o

http://www.diva-portal.org
Preprint

This is the submitted version of a paper presented at IEEE/RSJ International Conference on
Intelligent Robots and Systems, Beijing, China, 9-15 Oct, 2006.

Citation for the original published paper:

Jun, L., Lilienthal, A J., Martinez-Marin, T., Duckett, T. (2006)

Q-RAN: a constructive reinforcement learning approach for robot behavior learning
In: 2006 IEEE/RSJ international conference on intelligent robots and systems,
4058792 (pp. 2656-2662). New York, NY, USA: IEEE
https://doi.org/10.1109/IR0S.2006.281986

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-3957

Q-RAN: A Constructive Reinforcement Learning
Approach for Robot Behavior Learning

Li Jun, Achim Lilienthal
AASS, Department of Technology
Orebro University
SE-701 82 Orebro, Sweden
Email: li.jun@tech.oru.se
Email: achim@lilienthals.de

Abstract— This paper presents a learning system that uses Q-
learning with a resource allocating network (RAN) for behavior
learning in mobile robotics. The RAN is used as a function
approximator, and Q-learning is used to learn the control policy
in ‘off-policy’ fashion that enables learning to be bootstrapped by
a prior knowledge controller, thus speeding up the reinforcement
learning. Our approach is verified on a PeopleBot robot executing
a visual servoing based docking behavior in which the robot is
required to reach a goal pose. Further experiments show that
the RAN network can also be used for supervised learning prior
to reinforcement learning in a layered architecture, thus further
improving the performance of the docking behavior.

I. INTRODUCTION

Using reinforcement learning (RL) for robot behavior learn-
ing is often confronted with two difficulties: representation of
large continuous sensory spaces and the necessity of speeding
up the learning process online in real time. A common practice
to deal with the first problem is using a function approximator,
such as artificial neural networks (ANNs) for approximating
value functions, but usually requires much work on designing
the network architecture and refining of the network param-
eters. The second problem usually involves prior knowledge
to bias the learning process in order for the robot to learn a
required behavior in a feasible manner and tolerable time.

This paper investigates a learning system that incorporates
Q-learning [19] with a resource allocating network (RAN) [10]
for robot behavior learning (thus, named as Q-RAN learning).
Specifically, the RAN can automatically and dynamically grow
its hidden neurons online to accommodate the training data
from the robot (e.g., sonar, laser, and visual images) for the
required behavior, thus simplifying the engineering process of
the network structure and parameters. And the “off-policy”
learning property of the Q-learning algorithm (meaning that
the actions that the robot actually takes may be unrelated to the
policy that is evaluated and improved [17]) enables learning
to be bootstrapped by a “prior knowledge controller” [3], thus
speeding up the reinforcement learning.

Our learning system is experimentally verified on a People-
Bot robot executing a visual servoing based docking behavior
in which the robot is required to approach a table in order to
grasp an object (see Fig. 2).

Tomas Martinez-Marin
Department of Physics, System
Engineering and Signal Theory

University of Alicante
Alicante, Spain
Email: tomas@dfists.ua.es

Tom Duckett
Department of Computing
and Informatics
University of Lincoln
Lincoln LN6 7TS, UK
Email: tduckett@lincoln.ac.uk

II. RELATED WORK

There has been some research on using growing neural
networks in reinforcement learning. A more recent work was
done by Rivest and Precup [12], where TD-learning was
combined with cascade-correlation networks to dynamically
represent the state space based on the training data and tested
on the Tic-Tac-Toe problem. Rivest and Precup systematically
compared their growing network algorithm with some static
neural networks such as online backpropagation and batch-
cached backpropagation, and claimed that the combination
of TD-learning with cascade-correlation networks performs
better than static backpropagation networks. One problem
is that the cache size of the look-up table in the cascade-
correlation networks has to be decided in advance and can
become intractable in a higher dimensional state space.

In the domain of robotics, Santos and Touzet used a growing
RBF network to acquire a wall following behavior [13], where
the network is used to directly calculate the actions as the
output instead of approximating the action values (i.e., Q-
values). Thus the application of Q-learning is not straight-
forward. Furthermore, the network structure could become
complicated for a large state space because the number of the
neurons in the output layer is the number of possible actions
for the given problem.

Bruske et al. [2] built a sophisticated learning system based
on the integration of a growing and pruning network called
dynamic cell structures (DCS), a REINFORCE algorithm[22],
and an adaptive heuristic critique (AHC) for learning an
obstacle avoidance behavior. One potential problem of their
learning system is that, as has been observed by Ratitch and
Precup [11], pruning the network architecture does not work
well with RL since the deleted neurons are usually the ones
corresponding to the critical states (e.g., the goal state, or
the wrong state) because they are visited much less during
the learning process. In addition, the networks structure is
complicated with many sub-architectures for adding the fuzzy
rules as the priori knowledge, thus making it difficult to use.
Note that all three reinforcement learning systems mentioned
here based on growing networks do not support off-policy
learning (see page 17-37 in [4]).

There has been much research on how to bias reinforcement
learning with some prior knowledge in order to make the
training time more realistic for robot leaning. For example,
Smart and Kaelbling used the “programming by demonstration
(PbD)” strategy in which the robot was directly driven to the
interesting areas of the state space for a corridor following
behavior by a human operator during the early stage of the
learning process, thus generating a demonstration controller
that initializes the Q-values for the subsequent reinforcement
learning [16]. Our learning system differs from theirs in two
ways: (1) their learning system involves two separated learning
stages, offline demonstration controller learning and online
reinforcement learning, whereas our learning system embeds
the prior knowledge controller into the Q-learning, thus the
reinforcement learning and prior knowledge controller are
executed simultaneously; (2) their offline demonstration con-
troller and corresponding state-action representation need be
the same as that of the learning controller since they both are
derived from the reinforcement learning framework, whereas
our learning system can use any kind of prior knowledge
controller.

Martinez and Duckett used a linear controller to speed up
the training process for a visually-guided docking behavior
on a PeopleBot robot [8]. In fact, using Q-RAN learning
for visual servoing based docking in this paper is mainly
motivated by their work, with the difference that their learning
system is built on the discrete and predefined adjoining cell
mapping structure (ACM) for Q-learning, while our Q-RAN
learning system uses the continuous state space variables and
can autonomously grow its own network structure for value
function approximation.

We notice that using reinforcement learning for docking on
the same platform has also been independently investigated
by Weber et al. [20]. However in their learning system the
camera is fixed so as to see both the gripper and the object to
be grasped without visual servoing for camera control, thus the
docking behavior is limited to a short distance of 0.4 — 0.5m.
By contrast, the docking behaviour acquired by the Q-RAN
learning system with visual servoing is valid over a range of
up to 3.0 — 4.0m. In addition, the neural network used for
image processing is also static in their learning system.

III. THE LEARNING SYSTEM

Our learning system is built on Watkins’ one step Q-
learning [17] and the RAN network [10] with the following
characteristics.

First of all, by using “off-policy” learning, the Q-learning
process in our learning system is speeded up by a prior knowl-
edge controller. Here we assume that the prior knowledge
controller can be easily acquired or quickly formulated for
a “rough control” of the required behavior such as a direct
input-output controller (e.g., a linear controller obtained from
control theory for docking in [8], a previously learned neural
network from supervised learning for goal finding [3]), a
set of control rules formulated from fuzzy logic for wall
following [9], or an initialization of Q-values acquired by

RAN network A

1 Q-Learning

' Choose action a by e-greedy]!
| ; |

' Robot takes the action: a
! [Trainer gives a reward: r
! robot reaches next state: s’ | |

! (Greedy-action in state s":
! ld'=arg max u {Q(s', u)}

0" (s,a)=r+yQ(s’,a’)
" |Current State s=s"'

lu€la,...,a,

A O

Fig. 1. Q-learning system with RAN network

the PbD approach [16]. Then, the reinforcement learning is
applied to tune and refine the prior knowledge controller for
the acquisition of the “optimal and robust” controller for the
required behavior. In this paper we use a linear control model
for the speed-up of Q-learning for the docking behavior, as
done in [8] with some minor changes.

The functionality of RAN as the function approximator is
twofold in our Q-RAN learning system. Firstly, RAN provides
a continuous representation for continuous state spaces, which
enables the learning system to generalize the learned policy to
unvisited states. More importantly, the nature of its automatic
growing structure significantly reduces the engineering process
of the state space representation. Unlike the three growing net-
works discussed in section I, our Q-RAN learning architecture
is a simple three layer RBF network with only one output
neuron for approximating the Q-value for a given state-action
situation, thus making it easy to use.

Based on the above discussion and considerations, the Q-
RAN learning system is depicted in Fig. 1, where the robot is
in state s = [s1,52,...,5n,]7 € R™, and its available actions
are u € A = {ay,aq9,...,a,} at time ¢t. The computational
steps of the learning algorithm are detailed as follows:

Initialize: learning rate n with initial value 7, search factor 7,
error threshold ¢, novelty threshold d with initial value d,qy,
and d € [dmin,dmas], Optimal receptive factor p and its
overlap factor x for the RAN network; discount factor -,
exploration rate € with initial value £y, maximum steps in
one trial t,,,,, and maximum number of trials 7,,,, for Q-
learning. Put robot in a starting position and get current state s.

Note that at time step ¢ = 0 in the first trial episode (i.e.,
T = 0), the action-values ()(s,u) are zeros for all actions
u € {ay,as,...,an,}, and the RAN network starts with K = 0
radial basis functions defined as:

¢(s7 u) = [d)l(sv u)a ¢2(S; 'LL), RN} ¢K(s7 u)]Tv

_ lle— gl
o () = exp (- Leoll) (1)
W= ['LUl,U)Q, e >wK]T7
where py, = [fk1, k2, - - -5 fk,m+1]] is the position vector,
o}, is the receptive field of the k-th radial basis function, and
x = [s,u]T = [z1,72,...,2m41]7 is the input vector to the
RAN network, which is constructed from s and wu, as in Fig. 1.

1. Calculate the action-value Q(s,u) for all actions u € A

(a) PeopleBot at start position

(b) Tracking green can
Fig. 2.

using the RAN network, i.e.,
Q(s,u) = wle(s,u) + b, for all u € A,)

where b is the bias for RAN’s output.
2. Choose an action using an e-soft policy:

a = a random action € A with probability: ¢,
a = prior knowledge controller’s output with probalility: 1 — €.

3)
3. Take action a, observe reward r, and next state §’.
4. Calculate the greedy action a’ of the next state s” as
a' = argmax(Q(s’, u), 4)
u€A

where Q(s’,u) = wl¢p(s’,u) + b, for all u € A.
5. Calculate the target action-value Q(s, a) and the temporal
difference(TD) error ¢ as,

Qt(sya) ZT—F’}/Q(S/,CL/), 5=Qt(S,CL) _Q(S7a)')

6. Construct the radial basis functions for the input vector x,
If K =0, add the first neuron to RAN by setting:

{p, =x,01 = kdpmaz, w1 =0,0=06,K =1}. (6)

Construct K radial basis functions:

P(x) = [61(x), P2(x), ..., o (x)]",

br(x) = exp(— ¥ — >/ (po)?). @

7. Find the distance ¢ between the input vector x’ and the best
matching neuron as

¢= mi - . 8
oin [l — | ®)
8. If § > € and ¢ > d, insert a new neuron by setting:
{y’new =X, 0new = /ig, Wnew = (5,K = K+]_} (9)
9. Else update the RAN’s parameters as

w<w+nio(x),
Hii <= ki + n0dr (X)wy,

b < b+ né,

i (10)

o

10. Decrease the novelty threshold d and learning rate 7 of

the RAN network, the exploration rate € and learning rate «
of the Q-learning as

d < de Y/,

n< 7]0671/‘2

if d > dmm,
€ < gpe M7,

(1)

(c) Approaching table (d) Grasping can at goal posture

Docking Behavior on the real robot.

11. Set the current state s, time ¢, and trial counter 71" as

s=s,t=t+1,{T=T+1ift =tna} (12)

12. Goto step 1 until some stopping criteria are reached (e.g.,
the required behavior is achieved, or T' > T},,4,).

One comment regarding the Q-RAN learning system is that
the calculation of many Gaussian basis functions in formula 1
is an extremely time-consuming business when the number
of radial basis functions K is large. Instead of a Gaussian
function, a simple quadratic function is used for speeding up
the computation, as done in [10], [5]:

(1= B2l it e —]| < o,

Pr(x) = { 0

IV. EXPERIMENTS ON THE ROBOT

. (13)
otherwise.

A. Behavior Investigated

We investigated a docking behavior in which an ActivMedia
PeopleBot robot is required to approach a table at a perpendic-
ular angle for its gripper to grasp an object, using its pan-tilt
camera as the only sensor. This behavior belongs to the class
of episodic tasks, meaning that the robot starts in an arbitrary
state, and eventually ends in the terminal state (goal state or
failure state) [17]. Fig. 2 shows a successful episode of the
docking behavior while the robot is under the control of our Q-
RAN learning system. Fig. 2(a) shows the robot at the starting
posture. The maximum range in which the docking behavior
can be applied is 3 — 4m limited by the image resolution of
320 x 240 pixels. Fig. 2(b) shows the robot tracking the can
and servoing its pan-tilt camera to keep the can in the center
of the visual image. The pan and tilt ranges of the camera are
set to [—90°,90°] and [20°,80°] with respect to the robot’s
orientation. Fig. 2(c) shows the robot reaching the goal pose
with its camera being fully tilted down so as to face the can.
Fig. 2(d) shows the robot grasping the can. The grasping action
is hand-coded in the experiments.

The geometry of the problem is shown in the left column of
Fig. 3. The robot and its goal pose are predefined in the global
coordinates frame as {zqg,yc}. Let o € [—90,90] denote
the angle between the robot heading direction xp and the
straight line P connecting the robot current position to the goal
position, 5 € [—90, 90] the angle between x¢ axis and the line
segment that is perpendicular to the line P, and {virans, Vrot }
is the robot’s translational velocity and rotational velocity.

Fig. 3.

The robot kinematics and the camera visual servoing

Based on the following kinematic equation,

P — COS & 0 v
o | =| smap -1 { trans] (14)
Jé; —sina/P 0 rot
a simple linear controller,
VUtrans — ka,
Urot = koo + kﬁﬂv (15)

can drive the robot to the goal pose provided that the gain
conditions {kp >0, ko —kp >0, —kg > 0} hold [15].

However, under the visual servoing framework the docking
behavior in our case becomes a more complex task due to the
facts that: first, the state variables { P, «, 3} for robot control
are estimated by the visual servoing variables tilt angle ay;;;,
pan angle apqn, and the slope angle of the table edge acqge
for camera control, thus synchronizing and stabilizing the
movement between the robot and the camera makes the robot
controller no longer linear (especially in the goal pose) because
of the dependent time lag and the momentum of the robot and
camera control [7], [18]; second, the gripper on the PeopleBot
robot only has 1-DOF for its up-down movement. Therefore
precision control for positioning the robot to the goal pose
is needed in order for the gripper to be able to execute the
grasping action.

We will describe how to estimate the state variables
{P, a, 3} from object tracking and visual servoing in the next
section in order to formulate a prior knowledge controller by
equation 15 for our Q-RAN learning system.

B. Object Tracking and visual servoing

In our experiment, object tracking and edge detection of
the table is relatively easy since the experimental setup is
simplified with special colors for the object and table edge.
As can be seen in Fig. 3, the green can is represented by
its blob center {z,,y,} in the image plane, calculated using
a simple green-color threshold filter and the median z— and
y— coordinates of the selected pixels. The slope angle acqq4
of the table edge with respect to the robot’s local frame is
approximated by least-squares regression in which all N, red
pixels {z;, y”}?:q are filtered out from the image, then the
red stripe is modeled as Y, = a, + b, X,., where

b _ Nr Z TriYri — Z Lrj Z Yri
" Ny Yoy = (X am)?

gr - bra?ra

(16)
a7)

ar =

and ¢, and Z, are the mean values of y, and x,.

The key idea of visual servoing for the pan-tilt camera
control is to keep moving the camera so that the green can
is in the center of the image. Let APan and AT4ilt denote
the relative pan and tilt angles of the camera so as to keep
the green can in the center (z;y = 160,y; = 120) of the
image, and (dz, dy) = (x"" —xP" yS*" —yPT¢) the difference
between the current and previous positions of the green can
in the image plane, as shown in the right column of Fig. 3. A
simple PD-controller for servoing the camera is derived as,

APan
ATt =

Kpp(a5*" —) + Kgpde,

o

Kpi(yo"" = y1) + Kardy,

(18)
19)

where the gains of the PD controller for camera control K, =
K, =0.04 and K4, = K4 = 0.0015 were found to give the
best servoing results for the docking behavior.

Now that the servoing variables {aiit, dpan; Qedge} have
been obtained from the visual servoing process, the state
variables {P,«, 3} can be estimated as P = 80 — as,
O = Qpan, and B = acqge = arctanb,. The linear controller
in equation 15 with the gains K, = 1.0, K, = 0.25, and
K, = 0.35 can then be used as a prior knowledge controller
for rough control of the robot in our Q-RAN learning system.
Note that in the above tracking and visual servoing procedures:
(1) the image is processed in the HSV color space, (2) state
estimation and visual servoing are carried out in the robot’s
local frame of reference, thus avoiding a global reference
frame and odometry localization, (3) no calibration of the
camera is needed.

C. Training the Q-RAN System

For the docking behavior in our experiments, the input vec-
tor x to the Q-RAN learning system is constructed from two
state variables {«, 3} plus the robot’s rotational velocity v;.ot
that takes two discrete actions v € {—8,8} (degree/s), thus
resulting in x = [, 3,u]T. The Q-RAN learning system is
used to learn the control policy for the robot’s rotational
velocity v,.o¢. Note that robot’s translational velocity (mm/s) is
given by vyrans = KpP, but P is not related to the odometry
in the global frame since it is estimated by P = 80 — a;;
from the visual servoing process.

To train the Q-RAN learning system, all elements of x are
normalized to the interval of [0, 1]; and the parameters of the
Q-RAN learning system are set as in table I:

TABLE I
PARAMETERS CONFIGURATION FOR THE Q-RAN LEARNING SYSTEM

RAN Parameters no = 0.3, 7 = 50, {dmin, dmaz} = {0.07,0.7}

Initialization: €e=0.2, p=2.67, Kk = 0.87, tyaz = 1000
Q-Learning v=10.99,e=0.2
Goal State: {P,a, 3} ={0,0,0}

Failure State: |a| > 80, 0r || > 60,0r t > tmas

The reward function for Q-learning is given as follows: if
the robot reaches the goal state, set the reward r = +1.0; if

200

0

-200

-400

start position

-

4
PO goal position

10000 500
—O— number of training examples o
9000 . . o 4450
8000 o7 1400
/OD
13
& 7000+ o 1350
£ 2] 1)
o] @ <
3 6000 & 1300 £
= o [}
£ 5000 o n® " g5
£ s P gaunt 50 '
Z » [2
© 4000 ? & 200 €
2 / [] 2
§ 3000 57 " 150
(=
o gnm
2000+ 100
et
1000 g. i 150
[}
0 i i i i i i i i i i i iy
0 2 4 6 8 10 12 14 16 18 20 22 24

episode

(b) Number of neuron and training examples vs. episode

Fig. 4. Left: trajectories comparison of two controllers. Right: neurons growing trends during the learning process of Q-RAN

= v
£ ’
= -600f P f
‘I
-800F Y/ }
_I
\I
-1000F &]
y | == LC trajectory
Q-RAN trajectory|
-1200 f
-2000-1800-1600-1400-1200-1000 -800 -600 -400 -200 0 200
X(mm)
(a) Trajectories of the linear and Q-RAN controllers
60 66
50 504
LC :Controller
: ! 404
----- o (degree)
= P (degree) 301 3
S v, (degrees) ;
8 2078
8 g
o 0] 8
2 s oo e 1=k 2
g .M‘M r %\ i e o1 8
e | A
= 'ﬁ : ~10-{
i
L ~20-
150 200 250 300 350 400 450 500
t (time step)

(a) Linear controller
Fig. 5.

the robot reaches a failure state, that is, the robot either moves
out of the state space or runs out of the time, set the reward
r = —0.2; otherwise, set the reward » = —0.001 per step.

Based on the above configurations, an episode by episode
training procedure for our Q-RAN learning system is summa-
rized as follows:

(1) Estimate state variables {P, v, 3} using object tracking and
servoing as in section IV-B, and form the input vector x,

(2) If the goal or a failure state reached, this episode is finished,
randomly move the robot backward to a new starting position,
and goto step (1) to start a new episode training,

(3) Else conduct Q-RAN’s step 1 through step 11 as in section III,
and set time step ¢ =t + 1, goto step (1).

V. RESULTS AND DISCUSSION

In this section we discuss the performance of the Q-RAN
learning system and give some observations obtained from our
experiments as follows:

A. Training Q-RAN in Online Learning Mode

Using the epoch by epoch training procedure described in
the preceding section, the Q-RAN learning system with the

50 56
40t - 40
S Q-RAN Controller

30 30
. - = o (degree) o
e
T
o - -
: muuMu“MWUMMUM%MM e

-10F= ") _‘,,_‘_f‘_._q. ~10-

o0} '|_ : _l" : —204

_300 5‘0 160 150 2(50 250 360 350 460 450_30500

t (time step)

(b) Q-RAN controller

Profile of the state variables (v, 3) and rotation velocity v,.o¢ for the two controllers

embedded linear controller successfully learned the docking
behavior in completely online learning mode on the real
robot. Specifically, the Q-RAN successfully learned the control
policy for docking after 23 episodes in an experimental run
(approx. 45 minutes), resulting in 263 neurons in Q-RAN’s
hidden layer (see Fig. 4(b).)

To compare the resulting Q-RAN controller with the linear
controller, we conducted 10 trials of both controllers at a dis-
tance of approx. 2m away from the goal position. Fig 4 and 5
show several aspects of Q-RAN for the docking behavior:

Fig. 4(a) shows that the trajectory obtained with the Q-
RAN controller (solid red line) is straighter than that of
the linear controller (dash-dot green line), corresponding to
a better approximation to the time-optimal behavior. More
importantly, the Q-RAN controller succeeded in all 10 trials
with an average of 405+ 12 time steps per episode, compared
to 8 successes of the linear controller with an average of
458 £ 14 time steps per episode.

A comparison of the Q-RAN controller with and with-
out bootstrapping is out of the question here since random
exploration on the real robot would require thousands of

episodes. In fact, we tried the Q-RAN learning system without
bootstrapping on the real robot, and it took 30 episodes
(approx. 1 hour) for the robot to find the goal state for the
first time during exploration. Obviously it would take much
longer for the robot to find the optimal control policy.

Fig. 4(b) shows two aspects of the Q-RAN learning in the
training process. On one hand, only 263 neurons (dot-square
green line) were generated for some 10000 training examples
(dash-circle red line), demonstrating Q-RAN’s ability for
generalization, thus avoiding the high storage requirements of
memory-based approaches such as locally weighted learning
(LWR) [1]. On the other hand, we notice that Q-RAN did
not stop growing during the learning process, i.e. the network
did not converge to a global optimum in terms of mean-
squared error. However, the resulting Q-RAN controller did
successfully control the robot for the docking behavior in our
experiments. Sutton and Barto pointed out this feature while
using function approximators (e.g., ANNs) in reinforcement
learning (p. 196 and p. 222 in [17]); Li and Duckett also
observed similar results for a wall following behavior [6],
in which they found that a successful control policy can be
acquired as long as the Q-values for the different actions in
the same state are different enough to enable choice of the
optimal action by arg max,eca(Q(s, u).

Fig. 5 shows the relationships between the state variables
{a, B} and the robot’s rotational velocity v,.:. Specifically,
Fig. 5(a) shows that the linear controller fails in its terminal
state. This can be seen over steps 415 — 450 (approximately),
where (§ and v,..; are still oscillating while o approaches zero
as the robot approaches the table, with its gripper over the can.
This phenomenon is called “chattering” in control engineering.

By contrast, Fig. 5(b) shows that after time step 415, both
the states (a,) and the rotational velocity v,.,; approach
zero, meaning that the resulting Q-RAN controller successfully
recognizes the goal state (where it receives the maximum
reward in each successful training episode) while « and 3
reach zero simultaneously, thus resulting in a stable behavior
(i-e., vrot = 0 when the goal state is reached).

In addition, we note that the Q-RAN controller is found
to give the best results for docking when the rotational
velocity v, 1S determined as a bang-bang controller, i.e., the
action space includes only two actions {—8, 8}. Large action
spaces (e.g., u € {-8, -4, 0, 4, 8}) were also tested in our
experiments but did not outperform the bang-bang controller.

B. Training Q-RAN in a Layered Learning Architecture

As can be seen in Fig 4(a), while a successful Q-RAN
controller for the docking behavior was acquired after 23
episodes of training, it does not significantly improve the
trajectory in the sense of time-optimal behavior, compared
to the linear controller. Therefore it is beneficial to further
improve the Q-RAN controller’s trajectory. To do this, we
propose a layered learning architecture for training our Q-
RAN system as shown in Fig. 6, which is actually inspired by
Sharkey’s work [14] in which he viewed the prior knowledge
controller as an innate controller from a biological point of

Reward r

-‘IIII
M. S—>

"y,
0
a

12
s ‘ Reinforcement Learning Layer g_
5 £
U} Error e ok 3
>3 “Af x> .
SE[T /RN AE
& ‘ Supervised Learning Layer =

\)
Linear Controller ‘)‘/

‘ Prior Knowledge

Fig. 6. The layered learning architecture of the Q-RAN learning system

view, and experimentally verified that the supervised learning
with ANNs could significantly improve the innate controller
for obstacle avoidance and goal-finding behaviors.

In this layered learning architecture, the linear controller
is first improved by the supervised learning layer with a
RAN network. In the current implementation, this is done by
offline learning. That is, the states («,3) and the rotational
velocity v,o; are recorded while the robot is guided by the
linear controller for the docking behavior. Then, the collected
data («,3) are used as the inputs and v,,; as the desired
output (i.e., the teaching signals) to train the RAN network.
After training, the resulting RAN controller takes the states
(a, B) as the inputs and calculates the rotational velocity as
its output for the robot control.

Thereafter, the reinforcement learning layer with the Q-
RAN takes over the training process in completely online
mode using the RAN controller generated by the supervised
learning layer as the prior knowledge controller. That is, the
resulting RAN controller for rotational velocity v,.¢, along
with v¢pqns = K, P for the translational velocity, is used to
control the robot in step 2 of the Q-RAN learning algorithm
in section III. In the learning process of this layer, the RAN
network takes * = [a, 3,u]T as its inputs, and takes the
Qte9¢t (which is generated by Q-learning, see Fig. 1) as its
desired output (i.e., the teaching signals) for its online training.

Note that the RAN network is used in both the supervised
and reinforcement learning layers, but its functionalities are
different for each layer. In the supervised layer, the output of
the RAN is the rotational velocity v, that can be directly
sent to the robot as the motor command signal. By contrast,
the output of the RAN in the reinforcement layer is the Q-
value for the control policy 7 to choose the optimal action a
at state s.

To evaluate the layered learning, we compared three con-
trollers: the linear controller, the RAN controller bootstrapped
by the linear controller, and the Q-RAN controller boot-
strapped by the RAN controller. We performed 10 episodes
starting at a longer distance of 4m from the goal position.

Fig. 7 shows that the linear controller (dash-dot blue line)
is improved by the supervised learning layer with the RAN
controller (dash dark line), and the RAN controller is further
improved by the reinforcement learning layer with Q-RAN
controller (solid red line) in the sense of the reduction of the

200

-200

-400

€
E -600f |- ’
> /
; /7
-800 : Loy
/ == Linear controller
_1000}- — — — RAN controller |
Q-RAN controller|
~1200f E
1400 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
~3000 -2700 -2400 ~2100 ~1800 ~1500 1200 -900 -600 -300 O
X (mm)
Fig. 7. Trajectories comparison for three different controllers

distance and the improvement of the trajectory overshoot. Note
that again, the resulting Q-RAN controller succeeds in all 10
trials with an average of 518 + 19 time steps per episode,
compared to only 7 successes of the linear controller with an
average of 685 + 30 time steps per episode, and 9 successes
of the RAN controller with an average of 618 4 28 time steps
per episode due to the the trajectory overshoots.

2000

1500 -

1000 -

500

ot

Y (mm)

500 1

-1000 : 1

—-1500 - 1

i i i i
-1500 -1000 -500 0 500
X (mm)

-2

000 y y
-3000 -2500 -2000

Fig. 8. Some example trajectories obtained with layered Q-RAN learning

Finally, Fig. 8 shows some sample trajectories of the Q-
RAN controller resulting from our layered learning architec-
ture, demonstrating that the robot starts at different starting
poses and successfully fulfills the docking behavior.

VI. CONCLUSION

In this paper we investigated a Q-RAN learning system
that is easy to use because the RAN’s automatic growing
mechanism simplifies the design process of the neural net-
work structure and parameters. Our learning system can be
speeded up in two ways: (1) training with an embedded
prior knowledge controller in a complete online learning
manner, (2) training in a layered learning architecture in which
the supervised learning and the reinforcement learning are
integrated with the same function approximator, a resource
allocating network (RAN), thus allowing further refinement
of the required behavior. We successfully applied the Q-RAN

learning system for acquiring a vision-based docking behavior
by a mobile robot.

Due to the fact that the RAN network can automatically
adapt its network structure depending on the complexity of
the required behavior, the task need not be known beforehand.
This adheres to the emphasis of developmental robotics on
“task non-specific” learning [21]. We are currently extending
the Q-RAN learning algorithm to other behaviors to demon-
strate the task non-specific nature.

REFERENCES

[1] C. Atkeson, A. Moore, and S. Schaal. Locally weighted learning.
Artificial Intelligence Review, 11(4):76-113, 1997.

[2] J. Bruske, I. Ahrns, and G. Sommer. An integrated architecture for
learning of reactive behaviors based on dynamic cell structures. Robotics
and Autonomous Systems, 22(2):87-101, 1998.

[3] K. R. Dixon, R. J. Malak, and P. K. Khosla. Incorporating prior knowl-

edge and previously learned information into reinforcement learning

agents. Technical report, Carnegie Mellon University, 2000.

C. Gaskett. Q-Learning for Robot Control. PhD thesis, The Australian

National University, 2002.

[5] G. B. Huang, P. Saratchandran, and N. Sundararajan. An efficient

sequential learning algorithm for growing and pruning RBF (GAP-RBF)

networks. IEEE Trans. On System, Man, And Cybernetics—Part B:

Cybernetics., 34(6):2284-2292, Dec. 2004.

J. Li and T. Duckett. Q-learning with a growing RBF network for behavior

learning in mobile robotics. In Proceedings of the IASTED International

Conference on Robotics and Applications (RA 2005), Cambridge, USA,

Nov. 2005.

[7] 1. R. Manchester and A. V. Savkin. Vision-based docking for biomimetic
wheeled robots. In /6th IFAC world congress, Prague, Czech Republic,
July 2005.

[8] T. Martinez-Marin and T. Duckett. Fast reinforcement learning for vision-
guided mobile robots. In IEEE International Conference on Robotics and
Automation (ICRA 2005), Barcelona, Spain, 2005.

[9] D. L. Moreno, C. V. Regueiro, R. Iglesias, and S. Barro. Using prior
knowledge to improve reinforcement learning in mobile robotics. In
Towards Autonomous Robotics Systems (TAROS04), UK, 2004.

[10] J. Platt. A resource allocating network for function interpolation. Neural
Computa., 3:213-225, 1991.

[11] B. Ratitch and D. Precup. Sparse distributed memories for on-line value-
based reinforcement learning. In ECML-2004, pages 347-358, 2004.
[12] E Rivest and D. Precup. Combining TD-learning with cascade-
correlation networks. In Proceedings of the Twentieth International
Conference on Machine Learning (ICML-2003). Washington DC, 2003.

[13] J. M. Santos and C. Touzet. Exploration tuned reinforcement function.
Neurocomputing, 28(1-3):93-105, 1999.

[14] N. E. Sharkey. Learning from innate behaviors: a quantitative evaluation
of neural network controllers. Machine Learning, 31:115-139, 1998.
[15] R. Siegwart and I. R. Nourbakhsh. Introduction to Autonomous Mobile

Robots. The MIT Press, Cambridge, Massachusetts, 2004.

[16] W. D. Smart and L. P. Kaelbling. Effective reinforcement learning for
mobile robots. In International Conference on Robotics and Automation,
May 11-15 2002.

[17] R. S. Sutton and A. Barto. Reinforcement Learning, an introduction.
MIT Press, 1998.

[18] D. P. Tsakiris, P. Rives, and C. Samson. Extending visual servoing
techniques to nonholonomic mobile robots. In G. Hager, D. Kriegman,
and S. Morse, editors, The Conference of Vision and Control, Lecture
Notes in Control and Information Systems. Springer-Verlag, 1998.

[19] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis,
University of Cambridge, 1989.

[20] C. Weber, S. Wermter, and A. Zochios. Robot docking with neural
vision and reinforcement. Knowledge-Based Systems, 17:165-172, 2004.

[21] J. Weng. Developmental robotics: Theory and experiments. International
Journal of Humanoid Robotics, 1(2):199-236, 2004.

[22] R. J. Williams. Simple statistical gradient-following algorithm for
connectionist reinforcement learning. Machine Learning, 8:229-256,
1992.

[4

=

[6

=

