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Abstract— In human-robot communication it is often impor-
tant to relate robot sensor readings to concepts used by humans.
We suggest to use a virtual sensor (one or several physical
sensors with a dedicated signal processing unit for recognition
of real world concepts) and a method with which the virtual
sensor can be learned from a set of generic features. The virtual
sensor robustly establishes the link between sensor data and a
particular human concept. In this work, we present a virtual
sensor for building detection that uses vision and machine
learning to classify image content in a particular direction
as buildings or non-buildings. The virtual sensor is trained
on a diverse set of image data, using features extracted from
gray level images. The features are based on edge orientation,
configurations of these edges, and on gray level clustering.To
combine these features, the AdaBoost algorithm is applied.
Our experiments with an outdoor mobile robot show that
the method is able to separate buildings from nature with a
high classification rate, and extrapolate well to images collected
under different conditions. Finally, the virtual sensor is applied
on the mobile robot, combining classifications of sub-images
from a panoramic view with spatial information (location and
orientation of the robot) in order to communicate the likely
locations of buildings to a remote human operator.

Index Terms— Automatic building detection, virtual sensor,
vision, AdaBoost, Bayes classifier

I. I NTRODUCTION

The use of human spatial concepts is very important in,
e.g., robot-human communication. Skubicet al. [1] discussed
the benefits of linguistic spatial descriptions for different
types of robot control, and pointed out that this is especially
important when there are novice robot users. In those situ-
ations it is necessary for the robot to be able to relate its
sensor readings to human spatial concepts. To enable human
operators to interact with mobile robots in, e.g., task planning,
or to allow the system to combine data from external sources,
semantic information is of high value. We believe that vir-
tual sensors can facilitate robot-human communication. We
define a virtual sensor as one or several physical sensors
with a dedicated signal processing unit for recognition of
real world concepts. As an example, this paper describes
a virtual sensor for building detection using methods for
classification of views as buildings or nature based on vision.
The purpose with this is to detect one type of very distinct
objects that often is used in, e.g., textual description of route
directions. The suggested method to obtain a virtual sensor

for building detection is based on learning a mapping from a
set of possibly generic features to a particular concept. Itis
therefore expected that the same method can be extended to
virtual sensors for representation of other human concepts.

Many systems for building detection, both for aerial and
ground-level images, use line and edge related features.
Building detection from ground-level images often uses the
fact that, in many cases, buildings show mainly horizontal
and vertical edges. In nature, on the other hand, edges tend
to have more randomly distributed orientations. Inspection
of histograms based on edge orientation confirms this obser-
vation. Histograms of edge direction in different scales can
be classified by, e.g., support vector machines [2]. Another
method, developed for building detection in content-based
image retrieval uses consistent line clusters with different
properties [3]. This clustering is based on edge orientation,
edge colors, and edge positions. For more references on
ground-level building detection, see [2].

This paper presents a virtual sensor for building detection.
We use AdaBoost for learning a classifier for classification
of close range monocular gray scale images into ‘buildings’
and ‘nature’. AdaBoost has an ability to select the best so-
called weak classifiers out of many features. The selected
weak classifiers are linearly combined to produce one strong
classifier. Bayes Optimal Classifier, BOC, is used as an alter-
native classifier for comparison. BOC uses the variance and
covariance of the features in the training data to weight the
importance of each feature. The proposed method combines
different types of features such as edge orientation, gray level
clustering, and corners into a system with high classification
rate. The method is applied on a mobile robot as a virtual
sensor for building detection in an outdoor environment and
can be extended to other classes, such as windows and doors.

The paper is organized as follows. Section II describes
the feature extraction. AdaBoost is presented in Section III
and Bayes classifier is presented in Section IV. In Section
V the used image sets, the description of the training phase,
and some properties of the weak classifiers are presented.
Section VI shows the results from the performance evaluation
and Section VII describes the virtual sensor for building
detection. Finally, conclusions are given in Section VIII.



II. FEATURE EXTRACTION

We select a large number of image features, divided into
three groups, that we expect can capture the properties
of man-made structures. The obvious indication of man-
made structures, especially buildings, is that they have a
high content of vertical and horizontal edges. The first type
of features use this property. The second type of features
combines the edges into more complex structures such as
corners. The third type of features is based on the assumption
that buildings often contain surfaces with constant gray level.
The features that we calculate for each image are numbered
1 to 24. All features except 9 and 13 are normalized in order
to avoid scaling problems. Here, the features were selected
with regard to a particular virtual sensor, but one could also
use a generic set of features for different virtual sensors.

A. Edge Orientation

For edge detection we use Canny’s edge detector [4]. It
includes a Gaussian filter and is less likely than others to
be fooled by noise. A drawback is that the Gaussian filter
can distort straight lines. For line extraction in the edge
image an algorithm implemented by Peter Kovesi [5] was
used. This algorithm includes a few parameters that have
been optimized empirically. The absolute values of the line’s
orientation are calculated and used in different histograms.
The features based on edge orientation are:

1) 3-bin histogram of absolute edge orientation values.
2) 8-bin histogram of absolute edge orientation values.
3) Fraction of vertical lines out of the total number.
4) Fraction of horizontal lines.
5) Fraction of non-horizontal and non-vertical lines.
6) As 1) but based on edges longer than 20% of the

longest edge.
7) As 1) but based on edges longer than 10% of the

shortest image side.
8) As 1) but weighted with the lengths of the edges.

The 3-bin histogram has limits of[0 0.2 1.37 1.57] and
the 8-bin histogram[0 0.2 . . . 1.4 1.6] radians. Values for
the vertical (3), horizontal (4) and intermediate orientation
lines (5) are taken from the 3-bin histogram and normalized
with the total number of lines. Features 6, 7, and 8 try to
eliminate the influence from short lines.

B. Edge Combinations

The lines defined above can be combined to form corners
and rectangles. The features based on these combinations are:

9) Number of right-angled corners.
10) 9) divided by the number of edges.
11) Share of right-angled corners with direction angles

close to45◦ + n · 90◦, n ∈ 0, . . . , 3.
12) 11) divided by the number of edges.
13) The number of rectangles.
14) 13) divided by the number of corners.

We define a right-angled corner as two lines with close
end points and90◦ ± βdev angle in between. During the
experimentsβdev = 20◦ was used. Features 9 and 10 are the
number of corners. For buildings with vertical and horizontal
lines from doors and windows, the corners most often have
a direction of45◦, 135◦, 225◦ and315◦, where the direction
is defined as the ‘mean’ value of the orientation angle for the
respective lines. This is captured in features 11 and 12. From
the lines and corners defined above rectangles representing,
e.g., windows are detected. We allow corners to be used
multiple times to form rectangles with different corners. The
number of rectangles is stored in features 13 and 14.

C. Gray Levels

Buildings are often characterized by large homogeneous
areas in the facades, while nature images often show larger
variation. Other areas in images that can also be homoge-
neous are, e.g., roads, lawns, water and the sky. Features 15
to 24 are based on gray levels. We use a 25-bin gray level
histogram, normalized with the image size and sum up the
largest bins. This type of feature works globally in the image.
To find local areas with homogeneous gray levels we search
for the largest connected areas within the same gray level.
Based on the gray level histogram, we calculate the largest
regions of interest that are 4-connected. The features based
on gray levels are:

15) Largest value in gray level histogram.
16) Sum of the 2 largest values in gray level histogram.
17) Sum of the 3 largest values in gray level histogram.
18) Sum of the 4 largest values in gray level histogram.
19) Sum of the 5 largest values in gray level histogram.
20) Largest 4-connected area.
21) Sum of the 2 largest 4-connected areas.
22) Sum of the 3 largest 4-connected areas.
23) Sum of the 4 largest 4-connected areas.
24) Sum of the 5 largest 4-connected areas.

III. A DABOOST

AdaBoost is the abbreviation for adaptive boosting. It was
developed by Freund and Schapire [6] and has been used
in diverse applications, e.g., as classifiers for image retrieval
[7]. In mobile robotics, AdaBoost has, e.g., been used in ball
tracking for soccer-robots [8] and to classify laser scans for
learning of places in indoor environments [9]. This work is
a nice demonstration of using machine learning and a set
of generic features to transform sensor readings to human
spatial concepts.

The main purpose of AdaBoost is to produce a strong clas-
sifier by a linear combination of weak classifiers, whereweak
means that the classification rate has to be only slightly better
than 0.5 (better than guessing). The principle of AdaBoost
is as follows (see [10] for a formal algorithm). The input
to the algorithm is a number,N , of positive (buildings) and



negative (nature) examples. The training phase is a loop. For
each iterationt, the best weak classifierht is calculated and
a distributionDt is recalculated. The boosting process uses
Dt to increase the weights of the hard training examples in
order to focus the weak learners on the hard examples.

The general AdaBoost algorithm does not include rules
on how to choose the number of iterationsT of the training
loop. The training process can be aborted if the distribution
Dt does not change, otherwise the loop runs through the
manually determinedT iterations. Boosting is known to be
not particularly prone to the problem of overfitting [10]. We
usedT = 30 for training and did not see any indications of
overfitting when evaluating the performance of the classifier
on an independent test set.

The weak classifiers in AdaBoost use single value features.
To be able also to handle feature arrays from the histogram
data, we have chosen to use a minimum distance classifier,
MDC, to calculate a scalar weak classifier. We useDt to bias
the hard training examples by including it in the calculation
of a weighted mean value for the MDC prototype vector:

ml,k,t =

∑
{n=1...N |yn=k} f(n, l)Dt(n)
∑

{n=1...N |yn=k} Dt(n)

whereml,k,t is the mean value array for iterationt, class
k, and featurel and yn is the class of thenth image. The
features for each image are stored inf (n, l) wheren is the
image number. For evaluation of the MDC at iterationt, a
distance valuedk,l(n) for each classk (building and nature)
is calculated as

dk,l(n) = ‖f(n, l) − ml,k,t‖

and the shortest distance for each featurel indicates the
winning class for that feature.

IV. BAYES CLASSIFIER

It is instructive to compare the result from AdaBoost with
another classifier. For this we have used Bayes Classifier, see
e.g. [11] for a derivation. Bayes Classifier, or Bayes Optimal
Classifier, BOC, as it is sometimes called, classifies normally
distributed data with a minimum misclassification rate. The
decision function is

dk(x) = lnP (wk)−
1

2
ln |Ck|−

1

2
[(x−mk)T C−1

k (x−mk)]

whereP (wk) is the prior probability (set to 0.5),mk is the
mean vector of classk, andCk is the covariance matrix of
classk calculated on the training set, andx is the feature
value to be classified.

Not all of the defined features can be used in BOC. Linear
dependencies between features give numerical problems in
the calculation of the decision function. Therefore normalized
histograms can not be used, hence features 1, 2, 6, 7, and 8

were not considered. The set of features used in BOC was
3, 4, 9-15, 17, 20, 23. This set was constructed by starting
with the best individual feature (see Figure 3, Section V-C)
and adding the second best feature etc., while observing the
condition value of the covariance matrices.

V. EXPERIMENTS

A. Image Sets

We have used three different sources for the collection of
nature and building images used in the experiments. In Set
1, we used images taken by an ordinary consumer digital
camera. These were taken over a period of several months in
our intended outdoor environment. Our goal with the system
is to classify images taken by a mobile robot. In Set 2, we
therefore stored images from manually controlled runs with
a mobile robot, performed on two different occasions. Set 1
and 2 are disjunctive in the sense that they do not contain
images of the same buildings or nature.

In order to verify the system performance with an inde-
pendent set of images, Set 3 contains images that have been
downloaded from the Internet using Google’s Image Search.
For buildings the search termbuilding was used. The first
50 images with a minimum resolution of240 × 180 pixels
containing a dominant building were downloaded. For nature
images, the search termsnature (15 images),vegetation(20
images), andtree (15 images), were used. Only images that
directly applied to the search term and were photos of reality
(no arts or computer graphics) were used. Borders and text
around some images were removed manually. Table I presents
the different sets of images and the number of images in each
set.

All images have been converted to gray scale and stored
in two different resolutions (maximum side length120 pixels
and240 pixels, referred to as size 120 and 240 respectively).
By this way we can compare the performance at different
resolutions, for instance the classification rate and scalability
robustness. A benefit of using low resolution images is faster
computations. Examples of images from Set 1 and 2 are
shown in Figure 1.

Set Origin Area Buildings Nature

1 Digital camera Urban 40 40

2 Mobile camera Campus 66 24

3 Internet search Worldwide 50 50

Total number 156 114

TABLE I

NUMBER OF COLLECTED IMAGES. THE DIGITAL CAMERA IS A 5 MPIXEL

SONY (DSC-P92)AND THE MOBILE CAMERA IS AN ANALOGUE CAMERA

MOUNTED ON AN IROBOT ATRV-JR.

B. Test Description

Four tests have been defined for evaluation of our system.
Test 1shows whether it is possible to collect training data



Fig. 1. Example of images used for training. The uppermost row shows
buildings in Set 1. The following rows show buildings in Set 2, nature in
Set 1, and nature in Set 2, respectively.

with a consumer camera and use this for training of a
classifier that is evaluated on the intended platform, the
mobile robot.Test 2shows the performance of the classifier in
the environment that it is designed for.Test 3shows how well
the learned model, trained with local images, extrapolates
to images taken around the world.Test 4 evaluates the
performance on the complete collection of images. Table II
summarizes the test cases. These tests have been performed
with AdaBoost and BOC separately for each of the two image
sizes. For Test 2 and 4, a random function is used to select
the training partition and the images not selected are used
for the evaluation of the classifiers. This was repeatedNrun

times.

No. Nrun Train Set Test Set

1 1 1 2

2 100 90% of {1,2} 10% of {1,2}

3 1 {1,2} 3

4 100 90% of {1,2,3} 10% of {1,2,3}

TABLE II

DESCRIPTION OF DEFINED TESTS(Nrun IS THE NUMBER OF RUNS).

C. Analysis of the Training Results

AdaBoost can compute multiple weak classifiers from the
same features by means of a different threshold, for example.
Figure 2 presents statistics on the usage of different features
in Test 2. The feature most often used for image size 240 is
the orientation histogram (2). For image size 120, features2,
8, 13 and 14 dominate. Figure 3 shows how each individual
feature manages to classifiy images in Test 2. Several of the
histograms based on edge orientation are in themselves close
to the result achieved for the classifiers presented in the next
section. Comparing Figure 2 and Figure 3 one can note that
several features with high classification rates are not usedby
AdaBoost to the expected extent, e.g., features 1, 3, 4, and
5. This can be caused by the way in which the distribution
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Fig. 2. Histogram describing the feature usage by AdaBoost in Test 2 as
an average of 100 runs, using image size 120 (upper) and 240 (lower).
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Fig. 3. Histogram of classification rate of individual features in Test 2 as
an average of 100 runs withT = 1, image size 120 (upper) and 240 (lower).

Dt is updated. Becase the importance of correctly classified
examples is decreased after a particular weak classifier is
added to the strong classifier, similar weak classifiers might
not be selected in subsequent iterations.

As a comparison to the test results presented in Section VI,
the result obtained on the training data using combinations
of image sets is also presented in Table III.

VI. RESULTS

Training and evaluation have been performed for the tests
specified in Table II for features extracted both from images
of size 120 and 240. The result is presented in Table IV
and V respectively. The tables show the mean value of the
total classification rate, its standard deviation, and the mean
value of the classification rates for building images and nature
images separately. Results from both AdaBoost and BOC
using the same training and testing data are given.

Test 1 shows a classification rate of over 92% for image
size 240. This shows that it is possible to build a classifier
based on digital camera images and achieve very good results
for classification of images from our mobile robot, even
though Set 1 and 2 have structural differences, see Section
V-A.



Sets Size Classifier Build. [%] Nat. [%] Total [%]

1 120 AdaBoost 100.0 100.0 100.0
BOC 100.0 100.0 100.0

1,2 120 AdaBoost 97.2 100.0 98.2
BOC 95.3 93.8 94.7

1,2,3 120 AdaBoost 89.7 94.7 91.9
BOC 86.5 94.7 90.0

1 240 AdaBoost 100.0 100.0 100.0
BOC 100.0 100.0 100.0

1,2 240 AdaBoost 100.0 100.0 100.0
BOC 98.1 100.0 98.8

1,2,3 240 AdaBoost 98.7 99.1 98.9
BOC 95.5 98.2 96.7

TABLE III

RESULTS ON THE TRAINING IMAGE SETS INTABLE I.

Test no. Classifier Build. [%] Nat. [%] Total [%]

1 AdaBoost 81.8 91.7 84.4
BOC 93.9 58.3 84.4

2 AdaBoost 93.0 91.8 92.6± 5.8
BOC 95.7 89.0 93.4± 5.5

3 AdaBoost 68.0 90.0 79.0
BOC 72.0 74.0 73.0

4 AdaBoost 86.6 89.8 87.9± 6.2
BOC 86.4 88.5 87.3± 6.0

TABLE IV

RESULTS FORTEST 1-4 USING IMAGES WITH SIZE120.

Test 2 is the most interesting test for us. This uses images
that have been collected with the purpose of training and
evaluating the system in the intended environment for the
mobile robot. This test shows high (and highest) classification
rates. For both AdaBoost and BOC they are around 97%
using the image size 240.

Figure 4 shows the distribution of wrongly classified
images for AdaBoost compared to BOC. It can be noted
that for image size 120 several images give both classifiers
problems, while for image size 240 different images cause
problems.

Test 3 is the same type of test as Test 1. They both train
on one set of images and then validate on a different set.

Test no. Classifier Build. [%] Nat. [%] Total [%]

1 AdaBoost 89.4 100.0 92.2
BOC 95.5 87.5 93.3

2 AdaBoost 96.1 98.3 96.9± 4.3
BOC 98.1 95.7 97.2± 4.0

3 AdaBoost 88.0 94.0 91.0
BOC 90.0 82.0 86.0

4 AdaBoost 94.1 95.5 94.6± 3.8
BOC 94.8 93.4 94.2± 4.7

TABLE V

RESULTS FORTEST 1-4 USING IMAGES WITH SIZE240.
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Fig. 4. Distribution of the 20 most frequently wrongly classified images
from AdaBoost (gray) and BOC (white), using image size 120 (upper) and
240 (lower).

Test 3 shows lower classification rates than Test 1 with the
best result for AdaBoost using image size 240. This is not
surprising since the properties of the downloaded images
differ from the other image sets. The main difference between
the image sets is that the buildings in Set 3 often are larger
and located at a greater distance from the camera. The same
can be noted in the nature images, where Set 3 contains a
number of landscape images that do not show close range
objects. The conclusion from this test is that the classification
still works very well and that AdaBoost generalizes better
than BOC.

The result from Test 4 is compared with the result of
Test 2. We can note that the classification rate is lower for
Test 4, especially for image size 120. Investigation of the
misclassified images in Test 4 shows that the share belonging
to image Set 3 (Internet) is large. For both image sizes 60%
of the misclassified images came from Set 3.

To show scale invariance we trained two classifiers on Test
2 with images of size 120 and evaluated them with images of
size 240 and vice versa. The result is presented in Table VI
and should be compared to Test 2 in Tables IV and V. The
conclusion from this test is that the features we use have scale
invariant properties over a certain range and that AdaBoost
shows significantly better scale invariance than BOC, which
again demonstrates AdaBoost’s better extrapolation capabil-
ity.

VII. V IRTUAL SENSORFOR BUILDING DETECTION

We have used the learned building detection algorithm to
construct a virtual sensor. This sensor indicates the presence
of buildings in different directions related to a mobile robot.
In our case we let the robot perform a sweep with its camera
(±120◦ in relation to its heading) at a number of points along
its track. The images are classified into buildings and ‘nature’



Train Test Classifier B. [%] N. [%] Total [%]

120 240 AdaBoost 94.2 96.7 95.1± 4.2
BOC 93.0 94.3 93.5± 5.3

240 120 AdaBoost 95.1 90.8 93.6± 6.0
BOC 100.0 44.8 80.5± 6.7

TABLE VI

RESULTS FORTEST 2 USING TRAINING WITH IMAGES SIZED 120AND

TESTING WITH IMAGES SIZED240 AND VICE VERSA.

Fig. 5. Classification of images used as a virtual sensor pointing at the two
classes (blue arrows indicate buildings and red lines non-buildings).

(or non-buildings) using AdaBoost trained on set 1. The
experiments were performed using a Pioneer robot equipped
with GPS and a camera on a PT-head. Figure 5 shows the
result of a tour in the Campus area. The blue arrows show
the direction towards buildings and the red lines point toward
non-buildings. Figure 6 shows an example of the captured
images and their classes from a sweep with the camera at the
first sweep point (the lowest leftmost sweep point in Figure
5). This experiment was conducted with yet another camera
and during winter, and the result was qualitatively found tobe
convincing. Note that the good generalization of AdaBoost is
expressed by the fact that the classifier was trained on images
taken in a different environment and season.

Fig. 6. Example of one sweep with the camera. The blue arrows point at
images classified as buildings and the red lines point at non-buildings.

VIII. C ONCLUSIONS

We have shown how a virtual sensor for pointing out
buildings along a mobile robot’s track can be designed
using image classification. A virtual sensor relates the robot
sensor readings to a human concept and is applicable, e.g.,
when semantic information is necessary for communication
between robots and humans. The suggested method using
machine learning and generic image features will make
it possible to extend virtual sensors to a range of other
important human concepts such as cars and doors. To handle
these new concepts, features that capture their characteristic
properties should be added to the present feature set, which
is expected to be reused in the future work.

Two classifiers intended for use on a mobile robot to
discriminate buildings from nature utilizing vision have been
evaluated. The results from the evaluation show that high
classification rates can be achieved, and that Bayes classi-
fier and AdaBoost have similar classification results in the
majority of the performed tests. The number of wrongly
classified images is reduced by about 50% when the higher
resolution images are used. The features that we use have
scale invariant properties to a certain range, showed by the
cross test where we trained the classifier with one image
size and tested on another size. The benefits gained from
Adaboost include the highlighting of strong features and its
improved generalization properties over the Bayes classifier.
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