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Abstract

This work investigates the use of semantic information to link ground level occupancy maps and aerial images. A ground level

semantic map, which shows open ground and indicates the probability of cells being occupied by walls of buildings, is obtained

by a mobile robot equipped with an omnidirectional camera, GPS and a laser range finder. This semantic information is used for

local and global segmentation of an aerial image. The result is a map where the semantic information has been extended beyond

the range of the robot sensors and predicts where the mobile robot can find buildings and potentially driveable ground.
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1. Introduction

A mobile robot has a limited view of its environment.
Mapping of the operational area is one way of enhancing
this view for visited locations. In this work we explore the
possibility of using information extracted from aerial im-
ages to further improve the mapping process. Semantic in-
formation about buildings is used as the link between the
ground level information and the aerial image. The method
can speed up exploration or planning in areas not yet vis-
ited by the robot.

Colour image segmentation is often used to extract infor-
mation about buildings from aerial images. However, au-
tomatic detection of buildings in monocular aerial images
without elevation information is hard. Buildings cannot
easily be separated from other man-made structures such
as driveways, tennis courts, etc. due to the resemblance in
colour and shape. We show that wall estimates found by a
mobile robot can compensate for the absence of elevation
data.
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Email addresses: martin.persson@tech.oru.se (Martin

Persson), tduckett@lincoln.ac.uk (Tom Duckett),
achim@lilienthals.de (Achim J. Lilienthal).
1 Supported by the Swedish Defence Material Administration

This work builds upon previous published work. In [1]
we defined a virtual sensor 2 . With an occupancy grid map
and a virtual sensor learned to separate buildings from non-
buildings we have a method to build a probabilistic seman-
tic map [2]. In [3] we showed how wall estimates extracted
from this probabilistic semantic map could be used for de-
tection of buildings in aerial images by their roof outlines.
To determine potential matches between the wall estimates
and the roof outlines we used geo-referenced aerial images
and an absolute positioning system (GPS) on-board the
mobile robot. The matched lines were then used in region-
and boundary-based segmentation of the aerial image for
detection of buildings.

In this work we extend the approach from [3]. The exten-
sion includes global segmentation of buildings in the aerial
image, the introduction of a new class for ground (which
may be driveable by the robot) and the establishment of
the concept and framework of the predictive map. The pur-
pose is to detect building outlines and driveable paths faster
than the mobile robot can explore the area by itself. Using
this method, the robot can estimate the outline of found
buildings and “see” around one or several corners without
actually visiting the area. The method does not assume a

2 A virtual sensor is understood as one or several physical sensors
with a dedicated signal processing unit for recognition of real world
concepts.
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perfectly up-to-date aerial image; buildings may be miss-
ing although they are present in the aerial image, and vice
versa. It is therefore possible to use globally available 3 geo-
referenced images.

1.1. Related Work

Overhead images have been used in combination with
ground vehicles in a number of applications. Oh et al. [4]
used map data to bias a robot motion model in a Bayesian
filter to areas with higher probability of robot presence. It
was assumed that probable paths were known in the map.
Since mobile robot trajectories are more likely to follow
those paths in the map, GPS position errors due to reflec-
tions from buildings were compensated using the map pri-
ors.

Pictorial information such as aerial photos and city-maps
have been used for registration of sub-maps and subsequent
loop-closing in SLAM [5]. Aerial images were used by Früh
and Zakhor in Monte Carlo localization of a truck during
urban 3D modeling [6].

Silver et al. [7] discuss registration of heterogeneous data
(e.g. data recorded with different sampling density) from
aerial surveys and the use of these data in classification of
ground surface. Cost maps are produced that can be used
in long range vehicle navigation. Scrapper et al. [8] used
heterogeneous data from, e.g., maps and aerial surveys to
construct a world model with semantic labels. This model
was compared with vehicle sensor views providing a fast
scene interpretation.

For detection of man-made objects in aerial images, lines
and edges together with elevation data are the features that
are used most often. Building detection in single monoc-
ular aerial images is very hard without additional eleva-
tion data [9]. Mayer’s survey [10] describes some existing
systems for building detection and concludes that scale,
context and 3D structure were the three most important
features to consider for object extraction in aerial images.
Fusion of SAR (Synthetic Aperture Radar) and aerial im-
ages has been employed for detection of building outlines
[9]. The building location was established in the overhead
SAR image, where walls from one side of buildings can be
detected. The complete building outline was then found
using edge detection in the aerial image. Parallel and per-
pendicular edges were considered and the method belongs
to edge-only segmentation approaches. This work is simi-
lar to ours in the sense that it uses a partly found building
outline to segment a building from an aerial image.

Combination of edge and region information for segmen-
tation of aerial images has been suggested in several publi-
cations. Two papers that have influenced our work are [11]
and [12]. Mueller et al. [11] presented a method to detect
agricultural fields in satellite images. First, the most rele-
vant edges were detected. These were then used to guide

3 E.g. Google Earth, Microsoft Virtual Earth, and satellite images
from IKONOS and its successors.

both the smoothing of the image and the following seg-
mentation in the form of region growing. Freixenet et al.

[12] investigated different methods for integrating region-
and boundary-based segmentation, and also claim that this
combination is the best approach for image segmentation.

1.2. Outline and Overview

The presentation of our proposed system is divided into
three main parts. The first part, Section 2, concerns the es-
timation of walls by the mobile robot and edge detection
in the aerial image. At ground level wall estimates are ex-
tracted from a probabilistic semantic map. This map is ba-
sically an occupancy map built from range data and labeled
using a virtual sensor for building detection [1] mounted on
the mobile robot. The second part describes matching of
wall estimates from the mobile robot with the edges found
in the aerial image. This procedure is described in Section
3. The third part presents the segmentation of an aerial im-
age based on the matched lines. Section 4 deals with local
segmentation to find buildings and Section 5 extends this
to a global segmentation of the aerial image and also intro-
duces the class for ground. Details of the mobile robot, the
experiments performed and the results obtained are found
in Section 6. Finally, the paper is concluded and sugges-
tions for future work are given in Section 7.

2. Wall Candidates

A major problem for building detection in aerial images
is to decide which of the edges in the aerial image corre-
spond to building outlines. The idea of our approach is to
match wall estimates extracted from two perspectives in
order to increase the probability that a correct segmenta-
tion is achieved. In this section we describe the process of
extracting wall candidates, first from the mobile robot’s
perspective and then from aerial images.

2.1. Wall Candidates from Ground Perspective

The wall candidates from the ground perspective are ex-
tracted from a semantic map acquired by a mobile robot.
The semantic map we use is a probabilistic occupancy grid
map with two classes: buildings and non-buildings [2]. The
probabilistic semantic map is produced using an algorithm
that fuses different sensor modalities. In this paper, a 2D
range sensor is used to build an occupancy map, which is
converted into a probabilistic semantic map using the out-
put of a virtual sensor for building detection based on im-
ages from an omnidirectional camera.

The algorithm consists of two parts. First, a local se-
mantic map is built using the occupancy map and the out-
put from the virtual sensor. The virtual sensor uses the
AdaBoost algorithm [13] to train a classifier that classi-
fies close range monocular gray scale images taken by the
mobile robot as buildings or non-buildings. This generic
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method combines different types of features such as edge
orientation, gray level clustering and corners into a system
with high classification rate [1].

The classification by the virtual sensor is made for pla-
nar sub-images, see Section 6.1. However, the image may
also contain parts that do not belong to the detected class,
e.g., an image of a building might also include some vegeta-
tion, i.e. non-building such as a tree. In order to deal with
such situations, probabilities are assigned to the occupied
cells that are within a sector, with an opening angle θ, rep-
resenting the view of the virtual sensor. The size of the cell
formations within the sector affects the probability values.
These sizes are measured by the horizontal covering angles
{αi} = α1, α2, . . . , αn of the objects within the particular
view. A sector is illustrated in Figure 1.

Fig. 1. Illustration of a sector with an opening angle θ and length
LV S representing the view of the virtual sensor. Two objects are
found (the grey rectangles) within the sector and their respective
sizes are represented by α1 and α2.

The assigned probabilities Pi(class|VST , αi) for the ob-
jects in view (the grid cells within the sector and seen from
the robot) are calculated by the following expression:

Pi(class|VST , αi) =
1

2
+

αi

θ
(P (class|VST ) −

1

2
) (1)

where P (class|VST ) is the conditional probability that a
view is class when the virtual sensor classification at time T
is class. Thus, higher probabilities are given to larger parts
of the view, assuming that larger parts are more likely to
have caused the view’s classification. In the current imple-
mentation P (class|VST ) is a constant per class.

In the second step the local maps are used to update
a global map, the probabilistic semantic map, utilizing a
Bayesian method. The result is a global semantic map that
distinguishes between buildings and non-buildings. An ex-
ample of such a map is given in Figure 2. For more details
on this approach to probabilistic semantic mapping see [2].

The lines representing probable building outlines are ex-
tracted from the probabilistic semantic map. For the line
extraction an implementation by Peter Kovesi [14] was
used. The parameter setting for the line extraction is de-
scribed in Table 1. An example of extracted lines is given
in Figure 3.

Fig. 2. An example of a probabilistic semantic map created with the
approach described in the text. White cells denote high probability
of walls and dark cells show outlines of non-building entities.

Name Value Description

TOL 2 pixels Maximum deviation from a straight line

before a segment is broken in two

ANGTOL 0.05 rad Angle tolerance used when attempting to

merge line segments

LINKRAD 2 pixels Maximum distance between end points of

line segments for segments to be eligible

for linking

Table 1
Parameters used for line extraction.

2.2. Wall Candidates in Aerial Images

Edges extracted from an aerial image taken from a nadir
view are used as potential building outlines. The edge image
is a binary image from which straight lines are extracted to
be used as wall candidates for the matching, see Section 3.
Here, edge detection is performed separately on the three
RGB-components using Canny’s edge detector [15]. The
resulting edge image Ie is calculated by fusing the three
binary images obtained for the three colour components
with a logical OR-function. Finally a thinning operation 4

is performed to remove points that occur when edges ap-
pear slightly shifted in the different components. For line
extraction in Ie the same implementation and parameters
as described in Section 2.1 were used. The lines extracted
from the edges detected in the aerial image in Figure 3 are
shown in Figure 4.

We use the colour edge detection method because it finds
more edge points than gray scale edge detection. This is be-
cause edges on the border between areas that have different
colours but similar intensity are not detected in gray scale
versions of the same image. In a test where the two methods
had the same segmentation parameters, the colour version
produced 19 % more edge points resulting in 17 % more
detected lines for an aerial image of size ca. 800×1300 pix-

4 The Matlab command bwmorph(im,’thin’,Inf) was used.
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Fig. 3. The trajectory of the mobile robot (dashed), the ground
level wall estimates (solid) and the used aerial image ( c©Örebro
Community Planning Office). The semantic map in Fig. 2 covers the
upper left part of this figure.

Fig. 4. The lines extracted from the edge version of the aerial image.

a) b) c)

Fig. 5. Gray scale (b) and colour edge detection (c) in an aerial
image (a). In the top the colour version finds edges where light green
vegetation meets light gray ground, and in the lower part edges are
found around the green football field where the grass meets the red
running tracks.

els (400×650 m). Figure 5 gives a close-up example from
that test to show the differences. The calculation time of
the colour edge detection is slightly more than three times
longer than ordinary gray scale edge detection. This time
is still small in comparison to the routines we use for de-
tecting lines in the edge images.

3. Matching Wall Candidates

The purpose of the wall matching step is to relate wall
estimates, obtained at ground level with the mobile robot,

Fig. 6. Selection of characteristic points for the computation of a
distance measure between two lines. The figure shows the line Lg

(ground level wall candidate) with its midpoint Pg, the line Li
a (aerial

image wall candidate), and the normal to Li
a, en. To the left, Pa = φ

since φ is on Li
a and to the right, Pa is the endpoint of Li

a since φ

is not on Li
a.

to the edges detected in the aerial image. All wall estimates
are represented as line segments. We denote a wall esti-
mate found by the mobile robot as Lg and the N lines rep-
resenting the edges found in the aerial image by Li

a with
i ∈ {1, . . . , N}. Both line types are geo-referenced in the
same Cartesian coordinate system.

The lines from both the aerial image and the semantic
map may be erroneous, especially concerning the line end-
points, due to occlusion, errors in the semantic map, dif-
ferent sensor coverage, etc. We therefore need a measure
for line-to-line distances that can handle partially occluded
lines. Hence, we do not consider the length of the lines and
restrict line matching to the line directions and the distance
between two characteristic points, one point on each line.
The line matching calculations are performed in two steps:
1) determine the two characteristic points, and 2) compute
the distance measure to find the best matches.

3.1. Finding the Closest Point

In this section we describe how the characteristic points
on the two compared lines are determined. For Lg we use
the line midpoint, Pg. To cope with the possible errors de-
scribed above we select the point Pa on Li

a that is closest
to Pg as the best candidate to be used in our line distance
measure.

To calculate Pa, let en be the orthogonal line to Li
a that

intersects Lg in Pg, see Figure 6. We denote the intersection
between en and Li

a as φ where φ = en ×Li
a (using homoge-

neous coordinates). The intersection φ may be outside the
line segment Li

a, see right part of Figure 6. We therefore
check if φ is within the endpoints and if it is set Pa = φ. If
φ is not within the endpoints, then Pa is set to the closest
endpoint on Li

a.

3.2. Distance Measure

The calculation of the distance measure is inspired by
[16], which describes geometric line matching in images for
stereo matching. We have reduced the complexity in those
calculations to have fewer parameters that need to be de-
termined and to exclude the line lengths. Matching is per-
formed using Lg’s midpoint Pg, the closest point Pa on Li

a
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and the line directions θg and θa. First, a difference vector
is calculated as

r∆ = [Pgx
− Pax

, Pgy
− Pay

, θg − θa]T . (2)

Second, the similarity is measured as the Mahalanobis dis-
tance

d = r∆
TR−1r∆ (3)

where the diagonal covariance matrix R is defined as

R =











σ2

Rx 0 0

0 σ2

Ry 0

0 0 σ2

Rθ











(4)

with σRx, σRy, and σRθ being the expected standard devi-
ation of the errors between the ground-based and aerial-
based wall estimates. Using Mahalanobis distance, it is only
the relation between the parameters that influences the line
matching. The important relation is σ2

Rθ/σ2
Rx and usually

σ2
Rx = σ2

Ry for symmetry reasons. Note that our distance
measure is not strictly a mathematical metric, due to the
method for selecting characteristic points.

4. Local Segmentation of Aerial Image

This section describes how local segmentation of the
colour aerial image is performed. Generally, segmenta-
tion methods can be divided into two groups; edge- and
similarity-based [17]. In our case we combine these ap-
proaches by first performing edge based segmentation for
detection of closed areas and then colour segmentation
based on a small training area to confirm the area’s homo-
geneity. The following is a short description of the sequence
that is performed for each line Lg:

(i) Sort the set of lines La based on d from Equation 3
in increasing order and set i = 0.

(ii) Set i = i + 1.
(iii) Define a start area Astart, 8× 8 pixels square (equiv-

alent to 4×4 m), on the side of Li
a that is opposite to

the robot (this will be in or closest to the unknown
part of the occupancy grid map).

(iv) Check if Astart includes edge points (parts of edges in
Ie). If yes, return to step 2. This check ensures that
a region has a minimum width and depth.

(v) Perform edge controlled segmentation, see Section
4.1.

(vi) Perform homogeneity test, see Section 4.2.
This process is stopped, either when a region has been found
or when all lines in La that are close enough to the present
line in Lg to be considered have been checked. The “close
enough” criterion could be measured by the Euclidean dis-
tance between the characteristic points Pg and Pa defined
in Section 3.1. However, in the current implementation this
was not activated during the experiment in order to be able
to study whether other regions were found.

Fig. 7. Illustration of edge controlled segmentation. a) shows a small
part of Ie and Astart. In b) Ie has been dilated and in c) Asmall

has been found. d) shows Afinal as the dilation of Asmall.

4.1. Edge Controlled Segmentation

Based on the edge image Ie constructed from the aerial
image, we search for a closed area. Since there might be
gaps in the edges, bottlenecks need to be found [11]. We use
morphological operations, with a 3×3 structuring element,
to first dilate the interesting part of the edge image in order
to close gaps and then search for a closed area on the side
of the matched line that is opposite to the mobile robot.
When this area has been found the area is dilated in order
to compensate for the previous dilation of the edge image.
This procedure is illustrated in Figure 7.

4.2. Homogeneity Test

We use the initial starting area Astart as a training sam-
ple and evaluate the rest of the region based on the corre-
sponding colour model. This means that the colour model
does not gradually adapt to the growing region, but instead
requires a homogeneous region on the complete roof part
that is under investigation. Regions that gradually change
colour or intensity, such as curved roofs, might then be
partly rejected.

Gaussian Mixture Models, GMM, are popular for colour
segmentation. Like Dahlkamp et al. [18] we tested both
GMM and a model described by the mean and the covari-
ance matrix in RGB colour space. We selected the mean/co-
variance model since it is faster and we noted that the
mean/covariance model performs approximately equally
well as the GMM in our case. A limit Olim is calculated for
each model so that 95% of the training sample pixels (i.e.
pixels in Astart) have a Mahalanobis distance smaller than
Olim. Olim is then used as the separator limit between pix-
els belonging to the class and the pixels that do not belong
to the class.

4.3. Alternative Methods

Above a two step segmentation method to detect homo-
geneous regions surrounded by edges was presented. There
exist a number of segmentation methods that could have
been applied. Two alternative methods are discussed in the
following. The conclusions are based on preliminary tests
performed on the aerial image used in our experiment. For
these tests, the parameters used in the respective algo-
rithms were tuned manually.

The first method tested is the graph-based image seg-
mentation, GBIS, by Felzenszwalb and Huttenlocher [19].
GBIS can adapt to the texture and can be set to reject
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small areas and therefore ignore small-sized disturbances
such as shadows from chimneys. Due to this GBIS produces
very homogeneous results. A drawback is that GBIS has a
tendency to leak and continue to grow outside areas that
humans would consider to be closed. Therefore, GBIS does
not seem to be an option to replace both steps in our two
step method, but it is an alternative to the homogeneity
test. In conjunction with the edge controlled segmentation
it turns out that GBIS produces similar segmentation re-
sults to the mean/covariance model.

The second method tested is a modified flood fill algo-
rithm. The algorithm takes starting pixels from Astart and
performs region growing limited by colour difference to the
starting pixels and local gradient information. Let C be
the mean value vector (RGB) of the starting pixels, Pi any
pixel that has been selected to be inside the region and Pn

a neighbouring pixel that is 4-connected with Pi. For each
Pn a local value gloc is calculated as

gloc = e
−

∑

j=r,g,b

(Pn(j)−C(j))2

σ2
col e

−

∑

j=r,g,b

(Pn(j)−Pi (j))2

σ2
grad (5)

The value of gloc is then compared to a threshold to see if
Pn should be included in the region or not. Due to the use
of the local gradient this algorithm performs well both as a
replacement for both steps and when it is used only for the
homogeneity check. This modified flood fill algorithm can
also leak, like GBIS, but only to areas with similar colours
since C only depends on the starting pixels.

5. Global Segmentation of Aerial Images

In this section the view of the mobile robot is increased
further. Learned colour models are used in global building
segmentation within the entire aerial image. The purpose of
global segmentation is to build a map that predicts different
types of areas, e.g., driveable ground and buildings. We call
this the predictive map, PM. When the PM includes both
driveable ground and obstacles in the form of buildings it
can serve as an input to a path planning algorithm.

The global segmentation of an aerial image using colour
models captures all buildings with roofs in similar colours
as those buildings that were detected by local segmenta-
tion. However, some colours can be very similar to ground
covered by, e.g., asphalt and ground in deep shadow. There-
fore it may happen that some of the detected building ar-
eas belong to a non-building class. In order to reduce these
errors, we introduce an additional class, ground, which will
compete with the building class about ambiguous pixels.

Areas of driveable ground can be extracted in different
ways, e.g., vision has been used in several projects [20–22] to
find driveable regions for unmanned vehicles. In this work
the free space from the occupancy grid map is interpreted
as ground. This free space can be considered to be drive-
able ground assuming that there are no negative obstacles
or other features, which cannot be sensed with the horizon-
tally mounted 2D-laser scanner and prevent the robot from

Fig. 8. The combined binary image of free points (reduced using
morphological erosion with a square structuring element of size 5×5
pixels) and edges in Ie.

driving safely. However, since we cannot guarantee that the
free space in the occupancy grid map in fact corresponds
to a driveable area we call the new class ground.

5.1. Colour Models

The segmentation of the aerial image is based on colour
models. In the example in this article, models are calculated
for the two classes: building and ground. To classify pixels
in the aerial image we use the same procedure as for the
homogeneity test in local segmentation, see Section 4.

To define the colour models for the building class, we sim-
ply use the building estimates found by local segmentation
as training areas.

To extract colour models that represent the different
ground areas we combine the occupancy grid map and the
edge version of the aerial image, Ie. The free cells in the
occupancy grid map define the regions in Ie that represent
ground. This combination can be done either under the as-
sumption that the navigation is precise giving a perfect reg-
istration or by reduction of the area of free cells with the
estimated size of the navigation error. We used the latter
approach and reduced the area of free cells in the occupancy
grid map by morphological erosion with a square structur-
ing element of size 5× 5 pixels to compensate for errors up
to 1 m in all directions. An example of the combination of
the occupancy map and Ie is shown in Figure 8. Next, edge
controlled segmentation of that region is performed, as de-
scribed in Section 4.1, to find the different ground areas.
The largest areas 5 point out samples in the aerial image
that are used to train mean/covariance models, the same
type of colour models as in Section 4.2.

The combination of the result from the local building
segmentation (an example can be found in Figure 11) and

5 The limit was set to 50 pixels (12.5 m2) in order to avoid small
areas that could represent movable objects such as cars and small
trucks.
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Fig. 9. Flow chart of the process for calculating the predictive map.

the ground information from the occupancy grid map are
referred to as the local information. Note that both the
local building segmentation and the ground information
extracted from the occupancy grid map result from direct
observation by the mobile robot.

5.2. The Predictive Map

The PM is designed to handle multiclass problems and
updating this map can be performed incrementally. The
PM is a grid map of the same size as the aerial image that
is segmented. For each of the n classes, a separate layer
li, with i ∈ {1, . . . , n}, is used to store the accumulated
segmentation results. These layers also have the same size
as the aerial image. The colour models used to segment the
aerial image are two-class models (building or non-building,
ground or non-ground, etc.) and the classifiers are therefore
binary classifiers.

To calculate the predictive map incrementally two main
steps are performed; 1) the aerial image is segmented when
a new colour model is available and 2) the predictive map is
recalculated using the result from the latest segmentation.
Figure 9 shows a flow chart of the updating process. This is
adapted to work also in an on-line situation and is explained
in the following. When a New sample belonging to class cl

is available a new colour model CM is calculated. Based
on the quality of CM, a measure p, 0 ≤ p ≤ 1 should be
estimated 6 . Then the aerial image is segmented using the
new model and the result is multiplied with p and stored
in a temporary layer. The old layer, lcl, is fused with the
temporary layer using a max function 7 .

The predictive map is based on voting from separate
layers li for the n classes, one layer for each class considered.

6 Estimation of the parameter p is still an unsolved issue for future
work. In our experiments we used p = 0.7.
7 Another possibility to fuse the layers would be to use a Bayesian
method.

In this example n = 2; one building layer and one ground
layer. The voting is a comparison of the layers cell by cell. In
those grid cells where the values are similar, the cells are set
to unknown. To evaluate the similarity between cells buffer
zones are introduced in a voting process. The buffer zones
are collected in the off-diagonal elements of a matrix C. The
off-diagonal elements, cij ≥ 0, i 6= j, i = {1, 2, . . . , n}, j =
{1, 2, . . . , n}, are then used for the classification of cells
pmxy in PM, where pmxy denotes cell (x, y). Introducing
the buffer zones defined in C in the voting process makes it
possible to adjust the sensitivity of the voting individually
for all classes. The voting is performed using IF-THEN rules
biased with cij :

IF lxy
i > lxy

j + cij ∀ j 6= i THEN pmxy = classi (6)

where lxy
i denotes cell (x, y) in layer i. If the condition

cannot be fulfilled due to conflicting information, pmxy is
set to unknown. If cij = 0 the rules in Equation 6 will turn
into ordinary voting where the largest value wins and where
ties give unknown.

During the experiments presented in this article C was
set to

C =





− 0.1

0.1 −



 (7)

(the values of the diagonal elements are not used).
All in all, the PM contains information about n + 2 cat-

egories. First there are the n different classes, then the un-

known cells due to ambiguous class values and finally the
unexplored cells that represent the remaining pixels that
cannot be explained by any of the learned colour models.

5.3. Combination of Local and Global Segmentation

The approach described above results in two sets of in-
formation. The first is the local information that has been
confirmed by the mobile robot and the second is stored in
the PM. Where these sets overlap they can be fused into
one final estimate. Since the local information has been
confirmed by the mobile robot it is reasonable to let the lo-
cal information have precedence over the PM by giving it
a higher probability p. Fusion of the PM and the local in-
formation can use the same method (with the exception of
segmentation) as the updates of the PM described in the
previous section.

6. Experiments

6.1. Data Collection

The above algorithms were implemented in Matlab [23]
for evaluation and currently work off-line. Data were col-
lected with a mobile robot, a Pioneer P3-AT from Activ-
Media, equipped with differential GPS (NovAtel ProPak-
G2Plus), a horizontally mounted laser range scanner (SICK
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LMS 200), cameras and odometry. The robot is equipped
with two different types of cameras, an ordinary camera
mounted on a PT-head and an omni-directional camera.
The omni-directional camera gives a 360◦ view of the sur-
roundings in one single shot. The camera itself is a standard
consumer-grade SLR digital camera (Canon EOS350D, 8
megapixels). On top of the lens, a curved mirror from 0-
360.com is mounted. From each omni-image 8 (every 45◦)
planar views or sub-images, with a horizontal field-of-view
of 56◦, were computed. These sub-images are the input to
the virtual sensor. The images were taken approximately
every 1.5 m along the robot trajectory and were stored to-
gether with the corresponding robot pose. The trajectory
of the mobile robot is shown in Figure 3. Since the ground
where the robot was driven during the experiment is flat,
inertial sensors were not needed. This can be confirmed by
visual inspection of the resulting occupancy map in Figure
10.

6.2. Tests of the Local Segmentation

The occupancy map shown in Figure 10 was used for
the experiment. This map was built from data measured
by the laser range scanner (with 180 degrees field of view)
and positioning data obtained from fusion of odometry and
DGPS. The grid cell size was 0.5 m, the range of the data
was limited to 40 m and the map was built using the known
poses and a standard Bayes update equation as described
in [24]. Even though this 2D map works well in our exper-
iments (with exception of the hedge/building mix-up de-
scribed in Section 6.3), one should note that a fixed hori-
zontally mounted 2D laser is limited for detection of build-
ing outlines, especially in cases when the terrain is not flat.
Alternative methods suitable for capturing large objects in
outdoor environments are 3D laser [25], vertically mounted
laser range scanner [6] or (motion) stereo vision [26].

The occupied cells in this map (marked in black) were
labeled by the virtual sensor giving the semantic map pre-
sented in Figure 2. The semantic map contains two classes:
buildings (values above 0.5) and non-buildings (values be-
low 0.5). From this semantic map we extracted the grid
cells with a high probability of being a building 8 (above
0.9) and converted them to the lines LM

g presented in Fig-
ure 3. Matching these lines with the lines extracted from
the aerial image LN

a , see Figure 4, was then performed.
Finally, based on the best line matches segmentation was
performed as described in Section 4.

The three parameters in R (Equation 4) were set to
σRx = 1 m, σRy = 1 m, and σRθ = 0.2 rad. The first two
parameters reflect a possible error of 2 pixels between the
robot position and the aerial image, and the third param-
eter allows, for example, each endpoint of a 10 pixel long

8 The limit 0.9 was chosen with respect to the probabilities used in
the process of building the semantic map [2]. With this limit at least
two positive building readings are needed for a single cell to be used
in LM

g .

Fig. 10. Occupancy map used to build the semantic map in Fig. 2.

line to be shifted one pixel (parallel edges in the aerial im-
age do not always result in parallel lines, see roof outline in
Figure 4). In the tests described in the following paragraph
it will be shown that the matching result is not sensitive to
small changes of these parameters.

We have performed two different types of tests. The tests
are defined in Table 2. Tests 1-3 are the nominal cases when
the collected data are used as they are. These tests intend to
show the influence of a changed relation between σRx, σRy

and σRθ by varying σRθ. In Test 2 σRθ is decreased by a
factor of 2 and in Test 3 σRθ is increased by a factor of 2.
In Tests 4 and 5 additional uncertainty (in addition to the
uncertainty already present in LM

g and LN
a ) was introduced.

This uncertainty is in the form of Gaussian noise added to
the midpoints (σx and σy) and directions (σθ) of LM

g and
evaluated in Monte Carlo simulation with 20 runs.

Test σx [m] σy [m] σθ [rad] σRθ [rad] Nrun

1 0 0 0 0.2 1

2 0 0 0 0.1 1

3 0 0 0 0.4 1

4 1 1 0.1 0.2 20

5 2 2 0.2 0.2 20

Table 2
Definition of the parameters used in the different tests.

6.3. Result of Local Segmentation

The local segmentation has a limited range and the
ground truth area can grow outside of this range without
affecting the resulting segmentation, e.g. by including new
buildings that are not seen by the robot. A traditional
quality measure of true positive rate is therefore not suit-
able for these tests, since a true positive rate depends on
the size of the ground truth area. Instead, the positive

predictive value, PPV or precision, has been used as the
quality measure. PPV is calculated as

PPV =
TP

TP + FP
(8)

8



a

b

c

Fig. 11. The result of the local segmentation of the aerial image using
the wall estimates shown in Figure 3. The ground truth building
outlines are drawn in black.

where TP are the number of true positives and FP are the
number of false positives.

The results of Test 1 show a high positive predictive
value of 96.5%, see Table 3. The resulting segmentation
is presented in Figure 11. Three deviations from an ideal
result can be noted. At a and b tree tops were obstructing
the wall edges in the aerial image and therefore the area
opposite to these walls was not detected as a building and a
gap between two regions appears at c due to a wall visible
in the aerial image. Finally, a false area, to the left of b,
originates from an error in the semantic map where a low
hedge in front of a building was marked as building because
the building was the dominating object in the camera view.

The results of Test 1-3 are very similar, indicating that
the algorithm in this case was not specifically sensitive to
the changes in σRθ. In Test 4 and 5 the scenario of Test

1 was repeated using a Monte Carlo simulation with in-
troduced pose uncertainty. These results are presented in
Table 3. One can note that the difference between the nom-
inal case and Test 4 is very small. In Test 5 where the
additional uncertainties are higher, the positive predictive
value has decreased slightly.

Test PPV [%]

1 96.5

2 97.0

3 96.5

4 96.8 ± 0.2

5 95.9 ± 1.7

Table 3
Results for the tests defined in Table 2. The results of Test 4 and 5
are presented with the corresponding standard deviation computed
from the 20 Monte Carlo simulation runs.

6.4. Result of Global Segmentation

The result of the global segmentation is shown in Fig.
12 and 13. Visual inspection of the result shown illustrates
the potential of our approach. The PM based on ground
colour models from regions in Figure 8 and building colour
models from the regions in Figure 11 is presented in Figures
12(a) (cells classified as ground and buildings) and 12(b)
(unexplored and unknown cells).

Compared with the aerial image in Figure 3 the result
is promising. One can now follow the outline of the main

(a) Ground (gray) and building (black) estimates. The white cells
are unexplored or unknown.

(b) Ties or unknown cells (black), not classified cells (gray), and
classified cells (white).

Fig. 12. The result of the global segmentation of the aerial image
(see Section 5) using both ground and building models.

building and most of the paths, including paved paths,
roads and beaten tracks, have been found. The main prob-
lem experienced during the work is caused by shadowed
ground areas that look very similar to dark roofs resulting
in the major part of the unknown cells.

If areas representing the unknown cells have already been
classified by the mobile robot, as in Figures 10 and 11,
that result has precedence over the PM. The final result
is therefore obtained when the PM is combined with the
free areas and the buildings found by local segmentation.
For these pixels we set p = 0.9, performed another update
of the PM (using the second step described in Section 5.2)
and got the resulting map shown in Figure 13.

A formal evaluation of the ground class is hard to per-
form. Ground truth for buildings can be manually extracted
from the aerial image, but it is hard to specify in detail the
area that belongs to ground. Based on the ground truth
of buildings and an approximation of the ground truth of
ground as the non-building cells, statistics of the result are
presented in Table 4. In the table all values in the right col-
umn, where the results from the combined PM and local
information are shown, are better than those in the middle
column (only PM).
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(a) Ground (gray) and building (black) estimates. The white cells
are unexplored or unknown.

(b) Ties or unknown cells (black), not classified cells (gray), and
classified cells (white).

Fig. 13. The PM combined with the local information (see Section
5.3).

Since the PPV depends on the actual presence of the
different classes in the aerial image, normalized values are
also presented. The normalized values are calculated as

PPVnorm =
TPcl

TPcl + FPcl
GTcl

NGTcl

(9)

where TPcl and FPcl are the numbers of true and false pos-
itives of class cl respectively. GTcl is the number of ground
truth cells of class cl and NGTcl (non ground truth) is
the difference between the total number of cells in PM and
GTcl. The area covered by buildings is smaller than the
ground area giving an increase in the normalized PPV for
buildings and a decrease for ground compared to the nom-
inal PPV.

7. Conclusions and Future Work

This paper discusses how aerial images can be used to
extend the observation range of a mobile robot. A virtual
sensor for building detection on a mobile robot is used to
build a ground level semantic map. This map is used in a
process for building detection in aerial images. The benefit

Descriptions PM (Fig. 12) [%] PM + local (Fig. 13) [%]

PPV buildings (norm) 66.6 (88.6) 73.0 (91.3)

PPV ground (norm) 96.8 (88.6) 97.3 (90.4)

Building cells 12.3 13.8

Ground cells 21.7 25.8

Unclassified cells 55.5 52.4

Unknown cells (ties) 10.5 8.1

Table 4
Results of the evaluation of the two predictive maps displayed in
Fig. 12 and 13. The last four rows show the actual proportions of
the cells in the two predictive maps.

from the extended range of the robot’s view can clearly be
noted in the presented example.

In the local segmentation step it can be hard to extract
a complete building outline due to factors such as different
roof materials, different roof inclinations and additions on
the roof, specifically when the robot has only seen a small
portion of the building outline. The global segmentation is
a powerful extension. Even though the roof structure in the
example is quite complicated, the outline of a large building
could be extracted based on the limited view of the mobile
robot, which had only seen a minor part of surrounding
walls.

7.1. Discussion

Oh et al. [4] assumed that probable paths were known in
a map and used this to bias a robot motion model towards
areas with higher probability of robot presence. Using the
approach suggested in this article these areas could be au-
tomatically found from aerial images.

With the presented method, changes in the environment
compared to an aerial image that is not perfectly up-to-date
are handled automatically. Assume that a building, present
in the aerial image, has been removed after the image was
taken. It may therefore be classified as a building in the PM
if it had a roof colour similar to a building already detected
by the mobile robot. When the robot approaches the area
where the building was situated, the building will not be
detected. If the mobile robot classifies the area as ground,
the PM will turn into unknown (of course depending on
cij and p), not only for that specific area but also globally,
with the exception of areas where local information exists.

What about the other way around? Assume that a new
building is erected and this is not yet reflected in the aerial
image. If the wall matching indicates an edge as a wall this
can of course introduce errors. However, there are several
cases where it would not be a problem. When the area is
cluttered, e.g., a forest, several close edges will be found and
no segmentation is therefore performed. The same result
is obtained if the building is erected in a smooth area, for
example an open field, since there are no edges to be found.
The result of these cases is that the building will only be
present in the probabilistic semantic map in the form of a
possible wall.
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7.2. Future Work

We believe that the accuracy of the PM could be further
improved by using a measure of the colour model quality
to assign a value to the parameter p for each model. Also
the probabilities from the semantic map where the ground
wall estimates are extracted and the certainty of the virtual
sensor could be used in the calculation of p.

We further expect that shadow detection, which merges
shadowed areas with corresponding areas in the sun, can
reduce the number of false positives and decrease unknown
areas caused by ties.

Experiments where the PM is used to direct exploration
of unknown areas should be performed. At the same time it
should be investigated whether post-processing of the PM,
e.g., with filters taking neighbouring cells into account, can
improve the results.

Multi-line matching, in comparison to the single line
matching used, can relax the need for accurate localisation
of the mobile robot. An example of successful matching be-
tween ground readings and aerial image for localization is
given in [6] and for matching of building outlines in [27].
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