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Object-RPE: Dense 3D Reconstruction and Pose Estimation with

Convolutional Neural Networks for Warehouse Robots

Dinh-Cuong Hoang∗, Todor Stoyanov∗, and Achim J. Lilienthal∗

Abstract— We present a system for accurate 3D instance-
aware semantic reconstruction and 6D pose estimation, using an
RGB-D camera. Our framework couples convolutional neural
networks (CNNs) and a state-of-the-art dense Simultaneous
Localisation and Mapping (SLAM) system, ElasticFusion, to
achieve both high-quality semantic reconstruction as well as
robust 6D pose estimation for relevant objects. The method
presented in this paper extends a high-quality instance-aware
semantic 3D Mapping system from previous work [1] by adding
a 6D object pose estimator. While the main trend in CNN-
based 6D pose estimation has been to infer object’s position
and orientation from single views of the scene, our approach
explores performing pose estimation from multiple viewpoints,
under the conjecture that combining multiple predictions can
improve the robustness of an object detection system. The
resulting system is capable of producing high-quality object-
aware semantic reconstructions of room-sized environments,
as well as accurately detecting objects and their 6D poses.
The developed method has been verified through experimental
validation on the YCB-Video dataset and a newly collected
warehouse object dataset. Experimental results confirmed that
the proposed system achieves improvements over state-of-
the-art methods in terms of surface reconstruction and ob-
ject pose prediction. Our code and video are available at
https://sites.google.com/view/object-rpe.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a cru-

cial enabling technology for autonomous warehouse robots.

With the increasing availability of RGB-D sensors, research

on visual SLAM has made giant strides in development

[2], [3], [4]. These approaches achieve dense surface re-

construction of complex and arbitrary indoor scenes while

maintaining real-time performance through implementations

on highly parallelized hardware. However, the purely geo-

metric map of the environment produced by classical SLAM

systems is not sufficient to enable robots to operate safely and

effectively in warehouse applications with a high demand on

flexibility. For instance, automated picking and manipulation

of boxes and other types of goods requires information about

the position and orientation of objects. The inclusion of rich

semantic information and 6D poses of object instances within

a dense map is required to help robots better understand

their surroundings, to avoid undesirable contacts with the

environment and to accurately grasp selected objects.

Beyond classical SLAM systems which solely provide a

purely geometric map, the idea of a system that generates

a dense map in which object instances are semantically

annotated has attracted substantial interest in the research
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community [1], [5], [6], [7]. Semantic 3D maps are important

for robotic scene understanding, planning and interaction. In

the case of automated warehouse picking, providing accurate

object poses together with semantic information are crucial

for robots that have to manipulate the objects around them

in diverse ways.

To obtain the 6D pose of objects, many approaches were

introduced in the past [8], [9], [10]. However, because of

the complexity of object shapes, measurement noise and

presence of occlusions, these approaches are not robust

enough in real applications. Recent work has attempted to

leverage the power of deep CNNs to solve this nontrivial

problem [11], [12], [13]. These techniques demonstrate a

significant improvement of the accuracy of 6D object pose

estimation on some popular datasets such as YCB-Video or

LineMOD. Even so, due to the limitation of single-view-

based pose estimation, the existing solutions generally do

not perform well in cluttered environments and under large

occlusions.

In this work, we develop a system, called Object-RPE

(Reconstruction and Pose Estimation), that builds on top

of the high-quality instance-aware semantic 3D Mapping

approach from our previous work in [1] and extends it to

produce a complete instance-aware semantic reconstruction

and 6D object pose estimation framework. The work benefits

from integrating a state-of-the-art deep learning-based pose

estimation technique [13] into our 3D scene reconstruction

system. Intuitively, by combining pose predictions from mul-

tiple camera views, the accuracy of the estimated 3D object

pose can be improved. Based on this, our framework deploys

simultaneously a 3D mapping algorithm to reconstruct a

semantic model of the environment, and an incremental 6D

object pose recovering algorithm that carries out predictions

using the reconstructed model. We demonstrate that we

can exploit multiple viewpoints around the same object to

achieve robust and stable 6D pose estimation in the presence

of heavy clutter and occlusion.

Our main contribution is, therefore, a method that can

be used to accurately predict the pose of objects under

partial occlusion. We demonstrate that by integrating deep

learning-based pose prediction into our semantic mapping

system we are able to address the challenges posed by

missing information due to clutter, self-occlusions, and bad

reflections.

II. RELATED WORK

In recent years, CNN architectures have been extended

to the object pose estimation task [11], [12], [13]. Sin-



gleShotPose [12] simultaneously detects an object in an RGB

image and predicts its 6D pose without requiring multiple

stages or having to examine multiple hypotheses. It is end-

to-end trainable and only needs the 3D bounding box of

the object shape for training. This method is able to deal

with textureless objects, however, it fails to estimate object

poses under large occlusions. To handle occlusions better, the

PoseCNN architecture [11] employs semantic labeling which

provides richer information about the objects. PoseCNN

recovers the 3D translation of an object by localizing its

center in the image and estimating the 3D center distance

from the camera. The 3D rotation of the object is esti-

mated by regressing convolutional features to a quaternion

representation. In addition, in order to handle symmetric

objects, the authors introduce ShapeMatch-Loss, a new loss

function that focuses on matching the 3D shape of an object.

The results show that this loss function produces superior

estimation for objects with shape symmetries. However, this

approach requires Iterative Closest Point (ICP) for refinement

which is prohibitively slow for real-time applications. To

solve this problem, Wang et al. proposed DenseFusion [13]

which is approximately 200x faster than PoseCNN-ICP and

outperforms previous approaches in two datasets, YCB-

Video and LineMOD. The key technique of DenseFusion

is that it extracts features from the color and depth images

and fuses RGB values and point clouds at the per-pixel level.

This per-pixel fusion scheme enables the model to explicitly

reason about the local appearance and geometry information,

which is essential to handle occlusions between objects. In

addition, an end-to-end iterative pose refinement procedure is

proposed to further improve pose estimation while achieving

near real-time inference. Although DenseFusion has achieved

impressive results, like other single-view-based methods it

suffers significantly from the ambiguity of object appearance

and occlusions in cluttered scenes, which are very common

in practice. In addition, since DenseFusion relies on segmen-

tation results for pose prediction, its accuracy highly depends

on the performance of the segmentation framework used. As

in pose estimation networks, if the input to a segmentation

network contains an occluder, the occlusion significantly

influences the network output. In this paper, while exploiting

the advantages of the DenseFusion framework, we replace

its segmentation network by our semantic mapping system

that provides a high-quality segmentation mask for each

instance. We address the problem of the ambiguity of object

appearance and occlusion by combining predictions using

RGB-D images from multiple viewpoints.

III. METHODOLOGY

The proposed pipeline is illustrated in Fig. 1. Our prior

approach [1] is composed of segmentation, registration, and

fusion, which are summarized in Sec. III-A for completeness.

The new component presented in this paper is a 6D object

pose estimator that exploits multiple views of the same

instance and our high-quality semantic map to accurately

predict the pose of an object under heavy occlusion. These

novel components are described in Sec. III-B.

Fig. 1: Overview of the proposed system.

Fig. 2: CNN architectue: Extending Mask R-CNN to predict

masks and classes probabilities while simultaneously yield-

ing an adaptive weight for camera tracking. DenseFusion

uses the predicted model depth map and predicted model

masks to output object pose predictions.

A. Instace-aware Semantic Mapping

Segmentation: We employ Mask R-CNN [14] to generate

a segmentation mask for each instance and extend it as shown

in Fig. 2 to also regress an RGB image confidence weight

for use in the subsequent registration step. A new branch is

added to the original Mask R-CNN framework, which shares

computation of feature maps with existing branches and

outputs the weight via a fully connected layer. The developed

network returns a set of per-pixel class probabilities and an

adaptive weight used in the cost function in the subsequent

registration stage.

Registration: Similarly to ElasticFusion[4], our approach

in [1] also integrates both geometric and photometric cues

for camera tracking. In addition, we propose modifications of

the registration cost function to make full use of the instance

class labels in the process. We combine the cost functions of

geometric, photometric, and semantic estimates in a weighted

sum. The weight associated with the photometric error is ob-

tained from the previously described modified segmentation

network.

Data association: Given an RGB-D frame at time step t,

each mask M from Mask R-CNN must be associated to an

instance in the 3D map. Otherwise, it will be assigned as a

new instance. The corresponding instance is defined based

on computing the overlap area between the mask M and the

back-projected masks from the current 3D map. To efficiently



(a) frame 66 (b) Ground truth (c) Mask R-CNN (d) Object-RPE

(e) frame 1916 (f) Ground truth (g) Mask R-CNN (h) Object-RPE

Fig. 3: Examples of masks generated by Mask R-CNN and produced by reprojecting the current scene model.

store class probabilities, we assign an object instance label o

to each surfel and then this label is associated with a discrete

probability distribution P (Lo = li) over the set of class

labels, li ∈ L. In consequence, we need only one probability

vector for all surfels belonging to the same object entity.

This makes a big difference when the number of surfels is

much larger than the number of object instances. For every

new detection, we update the class probability by a simple

averaging scheme as presented in [1]. In order to enrich

segmentation information on each surfel, we also include the

probability to account for background/object predictions. To

that end, each surfel in our 3D map has a non-background

probability attribute po.

Segmentation refinement: Mask R-CNN frequently mis-

classifies object boundary regions as background. In other

words, the detailed structures of an object are often lost or

smoothed out. We observe that many of the pixels in the

misclassified regions have non-background probability just

slightly below 0.5, while the soft probabilities mask for true

background pixels is often far below the threshold. Based

on this observation, we correct misclassified regions using

two proposed criteria which rely on location information and

pixel-wise probability of the class. The results in [1] show

that our approach leads to an improvement in the 2D instance

labeling over baseline single frame predictions.

B. Multi-view Object Pose Estimation

Given an RGB-D frame sequence, the task of 6D object

pose estimation is to estimate the rigid transformation from

the object coordinate system O to a global coordinate system

G. We assume that the 3D model of the object is available

and the object coordinate system is defined in the 3D space of

the model. The rigid transformation consists of a 3D rotation

R(ω, ϕ, ψ) and a 3D translation T (X,Y, Z). The translation

T is the coordinate of the origin of O in the global coordinate

frame G, and R specifies the rotation angles around the X-

axis, Y-axis, and Z-axis of the object coordinate system O.

Our approach outputs the object poses with respect to

the global coordinate system by combining predictions from

different viewpoints. For each frame at time t, we apply

DenseFusion to masks back-projected from the current 3D

map. The estimated object poses are then transferred to the

global coordinate system G and serve as measurement inputs

for an extended Kalman filter (EKF) based pose update stage.

Single-view based prediction: In order to estimate the

pose of each object in the scene from single views, we

apply DenseFusion to masks back-projected from the current

3D map. The network architecture and hyperparameters

are similar as introduced in the original paper [13]. The

image embedding network consists of a ResNet-18 encoder

followed by 4 up-sampling layers as a decoder. The PointNet

architecture is a multi-layer perceptron (MLP) followed by

an average-pooling reduction function. The iterative pose

refinement module consists of 4 fully connected layers that

directly output the pose residual from the global dense

feature. For each object instance mask, a 3D point cloud is

computed from the predicted model depth pixels and an RGB

image region is cropped by the bounding box of the mask

from the predicted model color image. First, the image crop

is fed into a fully convolutional network and then each pixel

is mapped to a color feature embedding. For the point cloud,

a PointNet-like architecture is utilized to extract geometric

features. Having generated features, the next step combines

both embeddings and outputs the estimation of the 6D pose

of the object using a pixel-wise fusion network. Finally, the

pose estimation results are improved by a neural network-

based iterative refinement module. A key distinction between

our approach and DenseFusion is that instead of directly

operating on masks from the segmentation network, we use

predicted 2D masks that are obtained by reprojecting the

current scene model. As illustrated in Fig. 3 our semantic

mapping system leads to an improvement in the 2D instance

labeling over the baseline single frame predictions generated

by Mask R-CNN. As a result, we expect that our object pose

estimation method benefits from the use of the more accurate

segmentation results.

Object pose update: For each frame at time t, the

estimates obtained by DenseFusion and camera motions from

the registration stage are used to compute the pose of each

object instance with respect to the global coordinate system



G. The pose is then used as a measurement update in a

Kalman filter to estimate an optimal 6D pose of the object.

Since we assume that the measured scene is static over the

reconstruction period, the object’s motion model is constant.

The state vector of the EKF combines the estimates of

translation and rotation:

x = [X Y Z φ ϕ ψ]⊤ (1)

Let xt be the state at time t, x̂
−

t
denote the predicted state

estimate and P−

t denote predicted error covariance at time t

given the knowledge of the process and measurement at the

end of step t− 1, and let x̂t be the updated state estimate at

time t given the pose estimated by DenseFusion zt. The EKF

consists of two stages prediction and measurement update

(correction) as follows.
Prediction:

x̂
−

t
= x̂t−1 (2)

P−

t = Pt−1 (3)

Measurement update:

x̂t = x̂
−

t
⊕Kt(zt ⊖ x̂

−

t
) (4)

Kt = P−

t (Rt + P−

t )−1 (5)

Pt = (I6×6 −Kt)P
−

t (6)

Here, ⊖ and ⊕ are the pose composition operators. Kt is

the Kalman gain update. The 6×6 matrix Rt is measurement

noise covariance, computed as:

Rt = µI6×6 (7)

where µ is the average distance of all segmented object

points from the corresponding 3D model points transformed

according to the estimated pose.

IV. EXPERIMENTS

We evaluated our system on the YCB-Video [11] dataset

and on a newly collected warehouse object dataset. The

YCB-Video dataset was split into 80 videos for training and

the remaining 12 videos for testing. For the warehouse object

dataset, the system was trained on 15 videos and tested on

the other 5 videos. Our experiments are aimed at evaluating

both surface reconstruction and 6D object pose estimation

accuracy. A comparison against the most closely related

works is also performed here.
For all tests, we ran our system on a standard desk-

top PC running 64-bit Ubuntu 16.04 Linux with an Intel

Core i7-4770K 3.5GHz and a nVidia GeForce GTX 1080

Ti 6GB GPU. Our pipeline is implemented in C++ with

CUDA for RGB-D image registration. The Mask R-CNN

and DenseFusion codes are based on the publicly available

implementations by Matterport1 and Wang2. In all of the

presented experimental setups, results are generated from

RGB-D video with a resolution of 640x480 pixels. The

DenseFusion networks were trained for 200 epochs with a

batchsize of 8. Adam [15] was used as the optimizer with

learning rate set to 0.0001.

1https://github.com/matterport/Mask_RCNN
2https://github.com/j96w/DenseFusion

(a) Waffle (b) Jacky (c) Skansk (d) Sotstark

(e) Onos (f) Risi Frutti (g) Pauluns (h) Tomatpure

(i) Small Jacky (j) Pallet (k) Half Pallet

Fig. 4: The set of 11 objects in the warehouse object dataset.

(a) (b) (c)

Fig. 5: We collected a dataset for the evaluation of recon-

struction and pose estimation systems in a typical warehouse

using (a) a hand-held ASUS Xtion PRO LIVE sensor.

Calibration parameters were found by using (b) a chessboard

and (c) reflective markers detected by the motion capture

system.

A. The Warehouse Object Dataset

Unlike scenes recorded in the YCB-Video dataset or other

publicly available datasets, warehouse environments pose

more complex problems, including low illumination inside

shelves, low-texture and symmetric objects, clutter, and oc-

clusions. To advance warehouse application of robotics as

well as to thoroughly evaluate our method, we collected

an RGB-D video dataset of 11 objects as shown Fig. 4,

which is focused on the challenges in detecting warehouse

object poses using an RGB-D sensor. The dataset consists

of over 20,000 RGB-D images extracted from 20 videos

captured by an ASUS Xtion PRO Live sensor, the 6D poses

of the objects and instance segmentation masks generated

using the LabelFusion framework [16], as well as camera

trajectories from a motion capture system developed by

Qualisys3. Calibration is required for both the RGB-D sensor

and motion capture system shown in Fig. 5. We calibrated

the motion capture system using the Qualisys Track Man-

ager (QTM) software. For RGB-D camera calibration, the

intrinsic camera parameters were estimated using classical

black-white chessboard and the OpenCV library. In order

to track the camera pose through the motion capture system,

3https://www.qualisys.com



Fig. 6: Examples of 3D object-aware semantic maps from

the YCB-Video dataset and the warehouse object dataset.

we attached four spherical markers on the sensor. In addtion,

another four markers were also placed on the outer corners of

a calibration checkerboard. By detecting these markers, we

were able to estimate the transformation between the pose

from the motion capture system and the optical frame of the

RGB-D camera.

B. Reconstruction Results

In order to evaluate surface reconstruction quality, we

compare the reconstructed model of each object to its ground

truth 3D model. For every object present in the scene,

we first register the reconstructed model M to the ground

truth model G by a user interface that utilizes human input

to assist traditional registration techniques [16]. Next, we

project every vertex from M onto G and compute the distance

between the original vertex and its projection. Finally, we

calculate and report the mean distance µd over all model

points and all objects.

The results of this evaluation on the reconstruction datasets

are summarised in Table I and Table II. Qualitative results

are shown in Fig. 6. We can see that our reconstruction

system significantly outperforms the baseline. While Elas-

ticFusion results in the lowest reconstruction errors on two

YCB objects (006 mustard bottle and 011 banana can), our

approach achieves the best performance on the remaining

objects. The results show that our reconstruction method has

a clear advantage of using the proposed registration cost

function. In addition, we are able to keep all surfels on

object instances always active, while ElasticFusion has to

segment these surfels into inactive areas if they have not been

observed for a period of time ∂t. This means that the object

surfels are updated all the time. As a result, the developed

system is able to produce a highly accurate object-oriented

semantic map.

C. Pose Estimation Results

We use the average closest point distance (ADD-S) metric

[11], [13] for evaluation. We report the area under the ADD-

S curve (AUC) following PoseCNN [11] and DenseFusion

[13]. The maximum threshold is set to 10cm. The object pose

predicted from our system at time t is a rigid transformation

from the object coordinate system O to the global coordinate

system G. To compare with the performance of DenseFusion,

we transform the object pose to the camera coordinate

system using the transformation matrix estimated from the

camera tracking stage. Table I and Table II present a detailed

evaluation for all the 21 objects in the YCB-Video dataset

and 11 objects in the warehouse dataset. Object-RPE with the

full use of projected mask, depth and color images from the

semantic 3D map achieves superior performance compared

to the baseline single frame predictions. We observe that

in all cases combining information from multiple views

improved the accuracy of the pose estimation over the

original DensFusion. We see an improvement of 2.3% over

the baseline single frame method with Object-RPE, from

93.6% to 95.9% for the YCB-Video dataset. We also observe

a marked improvement, from 60.5% for a single frame to

69.7% with Object-RPE on the warehouse object dataset.

Furthermore, we ran a number of ablations to analyze Object-

RPE including (i) DenseFusion using projected masks (DF-

PM) (ii) DenseFusion using projected masks and projected

depth (DF-PM-PD) (iii) DenseFusion using projected masks,

projected depth, and projected RGB image (DF-PM-PD-

PC). DF-PM performed better than DenseFusion on both

datasets (+0.6% and +3.9%). The performance benefit of

DF-PM-PD was less clear as it resulted in a very small

improvement of +0.1% and +0.9% over DF-PM. For DF-PM-

PD-PC, performance improved additionally with +0.5% on

the YCB-Video dataset and +1.7% on the warehouse object

dataset. The remaining improvement is due to the fusion of

estimates in the EKF. In regard to run-time performance,

our current system does not run in real time because of

heavy computation in instance segmentation, with an average

computational cost of 500ms per frame.

V. CONCLUSIONS

We have presented and validated a mapping system that

yields high quality object-oriented semantic reconstruction

while simultaneously recovering 6D poses of object in-

stances. The main contribution of this paper is to show

that taking advantage of deep learning-based techniques

and our semantic mapping system we are able to improve

the performance of object pose estimation as compared to

single view-based methods. Through various evaluations,

we demonstrate that Object-RPE benefits from the use of

accurate masks generated by the semantic mapping system

and from combining multiple predictions based on Kalman

filter. An interesting future work is to reduce the runtime

requirements of the proposed system and to deal with moving

objects.
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