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Abstract— This paper presents a system for autonomous 30 Range
change detection with a security patrol robot. In an initial |
step a reference model of the environment is created and
changes are then detected with respect to the reference model
as differences in coloured 3D point clouds, which are obtained
from a 3D laser range scanner and a CCD camera. The
suggested approach introduces several novel aspects, inclugin
a registration method that utilizes local visual features to deter-
mine point correspondences (thus essentially working without
an initial pose estimate) and the 3D-NDT representation with
adaptive cell size to efficiently represent both the spatial and '
colour aspects of the reference model. Apart from a detailed F—
description of the individual parts of the difference detection
system, a qualitative experimental evaluation in an indoor
lab environment is presented, which demonstrates that the Fig. 1. Overview of the difference detection system. Acdigi of the
suggested system is able register and detect changes in spatialreference model is shown on the left side of the dashed line mead
3D data and also to detect changes that occur in colour space Processing o_f new data for the actual difference detectiothé right of
and are not observable using range values only. the dashed line.

3D Range Scan

Reference Model:
3D-NDT, Colour + SIFT Features

|. INTRODUCTION

An important aspect of robotic security systems is surveif0Pot would acquire and update the reference model of the
lance of a specified area. Typical security patrol mission§Vironment autonomously. This is related to the dynamic
require detection of changes in the environment and gglapping proble_m that investigates continuous adaptat!on
scription of detected differences with respect to a preslipu ©f Maps over time [5]. Here we assume that the mobile
determined reference state. A human watchman is first shofcUrity robot is first guided by a human operator in order
around the premises to learn the reference state of tf.%learn a model of'the original, ur)modm.ed environment. A
environment. The mission of the security patroller is theryecond major requirement especially with regards to large

to check for changes in the environment, e.g. looking fognyi_ronments is that the reference m(_)d_el is represented
open doors, open windows, water leaks, blocking of ﬁr_gfflmently put nevertheless allows determm_mg small (g‘um_

hoses etc. [1]. Due to their dull and potentially dangeroud € environment. Representing the environment at a high
character it is desirable to delegate security patrols tbilao 'eSolution so as to avoid the need to inspect all parts of the
robots. Current approaches often require teleoperatipn [£NVironment from a small distance can be seen generally
Accordingly, research has focused on adjustable autonomy @S the third major requirement of an autonomous difference

semi-autonomy to decrease the amount of “cognitive burdeﬁ‘me_Ctlon system. ) S
to the operator (Seeman et. al [3], Goodrich et. al [4], for Difference detection has been studied in the context of

example). recognizing parked vehicles by Ishikawa et. al [6]. In their

This paper presents a system for autonomous chan@’é’rk’ Ishikawa et. al use an omni-directional camera togreth

detection with a security patrol robot. As for its humanVith GPS and INS (Inertia Navigation System) to obtain

counterpart the robot watchman is expected to determifi€Pth estimates, which were subsequently compared with a
the reference state of the environment (the reference modBf€-built model.
in an initial phase. The actual mission requires discogerin

changes with respect to the reference model and describing

the differences. An alarm may be triggered whenever changesAn overview of the suggested difference detection system
are detected or detected differences can be reported tdssshown in Fig. 1. Corresponding to the two columns in the

human operator for further analysis. An effective systerfigure, the approach decomposes into two parts: acquisition
for autonomous difference detection needs to fulfil a couplef the reference model (shown to the left of the dashed line)
of demands. First, creation of the reference model shoulthd pre-processing of new data (shown to the right of the
be simple and require minimal effort by a user. Ideally thelashed line) for the actual detection of differences betwee
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level of changes in the environment. In addition, it canret b
expected in general that the security patrol robot maistain
a consistent coordinate system in-between acquisition of
the reference model and a difference detection request. As
opposed to most current approaches to scan registration we
therefore need a registration method that does not depend on
reasonably accurate initial pose estimates.

In order to cope with the condition that initial pose
estimates may not be available, we use local visual features
Fig. 3. Visualization of the 3D-NDT representation cormsging to the tc.) e.Stab“S.h _correspopdences between data points (data ass
scan in Fig. 2, top. Ellipsoids indicate the eigenvalueshuf tespective Ciation) within the entire set of measurements. In our aurre
covariance matrices. implementation we use the popular SIFT features developed

by Lowe [8].

o Shortly the registration procedure can be described as
new data and the reference model (indicated by the bqyjows: first, SIFT features are computed in the planar
below the dashed line). images recorded with the current scan dataand compared

Our difference detection approach comprises three majg the SIFT features found in the images belonging to
components described in Sec. Ill — Sec. V below. A veryyeyious scan. As detailed in Section III-A, a similarity

important aspect is accurate registration of the data. WReasure is calculated from the number of matching fea-
present a registration method that produces accuratetsesyres, which allows to determine the scan in the reference

even under the condition that a reasonable relative pose esgf,ogel #* that is most similar to the current scart, (see
mate is not available (when there is essentially no estiwiate gection 111-B). Next, the depth values are estimated for all
the relatlv_e pose betweerj two data sets _other fthan they Wefitching feature pairs it”* and .%, using vision-based
recorded in the same environment). This is achieved by usifigerpolation as described in Section IlI-C. The pairs of 3D
local visual features extracted from the camera images [ints corresponding to matching features are then used in
solve the data association problem in the registrationg®®c 4 ¢josed form solution to obtain the relative pose estimate
(Sect|oq -A - III-B)'. Since the camera images provide &see Section I11-D).

much higher resolgtlon tha_n the range sensor our r_n_ethod|n a related approach Newman et. al. [9] used SIFT
requires that depth information is estimated at the posiio  featyres to detect loop closure events in a 3D SLAM ap-
local visual features in the image (Section I1I-C). To c&t®  roach. In contrast to their method where SIFT features
depth information from a low-resolution 3D range sensor angye used to obtain an initial pose estimate (by determining

a colour image, we use a non-iterative method for visionye essential matrix between two images) and the full point
based interpolation of 3D range scans that was introduced Ry, 4 is considered afterwards registration in our apgoa
the authors in an earlier paper [7]. Finally a modified clesedg carried out using only 3D points that are associated with
form solution is used for the actual registration (Sectidn | matching visual features. By restricting scan matching to
D). _ . 3D points that were found to correspond by their visual
In order to represent the environment efficiently, we applyppearance, we believe that the robustness against chianges
the Normal Distribution Transformation (NDT) with ada@iv  the environment is improved and more accurate registration
cell splitting (Section IV-A) to the spatial point distribon .44 pe obtained. However, it remains to validate this belief

and the colour distribution (Section IV-C and Section IV-C) i, 5 thorough ground truth evaluation using a large set of 3D
Finally, based on the 3D-NDT, respectively the Colour 3Dg.gns.

NDT representation, difference probabilities are calmda
as described in Sec. V-A and V-B. A. Appearance-Based Smilarity Measure

A visualisation of the difference probabilities in a fa|r|y Given two image$a and|b, we extract local visual features
trivial case where two 3D laser scan sweeps are compargging the SIFT algorithm [8] resulting in two sets of feature
can be seen Fig. 2. The corresponding 3D-NDT represep; and R, corresponding to the two images. Each feature
tation is shown in Flg 3 USing ellipSOidS to indicate thefl — {[XvY]hHi} in a feature sefF = {fl} Comprises the
eigenvalues of the respective covariance matrices. position [X,Y]; in pixel coordinates and a histograi
containing the SIFT descriptor. The similari84y, of image
la and Iy is based on the number of matching features

A very important aspect of the difference detection systeretweenF,; and F,.
is that the relative positiofR,t] between the curren#; and The feature matching algorithm calculates the Euclidean
previous scans”; is known. Accurate registration is there-distance between each feature in imagand all the features
fore a fundamental requirement. Since the measurements (8Dimage l,. A potential match is found if the smallest
range scans and colour images) to be compared will kstance is smaller than 60% of the second smallest distance
obtained not only at different poses but also at substéytialThis criterion was found empirically and was also used in
different times, registration should be robust to a certaifil0], for example. It reduces the risk of falsely declaring
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Fig. 2. Left, middle: 3D range scans recorded at a relativeiglsdisplacement of approx. 1 m. Right: Difference probapitibrresponding to a chair
that was placed in the scene before the second scan wasedc@dghter regions indicate a higher difference proligbil

correspondence between SIFT features by excluding cases
where a false correspondence is caused by the existence
of several almost equally well matching alternatives. In

addition, no feature is allowed to be matched against more o Rs
than one other feature. If more than one candidate for

matching is found, the feature with the highest similarity .

among the candidate matches is selected. . R,

The feature matching step results in a set of feature pairs Rs
Pab, with a total numbeM, , = |P; | of matched pairs. Since
the number of extracted features varies heavily dependirfg. 4. Natural neighbourB;..Rs of R¥. The interpolated weight of each
on the image, the number of matches is normalized to tHatural neighbouR; is proportional to the size of the area which contains the
y . . oints’ Voronoi cell and the cell generated By. |.e. the nearest neighbour
average number of features in the two images. Hence tR€ vl have influence based upon the arealaf

similarity measures,p € [0,1] is defined as:

Sip = Map 1) of the robot. Here each 3D scan is registered to the previous
" (e +ng) scan.

whereng, = |F,| andng, = |F| are the number of features C. Depth Interpolation Using Vision

in F; and R, respectively. To obtain the depth estimatg for SIFT featuref; the
PLIC (Parameter-Free Multi-Linear Interpolation Conside
ing Colour) method [7] is applied, which is briefly described
High similarity values correspond to a similar appearanckelow. Based on the observation that depth discontinuities
of the respective images and can be taken as an indicationabfscene often correspond to colour or brightness changes in
a similar position at which the images were recorded. In thde camera image, the PLIC method derives high-resolution
difference detection system suggested in this paper wey apglepth images from a low-resolution 3D range scan and a
pair wise scan-matching. After the reference model wag buitolour image. In the difference detection system presented
and a current scan was recorded at a certain pose it thereftugre, the PLIC method is used to determine depth values for
needs to be decided which scan in the reference model thwatched SIFT features.
current scan should be registered with. This decision issmad Image data consist of a set of image pixel8; =
based on the similarity measure in Eq. 1. For the currert¥;,Y;,C;), whereX;,Y; are the pixel coordinates arg} =
scan.%c, the most similar scan in the reference modét (le,CjZ,Cf’) is a three-channel colour value. By projecting
is selected for registration. Since each 3D scan is associata 3D laser reading poinp; = [X,y,Z with the ranger;,
with three range scanner sweeps and seven planar imagedo the image plane, a projected laser range reading point
the scan in the reference model that is most suitable fétj = (X;,Yi,ri,(Cil,Ciz,C?)) is obtained, which associates a
registration is selected as the one that maximises the totainge valuer; with the coordinates and the colour of an
similarity. The total similarity of two scans is calculatbgg image pixel. The interpolation problem can now be stated for
matching all images belonging to one scan to all images given pixelZ?; and a set of projected laser range readings
belonging to the other scan and considering the sum & = R;, as to estimate the interpolated range readings
features and feature matches in Equation 1. This approaahcurately as possible. We denote an interpolated point by
corresponds to matching two combined images which weR} = (X;,Y;,r;,C{,C?,C?), see Fig. 4.
created by stitching the individual images recorded witthea  Depth estimates; are computed by weighted interpolation
scan. Note that the similarity filter is not required in thitish  between the natural neighbours to the pixel position of
model acquisition where an initial estimate of the relativdeature f;. The natural neighbours are a set of projected 3D
pose between subsequent scans is provided by the odomé#aser reading pointR; and their weights are determined by

B. Smilarity Filter



an area of influencéy calculated from the Voronoi diagram that contains a certain minimum number of points is repre-
of the projected laser scan readings as shown in Fig. dented by a Gaussian with the mean value and covariance
In addition, the weights for the natural neighbours depenghatrix computed from the points in the respective cell. The
on the colour variance of the assigned afgaand on the minimum number was set to 5 in the experiments presented
difference of the colouC; of the interpolated point to the in this paper. More formally 3D-NDT can be described as

colour G; of neighbouring points. follows. We consider a point clou® = py, p, ..., pn With
points p = [x,y,2 given in 3D Cartesian coordinates. The
D. Trimmed Closed Form Solution environment is divided into a set of cel@ =ci,cy,...,Ck

d for each celt; a reference is stored to all; points pg

Since visual features are used to establish correspondiﬁ ich lie within th s boundaries. Then. f h cell
scan points, no further means of data association, such Ich Tie within the cells boundaries. Then, for each @
e meany. and covarianc€&, are calculated as

searching for closest data points in ICP [11], [12], is neced
sary. Hence it is possible obtain the relative pose estinnste
ing a closed form solution. Although the SIFT features were 1 R 5
found to be very discriminative (see for example [13]), éher He = Ne i; P 2)
is of course still a risk that some of the correspondences are
not correct. To further decrease the possibility of errarseo

. . . Ne
point associations, only a set fraction of the correspoce&n Ce= 1 (Po — “C)z 3)
with the smallest spatial distance between corresponding Nc_li; :
points is used for registration. In the experiments present
in this paper the fraction was set to 70%. To estimate thidote that the NDT representation does not require evenly
relative rotatiorR and relative translationthe singular value spaced data and hence can be calculated without further sub-
decomposition (SVD) approach suggested by [14] is appliegampling. In order to keep the storage requirements within
Because the fraction of data points that is used to estimaifee limits of the computer with which the computations were
the relative posdR,t]; between two scans depends on thénade (i.e. 512 MB of RAM memory), all scans were sub-
previous estimatéR, t];_; (since the relative pose estimatesampled with a 3D-grid resolution of 0.1%m
affects the spatial distance between corresponding points
the SVD method needs to be applied in an iterative Mann&{. aAdaptive Cell Splitting
Thus relative pose updates are calculated repeatedly kéth t
SVD method using the previous estimai t;_1 as input The level of detail that is maintained by the NDT depends
to the next iteration step until a stopping criterion is meton the chosen cell size. In order to select the resolution of
Any initial pose estimate can be used (in the experimerthe NDT representation according to the local content of a
presented in this work, we start with the assumption of ascene, we use an adaptive cell size approach that determines
identical pose). As the stopping criterion in the experitmen whether or not to split a cell according to its covariance
in this paper we used if the change of the mean squared erroatrix C. From the picture of the covariance matrix as an
(MSE) of the spatial distance between the correspondirglipsoid, it is clear that a single Gaussian, i.e. one davae
points compared to the previous iteration were less tha 10matrix, can efficiently describe planes (one of the elligsoi
. axis is small) and lines (two of the ellipsoid axis are small)

Therefore, a large volume. of this ellipsoid, indicating that
IV. NORMAL DISTRIBUTION TRANSFORM(3D-NDT) none of the principal axis is small, was chosen as the auiteri

. . .. _for cell splitting:
One of the major requirements for an autonomous differ- PHing

ence detection system is that is scales well with the size of
the environment. This demands an efficient representation

of the reference merI f[hat COmpresses the data (to \t/)v%ere Aj are the different eigenvalues of the covariance
able to store and maintain large environments) and is y

able to represent small details allowing for detection o atrix. A higher value indicates a higher need to divide the

small changes. To address this issue, the normal diswibuti cell. In the experiments pre3$ented in this work, the spgtti
threshold was set to 0.001°m

transform (NDT) is used to represent the environment. The .. . . .
( ) P The decision about where to split a cell is made using the

NDT was introduced by Biber et. al [15] and first used to | d the directi fthe ei ith
register 2D laser scans. The method has been extended to gsan_ valuglc and the direction of the §|genvechuﬂ Wit
the highest eigenvaluk. The pointspg, in the cellg that is

scan registration by Magnusson et. al. [16] and very regentl i . b .
a multi-resolution variant was presented by Magnusson éﬁebgigsrﬁ)lgfare assigned to new celfsand¢’ according to

al. [17]. However, in this work we use a different approacﬁ

to registration, as discussed in Section IlI. Pe; (7™ — ). (5)
The basic principle of NDT and 3D-NDT is to represent

the environment by using a set of Gaussian distribution€onsequently, the cell is split at the plane through thereent

First, the considered space is divided into cells. Each cell. and orthogonal to the largest eigenveat@*.

Ve = |A1]|A2]|As], 4)



B. Colour 3D-NDT

In order to be able to detect changes that do not reveal
themselves through sufficiently large changes in the range
readings but which are observable in the planar images
recorded along with the range readings, colour information
is also incorporated into the NDT representation. Thisvedlo
detecting changes caused by thin objects, for example a
poster that has been removed from the wall, as long as the
colour differs sufficiently from the background.

In addition to pointsp = [x,y,Z in 3D space, we now
also consider corresponding colour valyes- [Ct,C2,C3].
Accordingly, the cells in the colour 3D-NDT representatiorrFig. 5.  Our mobile robot platform “Tjorven” equipped with tisensors
are described by a mean valpeand covarianc€ in addition  used in this paper: the SICK LMS 200 laser range scanner armloairc

. . . CCD camera both mounted on an Amtec pan tilt unit.
to the spatial meam and covariance introduced above.
The colour meanii and covariancé& are calculated using
Eqg. 2 and Eg. 3 replacing the pointg with their associated g cgour Difference Probability
colour valuespg = [CY,C2,C3).

We use theRGB colour space in our difference detec-
tion system. To obtain some degree of invariance again%?
changing illuminationRGB values are converted to tiv&JV
colour space, the intensiy is set to a constant value of 0.5,
and then therUV values are converted back RGB. As described in the previous section, the difference proba-

_ . ) bility will vary depending on the colour distribution of the
C. Adaptive Cell Splitting with Colour selected cell, giving higher probabilities to colour chesig

Colour cell splits are generally performed in the same wan regions of very uniform colour distribution.
as the cell splits based on Cartesian coordinates described
above. However, in the colour space the criterion for a split
is only dependent on the highest eigenvali® of the A. Hardware

is larger than a predefined threshold. This threshold wage ActivMedia P3-AT robot “Tjorven” shown in Fig. 5,
set to 10 in this paper referring to RGB values in betweegqgyipped with a 2D laser ranger scanner (SICK LMS 200)
0 and 255. Compared to the volume measure in EQ. 4,4hd a 1-MegaPixel (1280x960) colour CCD camera. The
modified criterion is used since lines and planes in coloyrcp camera and the laser scanner are both mounted on a
space do not generally correspond to consistent structurespan.tilt unit from Amtec with a displacement between the

In the same way as the spatial difference probability, the
lour difference probability is calculated as

Poolordif () 0 & (P-Fe) C(P—Fic) %

V1. VALIDATION EXPERIMENT

the environment. optical axes of approx 0.2 m. The angular resolution of the
V. DIFFERENCEPROBABILITY COMPUTATION laser scanner was set to 0.25 degrees.
A. Spatial Difference Probability B. Data Collection

A probabilistic value of the pointp being different  For each pose, 3D range and image data are collected
from the reference model is computed using the 3D-ND&s follows. First, three sweeps are carried out with the
representation of the reference model. First, the celé |aser scanner at -60, 0 and 60 degrees relative to the robot
determined that contains the pojntUsing the meamc and  orientation (horizontally). During each of these sweehs, t
covarianceC, of this cell the spatial difference probability is tjit of the laser scanner is continuously shifted from -40
then calculated as degrees (looking up) to 30 degrees (looking down). After the
(p) O e (P—He)TCeH (p—pe) (6) three range scan sweeps, seven camera images are recorded

at -90, -60, -30, 0, 30, 60, and 90 degrees relative to the
If adaptive cell splitting is used and therefore each gridobot orientation (horizontally) and at a fixed tilt angle-6f
cell can contain multiple mean and covariance values, thfegrees (looking up). The full data set acquired at a single
difference probabilitypgis is calculated for all sub-cells scan pose is shown on Fig. 6.
using Equation 6 and the lowest probability is assigned to .
point p. C. Experiment

Note that the difference probability will depend on the To evaluate the suggested difference detection system, a
structure of the point cloud used to generate the 3D-NDfeference model of an indoor lab environment was created
representation of the reference model. In the case of planfaom the data recorded at 22 robot poses (reference daa), i.
regions, for example, the covariance matrix in Equation &om 66 laser scanner sweeps and 154 camera images. The
will emphasise differences orthogonal to the planar stmect reference model is shown in Fig. 7. Then, controlled changes
so that even very small deviations can be detected there. (described in the Results section VI-D) were introduced and
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Fig. 8. Difference probability as found in 24 scans comparedhe reference model shown in Fig. 7. Brighter regions irtdiaa higher difference
probability. The scans are registered for better visutdinaTop: Difference probability computed from range valwmly using Eq. 6. Bottom Difference
probability computed from colour information using Eq. 7.

a new data set was recorded at 24 different poses (differenbe Results
detection data). The two data sets overlap each other and th

difference dgtectlon dat'a were treated mdependently froEP scribed in Section VI-C: the point cloud of the combined
each other, i.e. an a priori unknown position was assume

for the 24 difference detection data sets. Note that ”%ﬁféggczcdc?%ﬁgonéc?ﬁg (éi?Tl]StStr:g fgi:‘fgféféewz?sggi)ilit
global optimization is carried out when creating the refiese 9 P b Y-

model. With the given set-up we found that using :sequentigrlghter regions indicate a higher probability of changes

registration the accumulated error was only a few centiraete’ 'the enwronment. Fig. 8 top shows t.he d|ffergnce prob
: . ability obtained from spatial data only, i.e. applying Eq. 6
between the first and last data set. In order to cope withdargg. . . .
. R . . ~Fig. 8, bottom shows the difference probability obtainexirfr
environments, global optimization has to be integrated int

SN ; . colour data only, i.e. using Eq. 7.
the system, which is indeed in the pipe for future work. ,
4 PP All the changes to the reference model can be found in

%ig. 8 shows the result of the evaluation experiment



Fig. 6. Full data set acquired for a single scan pose comgriinee
sweeps with the laser scanner fused with colour informatiomfseven

Our future work will include a more thorough evaluation
of the capabilities and limitations of the suggested system
Next, changes are currently detected in the coloured point
clouds, which means that the resolution of the 3D range
sensor is used. The higher resolution of the camera images
is so far only exploited for scan registration. It is therefo
another direction of our current research to extend thegdan
detection system such that it uses “super-resolution” tdept
information obtained from a low-resolution 3D range sensor
and a color image also for change detection. Finally, we
want to investigate the possibility to continuously creite
reference model in an autonomous manner, i.e. to represent
the reference model as a dynamic map which would allow

camera images.

(1]
(2]

(3]

[4]
Fig. 7. The reference model created in our evaluation expetiocansisting 5]
of 3 x 22 registered scans and the corresponding colours from 22
camera images. [6]

the difference probability point clouds. The changes are in
dicated with an alphabetic character in Fig. 8: a slidingrdoo [,
that was opened (A), three chairs that were moved (B,C,D),
and a relatively small box of approx. 0.48.25x0.4 n?

that was re-positioned (E). Further changes are not délecta 8
using range data only but can be found when using colour
data. These changes are two equally sized boxes (approx.
0.4x0.4x0.5 n?) that were swapped (a) and a coloured paper[9]

stripe (approx. 0.£0.7 n?) that was fixed to the floor (b).
[10]
VIl. CONCLUSION AND FUTURE WORK

In this paper we present a system for autonomous change]
detection with a security patrol robot. The method uses
vision and 3D range data to build a reference model of the,
environment and detect changes with respect to this model.
The approach was verified in a real world experiment in
an indoor lab environment, demonstrating that the suggest[els]
system is able register 3D scans and to detect changes
in spatial data and also to detect changes that occur in
colour space and are not observable using range values orﬁjry.
Apart from the description of this system for autonomousis]
difference detection, the particular contribution of thaper
is the introduction of novel methods for vision-aided scang
registration, which essentially works without an initiadge
estimate, and using the 3D-NDT representation with adaptiv
cell size to efficiently represent both the spatial and oolodm
aspects of the reference model.

detecting changes at different time scales.
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