
http://www.diva-portal.org

Preprint

This is the submitted version of a paper published in Journal of Field Robotics.

Citation for the original published paper (version of record):

Magnusson, M., Lilienthal, A J., Duckett, T. (2007)
Scan registration for autonomous mining vehicles using 3D-NDT
Journal of Field Robotics, 24(10): 803-827
https://doi.org/10.1002/rob.20204

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-4258

Scan Registration for Autonomous Mining Vehicles

Using 3D-NDT

Martin Magnusson

AASS

Department of Technology

Örebro University

martin.magnusson@tech.oru.se

Achim Lilienthal

AASS

Department of Technology

Örebro University

achim@lilienthals.de

Tom Duckett

Department of Computing and Informatics

University of Lincoln

tduckett@lincoln.ac.uk

Abstract

Scan registration is an essential sub-task when building maps based on range

finder data from mobile robots. The problem is to deduce how the robot has

moved between consecutive scans, based on the shape of overlapping portions

of the scans. This paper presents a new algorithm for registration of 3D data.

The algorithm is a generalisation and improvement of the normal distributions

transform (NDT) for 2D data developed by Biber and Straßer, which allows for

accurate registration using a memory-efficient representation of the scan sur-

face. A detailed quantitative and qualitative comparison of the new algorithm

with the 3D version of the popular ICP (iterative closest point) algorithm is

presented. Results with actual mine data, some of which were collected with

a new prototype 3D laser scanner, show that the presented algorithm is faster

and slightly more reliable than the standard ICP algorithm for 3D registration,

while using a more memory-efficient scan surface representation.

1 Introduction

The main application considered in this paper is tunnel profiling (that is, measuring and

building three-dimensional models) by using a range sensor mounted on drill rigs that are

commonly used for tunnel excavation (see Figure 1). Profiling of mine tunnels is necessary to

check that new tunnels have the desired shape, to measure the volume of material removed, to

survey old tunnels and investigate whether they are still safe, and to build three-dimensional

maps that can be used for autonomous operation of drill rigs and other mining vehicles.

Today’s tools for tunnel profile scanning are either very slow or very expensive, and profiling

currently needs to be performed separately from any other activity in the tunnel. The rock

drill industry has been searching for tools that give a fast and cheap solution to this problem

for a long time.

The long-term goal of this work is to make it possible for mining vehicles to operate with

minimal human intervention, or completely autonomously. If underground operations could

be performed by autonomous vehicles, the lives and health of thousands of mine workers

could be saved in the future.

p
h
o
to

:
A

tl
a
s

C
o
p
co

Figure 1: An Atlas Copco drill rig in its natural environment. The vehicle is equipped with

rock drills mounted on telescopic booms, and is used for drilling holes in the rock face before

blasting.

The paper is structured as follows. Section 2 briefly covers the basic algorithms for scan regis-

tration that provided the foundation for this work. Section 3 describes the three-dimensional

normal distributions transform, a novel algorithm for registration of 3D surfaces, and sec-

tion 4 presents some variants and improvements to 3D-NDT. Section 5 gives the results of

experiments performed using scan data from an underground mine, and shows a detailed

comparison of the algorithms presented in the paper. Finally, section 6 concludes and sum-

marises the paper.

2 Existing scan registration algorithms

Pairwise scan registration is the process of aligning two overlapping scans, given an estimate

of the relative transformation needed to match one with the other. When the scans are

properly aligned, they are said to be in registration. Several algorithms for this purpose exist,

the most common and well-known of which is the ICP (iterative closest point) algorithm (Besl

and McKay, 1992; Chen and Medioni, 1992). Following the nomenclature of Besl and McKay,

the scan that serves as the reference is called the model and the scan that is moved into

alignment with the model is called the data scan.

2.1 ICP

ICP works by iteratively searching for pairs of nearby points in the two scans and minimising

the sum of all point-to-point distances.

Two main problems of ICP are that it is point-based, and as such does not make use of the

local surface shape around each point, and that the nearest-neighbour search in the central

loop is rather time consuming. One way to speed up the search is to use an efficient search

data structure, such as a kd-tree with approximate nearest-neighbour search (Greenspan and

Yurick, 2003), but the search pass is still the main bottleneck for the algorithm’s running

time.

If the point pairs that are found in the first step of the algorithm indeed correspond to the

same point on the scanned surface, the computed transformation will be exact. However,

since the closest point is used as a guess for the corresponding point, it is desirable to detect

and filter bad correspondences and keep only the best ones. One strategy is to assign different

weights to the pairs, as a kind of “soft” outlier rejection (Rusinkiewicz, 2001). The strategy

is to assign more weight to point pairs that are likely to contribute more to the end result

and less weight to pairs that are more likely to be incorrect correspondences. One example

of a weighting criterion is to use the relative distance between the points. The weight w of

the correspondence between points x and y can be set proportional to the point pair with

the largest distance so that

w = 1−
|x− y|

max |xi − yj |
(1)

We found that linear weighting based on distance did not improve the results on our data. For

tunnel or corridor data, distance-based weighting can in fact degrade performance. Because

most points along the walls and ceiling will generally be well-aligned, their influence will

overwhelm point pairs with larger distances, which may correspond to corners and other

features that are important. Therefore we weighted all point pairs equally.

2.2 2D-NDT

The normal distributions transform (NDT) is a more recent method for registration devel-

oped for two-dimensional scan data (Biber and Straßer, 2003). The key element in this

algorithm is its representation of the model. Instead of using the individual points of the

model, it is represented by a combination of normal distributions, describing the probability

of finding a surface point at a certain position. The normal distributions give a piecewise

smooth representation of the model point cloud, with continuous first and second order

derivatives. Using this representation, it is possible to apply standard numerical optimisa-

tion methods for registration. Numerical optimisation is a problem that has been studied

for centuries, and fast and reliable methods for optimising functions such as a sum of normal

distributions have been developed and tested over time. Because the points in the model are

not used directly for matching, there is no need for the computationally expensive nearest-

neighbour search that is done in the central loop of ICP. Storing the NDT representation of

scans instead of storing the point clouds themselves also requires much less memory. This is

beneficial for all large maps, where storing the complete point cloud data is uneconomical.

Another application where a compact map representation is needed is when using multiple

time scales for mapping dynamic environments, where multiple copies of the same area are

stored, representing different time scales. Computing the normal distributions is a quick

one-off task that is done during a single pass through the points of the model.

The first step of the NDT algorithm is to subdivide the space occupied by the model into

regularly sized cells (squares in the 2D case, or cubes in 3D). Then, for each cell b that

contains more than some minimum number of points, the mean vector q of the points in the

cell and the covariance matrix C are calculated as

q =
1

n

n
∑

k=1

xk, (2)

C =
1

n− 1

n
∑

k=1

(xk − q)(xk − q)T , (3)

where xk=1,...,n are the points contained in the cell.

The probability that there is a point at position x in cell b can then be modelled by the

normal distribution N(q,C). The probability density function (PDF) is formulated as

p(x) =
1

c
exp

(

−
(x− q)TC−1(x− q)

2

)

, (4)

where q and C are the mean vector and covariance matrix for the cell that contains point x,

and c is a normalising constant that can be set to one for practical purposes. Setting the

limit for which cells are considered occupied to five points per cell is reasonable, in order to

get a sensible covariance matrix. A 2D laser scan and its corresponding normal distributions

are shown in Figure 2.

The parameters to be optimised — that is, the rotation and translation of the current pose

estimate — can be encoded in a vector p. For 2D registration, there are three transformation

parameters to optimise. Let p = [tx, ty, φ] be the parameter vector, where tx and ty are the

translation parameters and φ is the rotation angle. Using counter-clockwise rotation, the 2D

transformation function is

T3(p,x) =









cos φ − sin φ

sin φ cos φ









x +









tx

ty









. (5)

The algorithm measures the fitness of a particular pose by evaluating the PDFs at all points

of the data scan. Since optimisation problems are generally formulated as minimisation

problems, the score function is defined so that good parameters yield a large negative number.

1

0

p(x)

Figure 2: A 2D laser scan of part of a room and the NDT representation describing the

surface shape. The original point cloud is shown with small squares, and the rounded shapes

show the normal distributions of the occupied grid cells. Each cell is a square with 1 m side

length. Brighter areas represent a higher probability.

Given a set of points X = {x1, . . . ,xn}, a pose p, and a transformation function T (p,x) to

transform a point in space, the score s(p) for the current set of parameters is defined as

s(p) = −
n
∑

k=1

p(T (p,xk)). (6)

In other words, the score is the negated sum of probabilities that the transformed points of

the data scan are actually lying on the model surface.

Given the transformation parameters p, Newton’s algorithm can be used to iteratively solve

the equation H∆p = −g, where H and g are the Hessian and gradient of s. The increment

∆p is added to the current estimate of the parameters in each iteration, so that p← p+∆p.

For brevity, let

x′ ≡ T (p,x)− q. (7)

In other words, x′ is the transformed point x, relative to the centre of the point distribution

of the cell to which it belongs. The entries for the gradient of the score function can be

written as

gi =
δs

δpi

=

n
∑

k=1

x′T

k C−1
δx′

k

δpi

exp

(

−x′T
k C−1x′

k

2

)

. (8)

The entries of the Hessian are

Hij =
δs

δpiδpj

=

n
∑

k=1

exp
(−x′T

k C−1x′

k

2

)

(

(

x′T

k C−1
δx′

k

δpi

)(

−x′T

k C−1
δx′

k

δpj

)

+

x′T

k C−1
δ2x′

k

δpiδpj

+
δx′

k

δpj

T

C−1
δx′

k

δpi

)

. (9)

The first-order and second-order partial derivatives of x′ in equations (8) and (9) depend on

the transformation function. Using the 2D transformation function from equation (5), the

first-order derivative δx′/δpi is given by column i of the Jacobian matrix

J3 =









1 0 −x′

1
sin φ− x′

2
cos φ

0 1 x′

1
cos φ− x′

2
sin φ









, (10)

and the second-order derivatives are

δ2x′

δpiδpj

=























































−x′

1
cos φ + x′

2
cos φ

−x′

1
sin φ− x′

2
cos φ









if i = j = 3









0

0









otherwise.

(11)

The NDT algorithm for registering two point sets X and Y (finding the pose p that moves

the data scan X into registration with the model Y) is given in Algorithm 1.

In recent work carried out independently, a semi-3D version of NDT was used to register large

high-resolution outdoor scans (Ripperda and Brenner, 2005). In the work of Ripperda and

Brenner, each 3D scan was divided into several horizontal slices and 2D-NDT was applied

on each pair of slices. Using N slices, and denoting the score for slice n by sn(p), the score

Algorithm 1 Register data scan X with model Y using NDT

Build cell structure B

for all points yi ∈ Y do

Find the cell bk that contains yi

Store yi in bk

end for

for all cells bi ∈ B do

Y ′ = {y′

1
, . . . ,y′

n} ← all points in bi

qi ←
1

n

∑n

j=1
y′

j

Ci ← covariance of all points in Y ′

end for

while not converged do

score← 0

g← 0

H← 0

for all points xi ∈ X do

Find the cell bk that contains T (p,xi)

x′

i ← T (p,xi)

score← score− p(x′

i) (see equation (4))

Update g (see equation (8))

Update H (see equation (9))

end for

Solve H∆p = −g

p← p + ∆p

end while

function was defined as the sum over all slice pairs

s(p) =

N
∑

n=1

sn(p). (12)

The approach used by Ripperda and Brenner can only perform registration in the horizontal

plane, and only works under the assumption that the local coordinate systems of all scans

are aligned in the plane, meaning that the scanner must have the same orientation at each

scan pose. This assumption does not hold for the majority of mobile robot applications.

2.3 Registration with approximants to the distance function

Mitra et al. presented an approach to 3D scan registration that is similar to NDT (Mitra

et al., 2004). The idea behind their algorithm is to describe the model surface implicitly, using

quadratic approximants to the squared distance function from the target surface, instead

of the normal distributions used by NDT or the original point cloud data used by ICP.

Registration then becomes the task of minimising the sum of the distance functions when

evaluated at the points of the data scan. Because the approximants used in their algorithm

are second-order approximations of the local surface shape that are valid within an interval

around each point, and not just at the points where they are computed, it is possible to

use Newton iteration to solve the registration problem with this surface representation too.

One way to use the approximants is to compute them on demand for each point in the

model, using the normal vector and the two principal curvature directions at that point.

The normal and principal curvature vectors are computed in a preprocessing step, and the

distance functions are computed at each step of the registration process. The other method

presented by the authors is to subdivide the space occupied by the model into a grid. For

each grid cell (both cells that are occupied by the surface and empty cells), a quadratic patch

is fitted to the squared distance to the scan surface. The second method is quite similar to

the NDT versions described in this paper. For any point in the data scan, the algorithm

queries the cell structure for the corresponding approximant to the squared distance function

to the surface, and uses these values as the “score” of the current pose.

The squared distance function used by Mitra et al. is in fact a generalisation of the error

metrics used by the most common versions of ICP: the point-to-point distance mentioned in

section 2.1, and the point-to-plane distance, which measures the distance from a point in the

data scan to the closest point on the tangential plane of its closest neighbour in the model. In

their paper, they showed that the suggested functions lead to more reliable registration from

a larger number of initial pose estimates than point-to-plane ICP. The algorithm behaves

like point-to-point ICP (stable with regard to the initial error, but slower) when the scans

are far from each other, and like point-to-plane ICP (faster, but less stable with regard to

the initial error) when the scans are almost registered.

The quadratic patches approximate both the position and the curvature of the surface,

while the normal distributions used in NDT only give an estimate of the position. As long

as the surface is smooth and the cells are small enough so that the surface is approximately

uni-modal within each cell, quadratic patches are a more descriptive representation of the

surface than the normal distribution of points within the cell. Mitra et al. use the fitting error

of the quadratic patch to deal with the problem of choosing a good cell size, by building

an octree cell structure that has small cells where required and large cells where that is

sufficient. Neighbouring cells are merged if a patch fitted to the surface in the larger cell

has an acceptable fitting error. A similar method has also been implemented for NDT (see

section 4.3.2).

For very noisy data, we hypothesise that surface patches are an inappropriate model of

the scan data, compared to the more context-free normal distribution representation. The

quadratic patches assume that the scan points are sampled from a piece-wise smooth surface,

which is not always the case. In the mine mapping application, the walls of the tunnels are

quite rough, and the the sample spacing is at a larger scale than the surface roughness for

areas of the tunnel far away from the scanner. Using only the scan points or an approximated

surface fitted to the scan points is likely to lead to misalignment of scans proportional to the

roughness of the walls. The uneven walls will in this case behave like noisy measurements.

Smoothing the surface with the proposed normal distributions is a good alternative in that

case. Mitra et al. did not report the execution times of their algorithm, but it would be

interesting to compare the speed and accuracy of their approach to that of NDT. We did

not compare the two algorithms for the work presented here, because of time constraints

and the lack of a publically available implementation. Though the storage requirements for

the quadratic fit representation are smaller than storing the point clouds themselves — at

least for densely sampled point clouds — they are somewhat larger than for NDT, because

distance approximants are stored for all cells (requiring nine parameters per cell), and not

just the occupied ones.

3 3D-NDT

The main difference between 2D and 3D registration with NDT lies in the spatial transforma-

tion function T (p,x) and its partial derivatives. In two dimensions, rotation is represented

with a single value for the angle of rotation around the origin, and the most obvious trans-

formation function is the one from equation (5). General rotation in 3D is more complex.

A robust 3D rotation representation requires both an axis and an angle. A straight-forward

way to represent a general 3D transformation is to use seven parameters (three parameters

for the translation, three for the rotation axis, and one for the rotation angle). Using a

right-handed coordinate system and counter-clockwise rotations, the transformation of a 3D

point x using a parameter vector p can then be formulated as

T7(p,x) =















er2

x + c erxry − srz erxrz + sry

erxry + srz er2

y + c eryrz − srx

erxrz − sry eryrz + srx er2

z + c















x +















tx

ty

tz















, (13)

where p = [t|r|φ], t = [tx ty tz] is the translation, r = [rx ry rz] is the axis of rotation,

s = sin φ, c = cos φ, e = 1− cos φ, and φ is the rotation angle.

A common way to represent 3D rotation in computer graphics is to use quaternions, which are

a generalisation of complex numbers. Quaternions have favourable properties when used for

rotation, most notably when composing several rotations. A normalised quaternion always

represents a valid rotation. A combination of rotation matrices, on the other hand, may

become non-orthogonal as rounding errors increase over time, and using a non-orthogonal

transformation matrix for rotation has undesired effects. The axis-angle rotation r, φ can be

represented by the quaternion cosφ + (rx cos φ)i + (ry cos φ)j + (rz cos φ)k.

The partial derivatives that are needed for equations (8) and (9) when using T7 can be

found in the Jacobian and Hessian matrices (17) and (18). The Hessian is presented as a

block matrix with 7 × 7 blocks, where each block is a three-element vector. Similarly to

equation (7), define

x′ ≡ T7(p,x)− q, (14)

where x is a 3D scan point, q is the mean vector of the cell in which it lies, and p is a vector

of transformation parameters. Then

δx′

δpi

= the i-th column of J7, (15)

δ2x′

δpiδpj

= Hij. (16)

J7 =















































1 0 0

0 1 0

0 0 1

e(2rxx1 + ryx2 + rzx3) eryx1 − sx3 erzx1 + sx2

erxx2 + sx3 e(rxx1 + 2ryx2 + rzx3) erzx2 − sx1

erxx3 − sx2 eryx3 + sx1 e(rxx1 + ryx2 + 2rzx3)

sA− cB sC − cD sE − cF















































T

(17)

A = (r2

x − 1)x1 + rxryx2 + rxrzx3, B = rzx2 − ryx3,

C = rxryx1 + (r2

y − 1)x2 + ryrzx3, D = −rzx1 + rxx3,

E = rxrzx1 + ryrzx2 + (r2

z − 1)x3, F = ryx1 − rxx2

H7 =















































0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 a b c d

0 0 0 b e f g

0 0 0 c f h i

0 0 0 d g i j















































(18)

Figure 3: The probability functions used by 3D-NDT for a tunnel section. Brighter, denser

parts represent higher probabilities. The cells have a side length of 1 m.

a =















2ex1

0

0















, b =















ex2

ex1

0















, c =















ex3

0

ex1















, d =















s(2rxx1 + ryx2 + rzx3)

sryx1 − cx3

srzx1 + cx2















,

e =















0

2ex2

0















, f =















0

ex3

ex2















, g =















srxx2 + cx3

s(rxx1 + 2ryx2 + rzx3)

srzx2 − cx1















,

h =















0

0

2ex3















, i =















srxx3 − cx2

sryx3 + cx1

s(rxx1 + ryx2 + 2rzx3)















, j =















cA + sB

cC + sD

cE + sF















In (17) and (18), xn denotes the scalar n-th component of the 3D vector xk. Figure 3

illustrates the 3D normal distributions for a mine tunnel scan.

The equations above were implemented for the experiments in section 5. However, the

angle parameter in the seven-element parameter vector is redundant. The angle can also

be encoded implicitly in the three axis parameters, so that the length of the rotation axis

corresponds to the angle of rotation, instead of maintaining a normalised rotation axis. In

that case, only six parameters are needed.

4 Alternative methods implemented

Several choices need to be made for a practical implementation of 3D-NDT. This section

describes different methods and parameters that were tested, and their influence on the

basic algorithm.

4.1 Sampling method

When using 3D-NDT, the model is converted to a set of normal distributions. The points

of the data scan are then aligned to these functions. Usually, a large number of scan points

are redundant for the purpose of describing the scanned surface shape. Therefore it is

normally desirable to sub-sample the data scan in order to improve running time. In many

cases, not least when scanning in corridors and tunnels, as well as in unstructured outdoor

environments, the distribution of points is very much denser near the scanner location than

farther out. If points are sampled in a uniformly random manner, the sampled subset will

have a similar distribution. Consequently, parts that are further from the scanner contribute

less to the registration. This is not specific to NDT, but is common to all point-based

registration methods.

Spatially distributed sampling is a sensible alternative method; that is, making sure that

the spatial distribution of points in the sub-sample is as even as possible. This can be done

by grouping the points into equally sized cells, similar to what is done when the normal

distributions are generated for the model. Then, a number of points are drawn from each

cell. If the distribution of cells is adequate, this strategy will give an even distribution of

points.

It is also possible to implement sub-sampling methods that consider the normals as well as

positions of points, either making the distribution of normals as spread out as possible, or

primarily choosing points with “unusual” normals (Rusinkiewicz, 2001). The normal at each

surface point must then be computed from a sufficient number of its neighbours. Gelfand et

al. developed an improved sampling method for ICP, mainly for cases when the data consists

of mostly planar regions with a few important “lock and key” features (Gelfand et al., 2003).

Such data are notoriously difficult to register correctly, since the scans can “slide” along the

planar regions without any big changes in the error function. The stable sampling method

of Gelfand et al. requires that normals are computed for all sample points. They reported

that the algorithm takes about three times longer to execute than ICP with uniform sub-

sampling. In the work covered by this paper, point clouds without normal or connectivity

information have been used, so these kinds of sampling methods have not been investigated

in detail. Though it was not tested, we believe that most of the mine tunnel scans do not

have the kind of shape that the stable ICP sampling method was designed for. While many

of the scan pairs used in section 5 are difficult to register for the same reasons, namely that

the large-scale features are not enough for accurate registration, the important small-scale

features are not generally as distinct as in the incised plane data sets used by Gelfand et al.,

but are more evenly distributed over the rough surface and have characteristics similar to

Gaussian noise.

4.2 Cell size

Choosing a good cell size is important when using NDT. Any feature that is much smaller

then the size of a cell will be blurred out by the PDF that describes the local surface

shape around it. Choosing a cell size that is too large therefore often leads to less accurate

registration. On the other hand, the region of influence of a cell only extends as far as its

boundaries. That is, the cell will only contribute to the score function for scan points within

its bounds. The consequence of this is that if the cells are too small, the two scans must

be close together before registration for the algorithm to succeed. Using smaller cells also

requires more memory. The optimal size and distribution of cells depend on the shape of

the input data and on the application.

4.3 Discretisation methods

Using a fixed lattice of square or cubic cells burdens the user with the task of choosing a

good cell size. A more adaptive cell structure would be preferable; using finer subdivision

in places where a single normal distribution cannot describe the surface satisfyingly. This

section presents a number of alternative methods for handling the cells and their PDFs.

4.3.1 Fixed subdivision

The benefit of using a fixed lattice of cells is that the overhead for initialising the cell structure

is very small. Only one set of PDF parameters needs to be computed for each cell, and the

positioning of each cell is straightforward. Even more important for the performance of the

algorithm is that point-to-cell look-up is also a very quick operation that can be done in

constant time, as the cells can be stored in a simple array.

4.3.2 Octree subdivision

An octree is a tree structure that can be used to store a hierarchical discretisation of 3D

space. In an octree, each node represents a bounded partition of the space. Each internal

node has eight children that represent congruent and non-overlapping subdivisions of the

space partition that corresponds to their parent node. When creating an octree, the root

node is sized to encompass the whole model. The tree is then built recursively, splitting all

nodes containing more than a threshold number of points. All data points are contained in

leaf nodes of the octree.

The “octree” version of 3D-NDT starts with fixed regular cells, as described before, with the

difference that each cell is the root node of an octree. Each cell in which the spread of the

distribution is larger than a certain threshold is then recursively split, thus making a forest

of octrees. It is important for the efficiency of the algorithm that the point-to-cell look-up

is fast, and this is the main reason why a forest of octrees was implemented, rather than

having a single octree with a root node which spans the whole scan. For many types of scan

data, a reasonable cell size can be specified, so that only a few cells in parts where the scan

surface is particularly uneven need to be split. Thus, for most points, finding the correct cell

only needs a single array access, while traversing a large octree once for each point would

take more time. Using a forest gives a very slight increase in memory consumption, since a

few unnecessary cells need to be stored, but the effect of this is negligible.

When traversing the cell structure looking for the corresponding cell to a point in the data

scan, the leaf node that contains the point is chosen and its PDF is used to compute the

score function.

4.3.3 Additive subdivision

Using octree subdivision gives a better representation of the surface shape in areas where

large cells would hide many details, while keeping large cells where the surface is largely

planar and further subdivision is unnecessary. However, the problem that small cells have a

smaller region of influence remains: if corresponding points of the two scans are not within

the same cell, the extra fidelity is of no use.

A slight change to the octree subdivision scheme can mitigate this limitation. Instead of

using only one leaf of the octrees, each point from the data scan has its score function

evaluated for all of the distributions in the leaf cells. This effectively increases the support

size of the leaf cells to that of their root cell, without sacrificing the extra refinement of the

surface description that they give. This is illustrated in Figure 4.

4.3.4 Iterative subdivision

Another option is simply to perform a number of NDT runs with successively finer cell

resolution, so that the start pose for each iteration other than the first one is the end pose

of the previous run. The first runs are good for bringing badly aligned scans closer together,

and later runs improve the rough initial match.

If the different cell structures are computed from the smallest cell size to the largest and

a

b c d e f g h i

h

i

x

d
e

c
b

g

Figure 4: Comparing octree and additive subdivision. A subdivided grid cell is shown on

the left, and the tree structure is shown on the right. The PDF of cell a has a large spread,

because the points within the cell are not aligned along a planar region. Therefore it is split,

and the PDFs of eight sub-regions b–i are computed instead. Point x is within cell a, and,

more specifically, within sub-cell g. Using octree subdivision, x’s contribution to the score

function is computed from g alone. Using additive subdivision, the score is a sum computed

from nodes b–i. In this example, nodes b–e are empty and will not add anything to the score.

the cell sizes are changed by a factor 2 in each iteration, the larger cells do not need to be

computed from scratch, but can be updated efficiently using the data from their sub-cells.

This method is a potential improvement to how the implementation shown in section 5.2

was done.

During the preparation of this paper, Takeuchi and Tsubouchi presented another way of

using NDT for 3D scan registration (Takeuchi and Tsubouchi, 2006). Their implementation

is rather similar to the version described in this paper in that they also use an iterative

subdivision scheme similar to that described here. An important difference is that they used

smaller cells in the space that is near the sensor location and larger cells farther away in

the early iterations, and used only the smaller size in the later iterations, when the scans

were almost aligned. The reasoning behind this is that error in the rotation estimate caused

larger displacements further from the sensor location, so larger cells are needed there to make

sure that more points from the data scan are used. The linked cells strategy described in

section 4.3.5 is another solution to the same problem. Takeuchi and Tsubouchi tested their

algorithm on data from a computer lab with good results, though they did not make a direct

comparison of their algorithm with other registration algorithms.

4.3.5 Linked cells and infinite outer bounds

Using the discretisation methods described so far, points from the data scan lying in unoc-

cupied cells are discarded, thus rendering large parts of the input space “dead”. Instead of

doing so, the PDF from the closest occupied cell can be used for those points. This increases

the region of influence of cells, and is illustrated in Figure 5. Even though the value of the

PDF of many cells is almost zero outside the cell bounds, so that it makes no substantial

Figure 5: Matching two 2D scans of a tunnel section. The dotted scan is being registered to

the solid scan. Occupied cells are shaded. If linked cells are not used, the parts of the scan

that are in unshaded cells will be skipped. Otherwise the linked cell (shown with arrows)

will be used. If using infinite outer bounds, the outer cells extend as shown with dashed

lines.

contribution to the score anyway, for cells with a very elongated point distribution, the

influence outside the cell can also make a difference.

The same idea can also be applied to points falling outside of the cell lattice altogether.

The score for those points can be computed using the closest cell on the edge of the lattice,

so that the outer cells in effect have infinite outer bounds. However, doing so introduces a

certain “drag” bias, as points from non-overlapping regions of the data scan will be attracted

to border regions of the model.

Linked cells can be implemented either by letting each cell store a pointer to the nearest

occupied cell, or by storing only occupied cells and putting them in a kd-tree. The latter

should be preferable if there are many unoccupied cells.

5 Experiments

This section covers experiments performed with underground mine data to compare the

performance of different varieties of 3D-NDT and ICP.

There are many parameters that can be changed, both for ICP and 3D-NDT. To avoid a

combinatorial explosion in the number of possibilities, a default “baseline” combination of

variants was chosen that incorporates the following features:

• ICP parameters

– Euclidean point-to-point distance error metric,

– outlier rejection using a 1 m fixed distance threshold,

– least squares optimisation (Besl and McKay, 1992),

– approximate kd-tree search structure with 10 points per leaf node in the tree (to

minimise the amount of back-tracking needed) and 1 cm error bound (for each

search, a point that is no more than 1 cm from the true nearest neighbour is

returned),

– constant weighting of point pairs.

• NDT parameters

– fixed cells with 1 m side length,

– Newton’s method with line search for optimisation, with a maximum step length

of 0.05 (|∆p| = 0.05) so that the maximum change in the pose vector is 5 cm or

0.05 radians at each iteration,

– neither linked cells nor infinite outer bounds.

• Common parameters

– convergence threshold when the change of |p| is less than 0.0001.

The times reported in this paper include all required pre-processing: creating a kd-tree (for

ICP), building the cell structure and computing all PDFs (for NDT), and sub-sampling the

data scan (for both algorithms).

Moderate effort was made to optimise the efficiency of the programs. The algorithms were

implemented in C++. The ICP implementation uses the quite efficient approximate nearest

neighbour library ANN. The numerical optimisation code used in 3D-NDT makes use of the

C linear algebra library newmat. This library claims to be most efficient for large matrices,

but the matrices involved in the computations for 3D-NDT are no larger than 7 × 7. It is

likely that the numerical optimisation can be performed faster. The experiments were run on

a computer with an AMD Athlon processor running at 1950 MHz and 512 MB of memory.

5.1 Data

Three mine data sets were used in the comparison and evaluation of the registration algo-

rithms. They were collected in the Kvarntorp mine, south of Örebro in Sweden. This mine

is no longer in production, but was once used to mine sandstone. The mine consists of more

than 40 km of tunnels, all in one plane. Parts of the mine are currently used as archives and

storage facilities, while others are used as a test bed for mining equipment.

Because of the natural layers of sandstone, the tunnels have a rather characteristic shape,

with flat ceilings and relatively straight walls. Even though the floor and ceiling are flat

compared to many other mines and natural environments, the unevenness of the floor makes

Figure 6: One of the tunnels in the Kvarntorp mine.

a wheeled vehicle tilt considerably while driving over it. The roughness is comparable to

that of a gravel road, and if scans were being registered with only three degrees of freedom

(disregarding tilt and changes in floor height), there would be large discrepancies between

many scans. Figure 6 shows a photo from one of the tunnels.

The junction data set (Figure 7) consists of two scans from the end section of a tunnel.

At the far end of the tunnel, there is a flat cast concrete structure, and on one of the side

walls there is a passage to a neighbouring tunnel. Both the end face and this passage are

salient and large-scale features. These two scans were taken from the same pose, and only

differ in resolution. In other words, the ground truth pose for the data scan with respect to

the model is t = 0, R = ([0, 0, 1], 0). The data scan contains 139 642 points and the model

contains 72 417 points.

The tunnel data set (Figure 8) was collected further down the same tunnel. Two scans were

taken approximately four metres apart. The scans contain around 27 500 points each. The

scans in this set have much less obvious features. The only large-scale features — the walls

and ceiling — are not enough to give accurate registration, as the scans can “slide” along

the direction of the tunnel, and still have a large amount of overlap and close proximity

Side tunnel

Location of scanner

Main tunnel

End wall

Figure 7: The data scan scan from the junction data set, seen from above.

Figure 8: The two scans of the tunnel data set. The free-floating points in the middle of

the tunnel are noise.

of all surfaces, which are the usual criteria for a good match. The small-scale features,

such as bumps on the walls and light fixtures in the ceiling, need to be matched in order

to properly register these scans. For these two scans, the ground truth was determined

visually, by running a number of registration attempts and picking one that looked like the

closest match. When collecting this data set, we tried to measure the relative displacement

between the scans using a so-called total station (that is, a tripod mounted laser measurement

device). The total station can be seen in Figure 6 (on a yellow tripod near the left wall).

Three points were marked on the scanner, and the total station was set up at a fixed position

further down the tunnel. The distances to the three points on the scanner were measured

from each scanner pose, and the transformation from each scanner pose to the next was

determined from these data. The resulting measurements were not accurate enough to use

as a ground truth measurement, but they were good enough to provide an initial estimate

for the registration algorithms.

Both the junction and tunnel data sets were collected with an early prototype of a 3D

laser range finder, built by Optab Optronikinnovation AB. The Optab scanner is based on

a modulated infra-red laser that is projected onto a rotating mirror. The range is measured

by investigating the phase-shift of the reflected laser beam. The configuration of the scanner

was changed between the two data sets. For the tunnel data set, the scanner was oriented

so that the first scan plane was horizontal. The scanner was then tilted upwards. This is a

so-called pitching scan. Because of this configuration, the floor is not visible in the tunnel

data. For the junction data set, the scanner was mounted so that each scan plane was

vertical, and the scanner was rotated around the vertical axis. This is known as a yawing

scan (Wulf and Wagner, 2003). The Optab scanner is shown in Figure 9.

Turntable

Laser transmitter
and receiver

Motor for mirror

Rotating mirror

Figure 9: The Optab scanner lab prototype.

A larger data set, kvarntorp-loop, was collected at a later date, using a SICK LMS 200

laser scanner mounted on our mobile robot platform called Tjorven (shown in Figure 11).

The SICK scanner is a 2D scanner, but was mounted on a pan-tilt unit in order to collect

3D data sets. For the kvarntorp-loop data set, the robot was driven manually along two

tunnels, forming a loop, with 3D scans being taken about four to five metres apart. The

robot was kept stationary during the scans, so that all points in each scan were taken at the

same physical location. The first 65 scans from this set are shown in Figure 10. The scans

contain around 95 000 points each. The scanner on Tjorven is configured for pitching scans.

The scans of the kvarntorp-loop data set are more accurate than those of the junction

and tunnel sets, which show some disturbances due to the somewhat unstable experimental

state of the scanner.

5.2 Results

5.2.1 Results with single scan pairs

To test the performance of the algorithms with respect to different parameter values the

two scan pairs of the junction and tunnel data sets were used. A number of registration

attempts were run from a set of start poses evenly distributed around the ground truth pose.

The magnitudes of the translation and rotation components of the initial pose estimates were

kept constant for each batch of tests, but the directions were different for each run. In other

words, the translation displacement for each test run was a point on a sphere with a fixed

radius. The added rotation error had its axis pointing in a random direction for each run

and the angle (that is, the amount of rotation) was fixed for each batch of runs. The pose

Figure 10: The first 65 scans from the kvarntorp-loop data set, seen from above, after

registration with manual intervention where the registration algorithms failed and for the

scans without odometry information. The map measures approximately 55 m by 155 m, and

is around 6 m high. The traversed distance around the loop is around 330 m. The top left

corner shows the accumulated error after coming back to a previously visited location after

completing the loop. The error there is about 2.7 m. To the right of this section is a clear

“offset” in the tunnel. This is not a registration error, but shows the actual shape of the

tunnel. That shape is probably due to a mistake on part of the excavation crew when they

were trying to physically “close the loop”.

p
h
o
to

:
M

a
rt

in
P
e
rs

so
n

Figure 11: Tjorven, our mobile robot platform. In addition to the laser scanner used for 3D

mapping, it is also equipped with a digital camera, an array of sonars, an omnidirectional

camera (not shown here), and a differential GPS system.

offsets were taken from a set of points evenly distributed on the unit sphere. The translation

error of the initial pose estimate is denoted et and the rotation error is denoted er.

For these experiments, the following settings were used in the “baseline” setup.

• 10 % of the points were sampled from the data scan with even spatial distribution

• no sub-sampling of the model (all points were used),

• initial translation error of 1 m,

• initial rotation error of 0.1 radians,

• 100 tests for each set of parameters.

The results of these experiments are presented with box plots, with a line connecting the

median values of each set of runs. The box extends to the upper and lower quartile of the

data, and the “whiskers” extend to the maximum and minimum values of the sequence.

The limits for what is considered a “good match” are shown with dashed horizontal lines.

These are not hard limits, but were chosen according to what was considered acceptable for

the application and the accuracy with which the ground truth pose could be estimated. If

only the median registration errors were shown, 3D-NDT would appear to be far superior

to ICP in all cases. Even though the median error was lower when using 3D-NDT for scan

registration, there were problems with some outlier poses for which the algorithm did not

converge. The box plots show a more complete description of the distribution of the results,

showing both how the majority of the runs behaved and the extreme values.

On a similar note, the mean squared point-to-point error is commonly used as a measure

of the quality of registration. We did not include these numbers here, as they are not an

objective measure of the registration accuracy. The mean squared point-to-point error is

exactly the objective function that ICP tries to minimise, and if that were indeed the best

measure of registration accuracy, ICP would be an optimal algorithm and would never fail.

We chose instead to determine a ground truth pose for each scan pair, and measure the

deviance from that pose, with some allowance for what is a close enough match, as described

above. The ground truth pose for the junction data set was zero rotation and translation,

since the scanner did not move between the two scans. For the tunnel data set the ground

truth was determined by running and inspecting a number of registration attempts, and an

average of the best matches was used as the ground truth pose.

Sample ratio: To test the sensitivity to the amount of samples being used for registration,

a number of test sequences were run with increasing numbers of samples. From 0.1% up

Parameter ICP 3D-NDT

Sample ratio • •

Sampling method • •

Initial translation error • •

Initial rotation error • •

Cell size - •

Discretisation method - •

Table 1: The parameters that were manipulated for ICP and NDT on the junction and

tunnel data sets.

to 50% of the points in the data scan were sampled and used for matching together with

all of the points in the model. Figures 12 and 13 show the results of tests where all other

parameters were set according to the baseline setup.

The conclusion is that ICP is less error-prone when using very low sample ratios (less than

a few percent), and that the execution time is around three times longer than for 3D-NDT.

Even though 3D-NDT succeeds at registering the two scans from most of the start poses

tried, it fails for some poses when using a very low sample ratio. Around 10 % of the total

number of points is enough to give reliable results for the junction data set when the initial

error is moderate. The median error is lower for 3D-NDT in all cases with larger sampling

ratios, but there are some outlier cases where the error is much larger. There were failed

registrations at up to 12 % sample ratio. ICP gives acceptable results down to around 8 %

for the same data and initial error.

As can be seen from Figure 13, the tunnel data set is much more challenging than the

junction set, both for ICP and 3D-NDT. The median error is still smaller for 3D-NDT than

for ICP, but with an initial translation error of 1 m and a rotation error of 0.1 radians, the

algorithms fail to register the scans from a rather large number of the initial pose estimates.

Figure 12 shows that the rotation error actually increases for ICP as the sample ratio goes

above 20 % for the junction data set. The reason for this could be that more of the scan

noise is used; in other words, over-fitting. A similar effect can be seen for 3D-NDT on the

tunnel data set in Figure 13. Because the two scans in this data set are only partially

overlapping, ICP tends to move the source scan a bit too much towards the centre of the

target scan to maximise the amount of overlap. The pose that 3D-NDT converges to when

using a high sample ratio is similar to the one that ICP converges to.

If both the data scan and the model are sub-sampled using the same ratio, and not just the

data scan, the required sample ratio is much higher.

Sampling method: Spatially distributed sampling is generally more robust than uni-

formly random sampling. The results of using a uniform probability distribution when se-

lecting the subset for matching is shown in Figure 14. As discussed earlier, using uniformly

random sampling will preserve the general distribution of points in the scan, and that is not

optimal for tunnel scans, where the concentration of points is much higher near the sensor

location than further away.

Comparing Figures 13 and 14, it can be seen that the registration errors are larger when

using uniform random sampling for 3D-NDT. Using spatially distributed sampling with ICP

with this data meant that more non-overlapping points were selected. Therefore it makes

 0
 5

 10
 15
 20
 25
 30
 35

 0 100 200 300 400 500

T
im

e
(s

)

Sample ratio (per mille)
ICP

0.000

0.005

0.010

0.015

0.020

0.025

R
ot

at
io

n
er

ro
r

(r
ad

)

 0.00

 0.05

 0.10

 0.15

 0.20

 0.25

T
ra

ns
la

tio
n

er
ro

r
(m

)

 0
 5

 10
 15
 20
 25
 30
 35

 0 100 200 300 400 500

Sample ratio (per mille)
NDT

0.000

0.005

0.010

0.015

0.020

0.025

0.00

0.05

0.10

0.15

0.20

0.25

Figure 12: Sample ratio tests for the junction set.

 0
 2
 4
 6
 8

 0 100 200 300 400 500

T
im

e
(s

)

Sample ratio (per mille)
ICP

0.000

0.020

0.040

0.060

0.080

0.100

R
ot

at
io

n
er

ro
r

(r
ad

)

 0.00
 0.10
 0.20
 0.30
 0.40
 0.50
 0.60
 0.70

T
ra

ns
la

tio
n

er
ro

r
(m

)

 0
 2
 4
 6
 8

 0 100 200 300 400 500

Sample ratio (per mille)
NDT

0.000

0.020

0.040

0.060

0.080

0.100

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

Figure 13: Sample ratio tests for the tunnel set, using spatially distributed sampling.

 0
 2
 4
 6
 8

 0 100 200 300 400 500

T
im

e
(s

)

Sample ratio (per mille)
ICP

0.000

0.020

0.040

0.060

0.080

0.100

R
ot

at
io

n
er

ro
r

(r
ad

)

 0.00
 0.10
 0.20
 0.30
 0.40
 0.50
 0.60
 0.70

T
ra

ns
la

tio
n

er
ro

r
(m

)

 0
 2
 4
 6
 8

 0 100 200 300 400 500

Sample ratio (per mille)
NDT

0.000

0.020

0.040

0.060

0.080

0.100

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

Figure 14: Sample ratio tests for the tunnel set with uniform random sub-sampling instead

of spatially distributed selection. The other settings are the same as in Figure 13.

sense not to use this sampling method for ICP. For 3D-NDT, the inter-quartile range was

rather large for both sampling methods, but the median translation and rotation errors

were significantly lower when using spatially distributed sampling, because the more evenly

distributed sampling gives a more representative view of the scan. For the junction set,

uniformly random sampling works almost equally well compared to spatially distributed

sampling, however, since the overlap of the data scan and model is 100%.

Cell size: To show the effect of different cell sizes for 3D-NDT, registration with sizes

ranging from 0.5 m up to 3 m are shown in Figure 15. Each box plot shows the results of

50 test runs.

The running times are shorter when the cells are larger (and fewer). The translation error

is at its smallest within a certain cell size range, and increases with both smaller and larger

cells. For smaller cells, the algorithm fails to register the two scans from many start poses,

because of small regions of influence. This can be seen in Figure 15, where the upper quartile

of the tests with junction and 0.75 m cells is comfortably below the acceptable threshold,

but the error of the worst few runs is much larger. This result is due to the fact that,

depending on the direction of the initial pose error, for some test runs the small cells will

not be able to “attract” enough points. For larger cells, the accuracy decreases because of

loss of surface shape information. Based on these results, a cell size of around 1 to 2 m is

most suitable for the given environment.

Because simple arrays were used for cell storage (storing both occupied and unoccupied

cells), memory usage increased drastically for the tests with the smallest cells. This also

led to slower performance because of memory swapping, particularly for the junction data

set. The times reported here were measured with the ANSI C clock() function, which only

measures CPU time. The actual time was larger for the tests with 0.5 m cell size. A straight-

forward way to fix this problem would be to store the cells in a data type more suitable for

sparsely populated data (for example, run-length encoded lists). For all other tests, where

the NDT cells were not pathologically small, memory allocation was not a problem and the

reported time and wall clock time were the same.

Initial error: The sensitivity of the algorithms with respect to the amount of error in the

initial pose estimate was also tested, both for the translational and rotational components.

The results are shown in Figures 16–17. For the translation error tests, the initial rotation

 0
 2
 4
 6
 8

 10
 12
 14

 0 0.5 1 1.5 2 2.5 3

T
im

e
(s

)

Cell size (m)
Junction

0.000

0.010

0.020

0.030

0.040

0.050

R
ot

at
io

n
er

ro
r

(r
ad

)

 0.00
 0.05
 0.10
 0.15
 0.20
 0.25
 0.30
 0.35

T
ra

ns
la

tio
n

er
ro

r
(m

)

 0
 2
 4
 6
 8

 10
 12
 14

 0 0.5 1 1.5 2 2.5 3

Cell size (m)
Tunnel

0.000

0.010

0.020

0.030

0.040

0.050

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Figure 15: Comparing the effect of 3D-NDT registration with different cell sizes, using fixed

cells. Each test sequence is 50 runs. The initial error is |et| = 1 and |er| = 0.1.

error was set to zero, and the translation error was set to zero when testing the sensitivity

to the initial rotation error.

Again, 3D-NDT shows a smaller median error in most cases, although failed registrations

start to occur at smaller values for the initial error than is the case for ICP. The reason that

the median error is smaller for 3D-NDT is probably because the PDFs are a better surface

description than point clouds, which have no information about the surface between points.

Without infinite outer bounds, fewer points from the data scan are used when the initial

pose error is large. With the baseline settings for ICP, an initial translation error of up to

2.5 m (when the error in rotation is zero) or a rotation error of up to 0.35 radians (when the

translation error is zero) can be handled reliably for the junction data set. Using 3D-NDT,

failed registrations start to occur at 2 m translation error or 0.3 radians rotation error. The

results for the tunnel set show the same tendencies.

The time taken by ICP increases with the magnitude of the initial pose error, while 3D-NDT

takes about the same amount of time for all of the runs.

Discretisation methods: Test results for 3D-NDT with different discretisation methods

on the junction and tunnel data sets are shown in Figure 18. For these tests, cell sizes

varying between 2 and 1 metres were used. The results for fixed 2 m cells are shown for

comparison. The fixed cell plots are labelled F (without infinite bounds) and FI (with infinite

bounds). With the initial error set according to the baseline setup, all methods performed

equally well on the junction set. To show the differences in the methods’ efficiency, the

initial pose error was increased a little for the tests on the junction set so that er = 0.2.

The different discretisation methods are described in section 4.3.

 0
 4
 8

 12
 16

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
im

e
(s

)

Initial translation error (m)
ICP

0.000

0.005

0.010

0.015

0.020

0.025

R
ot

at
io

n
er

ro
r

(r
ad

)

 0.00

 0.05

 0.10

 0.15

 0.20

 0.25

T
ra

ns
la

tio
n

er
ro

r
(m

)

 0
 4
 8

 12
 16

 0 0.5 1 1.5 2 2.5 3 3.5 4

Initial translation error (m)
NDT

0.000

0.005

0.010

0.015

0.020

0.025

0.00

0.05

0.10

0.15

0.20

0.25

Figure 16: Comparing the sensitivity to the initial error in the translation estimate for the

junction set. The initial rotation error was 0 for these tests.

 0
 4
 8

 12
 16

 0 0.1 0.2 0.3 0.4 0.5

T
im

e
(s

)

Initial rotation error (rad)
ICP

0.000

0.005

0.010

0.015

0.020

0.025

R
ot

at
io

n
er

ro
r

(r
ad

)

 0.00

 0.05

 0.10

 0.15

 0.20

 0.25

T
ra

ns
la

tio
n

er
ro

r
(m

)

 0
 4
 8

 12
 16

 0 0.1 0.2 0.3 0.4 0.5

Initial rotation error (rad)
NDT

0.000

0.005

0.010

0.015

0.020

0.025

0.00

0.05

0.10

0.15

0.20

0.25

Figure 17: Comparing the sensitivity to the initial error in the rotation estimate for the

junction set. The initial translation error was 0 for these tests.

 0
 1
 2
 3
 4
 5
 6
 7

ICP

F FI O O
I

A AI I II

T
im

e
(s

)

Junction

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014

ICP

F FI O O
I

A AI I II

R
ot

at
io

n
er

ro
r

(r
ad

)

 0.00

 0.05

 0.10

 0.15

 0.20

 0.25

ICP

F FI O O
I

A AI I II

T
ra

ns
la

tio
n

er
ro

r
(m

)

 0

 1

 2

ICP

F FI O O
I

A AI I II

Tunnel

0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014

ICP

F FI O O
I

A AI I II

0.00

0.05

0.10

0.15

0.20

0.25

ICP

F FI O O
I

A AI I II

Figure 18: Comparing different discretisation methods for 3D-NDT on the junction and

tunnel data sets. For the junction tests, et=1 m and er=0.2 rad. For tunnel, et=1 m

and er=0.1 rad. Baseline ICP is on the left. The next two plots (F and FI) show 3D-NDT

with fixed cells, O and OI show octree subdivision, A and AI show additive subdivision,

and I and II show iterative subdivision, The rightmost plot in each NDT plot pair (◦I) uses

infinite outer bounds but not linked cells (not applicable for ICP).

• Octree subdivision (O, OI) did not lead to a noticeable improvement for the junction

data set. A probable reason for this is that the added detail was not needed for this

data set, as it has clear and large features. Octree subdivision did improve the result

for the tunnel data set, approximately halving the median error compared to using

fixed cells.

• Additive octree subdivision (A, AI) — computing the score for each point by summing

all leaves in the octree where it belongs instead of using a single leaf — improved the

result of the tunnel set slightly, at the cost of a minor increase in execution time,

because more cells were investigated for each point. However, for an unknown reason,

3D-NDT with additive octree subdivision failed for two of the initial pose estimates

when running on the junction data set. The results for the other 98 poses were still

satisfactory.

• Iterative subdivision with varying cell size (I, II) — the more “brute-force” method —

removed all of the failed registrations for the junction data set, at the cost of longer

execution times. Iterative subdivision and additive subdivision with infinite outer

bounds were the only methods that succeeded in accurately registering the tunnel

data set from at least 75% of the inital poses. For the tests shown here, the first

iteration used 2 m cells. For each subsequent iteration, the cell size was multiplied by

0.75, and the registration was stopped when the size was smaller than 1 m. In other

words, the cell sizes used were 2 m, 1.5 m, and 1.125 m, respectively.

• Using linked cells led to a slight improvement for the tunnel data set, especially for

the rotation component of the pose. Interestingly, it did not lead to an improvement

for the junction data set. The likely reasons for this are that firstly, the error in the

initial pose estimate was not large enough for the outer cells to have any significant

effect, and secondly, that the scans overlap completely.

Based on these results, the best performance was obtained using iterative subdivision with

infinite outer bounds, at a slightly higher computational cost than the non-iterative variants

of 3D-NDT, though it was still faster than ICP.

5.2.2 Results with mobile robot data

The kvarntorp-loop data set contains scans collected by a mobile robot, together with

pose estimates for each scan, derived from the robot’s two-dimensional odometry. This is

more like the actual situation that can be expected in the mine mapping application than

the artificial (but more complete) experimental setup used for the other two data sets. The

more artificial setup can be considered more complete because for those experiments, the

algorithms were tested from a larger set of possible starting poses, and the properties of the

algorithms were investigated more thoroughly.

For the results presented here, 8000 random sample points (around 8 %) from the data scan

were used, and all points from the model. Infinite outer bounds were used for 3D-NDT,

but not linked cells. The following text covers the effects of using different cell sizes and

discretisation methods.

Because of some practical problems during the data collection in the Kvarntorp mine, the

odometry had to be reset at three points (after scans number 11, 16, and 66). These results

are for the longest consecutive scan sequence (scans 17–66).

Figure 19: Scans 48 (light, yellow) and 49 (dark, blue) before registration, seen from above.

The pose error from odometry was up to around 1.5 m and 0.2 rad from one scan to the next.

Given that the size of each scan is around 10 by 30 m, a rotation error of 0.2 radians is quite

large. An example of how bad the odometry can be when driving on gravel with a small

mobile robot is shown in Figure 19. Scan 49 is severely rotated with respect to the previous

scan, which was taken just five metres earlier. Measuring the turn angle from odometry is

always problematic, and especially so when driving over a surface with loose rocks.

The results are presented as histograms in Figures 20–23. Two limits were chosen for each

component of the error of the pose estimate after registration. Because of the difficulty of

finding a real ground truth pose, all registrations that came within a certain limit of the

manually determined true pose were considered successful. The ground truth poses were

determined by running and inspecting a number of registration attempts, and an average

of the best matches were used as the ground truth pose for each scan pair. A second

limit was also picked. Registrations that came inside this limit are not exact matches,

but “acceptably” close for the application. The limits for this data set were chosen to to be

0.10 m and 0.005 radians for “good” matches, and 0.20 m and 0.010 radians for “acceptable”

matches. Registrations where any of the pose components are outside of this limit were

regarded as failures. The most important feature of the plots to judge the quality of each

registration algorithm is the height of the leftmost histogram box, showing the number of

successful registrations. The histogram boxes that only have one entry are labelled with

the corresponding scan number, to make it clearer which scans fail to be registered. Also

included in the plots are box plots showing the distribution of the results.

The results from using 3D-NDT with fixed cells with different sizes are shown in Figure 20.

When the cells are too small (0.5 m), scans where the odometry pose is too far from the actual

pose fail. When the cells are too large, features that are needed for accurate registration are

smoothed out, also making registration fail in more cases. Looking at Figure 20, a cell size

of around 2 m seems to be the preferable choice for this data set.

The orientation was generally easier to get right than the position, because the large-scale

features of the tunnel scans were sufficient to get the correct rotation angle.

Figure 21 shows the results of different adaptive subdivision methods; starting with 2 m

cells, and using cells with 1 m and 0.5 m side length as needed. Octree subdivision improves

the registration of a number of the scans, compared to using fixed 2 m cells, resulting in 40

successful registrations. Using additive subdivision instead of standard octree subdivision

did not lead to an additional improvement for the kvarntorp-loop data set. Iterative

subdivision, however, registered 45 of the 50 scan pairs with very high accuracy, and only

failed with two scans — the difficult scans number 49 and 41. It is interesting to note

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2 2.5

C
el

l s
iz

e
0.

5
m

Translation error (m)

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.05 0.1 0.15 0.2 0.25 0.3
C

el
l s

iz
e

0.
5

m

Rotation error (rad)

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2

C
el

l s
iz

e
0.

5
m

Time (s)

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2 2.5

C
el

l s
iz

e
1

m

Translation error (m)

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
el

l s
iz

e
1

m

Rotation error (rad)

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2

C
el

l s
iz

e
1

m

Time (s)

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2 2.5

C
el

l s
iz

e
2

m

Translation error (m)

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
el

l s
iz

e
2

m

Rotation error (rad)

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2

C
el

l s
iz

e
2

m

Time (s)

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2 2.5

C
el

l s
iz

e
3

m

Translation error (m)

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.05 0.1 0.15 0.2 0.25 0.3

C
el

l s
iz

e
3

m

Rotation error (rad)

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2

C
el

l s
iz

e
3

m

Time (s)

Figure 20: NDT with fixed cells, ranging from 0.5 m (top) to 3 m (bottom). In order to

make the plots easier to read, the scan labels are not shown in these plots.

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

O
ct

re
e

Translation error (m)

49 42 22

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.05 0.1 0.15 0.2

O
ct

re
e

Rotation error (rad)

48

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2 2.5 3 3.5

O
ct

re
e

Time (s)

27 23

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ite
ra

tiv
e

Translation error (m)

49

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.05 0.1 0.15 0.2

Ite
ra

tiv
e

Rotation error (rad)

41

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.5 1 1.5 2 2.5 3 3.5

Ite
ra

tiv
e

Time (s)

47 48

Figure 21: 3D-NDT with different discretisation methods. Octree split top, iterative split

at bottom. Cells with sizes 2 m, 1 m, and 0.5 m were used. Iterative subdivision is clearly

the best choice here, as it has only two failed registrations (the position of scan 49 and the

orientation of scan 41) and three “acceptable” matches. The time taken is about twice that

of octree subdivision. Additive octrees and standard octrees had very similar performance

for this data set.

that only the rotation component of scan 41’s pose and only the translation component of

scan 49’s pose were wrong. The time needed for 3D-NDT with iterative subdivision was

longer than for the other subdivision methods, because two extra runs of the algorithm were

performed for each scan. However, the increase is not linearly proportional to the number

of iterations. Iterative 3D-NDT took about twice as long as a single iteration of the other

versions of the algorithm, even though three passes were performed for each scan. The reason

for this is that in most cases, the scans are already in registration at the last pass, so that

the last iteration is very fast.

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ite
ra

tiv
e,

 in
fin

ite
 b

ou
nd

s

Translation error (m)

49

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.05 0.1 0.15 0.2

Ite
ra

tiv
e,

 in
fin

ite
 b

ou
nd

s

Rotation error (rad)

41

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

Ite
ra

tiv
e,

 in
fin

ite
 b

ou
nd

s

Time (s)

47 48

 0

 10

 20

 30

 40

 50

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ite
ra

tiv
e,

 n
ot

 in
fin

ite
 b

ou
nd

s

Translation error (m)

41 49

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.05 0.1 0.15 0.2

Ite
ra

tiv
e,

 n
ot

 in
fin

ite
 b

ou
nd

s

Rotation error (rad)

48 41

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

Ite
ra

tiv
e,

 n
ot

 in
fin

ite
 b

ou
nd

s

Time (s)

42 48

Figure 22: NDT with (top row) and without (bottom row) infinite outer bounds. Using

linked cells did not give a noticeable improvement for this data set, but increased the time

substantially.

Figure 22 shows the results of registering the same data set with iterative 3D-NDT, with

and without infinite outer bounds. Using linked cells did not give an improvement for these

scans. When not using infinite outer bounds, the translation component of scan 41 and

the rotation component of scan 48’s final pose estimate was worse than when using infinite

bounds. This shows that using infinite bounds for the outer cells helps in some cases. Apart

from that, the results were very similar to when using infinite bounds.

The kvarntorp-loop data set was also registered with ICP. For this experiment, a de-

creasing distance threshold was used, starting at 2 m and decreasing to zero, instead of the

fixed 1 m threshold from the baseline setup. The results are shown in Figure 23. The amount

of successful registrations was comparable to that of 3D-NDT, though ICP had a few more

failures. The main difference lies in the running time of the two algorithms. 3D-NDT was

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8 1

Ite
ra

tiv
e

3D
-N

D
T

, i
nf

in
ite

 b
ou

nd
s

Translation error (m)

49

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

Ite
ra

tiv
e

3D
-N

D
T

, i
nf

in
ite

 b
ou

nd
s

Rotation error (rad)

41

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

Ite
ra

tiv
e

3D
-N

D
T

, i
nf

in
ite

 b
ou

nd
s

Time (s)

47 48

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8 1

IC
P

Translation error (m)

41 40

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

IC
P

Rotation error (rad)

40

good
acceptable

fail

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5

IC
P

Time (s)

38 4125

Figure 23: Results of using ICP on the kvarntorp-loop data set, using a decreasing

distance threshold 2 m–0 m. The results using iterative 3D-NDT are shown above for

comparison.

typically almost three times faster than ICP when using the same sampling ratio.

6 Summary and conclusions

A new method for registration of 3D range scans, 3D-NDT, has been presented. A detailed

analysis of the algorithm with respect to different methods and parameters based on real-

world experiments in a mine has also been presented, along with a comparison to ICP,

the most common registration algorithm used today. The main reason why 3D-NDT is

faster is because it avoids the computationally challenging nearest-neighbour search, which

is central to the ICP algorithm. Using iterative subdivision for building NDT’s model surface

description overcomes the problems associated with discretising the scan volume into fixed

grid cells. It has been shown that 3D-NDT with iterative subdivision and infinite outer

bounds consistently leads to accurate registration of difficult scan data, requiring less time

than ICP.

With the experimental setup used in the work presented here, the alignment speed is not

critical. Since the vehicle is stopped and moved between scans, the few seconds saved from

using a faster registration algorithm is not very important. In the real application, however,

the plan is to collect 3D scan data while the vehicle is moving, possibly using a 3D lidar

camera that collects a full-frame range image at vide frame rates. Also, the computer

hardware on the intended platform (Atlas Copco’s drill rigs) is slower than the system used

for these tests. In such a scenario, the need for fast scan alignment will be much higher.

One of the other main advantages of 3D-NDT is that the scanned surface can be stored much

more efficiently using the combined normal distributions than if the point clouds themselves,

or even sparse sub-samples of the point clouds, are stored. This is important for any large

3D map. In a scenario where a dynamic map is maintained over a long time, the storage

requirements for 3D point cloud data would also soon grow uncomfortably large. Storing

the NDT representations of the scans requires only a small fraction of the space required by

ICP, and the NDT representation is still powerful enough for registering new scans to the

collected data, as has been shown in this paper.

Acknowledgements

Thanks to Atlas Copco Rock Drills AB for financial support and access to the mine and

equipment, and to Optab Optronikinnovation AB for providing the laser scanner used for

some of the experiments.

References

Besl, P. J. and McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 14(2).

Biber, P. and Straßer, W. (2003). The normal distributions transform: A new approach to

laser scan matching. In Proceedings of the IEEE International Conference on Intelligent

Robots and Systems (IROS).

Chen, Y. and Medioni, G. (1992). Object modelling by registration of multiple range images.

Image and Vision Computing, 10(3):145–155.

Gelfand, N., Ikemoto, L., Rusinkiewicz, S., and Levoy, M. (2003). Geometrically stable

sampling for the icp algorithm. In Proceedings of the 3rd International Conference on

3-D Digital Imaging and Modeling.

Greenspan, M. and Yurick, M. (2003). Approximate k-d tree search for efficient ICP. In

Fourth International Conference on 3-D Digital Imaging and Modeling (3DIM ’03).

Mitra, N. J., Gelfand, N., Pottmann, H., and Guibas, L. (2004). Registration of point cloud

data from a geometric optimization perspective. In Symposium on Geometry Processing,

pages 23–31.

Ripperda, N. and Brenner, C. (2005). Marker-free registration of terrestrial laser scans using

the normal distribution transform. In Proceedings of the ISPRS Working Group V/4

Workshop 3D-ARCH 2005.

Rusinkiewicz, S. M. (2001). Efficient variants of the ICP algorithm. In Proceedings of the

3rd International Conference on 3-D Digital Imaging and Modeling.

Takeuchi, E. and Tsubouchi, T. (2006). A 3-D scan matching using improved 3-D nor-

mal distributions transform for mobile robotic mapping. In Proceedings of the IEEE

International Conference on Intelligent Robots and Systems (IROS).

Wulf, O. and Wagner, B. (2003). Fast 3D-scanning methods for laser measurement systems.

In International Conference on Control Systems and Computer Science (CSCS14).

