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Summary. This paper investigates the use of semantic information to link ground-
level occupancy maps and aerial images. A ground-level semantic map is obtained
by a mobile robot equipped with an omnidirectional camera, differential GPS and
a laser range finder. The mobile robot uses a virtual sensor for building detection
(based on omnidirectional images) to compute the ground-level semantic map, which
indicates the probability of the cells being occupied by the wall of a building. These
wall estimates from a ground perspective are then matched with edges detected in
an aerial image. The result is used to direct a region- and boundary-based segmen-
tation algorithm for building detection in the aerial image. This approach addresses
two difficulties simultaneously: 1) the range limitation of mobile robot sensors and 2)
the difficulty of detecting buildings in monocular aerial images. With the suggested
method building outlines can be detected faster than the mobile robot can explore
the area by itself, giving the robot an ability to “see” around corners. At the same
time, the approach can compensate for the absence of elevation data in segmen-
tation of aerial images. Our experiments demonstrate that ground-level semantic
information (wall estimates) allows to focus the segmentation of the aerial image to
find buildings and produce a ground-level semantic map that covers a larger area
than can be built using the onboard sensors.

1 Introduction

A mobile robot has a limited view of its environment. Mapping of the opera-
tional area is one way of enhancing this view for visited locations. In this paper
we explore the possibility to use information extracted from aerial images to
further improve the mapping process. Semantic information (classification of
buildings versus non-buildings) is used as the link between the ground level
information and the aerial image. The method allows to speed up exploration
or planning in areas unknown to the robot.
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Colour image segmentation is often used to extract information about
buildings from an aerial image. However, it is hard to perform automatic de-
tection of buildings in monocular aerial images without elevation information
[15]. Buildings can not easily be separated from other man-made structures
such as driveways, tennis courts, etc. due to the resemblance in colour and
shape. We show that wall estimates found by a mobile robot can compensate
for the absence of elevation data. In the approach proposed in this paper, wall
estimates detected by a mobile robot are matched with edges extracted from
an aerial image. A virtual sensor3 for building detection is used to identify
parts of an occupancy map that belong to buildings (wall estimate). To deter-
mine potential matches we use geo-referenced aerial images and an absolute
positioning system on board of the robot. The matched lines are then used in
region- and boundary-based segmentation of the aerial image for detection of
buildings. The purpose is to detect building outlines faster than the mobile
robot can explore the area by itself. Using a method like this, the robot can
estimate the size of found buildings and using the building outline it can “see”
around one or several corners without actually visiting the area. The method
does not assume a perfectly up-to-date aerial image, in the sense that build-
ings may be missing although they are present in the aerial image, and vice
versa. It is therefore possible to use globally available4 geo-referenced images.

1.1 Related Work

Overhead images in combination with ground vehicles have been used in a
number of applications. Oh et al. [10] used map data to bias a robot motion
model in a Bayesian filter to areas with higher probability of robot presence.
Mobile robot trajectories are more likely to follow paths in the map and using
the map priors, GPS position errors due to reflections from buildings were
compensated. This work assumed that the probable paths were known in the
map. Pictorial information captured from a global perspective has been used
for registration of sub-maps and subsequent loop-closing in SLAM [2].

Silver et al. [14] discuss registration of heterogeneous data (e.g. data
recorded with different sampling density) from aerial surveys and the use
of these data in classification of ground surface. Cost maps are produced that
can be used in long range vehicle navigation. Scrapper et al. [13] used hetero-
geneous data from, e.g., maps and aerial surveys to construct a world model
with semantic labels. This model was compared with vehicle sensor views
providing a fast scene interpretation.

For detection of man-made objects in aerial images, lines and edges to-
gether with elevation data are the features that are used most often. Building

3 A virtual sensor is understood as one or several physical sensors with a dedicated
signal processing unit for recognition of real world concepts.

4 E.g. Google Earth, Microsoft Virtual Earth, and satellite images from IKONOS
and its successors.
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detection in single monocular aerial images is very hard without additional
elevation data [15]. Mayer’s survey [8] describes some existing systems for
building detection and concludes that scale, context and 3D structure were
the three most important features to consider for object extraction, e.g., build-
ings, roads and vegetation, in aerial images. Fusion of SAR (Synthetic Aper-
ture Radar) and aerial images has been employed for detection of building
outlines [15]. The building location was established in the overhead SAR im-
age, where walls from one side of buildings can be detected. The complete
building outline was then found using edge detection in the aerial image.
Parallel and perpendicular edges were considered and the method belongs to
edge-only segmentation approaches. The main difference to our work regard-
ing building detection is the use of a mobile robot on the ground and the
additional roof homogeneity condition.

Combination of edge and region information for segmentation of aerial
images has been suggested in several publications. Mueller et al. [9] presented a
method to detect agricultural fields in satellite images. First, the most relevant
edges were detected. These were then used to guide both the smoothing of the
image and the following segmentation in the form of region growing. Freixenet
et al. [4] investigated different methods for integrating region- and boundary-
based segmentation, and also claim that this combination is the best approach.

1.2 Outline and Overview

The presentation of our proposed system is divided into three main parts.
The first part, Sect. 2, concerns the estimation of walls by the mobile robot
and edge detection in the aerial image. The wall estimates are extracted from
a probabilistic semantic map. This map is basically an occupancy map built
from range data and labelled using a virtual sensor for building detection [11]
mounted on the mobile robot. The second part describes the matching of wall
estimates from the mobile robot with the edges found in the aerial image. This
procedure is described in Sect. 3. The third part presents the segmentation of
an aerial image based on the matched lines, see Sect. 4. Details of the mobile
robot, the experiments performed and the obtained result are found in Sect.
5. Finally, the paper is concluded in Sect. 6 and some suggestions for future
work are given.

2 Wall Estimation

A major problem for building detection in aerial images is to decide which of
the edges in the aerial image correspond to building outlines. The idea of our
approach, to increase the probability that correct segmentation is performed,
is to match wall estimates extracted from two perspectives. In this section
we describe the process of extracting wall candidates, first from the mobile
robot’s perspective and then from aerial images.
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2.1 Wall Candidates from Ground Perspective

The wall candidates from the ground perspective are extracted from a seman-
tic map acquired by a mobile robot. The semantic map we use is a probabilistic
occupancy grid map with two classes: buildings and non-buildings [12]. The
probabilistic semantic map is produced using an algorithm that fuses different
sensor modalities. In this paper, a range sensor is used to build an occupancy
map, which is converted into a probabilistic semantic map using the output
of a virtual sensor for building detection based on an omnidirectional camera.

The algorithm consists of two parts. First, a local semantic map is built
using the occupancy map and the output from the virtual sensor. The virtual
sensor uses the AdaBoost algorithm [5] to train a classifier that classifies close
range monocular grey scale images taken by the mobile robot as buildings
or non-buildings. The method combines different types of features such as
edge orientation, grey level clustering, and corners into a system with high
classification rate [11]. The classification by the virtual sensor is made for a
whole image. However, the image may also contain parts that do not belong
to the detected class, e.g., an image of a building might also include some
vegetation such as a tree. Probabilities are assigned to the occupied cells that
are within a sector representing the view of the virtual sensor. The size of
the cell formations within the sector affects the probability values. Higher
probabilities are given to larger parts of the view, assuming that larger parts
are more likely to have caused the view’s classification [12].

In the second step the local maps are used to update a global map using
a Bayesian method. The result is a global semantic map that distinguishes
between buildings and non-buildings. An example of a semantic map is given
in Fig. 1. From the global semantic map, lines representing probable building
outlines are extracted. An example of the extracted lines is given in Fig. 2.

2.2 Wall Candidates in Aerial Images

Edges extracted from an aerial image are used as potential building outlines.
We limit the wall candidates used for matching in Sect. 3 to straight lines
extracted from a colour aerial image taken from a nadir view. We use an output
fusion method for the colour edge detection. The edge detection is performed
separately on the three RGB-components using Canny’s edge detector [1].
The resulting edge image Ie is calculated by fusing the three binary images
obtained for the three colour components with a logical OR-function. Finally
a thinning operation is performed to remove points that occur when edges
appear slightly shifted in the different components. For line extraction in Ie

an implementation by Peter Kovesi5 was used. The lines extracted from the
edges detected in the aerial image in Fig. 3, are shown in Fig. 4.

5 http://www.csse.uwa.edu.au/∼pk/Research/MatlabFns/, University of Western
Australia, Sep 2005
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Fig. 1. An example of a semantic map where white lines denote high probability of
walls and dark lines show outlines of non-building entities

Fig. 2. Illustration of the wall estimates (black lines) calculated from the semantic
map. The grey areas illustrate building and nature objects (manually extracted from
Fig. 3). The semantic map in Fig. 1 belongs to the upper left part of this figure.

3 Wall Matching

The purpose of the wall matching step is to relate a wall estimate, obtained at
ground-level with the mobile robot to the edges detected in the aerial image.
In both cases the line segments represent the wall estimates. We denote a wall
estimate found by the mobile robot as Lg and the N lines representing the
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Fig. 3. The trajectory of the mobile robot (black line) and a grey scale version of
the used aerial image

Fig. 4. The lines extracted from the edge version of the aerial image

edges found in the aerial image by Li
a with i ∈ {1, . . . , N}. Both line types

are geo-referenced in the same Cartesian coordinate system.
The lines from both the aerial image and the semantic map may be er-

roneous, especially concerning the line endpoints, due to occlusion, errors in
the semantic map, different sensor coverage, etc. We therefore need a metric
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Fig. 5. The line Lg with its midpoint Pg = (xm, ym), the line Li
a, and the normal

to Li
a, en. To the left, Pg = φ since φ is on Li

a and to the right, Pg is the endpoint
of Li

a since φ is not on Li
a

for line-to-line distances that can handle partially occluded lines. We do not
consider the length of the lines and restrict the line matching to the line di-
rections and the distance between two points, one point on each line. The line
matching calculations are performed in two sequential steps: 1) decide which
points on the lines are to be matched, and 2) calculate a distance measure to
find the best matches.

3.1 Finding the Closest Point

In this section we define which points on the lines are to be matched. For Lg

we use the line midpoint, Pg. Due to the possible errors described above we
assume that the point Pa on Li

a that is closest to Pg is the best candidate to
be used in our ‘line distance metric’.

To calculate Pa, let en be the orthogonal line to Li
a that intersects Lg

in Pg, see Fig. 5. We denote the intersection between en and Li
a as φ where

φ = en × Li
a (using homogenous coordinates). The intersection φ may be

outside the line segment Li
a, see right part of Fig. 5. We therefore need to

check if φ is within the endpoints and then set Pa = φ. If φ is not within the
endpoints, then Pa is set to the closest endpoint on La.

3.2 Distance Measure

The calculation of a distance measure is inspired by [7], which describes ge-
ometric line matching in images for stereo matching. We have reduced the
complexity in those calculations to have fewer parameters that need to be
determined and to exclude the line lengths. Matching is performed using Lg’s
midpoint Pg, the closest point Pa on Li

a and the line directions, θi. First, a
difference vector is calculated as

rg = [Pgx
− Pax

, Pgy
− Pay

, θg − θa]T . (1)

Second, the similarity is measured as the Mahalanobis distance

dg = rg
T R−1rg (2)
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where the diagonal covariance matrix R is defined as

R =





σ2

Rx 0 0
0 σ2

Ry 0

0 0 σ2

Rθ



 (3)

with σRx, σRy, and σRθ being the expected standard deviation of the errors
between the ground-based and aerial-based wall estimates.

4 Aerial Image Segmentation

This section describes how local segmentation of the colour aerial image is per-
formed. Segmentation methods can be divided into two groups; discontinuity-
and similarity-based [6]. In our case we combine the two groups by first per-
forming an edge based segmentation for detection of closed areas and then
colour segmentation based on a small training area to confirm the areas’ homo-
geneity. The following is a short description of the sequence that is performed
for each line Lg:

1. Sort LN
a based on dg from (2) in increasing order and set i = 0.

2. Set i = i + 1.
3. Define a start area Astart on the side of Li

a that is opposite to the robot
(this will be in or closest to the unknown part of the occupancy grid map).

4. Check if Astart includes edge points (parts of edges in Ie). If yes, return
to step 2.

5. Perform edge controlled segmentation.
6. Perform homogeneity test.

The segmentation based on Lg is stopped when a region has been found.
Step 4 makes sure that the regions have a minimum width. Steps 5 and 6 are
elaborated in the following paragraphs.

4.1 Edge Controlled Segmentation

Based on the edge image Ie constructed from the aerial image, we search for
a closed area. Since there might be gaps in the edges bottlenecks need to be
found [9]. We use morphological operations, with a 3× 3 structuring element,
to first dilate the interesting part of the edge image in order to close gaps and
then search for a closed area on the side of the matched line that is opposite to
the mobile robot. When this area has been found the area is dilated in order
to compensate for the previous dilation of the edge image. The algorithm is
illustrated in Fig. 6.
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Fig. 6. Illustration of the edge-based algorithm. (a) shows a small part of Ie and
Astart. In (b) Ie has been dilated and in (c) Asmall has been found. (d) shows Afinal

as the dilation of Asmall

4.2 Homogeneity Test

Classical region growing allows neighbouring pixels with properties according
to the model to be added to the region. The model of the region can be
continuously updated as the region grows. We started our implementation in
this way but it turned out that the computation time of the method was quite
high. Instead we use the initial starting area Astart as a training sample and
evaluate the rest of the region based on the corresponding colour model. This
means that the colour model does not gradually adapt to the growing region,
but instead requires a homogeneous region on the complete roof part that is
under investigation. Regions that gradually change colour or intensity, such
as curved roofs, might then be rejected.

Gaussian Mixture Models, GMM, are popular for colour segmentation.
Like Dahlkamp et al. [3] we tested both GMM and a model described by
the mean and the covariance matrix in RGB colour space. We selected the
mean/covariance model since it is faster and we noted that the mean/co-
variance model performs approximately equally well as the GMM in our case.

5 Experiments

5.1 Data Collection

The above presented algorithms have been implemented in Matlab for evalu-
ation and currently work off-line. Data were collected with a mobile robot, a
Pioneer P3-AT from ActivMedia, equipped with differential GPS, laser range
scanner, cameras and odometry. The robot is equipped with two different
types of cameras; an ordinary camera mounted on a PT-head and an omni-
directional camera. The omni-directional camera gives a 360◦ view of the sur-
roundings in one single shot. The camera itself is a standard consumer-grade
SLR digital camera (Canon EOS350D, 8 megapixels). On top of the lens, a
curved mirror from 0-360.com is mounted. From each omni-image we com-
pute 8 (every 45◦) planar views or sub-images with a horizontal field-of-view
of 56◦. These sub-images are the input to the virtual sensor. The images were
taken with ca. 1.5 m interval and were stored together with the corresponding
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Fig. 7. Occupancy map used to build the semantic map presented in Fig. 1

robot’s pose, estimated from GPS and odometry. The trajectory of the mobile
robot is shown in Fig. 3.

5.2 Tests

The occupancy map in Fig. 7 was built using the horizontally mounted laser
range scanner. The occupied cells in this map (marked in black) were labelled
by the virtual sensor giving the semantic map presented in Fig. 1. The seman-
tic map contains two classes: buildings (values above 0.5) and non-buildings
(values below 0.5). From this semantic map we extracted the grid cells with
a high probability of being a building (above 0.9) and converted them to the
lines LM

g presented in Fig. 2. Matching of these lines with the lines extracted

from the aerial image LN
a , see Fig. 4, was then performed. Finally, based on

best line matches the segmentation was performed according to the descrip-
tion in Sect. 4.

In the experiments, the three parameters in R (3) were set to σRx = 1 m,
σRy = 1 m, and σRθ = 0.2 rad. Note that it is only the relation between the
parameters that influences the line matching.

We have performed two different types of tests. Tests 1-3 are the nominal
cases when the collected data are used as they are. The tests intend to show
the influence of a changed relation between σRx, σRy and σRθ by varying σRθ.
In Test 2 σRθ is decreased by a factor of 2 and in Test 3 σRθ is increased
by a factor of 2. In Tests 4 and 5 additional uncertainty (in addition to the
uncertainty already present in LM

g and LN
a ) was introduced. This uncertainty

is in the form of Gaussian noise added to the midpoints (σx and σy) and
directions σθ of LM

g . The tests are defined in Table 1.
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Table 1. Definition of tests and the used parameters

Test σx [m] σy [m] σθ [rad] σRθ [rad] Nrun

1 0 0 0 0.2 1

2 0 0 0 0.1 1

3 0 0 0 0.4 1

4 1 1 0.1 0.2 20

5 2 2 0.2 0.2 20

5.3 Quality Measure

We introduce two quality measures to be able to compare different algorithms
or sets of parameters in an objective way. For this, four sets (A-D) are defined:
A is the ground truth, a set of cells/points that has been manually classified
as building; B is the set of cells that has been classified as building by the
algorithm; C is the set of false positives, C = B \ A, the cells that have been
classified as building B but do not belong to ground truth A; and D are the
true positives, D = B ∩ A, the cells that have been classified as building B
and belong to ground truth A. Using these sets, two quality measures are
calculated as:

• The true positive rate, ΦTP = #D/#B.
• The false positive rate, ΦFP = #C/#B.

where #D denotes the number of cells in D, etc.

5.4 Result

The results of Test 1 show a high detection rate (96.5%) and a low false
positive rate (3.5%), see Table 2. The resulting segmentation is presented in
Fig. 8. Four deviations from an ideal result can be noted. At a and b tree tops
are obstructing the wall edges in the aerial image, a white wall causes a gap
between two regions at c, and a false area, to the left of b, originates from an
error in the semantic map (a low hedge was marked as building).

The results of Test 1-3 are very similar which indicate that the algorithm
in this case was not specifically sensitive to the changes in σRθ. In Test 4

and 5 the scenario of Test 1 was repeated using a Monte Carlo simulation
with introduced pose uncertainty. The result is presented in Table 2. One can
note that the difference between the nominal case and Test 4 is very small.
In Test 5 where the additional uncertainties are higher the detection rate has
decreased slightly.



12 Martin Persson, Tom Duckett, and Achim Lilienthal

a

b

c

Fig. 8. The result of segmentation of the aerial image using the wall estimates in
Fig. 2 (grey) and the ground truth building outlines (black lines)

Table 2. Results for the tests. The results of Test 4 and 5 are presented with the
corresponding standard deviation

Test ΦTP [%] ΦFP [%]

1 96.5 3.5

2 97.0 3.0

3 96.5 3.5

4 96.8 ± 0.2 3.2 ± 0.2

5 95.9 ± 1.7 4.1 ± 1.7

6 Conclusions and Future Work

This paper discusses how semantic information obtained with a virtual sen-
sor for building detection on a mobile robot can be used to link ground-level
information to aerial images. This approach addresses two difficulties simul-
taneously: 1) buildings are hard to detect in aerial images without elevation
data and 2) the range limitation of the sensors of mobile robots. Concerning
the first difficulty the high classification rate obtained shows that the semantic
information can be used to compensate for the absence of elevation data in
aerial image segmentation. The benefit from the extended range of the robot’s
view can clearly be noted in the presented example. Although the roof struc-
ture in the example is quite complicated, the outline of large building parts
can be extracted even though the mobile robot has only seen a minor part of
the surrounding walls.

There are a few issues that should be noted:

• It turns out that we can seldom segment a complete building outline due
to, e.g., different roof materials, different roof inclinations and additions
on the roof.

• It is important to check several lines from the aerial image since the edges
are not always as exact as expected. Roofs can have extensions in other
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colours and not only roofs and ground are usually seen in the aerial image.
In addition, when the nadir view is not perfect, walls appear in the image
in conjunction with the roof outline. Such a wall will produce two edges
in the aerial image, one where ground and wall meet and one where wall
and roof meet.

6.1 Future Work

An extension to this work is to use the building estimates as training areas
for colour segmentation in order to make a global search for buildings within
the aerial image. Found regions would then have a lower probability until the
mobile robot actually confirms that the region is a building outline.

The presented solution performs a local segmentation of the aerial image
after each new line match. An alternative solution would be to first segment
the whole aerial image and then confirm or reject the regions as the mobile
robot finds new wall estimates.

As can be seen in the result, the building estimates can be parts of large
buildings. It could therefore be advantageous to merge these regions. Another
improvement would be to introduce a verification step that could include
criteria such as:

• The building area should not cover ground that the outdoor robot has
traversed.

• The size of the building estimate should exceed a minimum value (in re-
lation to a minimum roof part).

• The found area should be checked using shadow detection to eliminate
false building estimates.
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