens, 7, 15
unwrapped, 50

Omnivision, 13

pan / tilt wrist, 16
particle filter, 62

prediction, 63
resampling, 63
state, 62
weight, 62

path planning, 6
perceptual aliasing, 18, 27
PLIC, 113
pose, 5
pose relation based SLAM, see SLAM,graph

based
pose tracking, see localisation, local
PS, 122

registration, 6, 17
global, 17
local, 18

relations, 22, 82
odometry, 85
visual, 85

robots
PeopleBoy, 16, 68
Tjorven, 16, 90, 130

RTK-GPS, 7

scan pose, 130
scan-matching, 6
SIFT, 35
similarity matrix, 44
similarity measure, 43
SLAM, 5, 81

3DVF, 140
graph based, 27, 137
grid-map based, 138
landmark tracking based, 137
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particle filter based, 138
pose relation based, see graph based

sonar, 6
spherical image, 49

Tjorven, see robots,Tjorven
TOF, 6

VNC, 67

wake up robot problem, see localisa-
tion, global
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