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Abstract— In this paper we propose a system consisting of a
manipulator equipped with range sensors, that is instructed to
follow a trajectory demonstrated by a human teacher wearing
a motion capturing device. During the demonstration a three
dimensional occupancy grid of the environment is built using the
range sensor information and the trajectory. The demonstration
is followed by an exploration phase, where the robot undergoes
self-improvement of the task, during which the occupancy grid is
used to avoid collisions. In parallel a reinforcement learning (RL)
agent, biased by the demonstration, learns a point-to-point task
policy. When changes occur in the workspace, both the occupancy
grid and the learned policy will be updated online by the system.

I. INTRODUCTION AND MOTIVATION

In industry, manipulators are mainly used by companies

that make high volume products or products that require high

repeatability in the assembling task. Small and medium sized

companies are unlikely to invest in an expensive robot and

reprogram it for different products when they make changes,

unless the transition from assembling or handling one product

to the other requires much less effort than to perform the

work manually. A promising approach to minimize the effort

when programming manipulators is Teaching by Demonstra-

tion (TbD). Full-blown Teaching by Demonstration platforms

exist in today’s laboratories, see [1], [2]. Some use a symbolic

approach of high level task understanding, to more connection-

istic approaches for imitation; for an overview see [3].

There are several important issues for making these indus-

trial manipulators “smarter”; one is motion planning. Motion

planning and control for manipulators using methods from

reinforcement learning has received attention in some earlier

work, see [4], [5], [6], [7]. In previous work Martı́n and

Millán [5] used a manipulator with sonars for a reaching task

using actor-critic learning. Similarly, Santos [8] used a mod-

ified Q-learning algorithm for a reaching task. In distinction

to their approaches we will use the TbD paradigm and take

non-stationary environments into account.

II. TEACHING OF A REACHING TASK

The goals with this project are to achieve a robot system

with a manipulator that is easy to teach and possesses learning

and perceiving capabilities. This means a system that can

be taught a task by demonstration, and during this, record

state information of free spaces shown by the teacher. By

using feedback from range sensors the system is able to

learn an internal model of the environment, biased by the

demonstration. It should also determine for itself where it can

go safely, which means obstacle avoidance is included. The

task’s trajectory is optimized by using self-improvement by

off-policy reinforcement learning, but if the uncertainty is too

high for making exploration, i.e., self-improvement, it must

have further guidance from the teacher. This will altogether

become a platform that is flexible and self-improving for

simple handling tasks. Thus, a manipulation scenario becomes

possible, where new items can be introduced and removed

from the workspace, i.e., making the robot work in a non-

stationary environment. By using a motion capture device

instead of a teach pendant (the manipulator’s control panel)

the teaching is intuitive, fast and natural, however, not very

accurate. The teacher can very easily show the manipulator a

task’s trajectory and which parts of the workspace are free.

A. Preliminary work

In our preliminary work, presented in [9], we have imple-

mented a system that can follow a demonstrated trajectory, and

learn a simple reaching task. The teacher’s hand movement

is recorded by a motion capture device and mapped onto a

4 link analytical model of the human arm with 3 degrees-of-

freedom (DOF) in the shoulder and the wrist respectively and

1 DOF in the elbow. The redundancy of the human arm model,

together with the different numbers of DOF of the human

arm model and the robot (the robot has 6 DOF) requires the

calculation of their direct and inverse differential kinematics,

taking further into account the position and the orientation both

of the human hand and the robot’s end-effector. This is done by

using the pseudo inverted Jacobian matrix, which gives us the

joint velocities from the end-effector’s velocity. The model’s

trajectory is used by the control system to move the end-

effector from point A to point B using the recorded trajectory

AB, see figure 1. For ergonomic reasons the movement is

mirrored.

The second part of our system is a reinforcement learning

(RL) agent that learns to move from any start configuration

to a predefined goal configuration. By using the demonstrated

trajectory learning is sped up greatly by using Q-learning with

a discretized tabular Q-table. However, computing the full Q-

table is not feasible, so in our current implementation we are

using a locally weighted regression scheme to approximate the

Q-function.



Fig. 1. The captured demonstration is used to drive the human arm model
that in turn is mapped to the simulated robot.

III. PROPOSED METHOD

From a RL-agent point of view the purpose of the initial

demonstration is two-fold; first we obtain the start and goal

position of the task, secondly the supervised solutions will

guide the agent and avoid the long trial-and-error search that

the RL-agent must otherwise face. This way the agent will

not perform any trial-and-error search until it has gained some

confidence about the current state of the environment. If the

self-improvement property is unwanted then there is no need

for exploration until the sensors indicate a change in the

environment, e.g., an obstacle has been detected.

During the demonstration we will record trajectories and

store them in a three dimensional occupancy grid, where the

traversed grid cells are marked as free, i.e., no obstacles.

When the robot approaches a state not visited before, or the

environment has changed then the agent needs to explore. In

this case, it must be very careful (i.e., run at slow speed) and

will rely on the occupancy grid to avoid collisions by using

virtual collisions, i.e., when the range detector indicates an

object but before a real collision occurs, see [5].

A. The three dimensional occupancy grid

The occupancy grid is a 3D representation of the workspace

where information of the perceived grid cell is stored. This grid

is used by the policy learning to limit random exploration used

by the RL-agent in dangerous cells (i.e, not visited before)

to avoid collision. The occupancy grid will be continuously

updated using the sonar information. This will become very

important when we investigate non-stationary workspaces and

the teacher is no longer available. The occupancy grid and the

policy learning are updated in parallel. An open issue here is

how to use the 3D model for indirect RL.

The occupancy grid can be represented by a number of

cells, where each cell is associated with a probability of being

occupied by either an object that should be manipulated or

an obstacle. Cells visited many times in the demonstration are

free with a high probability. The occupancy grid will be made

quite approximate for two reasons; the measurement error in

the sonar sensors is relatively high and too high resolution

will make it unattractive from a computational view point. The

cells in the occupancy grid may also have irregular shapes with

less accuracy in the space far from the robot and with higher

accuracy closer to the center of the workspace.

B. Policy learning and planning

The RL-agent’s objective is to learn a policy, a mapping

from given states to actions, that leads to the highest accu-

mulated reward. The reward is given at the end of the task

when the agent has reached the goal or, if the agent fails, a

punishment (negative reward) is received. By giving a small

negative reward every time step the agent will also try to

minimize the time spent in searching for the goal state. To

avoid tedium when waiting for the agent to learn an acceptable

policy, which can take a long time, the initial policy is obtained

from the demonstration.

To shorten the planning sequence we will use the Dyna-Q

algorithm (introduced by Sutton [10]), which uses an internal

model of the world by storing the next state and the expected

reward for each experienced state-action pair. Dyna-Q provides

an architecture for making mental rehearsals, i.e., planning or

actions that take place only in simulation. This accelerates the

learning and improves the performance without performing

actual actions (i.e., indirect reinforcement learning). This is a

very important property since it can prevent the manipulator

from making real mistakes, which is not tolerable.

Putting it all together we must formalize the problem in

the form of states, actions and rewards. This we can define as

follows:

States s the joint space where the

manipulator works, θ

Actions a joint velocities, θ̇

Reward r a scalar reward for reaching the

goal position, given by the robot’s

internal sensors,

Punishment −r a negative reward given by the range

sensors and for each time step.

The state space is continuous covering the manipulator’s work

space. The actions are the joint velocities, with appropriate

limits for each joint.

When the agent explores it also indirectly improves the

occupancy grid making it more reliable. Exploration should

be possible even if the uncertainty is high in some regions,

i.e., joint velocities can therefore be limited by an internal

supervisor. The internal supervisor interprets the occupancy

grid and decides what actions to forbid. It can also provide

the trade-off between exploration and exploitation based on

the distance to the goal and the time spent in search for the

goal. Because of the collision risk the actions should further

be limited by the range detectors, preventing the manipulator

from moving into occupied states, by making some actions

forbidden. The range sensors are also used for giving a

negative reward signal.



Fig. 2. A schematic overview of the system.

The RL-agent receives a reward signal when taking the end-

effector to the goal position, this signal is generated by using

the manipulator’s internal sensors i.e., the encoders.

For continuous state and action spaces, Locally Weighted

Learning (LWL), presented by Atkeson et. al. [11], will be

used as a function approximator for the state-action values,

i.e., the Q-values. LWL is an instance-based learning tech-

nique, hence no explicit training phase is needed, the training

examples are simply stored in the memory and a generalization

is made upon a query, which can make the query time a bit

slow when storing large amounts of data.

C. From static to non-stationary environments

The demonstration is conducted in a static environment,

where the RL-agent builds its internal model of the world.

In parallel the 3D occupancy grid is filled with the perceived

information. When the manipulator has performed the task,

supervised by the teacher and trained by the mental rehearsals

it can gradually become more and more autonomous, i.e., it

takes actions according to the learned policy instead of the

recorded supervised actions. The robot must also be able to

cope with the situation that the environment changes after the

initial learning phase is concluded.

In Figure 2 an overview is shown of how the different parts

discussed in the above sections interact.

D. The platform

Different small sized manipulators will be used for testing

the simulated results in a real environment. The range sensors

can be mounted in several different ways, aligned with the

links, perpendicular to the links, something in between or a

combination, see Figure 3 for examples.

Another issue to investigate is whether the sensors will fail

to detect an object, due to the effects of reflection.

Since we have chosen cheap sensors they might not be very

reliable, so they should not be considered as a replacement of

Fig. 3. Three different ways of mounting the range detectors onto the links.
The filled triangles mark the sensor locations and the dashed lines the beam
patterns.

safety system to protect humans, but as a safety system for

the manipulator. A natural extension is to also mount a range

sensor on the gripper, making the approaching of objects safer.

IV. ACTION PLAN

This project will serve as a test bed for developing teaching

manipulation tasks and to test techniques developed for mobile

robots on a manipulator. The project’s main steps will include

the following:

• Develop an algorithm that can build a 3D occupancy grid

from the teacher’s motions,

• include the range sensors as a kind of “skin” for the

system,

• investigate how the 3D model can be used as a dynamic

map of a non-stationary environment,

• investigate how the Dyna-Q learning algorithm must

be modified and extended to suit our needs in a non-

stationary environment.

V. DISCUSSION

Our proposed platform is capable of recording human

actions and executing them on a robot manipulator, and with

the integration of learning capabilities we are working towards

a self-improving system with planning abilities and a basic

obstacle avoidance strategy. In future research other behaviors

will be investigated. It is our belief that manipulators of the

future must be simple to program (teach) and need to possess

basic behaviors such as avoiding collision, pick and place,

trajectory following, etc.
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