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Abstract— This paper presents a system for autonomous
change detection with a security patrol robot. In an initial
step a reference model of the environment is created and
changes are then detected with respect to the reference model
as differences in coloured 3D point clouds, which are obtained
from a 3D laser range scanner and a CCD camera. The
suggested approach introduces several novel aspects, including
a registration method that utilizes local visual features to deter-
mine point correspondences (thus essentially working without
an initial pose estimate) and the 3D-NDT representation with
adaptive cell size to efficiently represent both the spatial and
colour aspects of the reference model. Apart from a detailed
description of the individual parts of the difference detection
system, a qualitative experimental evaluation in an indoor
lab environment is presented, which demonstrates that the
suggested system is able register and detect changes in spatial
3D data and also to detect changes that occur in colour space
and are not observable using range values only.

I. I NTRODUCTION

An important aspect of robotic security systems is surveil-
lance of a specified area. Typical security patrol missions
require detection of changes in the environment and de-
scription of detected differences with respect to a previously
determined reference state. A human watchman is first shown
around the premises to learn the reference state of the
environment. The mission of the security patroller is then
to check for changes in the environment, e.g. looking for
open doors, open windows, water leaks, blocking of fire
hoses etc. [1]. Due to their dull and potentially dangerous
character it is desirable to delegate security patrols to mobile
robots. Current approaches often require teleoperation [2].
Accordingly, research has focused on adjustable autonomy or
semi-autonomy to decrease the amount of “cognitive burden”
to the operator (Seeman et. al [3], Goodrich et. al [4], for
example).

This paper presents a system for autonomous change
detection with a security patrol robot. As for its human
counterpart the robot watchman is expected to determine
the reference state of the environment (the reference model)
in an initial phase. The actual mission requires discovering
changes with respect to the reference model and describing
the differences. An alarm may be triggered whenever changes
are detected or detected differences can be reported to a
human operator for further analysis. An effective system
for autonomous difference detection needs to fulfil a couple
of demands. First, creation of the reference model should
be simple and require minimal effort by a user. Ideally the

Fig. 1. Overview of the difference detection system. Acquisition of the
reference model is shown on the left side of the dashed line andpre-
processing of new data for the actual difference detection to the right of
the dashed line.

robot would acquire and update the reference model of the
environment autonomously. This is related to the dynamic
mapping problem that investigates continuous adaptation
of maps over time [5]. Here we assume that the mobile
security robot is first guided by a human operator in order
to learn a model of the original, unmodified environment. A
second major requirement especially with regards to large
environments is that the reference model is represented
efficiently but nevertheless allows determining small changes
in the environment. Representing the environment at a high
resolution so as to avoid the need to inspect all parts of the
environment from a small distance can be seen generally
as the third major requirement of an autonomous difference
detection system.

Difference detection has been studied in the context of
recognizing parked vehicles by Ishikawa et. al [6]. In their
work, Ishikawa et. al use an omni-directional camera together
with GPS and INS (Inertia Navigation System) to obtain
depth estimates, which were subsequently compared with a
pre-built model.

II. M ETHOD

An overview of the suggested difference detection system
is shown in Fig. 1. Corresponding to the two columns in the
figure, the approach decomposes into two parts: acquisition
of the reference model (shown to the left of the dashed line)
and pre-processing of new data (shown to the right of the
dashed line) for the actual detection of differences between



Fig. 3. Visualization of the 3D-NDT representation corresponding to the
scan in Fig. 2, top. Ellipsoids indicate the eigenvalues of the respective
covariance matrices.

new data and the reference model (indicated by the box
below the dashed line).

Our difference detection approach comprises three main
components described in Sec. III – Sec. V below. A very
important aspect is accurate registration of the data. We
present a registration method that produces accurate results
even under the condition that a reasonable relative pose esti-
mate is not available (when there is essentially no estimateof
the relative pose between two data sets other than they were
recorded in the same environment). This is achieved by using
local visual features extracted from the camera images to
solve the data association problem in the registration process
(Section III-A – III-B). Since the camera images provide a
much higher resolution than the range sensor our method
requires that depth information is estimated at the position of
local visual features in the image (Section III-C). To calculate
depth information from a low-resolution 3D range sensor and
a colour image, we use a non-iterative method for vision-
based interpolation of 3D range scans that was introduced by
the authors in an earlier paper [7]. Finally a modified closed-
form solution is used for the actual registration (Section III-
D).

In order to represent the environment efficiently, we apply
the Normal Distribution Transformation (NDT) with adaptive
cell splitting (Section IV-A) to the spatial point distribution
and the colour distribution (Section IV-C and Section IV-C).
Finally, based on the 3D-NDT, respectively the Colour 3D-
NDT representation, difference probabilities are calculated
as described in Sec. V-A and V-B.

A visualisation of the difference probabilities in a fairly
trivial case where two 3D laser scan sweeps are compared
can be seen Fig. 2. The corresponding 3D-NDT represen-
tation is shown in Fig. 3 using ellipsoids to indicate the
eigenvalues of the respective covariance matrices.

III. R EGISTRATION

A very important aspect of the difference detection system
is that the relative position[R, t] between the currentSc and
previous scansSp is known. Accurate registration is there-
fore a fundamental requirement. Since the measurements (3D
range scans and colour images) to be compared will be
obtained not only at different poses but also at substantially
different times, registration should be robust to a certain

level of changes in the environment. In addition, it cannot be
expected in general that the security patrol robot maintains
a consistent coordinate system in-between acquisition of
the reference model and a difference detection request. As
opposed to most current approaches to scan registration we
therefore need a registration method that does not depend on
reasonably accurate initial pose estimates.

In order to cope with the condition that initial pose
estimates may not be available, we use local visual features
to establish correspondences between data points (data asso-
ciation) within the entire set of measurements. In our current
implementation we use the popular SIFT features developed
by Lowe [8].

Shortly the registration procedure can be described as
follows: first, SIFT features are computed in the planar
images recorded with the current scan dataSc and compared
to the SIFT features found in the images belonging to
previous scan. As detailed in Section III-A, a similarity
measure is calculated from the number of matching fea-
tures, which allows to determine the scan in the reference
model S ∗

r that is most similar to the current scanSc (see
Section III-B). Next, the depth values are estimated for all
matching feature pairs inS ∗

r and Sc, using vision-based
interpolation as described in Section III-C. The pairs of 3D
points corresponding to matching features are then used in
a closed form solution to obtain the relative pose estimate
(see Section III-D).

In a related approach Newman et. al. [9] used SIFT
features to detect loop closure events in a 3D SLAM ap-
proach. In contrast to their method where SIFT features
are used to obtain an initial pose estimate (by determining
the essential matrix between two images) and the full point
cloud is considered afterwards, registration in our approach
is carried out using only 3D points that are associated with
matching visual features. By restricting scan matching to
3D points that were found to correspond by their visual
appearance, we believe that the robustness against changesin
the environment is improved and more accurate registration
can be obtained. However, it remains to validate this belief
in a thorough ground truth evaluation using a large set of 3D
scans.

A. Appearance-Based Similarity Measure

Given two imagesIa andIb, we extract local visual features
using the SIFT algorithm [8] resulting in two sets of features
Fa and Fb, corresponding to the two images. Each feature
fi = {[X ,Y ]i,Hi} in a feature setF = { fi} comprises the
position [X ,Y ]i in pixel coordinates and a histogramHi

containing the SIFT descriptor. The similaritySa,b of image
Ia and Ib is based on the number of matching features
betweenFa andFb.

The feature matching algorithm calculates the Euclidean
distance between each feature in imageIa and all the features
in image Ib. A potential match is found if the smallest
distance is smaller than 60% of the second smallest distance.
This criterion was found empirically and was also used in
[10], for example. It reduces the risk of falsely declaring



Fig. 2. Left, middle: 3D range scans recorded at a relatively small displacement of approx. 1 m. Right: Difference probability corresponding to a chair
that was placed in the scene before the second scan was recorded. Brighter regions indicate a higher difference probability.

correspondence between SIFT features by excluding cases
where a false correspondence is caused by the existence
of several almost equally well matching alternatives. In
addition, no feature is allowed to be matched against more
than one other feature. If more than one candidate for
matching is found, the feature with the highest similarity
among the candidate matches is selected.

The feature matching step results in a set of feature pairs
Pa,b, with a total numberMa,b = |Pa,b| of matched pairs. Since
the number of extracted features varies heavily depending
on the image, the number of matches is normalized to the
average number of features in the two images. Hence the
similarity measureSa,b ∈ [0,1] is defined as:

Sa,b =
Ma,b

1
2(nFa +nFb)

(1)

wherenFa = |Fa| andnFb = |Fb| are the number of features
in Fa andFb respectively.

B. Similarity Filter

High similarity values correspond to a similar appearance
of the respective images and can be taken as an indication of
a similar position at which the images were recorded. In the
difference detection system suggested in this paper we apply
pair wise scan-matching. After the reference model was built
and a current scan was recorded at a certain pose it therefore
needs to be decided which scan in the reference model the
current scan should be registered with. This decision is made
based on the similarity measure in Eq. 1. For the current
scanSc, the most similar scan in the reference modelS ∗

r
is selected for registration. Since each 3D scan is associated
with three range scanner sweeps and seven planar images
the scan in the reference model that is most suitable for
registration is selected as the one that maximises the total
similarity. The total similarity of two scans is calculatedby
matching all images belonging to one scan to all images
belonging to the other scan and considering the sum of
features and feature matches in Equation 1. This approach
corresponds to matching two combined images which were
created by stitching the individual images recorded with each
scan. Note that the similarity filter is not required in the initial
model acquisition where an initial estimate of the relative
pose between subsequent scans is provided by the odometry
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Fig. 4. Natural neighboursR1..R5 of R∗
i . The interpolated weight of each

natural neighbourRi is proportional to the size of the area which contains the
points’ Voronoi cell and the cell generated byR∗

j . I.e. the nearest neighbour
R1 will have influence based upon the area ofA1.

of the robot. Here each 3D scan is registered to the previous
scan.

C. Depth Interpolation Using Vision

To obtain the depth estimater∗j for SIFT feature f j the
PLIC (Parameter-Free Multi-Linear Interpolation Consider-
ing Colour) method [7] is applied, which is briefly described
below. Based on the observation that depth discontinuitiesin
a scene often correspond to colour or brightness changes in
the camera image, the PLIC method derives high-resolution
depth images from a low-resolution 3D range scan and a
colour image. In the difference detection system presented
here, the PLIC method is used to determine depth values for
matched SIFT features.

Image data consist of a set of image pixelsP j =
(X j,Yj,C j), whereX j,Yj are the pixel coordinates andC j =
(C1

j ,C
2
j ,C

3
j ) is a three-channel colour value. By projecting

a 3D laser reading pointpi = [x,y,z] with the rangeri,
onto the image plane, a projected laser range reading point
Ri = (Xi,Yi,ri,(C1

i ,C2
i ,C3

i )) is obtained, which associates a
range valueri with the coordinates and the colour of an
image pixel. The interpolation problem can now be stated for
a given pixelP j and a set of projected laser range readings
R = Ri , as to estimate the interpolated range readingr∗j as
accurately as possible. We denote an interpolated point by
R∗

j = (X j,Yj,r∗j ,C
1
j ,C

2
j ,C

3
j ), see Fig. 4.

Depth estimatesr∗j are computed by weighted interpolation
between the natural neighbours to the pixel position of
feature fi. The natural neighbours are a set of projected 3D
laser reading pointsRi and their weights are determined by



an area of influenceAi calculated from the Voronoi diagram
of the projected laser scan readings as shown in Fig. 4.
In addition, the weights for the natural neighbours depend
on the colour variance of the assigned areaAi and on the
difference of the colourC j of the interpolated point to the
colour Ci of neighbouring points.

D. Trimmed Closed Form Solution

Since visual features are used to establish corresponding
scan points, no further means of data association, such as
searching for closest data points in ICP [11], [12], is neces-
sary. Hence it is possible obtain the relative pose estimateus-
ing a closed form solution. Although the SIFT features were
found to be very discriminative (see for example [13]), there
is of course still a risk that some of the correspondences are
not correct. To further decrease the possibility of erroneous
point associations, only a set fraction of the correspondences
with the smallest spatial distance between corresponding
points is used for registration. In the experiments presented
in this paper the fraction was set to 70%. To estimate the
relative rotationR and relative translationt the singular value
decomposition (SVD) approach suggested by [14] is applied.
Because the fraction of data points that is used to estimate
the relative pose[R, t]t between two scans depends on the
previous estimate[R, t]t−1 (since the relative pose estimate
affects the spatial distance between corresponding points),
the SVD method needs to be applied in an iterative manner.
Thus relative pose updates are calculated repeatedly with the
SVD method using the previous estimate[R, t]t−1 as input
to the next iteration step until a stopping criterion is met.
Any initial pose estimate can be used (in the experiment
presented in this work, we start with the assumption of an
identical pose). As the stopping criterion in the experiments
in this paper we used if the change of the mean squared error
(MSE) of the spatial distance between the corresponding
points compared to the previous iteration were less than 10−6

m2.

IV. N ORMAL DISTRIBUTION TRANSFORM (3D-NDT)

One of the major requirements for an autonomous differ-
ence detection system is that is scales well with the size of
the environment. This demands an efficient representation
of the reference model that compresses the data (to be
able to store and maintain large environments) and is yet
able to represent small details allowing for detection of
small changes. To address this issue, the normal distribution
transform (NDT) is used to represent the environment. The
NDT was introduced by Biber et. al [15] and first used to
register 2D laser scans. The method has been extended to 3D
scan registration by Magnusson et. al. [16] and very recently,
a multi-resolution variant was presented by Magnusson et.
al. [17]. However, in this work we use a different approach
to registration, as discussed in Section III.

The basic principle of NDT and 3D-NDT is to represent
the environment by using a set of Gaussian distributions.
First, the considered space is divided into cells. Each cell

that contains a certain minimum number of points is repre-
sented by a Gaussian with the mean value and covariance
matrix computed from the points in the respective cell. The
minimum number was set to 5 in the experiments presented
in this paper. More formally 3D-NDT can be described as
follows. We consider a point cloudP = p1, p2, ..., pn with
points p = [x,y,z] given in 3D Cartesian coordinates. The
environment is divided into a set of cellsC = c1,c2, ...,ck

and for each cellci a reference is stored to allNc points pci

which lie within the cells boundaries. Then, for each cellc,
the meanµc and covarianceCc are calculated as

µc =
1

Nc

Nc

∑
i=1

pci (2)

Cc =
1

Nc −1

Nc

∑
i=1

(pci −µc)
2 (3)

Note that the NDT representation does not require evenly
spaced data and hence can be calculated without further sub-
sampling. In order to keep the storage requirements within
the limits of the computer with which the computations were
made (i.e. 512 MB of RAM memory), all scans were sub-
sampled with a 3D-grid resolution of 0.1 m3.

A. Adaptive Cell Splitting

The level of detail that is maintained by the NDT depends
on the chosen cell size. In order to select the resolution of
the NDT representation according to the local content of a
scene, we use an adaptive cell size approach that determines
whether or not to split a cell according to its covariance
matrix C. From the picture of the covariance matrix as an
ellipsoid, it is clear that a single Gaussian, i.e. one covariance
matrix, can efficiently describe planes (one of the ellipsoids
axis is small) and lines (two of the ellipsoid axis are small).
Therefore, a large volumevc of this ellipsoid, indicating that
none of the principal axis is small, was chosen as the criterion
for cell splitting:

vc = |λ1||λ2||λ3|, (4)

where λi are the different eigenvalues of the covariance
matrix. A higher value indicates a higher need to divide the
cell. In the experiments presented in this work, the splitting
threshold was set to 0.001 m3.

The decision about where to split a cell is made using the
mean valueµc and the direction of the eigenvectoremax

c with
the highest eigenvalueλ . The pointspci in the cellci that is
to be split are assigned to new cellsca

i and cb
i according to

the sign of

pci(e
max
c −µc). (5)

Consequently, the cell is split at the plane through the centre
µc and orthogonal to the largest eigenvectoremax

c .



B. Colour 3D-NDT

In order to be able to detect changes that do not reveal
themselves through sufficiently large changes in the range
readings but which are observable in the planar images
recorded along with the range readings, colour information
is also incorporated into the NDT representation. This allows
detecting changes caused by thin objects, for example a
poster that has been removed from the wall, as long as the
colour differs sufficiently from the background.

In addition to pointsp = [x,y,z] in 3D space, we now
also consider corresponding colour values ˘p = [C1

,C2
,C3].

Accordingly, the cells in the colour 3D-NDT representation
are described by a mean valueµ̆ and covariancĕC in addition
to the spatial meanµ and covarianceC introduced above.
The colour meanµ̆ and covarianceC̆ are calculated using
Eq. 2 and Eq. 3 replacing the pointspci with their associated
colour values ˘pci = [C1

,C2
,C3].

We use theRGB colour space in our difference detec-
tion system. To obtain some degree of invariance against
changing illumination,RGB values are converted to theYUV
colour space, the intensityY is set to a constant value of 0.5,
and then theYUV values are converted back toRGB.

C. Adaptive Cell Splitting with Colour

Colour cell splits are generally performed in the same way
as the cell splits based on Cartesian coordinates described
above. However, in the colour space the criterion for a split
is only dependent on the highest eigenvalueλ̆ max of the
covariance matrixC̆. A colour split is carried out ifλ̆ max

is larger than a predefined threshold. This threshold was
set to 10 in this paper referring to RGB values in between
0 and 255. Compared to the volume measure in Eq. 4, a
modified criterion is used since lines and planes in colour
space do not generally correspond to consistent structuresin
the environment.

V. D IFFERENCEPROBABILITY COMPUTATION

A. Spatial Difference Probability

A probabilistic value of the pointp being different
from the reference model is computed using the 3D-NDT
representation of the reference model. First, the cellc is
determined that contains the pointp. Using the meanµc and
covarianceCc of this cell the spatial difference probability is
then calculated as

pdi f f (p) ∝ e−(p−µc)
T C−1

c (p−µc)
. (6)

If adaptive cell splitting is used and therefore each grid
cell can contain multiple mean and covariance values, the
difference probabilitypdi f f is calculated for all sub-cells
using Equation 6 and the lowest probability is assigned to
point p.

Note that the difference probability will depend on the
structure of the point cloud used to generate the 3D-NDT
representation of the reference model. In the case of planar
regions, for example, the covariance matrix in Equation 6
will emphasise differences orthogonal to the planar structure
so that even very small deviations can be detected there.

Fig. 5. Our mobile robot platform “Tjorven” equipped with thesensors
used in this paper: the SICK LMS 200 laser range scanner and a colour
CCD camera both mounted on an Amtec pan tilt unit.

B. Colour Difference Probability

In the same way as the spatial difference probability, the
colour difference probability is calculated as

pcolordi f f (p̆) ∝ e−(p̆−µ̆c)
T C̆−1

c (p̆−µ̆c)
. (7)

As described in the previous section, the difference proba-
bility will vary depending on the colour distribution of the
selected cell, giving higher probabilities to colour changes
in regions of very uniform colour distribution.

VI. VALIDATION EXPERIMENT

A. Hardware

For the experiments presented in this paper we used
the ActivMedia P3-AT robot “Tjorven” shown in Fig. 5,
equipped with a 2D laser ranger scanner (SICK LMS 200)
and a 1-MegaPixel (1280x960) colour CCD camera. The
CCD camera and the laser scanner are both mounted on a
pan-tilt unit from Amtec with a displacement between the
optical axes of approx 0.2 m. The angular resolution of the
laser scanner was set to 0.25 degrees.

B. Data Collection

For each pose, 3D range and image data are collected
as follows. First, three sweeps are carried out with the
laser scanner at -60, 0 and 60 degrees relative to the robot
orientation (horizontally). During each of these sweeps, the
tilt of the laser scanner is continuously shifted from -40
degrees (looking up) to 30 degrees (looking down). After the
three range scan sweeps, seven camera images are recorded
at -90, -60, -30, 0, 30, 60, and 90 degrees relative to the
robot orientation (horizontally) and at a fixed tilt angle of-5
degrees (looking up). The full data set acquired at a single
scan pose is shown on Fig. 6.

C. Experiment

To evaluate the suggested difference detection system, a
reference model of an indoor lab environment was created
from the data recorded at 22 robot poses (reference data), i.e.
from 66 laser scanner sweeps and 154 camera images. The
reference model is shown in Fig. 7. Then, controlled changes
(described in the Results section VI-D) were introduced and



Fig. 8. Difference probability as found in 24 scans compared to the reference model shown in Fig. 7. Brighter regions indicate a higher difference
probability. The scans are registered for better visualisation. Top: Difference probability computed from range values only using Eq. 6. Bottom Difference
probability computed from colour information using Eq. 7.

a new data set was recorded at 24 different poses (difference
detection data). The two data sets overlap each other and the
difference detection data were treated independently from
each other, i.e. an a priori unknown position was assumed
for the 24 difference detection data sets. Note that no
global optimization is carried out when creating the reference
model. With the given set-up we found that using sequential
registration the accumulated error was only a few centimeters
between the first and last data set. In order to cope with larger
environments, global optimization has to be integrated into
the system, which is indeed in the pipe for future work.

D. Results

Fig. 8 shows the result of the evaluation experiment
described in Section VI-C: the point cloud of the combined
difference detection scans (registered for better visualization)
shaded according to the computed difference probability.
Brighter regions indicate a higher probability of changes
in the environment. Fig. 8, top shows the difference prob-
ability obtained from spatial data only, i.e. applying Eq. 6.
Fig. 8, bottom shows the difference probability obtained from
colour data only, i.e. using Eq. 7.

All the changes to the reference model can be found in



Fig. 6. Full data set acquired for a single scan pose comprising three
sweeps with the laser scanner fused with colour information from seven
camera images.

Fig. 7. The reference model created in our evaluation experiment consisting
of 3 × 22 registered scans and the corresponding colours from 7× 22
camera images.

the difference probability point clouds. The changes are in-
dicated with an alphabetic character in Fig. 8: a sliding door
that was opened (A), three chairs that were moved (B,C,D),
and a relatively small box of approx. 0.15×0.25×0.4 m3

that was re-positioned (E). Further changes are not detectable
using range data only but can be found when using colour
data. These changes are two equally sized boxes (approx.
0.4×0.4×0.5 m3) that were swapped (a) and a coloured paper
stripe (approx. 0.1×0.7 m2) that was fixed to the floor (b).

VII. C ONCLUSION AND FUTURE WORK

In this paper we present a system for autonomous change
detection with a security patrol robot. The method uses
vision and 3D range data to build a reference model of the
environment and detect changes with respect to this model.
The approach was verified in a real world experiment in
an indoor lab environment, demonstrating that the suggested
system is able register 3D scans and to detect changes
in spatial data and also to detect changes that occur in
colour space and are not observable using range values only.
Apart from the description of this system for autonomous
difference detection, the particular contribution of thispaper
is the introduction of novel methods for vision-aided scan
registration, which essentially works without an initial pose
estimate, and using the 3D-NDT representation with adaptive
cell size to efficiently represent both the spatial and colour
aspects of the reference model.

Our future work will include a more thorough evaluation
of the capabilities and limitations of the suggested system.
Next, changes are currently detected in the coloured point
clouds, which means that the resolution of the 3D range
sensor is used. The higher resolution of the camera images
is so far only exploited for scan registration. It is therefore
another direction of our current research to extend the change
detection system such that it uses “super-resolution” depth
information obtained from a low-resolution 3D range sensor
and a color image also for change detection. Finally, we
want to investigate the possibility to continuously createthe
reference model in an autonomous manner, i.e. to represent
the reference model as a dynamic map which would allow
detecting changes at different time scales.
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