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Abstract— This paper investigates the use of semantic infor-
mation to link ground-level occupancy maps and aerial images.
A ground-level semantic map is obtained by a mobile robot
equipped with an omnidirectional camera, differential GPS
and a laser range finder. The mobile robot uses a virtual
sensor for building detection (based on omnidirectional images)
to compute the ground-level semantic map, which indicates
the probability of the cells being occupied by the wall of
a building. These wall estimates from a ground perspective
are then matched with edges detected in an aerial image.
The result is used to direct a region- and boundary-based
segmentation algorithm for building detection in the aerial
image. This approach addresses two difficulties simultaneously:
1) the range limitation of mobile robot sensors and 2) the
difficulty of detecting buildings in monocular aerial images.
With the suggested method building outlines can be detected
faster than the mobile robot can explore the area by itself, giving
the robot an ability to “see” around corners. At the same time,
the approach can compensate for the absence of elevation data
in segmentation of aerial images. Our experiments demonstrate
that ground-level semantic information (wall estimates) allows
to focus the segmentation of the aerial image to find buildings
and produce a ground-level semantic map that covers a larger
area than can be built using the onboard sensors.

I. I NTRODUCTION

A mobile robot has a limited view of its environment.
Mapping of the operational area is one way of enhancing
this view for visited locations. In this paper we explore the
possibility to use information extracted from aerial images to
further improve the mapping process. Semantic information
(classification of buildings versus non-buildings) is usedas
the link between the ground level information and the aerial
image. The method speeds up exploration or planning in
areas unknown to the robot.

Colour image segmentation is often used to extract infor-
mation about buildings from an aerial image. However, it is
hard to perform automatic detection of buildings in monoc-
ular aerial images without elevation information. Buildings
can not easily be separated from other man-made structures
such as driveways, tennis courts, etc. due to the resemblance
in colour and shape. We show that wall estimates found by
a mobile robot can compensate for the absence of elevation
data. In our previous work [19] wall estimates detected by a
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mobile robot are matched with edges extracted from an aerial
image. A virtual sensor1 for building detection is used to
identify parts of an occupancy map that belong to buildings
(wall estimate). To determine potential matches we use geo-
referenced aerial images and an absolute positioning system
on board of the robot. The matched lines are then used in
region- and boundary-based segmentation of the aerial image
for detection of buildings.

In this paper, we extend the approach from [19]. The
extension includes a global search for buildings in the aerial
image and the introduction of a ground class. The purpose is
to detect building outlines and driveable paths faster thanthe
mobile robot can explore the area by itself. Using a method
like this, the robot can estimate the size of found buildings
and using the building outline it can “see” around one or
several corners without actually visiting the area. The method
does not assume a perfectly up-to-date aerial image, in the
sense that buildings may be missing although they are present
in the aerial image, and vice versa. It is therefore possible
to use globally available2 geo-referenced images.

A. Related Work

Overhead images in combination with ground vehicles
have been used in a number of applications. Ohet al. [11]
used map data to bias a robot motion model in a Bayesian
filter to areas with higher probability of robot presence.
Mobile robot trajectories are more likely to follow paths in
the map and using the map priors, GPS position errors due
to reflections from buildings were compensated. This work
assumed that the probable paths were known in the map.

Pictorial information captured from a global perspective
has been used for registration of sub-maps and subsequent
loop-closing in SLAM [2].

Silver et al. [16] discuss registration of heterogeneous data
(e.g. data recorded with different sampling density) from
aerial surveys and the use of these data in classification of
ground surface. Cost maps are produced that can be used
in long range vehicle navigation. Scrapperet al. [15] used

1A virtual sensor is understood as one or several physical sensors with a
dedicated signal processing unit for recognition of real world concepts.

2E.g. Google Earth, Microsoft Virtual Earth, and satellite images from
IKONOS and its successors.



heterogeneous data from, e.g., maps and aerial surveys to
construct a world model with semantic labels. This model
was compared with vehicle sensor views providing a fast
scene interpretation.

For detection of man-made objects in aerial images, lines
and edges together with elevation data are the features that
are used most often. Building detection in single monocular
aerial images is very hard without additional elevation data
[18]. Mayer’s survey [9] describes some existing systems
for building detection and concludes that scale, context and
3D structure were the three most important features to
consider for object extraction in aerial images. Fusion of
SAR (Synthetic Aperture Radar) and aerial images has been
employed for detection of building outlines [18]. The build-
ing location was established in the overhead SAR image,
where walls from one side of buildings can be detected.
The complete building outline was then found using edge
detection in the aerial image. Parallel and perpendicular
edges were considered and the method belongs to edge-only
segmentation approaches.

Combination of edge and region information for seg-
mentation of aerial images has been suggested in several
publications. Muelleret al. [10] presented a method to detect
agricultural fields in satellite images. First, the most relevant
edges were detected. These were then used to guide both the
smoothing of the image and the following segmentation in
the form of region growing. Freixenetet al. [4] investigated
different methods for integrating region- and boundary-based
segmentation, and also claim that this combination is the best
approach.

B. Outline and Overview

The presentation of our proposed system is divided into
three main parts. The first part, Section II, concerns the
estimation of walls by the mobile robot and edge detection
in the aerial image. The wall estimates are extracted from
a probabilistic semantic map. This map is basically an
occupancy map that is labelled using a virtual sensor for
building detection [12] mounted on the mobile robot. The
second part describes the matching of wall estimates from
the mobile robot with the edges found in the aerial image.
This procedure is described in Section III. The third part
presents the segmentation of an aerial image based on the
matched lines. Section IV deals with a local segmentation
to find buildings and Section V extends this to a global
segmentation of the aerial image and also introduces the
class driveable ground. Details of the mobile robot, the
experiments performed and the obtained result are found in
Section VI. Finally, the paper is concluded in Section VII
and some suggestions for future work are given.

II. WALL ESTIMATION

A major problem for building detection in aerial images is
to decide which of the edges in the aerial image correspond
to building outlines. The idea of our approach, to increase
the probability that a correct segmentation is performed, is to
match wall estimates extracted from two perspectives. In this

section we describe the process of extracting wall candidates,
first from the mobile robot’s perspective and then from aerial
images.

A. Wall Candidates from Ground Perspective

The wall candidates from the ground perspective are
extracted from a semantic map acquired by a mobile robot.
The semantic map we use is a probabilistic occupancy grid
map augmented with labels for buildings and non-buildings
[14]. The probabilistic semantic map is produced using an
algorithm that fuses different sensor modalities. In this paper,
a range sensor is used to build an occupancy map, which
is converted into a probabilistic semantic map using the
output of a virtual sensor for building detection based on
an omnidirectional camera.

The algorithm consists of two parts. First, a local semantic
map is built using the occupancy map and the output from
the virtual sensor. The virtual sensor uses the AdaBoost
algorithm [5] to train a classifier that classifies close range
monocular grey scale images taken by the mobile robot as
buildings or non-buildings. The method combines different
types of features such as edge orientation, grey level clus-
tering and corners into a system with high classification rate
[12]. The classification by the virtual sensor is made for a
whole image. However, the image may also contain parts
that do not belong to the detected class, e.g., an image of
a building might also include some vegetation such as a
tree. Probabilities are assigned to the occupied cells thatare
within a sector representing the view of the virtual sensor.
The size of the cell formations within the sector affects the
probability values. Higher probabilities are given to larger
parts of the view, assuming that larger parts are more likely
to have caused the view’s classification [14].

In the second step the local maps are used to update
a global map using a Bayesian method. The result is a
global semantic map that distinguishes between buildings
and non-buildings. An example of a semantic map is given in
Figure 1. From the global semantic map, lines representing
probable building outlines are extracted. An example of
extracted lines is given in Figure 2.

B. Wall Candidates in Aerial Images

Edges extracted from an aerial image are used as potential
building outlines. We limit the wall candidates used for
matching in Section III to straight lines extracted from a
colour aerial image taken from a nadir view. We use an
output fusion method for the colour edge detection. The
edge detection is performed separately on the three RGB-
components using Canny’s edge detector [1]. The resulting
edge imageIe is calculated by fusing the three binary images
obtained for the three colour components with a logical OR-
function. Finally a thinning operation is performed to remove
points that occur when edges appear slightly shifted in the
different components. For line extraction inIe an implemen-
tation by Peter Kovesi3 was used. The lines extracted from

3http://www.csse.uwa.edu.au/∼pk/Research/MatlabFns/, University of
Western Australia, Sep 2005



Fig. 1. An example of a semantic map where white lines denote high
probability of walls and dark lines show outlines of non-building entities.

Fig. 2. Illustration of the wall estimates calculated from the semantic map
(lines drawn in black). The grey areas illustrates buildingand nature objects
(manually extracted from Fig. 3). The semantic map in Fig. 1 belongs to
the upper left part of this figure.

the edges detected in the aerial image in Figure 3, are shown
in Figure 4.

III. WALL MATCHING

The purpose of the wall matching step is to relate a wall
estimate, obtained at ground-level with the mobile robot, to
the edges detected in the aerial image. In both cases the
line segments represent the wall estimates. We denote a wall
estimate found by the mobile robot asLg and theN lines
representing the edges found in the aerial image byLi

a with
i ∈ {1, . . . , N}. Both line types are geo-referenced in the
same Cartesian coordinate system.

The lines from both the aerial image and the semantic map
may be erroneous, especially concerning the line endpoints,
due to occlusion, errors in the semantic map, different sensor
coverage, etc. We therefore need a metric for line-to-line
distances that can handle partially occluded lines. We do not
consider the length of the lines and restrict the line matching
to the line directions and the distance between two points,
one point on each line. The line matching calculations are
performed in two sequential steps: 1) decide which points

Fig. 3. The trajectory of the mobile robot and the used aerialimage.

Fig. 4. The lines extracted from the edge version of the aerial image.

on the lines are to be matched, and 2) calculate a distance
measure to find the best matches.

A. Finding the Closest Point

In this section we define which points on the lines are to
be matched. ForLg we use the line midpoint,Pg. Due to
the possible errors described above we assume that the point
Pa on Li

a that is closest toPg is the best candidate to be
used in our ‘line distance metric’.

To calculatePa, let en be the orthogonal line toLi
a

that intersectsLg in Pg, see Figure 5. We denote the
intersection betweenen and Li

a as φ whereφ = en × Li
a

(using homogeneous coordinates). The intersectionφ may be
outside the line segmentLi

a, see right part of Figure 5. We
therefore need to check ifφ is within the endpoints and if
it is setPa = φ. If φ is not within the endpoints, thenPa is
set to the closest endpoint onLa.

Fig. 5. The lineLg with its midpointPg = (Pgx
, Pgy), the lineLi

a, and
the normal toLi

a, en. To the left,Pg = φ sinceφ is on Li
a and to the

right, Pg is the endpoint ofLi
a sinceφ is not onLi

a.



B. Distance Measure

The calculation of a distance measure is inspired by
[7], which describes geometric line matching in images
for stereo matching. We have reduced the complexity in
those calculations to have fewer parameters that need to
be determined and to exclude the line lengths. Matching is
performed usingLg ’s midpoint Pg, the closest pointPa on
Li

a and the line directions,θg and θa. First, a difference
vector is calculated as

rg = [Pgx
− Pax

, Pgy
− Pay

, θg − θa]T . (1)

Second, the similarity is measured as the Mahalanobis dis-
tance

dg = rg
T
R

−1
rg (2)

where the diagonal covariance matrixR is defined as

R =





σ2

Rx 0 0
0 σ2

Ry 0

0 0 σ2

Rθ



 (3)

with σRx, σRy , andσRθ being the expected standard devia-
tion of the errors between the ground-based and aerial-based
wall estimates.

IV. L OCAL AERIAL IMAGE SEGMENTATION

This section describes how local segmentation of the
colour aerial image is performed. Segmentation methods can
be divided into two groups; discontinuity- and similarity-
based [6]. In our case we combine the two groups by
first performing an edge based segmentation for detection
of closed areas and then colour segmentation based on a
small training area to confirm the areas’ homogeneity. The
following is a short description of the sequence that is
performed for each lineLg:

1) Sort the set of linesLa based ondg from Equation 2
in increasing order and seti = 0.

2) Seti = i + 1.
3) Define a start areaAstart on the side ofLi

a that is
opposite to the robot (this will be in or closest to the
unknown part of the occupancy grid map).

4) Check if Astart includes edge points (parts of edges
in Ie). If yes, return to step 2.

5) Perform edge controlled segmentation.
6) Perform homogeneity test.

The segmentation based onLg is stopped when a region
has been found. Step 4 makes sure that the regions have
a minimum width. Steps 5 and 6 are elaborated in the
following paragraphs.

A. Edge Controlled Segmentation

Based on the edge imageIe constructed from the aerial
image, we search for a closed area. Since there might be
gaps in the edges bottlenecks need to be found [10]. We use
morphological operations, with a3 × 3 structuring element,
to first dilate the interesting part of the edge image in order

Fig. 6. Illustration of the edge-based algorithm. a) shows asmall part of
Ie andAstart. In b) Ie has been dilated and in c)Asmall has been found.
d) showsAfinal as the dilation ofAsmall.

to close gaps and then search for a closed area on the side
of the matched line that is opposite to the mobile robot.
When this area has been found the area is dilated in order
to compensate for the previous dilation of the edge image.
The algorithm is illustrated in Figure 6.

B. Homogeneity Test

We use the initial starting areaAstart as a training sample
and evaluate the rest of the region based on the corresponding
colour model. This means that the colour model does not
gradually adapt to the growing region, but instead requires
a homogeneous region on the complete roof part that is
under investigation. Regions that gradually change colour
or intensity, such as curved roofs, might then be rejected.
However, so far, we did not observe this problem in our
experiments.

Gaussian Mixture Models, GMM, are popular for colour
segmentation. Like Dahlkampet al. [3] we tested both
GMM and a model described by the mean and the co-
variance matrix in RGB colour space. We selected the
mean/covariance model since it is faster and we noted that
the mean/covariance model performs approximately equally
well as the GMM in our case. A limitOlim is calculated for
each model so that 90% of the training sample pixels have a
Mahalanobis distance smaller thanOlim. Olim is then used
as the separator limit between pixels belonging to the class
and the pixels that don’t.

The result from the local segmentation are regions con-
nected to the lines inLg, an example is shown in Section
VI, Figure 10.

V. GLOBAL SEGMENTATION OF AERIAL IMAGES

In this step the view of the mobile robot is increased
further. The previously found building estimates are used
as training areas for colour segmentation in order to make a
global search for buildings within the entire aerial image.In
addition, another important class is introduced, namely drive-
able areas. The purpose of the global segmentation is to build
a map that predicts different types of areas, e.g., driveable
ground and buildings. We call this the predictive map, PM.
The PM can serve as an input to an exploration algorithm,
since it includes both driveable ground and obstacles in the
form of buildings.

The global segmentation of an aerial image using colour
models captures all buildings with roofs in similar coloursas
those buildings that were detected in the local segmentation.
However, some colours are very similar to ground covered
by, e.g., asphalt and ground in deep shadow. Since correct
classification is only possible for colours unique to a certain



Fig. 7. The combined binary image of free points and edges inIe.

class, it is likely that some of the detected building areas
may belong to theground class. In order to reduce these
false areas, the information about the ground that has been
covered by the robot is also used.

A. Colour Models

The segmentation of the aerial image is based on colour
models. In the example, models will be calculated for the
two classes:building and driveable ground. We use the
same procedure as for the homogeneity test in the local
segmentation, see Section IV.

Models of “driveable” ground can be extracted in different
ways. Vision has been used in several projects [8], [17],
[13] to find driveable regions for unmanned vehicles. In our
implementation we use the already available occupancy grid
map and interpret free areas as ground. To extract colour
models that represent the different ground areas we combine
the occupancy grid map and the edge version of the aerial
image,Ie. The free cells in the occupancy grid map defines
the region inIe that represents the ground. An example using
our occupancy map is shown in Figure 7.

We perform edge controlled segmentation of that region,
as described in Section IV-A, to find the different ground
areas. The largest areas4 point out samples in the aerial image
that are used to train colour models of the same type as in
Section IV-B.

B. The Predictive Map

The PM is designed to handle multiclass problems and the
updating of this map can be performed incrementally. The
colour models used to segment the aerial image are two-class
models (building or non-building, ground or non-ground etc.)
and the classifiers are therefore binary classifiers. We let the
PM be a grid map of the same size as the aerial image that
is segmented. For each of then classes, a separate layer
li, with i ∈ {1, . . . , n}, is used to store the accumulated

4The limit was set to 50 pixels (12.5 m2) in order to avoid movable
objects such as cars and small trucks.

Fig. 8. Flow chart of the process for calculating the predictive map.

segmentation results. These layers also have the same size
as the aerial image.

To calculate the predictive map incrementally two main
steps are performed; 1) the aerial image is segmented when
a new colour model is available and 2) the predictive map
is recalculated using the result from the latest segmentation.
Figure 8 shows a flow chart of the updating process. This is
adapted to work also in an on-line situation and is explained
in the following. When aNew samplebelonging to classcl is
available a new colour modelCM is calculated. Based on the
quality of CM, a measurep, 0 ≤ p ≤ 1 should be estimated5.
Then the aerial image is segmented using the new model and
the result is scaled withp and stored in a temporary layer.
The old layer,lcl, is fused with the temporary layer using a
max function.

The predictive map is based on voting from separate layers
li for the n classes, one layer for each class that we are
looking for. In this examplen = 2; one building layer and
one driveable ground layer. The voting is a comparison of
the layer’s cell by cell. In the grid cells where the levels are
similar, the cells are set tounknown. If the unknown areas
are classified by the mobile robot as in Figure 9 and 10, that
result has precedence, see discussion in Section VI.

The allowed similarity of the cells are defined inC,
a matrix where the off-diagonal elements,cij ≥ 0, i 6=
j, i = {1, 2, . . . , n}, j = {1, 2, . . . , n}, are used for the
classification of cellspmxy in PM. n is the number of
layers and classes, andpmxy denotes cell(x, y) in PM. The
elements ofC introduce buffer zones to the voting process
making it possible to adjust the sensitivity of the voting
individually for all classes. The voting is performed using
IF-THEN rules biased withcij :

5Estimation of the parameterp is still an unsolved issue for future work.
In our experiments we usedp = 0.7.



IF lxy
i > lxy

j + cij∀j 6= i THEN pmxy = classi (4)

wherelxy
i denotes cell(x, y) in layer i. If the condition can

not be fulfilled due to conflicting informationpmxy is set to
unknown. If cij = 0 the rules in Equation 4 will turn into
ordinary voting where the largest value wins and where ties
givesunknown.

During the experimentsC was set to:

C =

[

− 0.1
0.1 −

]

. (5)

VI. EXPERIMENTS

A. Data Collection

The above presented algorithms have been implemented in
Matlab for evaluation and the functions currently work off-
line. Data were collected with a mobile robot, a Pioneer P3-
AT from ActivMedia, equipped with differential GPS, laser
range scanner, cameras and odometry. The robot is equipped
with two different types of cameras; an ordinary camera
mounted on a PT-head and an omni-directional camera. The
omni-directional camera gives a360◦ view of the surround-
ings in one single shot. The camera itself is a standard
consumer-grade SLR digital camera (Canon EOS350D, 8
megapixels). On top of the lens, a curved mirror from 0-
360.com is mounted. From each omni-image we compute
8 (every45◦) planar views or sub-images with a horizontal
field-of-view of 56◦. These sub-images are the input to the
virtual sensor. The images were taken with ca. 1.5 m interval
and were stored together with the corresponding robot’s pose.
The trajectory of the mobile robot is shown in Figure 3.

B. Tests of the Local Segmentation

The occupancy map in Figure 9 was built using the hori-
zontally mounted laser range scanner. The occupied cells in
this map (marked in black) were labelled by the virtual sensor
giving the semantic map presented in Figure 1. The semantic
map contains two classes; buildings (values above 0.5) and
non-buildings (values below 0.5). From this semantic map
we extracted the grid cells with a high probability of being a
building (above 0.9) and converted them to the linesLM

g

presented in Figure 2. Matching of these lines with the
lines extracted from the aerial imageLN

a , see Figure 4,
was then performed. Finally, based on best line matches the
segmentation was performed according to the description in
Section IV.

The three parameters inR (Equation 3) were set toσRx =
1 m, σRy = 1 m, andσRθ = 0.2 rad. Note that it is only
the relation between the parameters that influences the line
matching.

We have performed two different types of tests.Tests 1-
3 are the nominal cases when the collected data are used
as they are. The tests intend to show the influence of a
changed relation betweenσRx, σRy andσRθ by varyingσRθ.
In Test 2σRθ is decreased by a factor of 2 and inTest 3σRθ

is increased by a factor of 2. InTests 4and 5 additional

Fig. 9. Occupancy map used to build the semantic map in Fig. 1.

uncertainty (in addition to the uncertainty already present in
LM

g andLN
a ) was introduced. This uncertainty is in the form

of Gaussian noise added to the midpoints (σx and σy) and
directionsσθ of LM

g . The tests are defined in Table I.

Test σx [m] σy [m] σθ [rad] σRθ [rad] Nrun

1 0 0 0 0.2 1

2 0 0 0 0.1 1

3 0 0 0 0.4 1

4 1 1 0.1 0.2 20

5 2 2 0.2 0.2 20

TABLE I

DEFINITION OF TESTS AND THE USED PARAMETERS.

C. Quality Measure

We introduce two quality measures to be able to compare
different algorithms or sets of parameters in an objective way.
For this four sets (A-D) are defined; A is the ground truth,
a set of cells/points that has been manually classified as the
testedclass; B is the set of cells that has been classified
as class by the algorithm; C is the set of false positives,
C = B \A, the cells that have been classified asclassB but
do not belong to ground truthA; and D are the true positives,
D = B ∩ A, the cells that have been classified asclassB
and belong to ground truthA. Using these sets, two quality
measures are calculated as:

• The true positive rate,ΦTP = #D/#B.
• The false positive rate,ΦFP = #C/#B.

where#D denotes the number of cells inD, etc.

D. Result of Local Segmentation

The results ofTest 1show a high detection rate (96.5%)
and a low false positive rate (3.5%), see Table II. The result-
ing segmentation is presented in Figure 10. Four deviations
from an ideal result can be noted. Ata and b tree tops are
obstructing the wall edges in the aerial image, atc a white
wall causes a gap between two regions, and a false area, to
the left of b, originates from an error in the semantic map
(a low hedge was marked as building).

The results ofTest 1-3are very similar which indicate
that the algorithm in this case was not specifically sensitive



a

b

c

Fig. 10. The result of the local segmentation of the aerial image using the
wall estimates in Figure 2. The ground truth building outlines are drawn in
black.

Fig. 11. The result of the global segmentation of the aerial image using
both ground and building models. Ground is blue, buildings are red, ties
are black and white represents not classified cells.

to the changes inσRθ. In Test 4and5 the scenario ofTest 1
was repeated using a Monte Carlo simulation with introduced
pose uncertainty. The result is presented in Table II. One can
note that the difference between the nominal case andTest
4 is very small. InTest 5where the additional uncertainties
are higher the detection rate has decreased slightly.

Test ΦTP [%] ΦF P [%]
1 96.5 3.5

2 97.0 3.0

3 96.5 3.5

4 96.8± 0.2 3.2 ± 0.2

5 95.9± 1.7 4.1 ± 1.7

TABLE II

RESULTS FOR THE TESTS. THE RESULTS OFTEST 4 AND 5 ARE

PRESENTED WITH THE CORRESPONDING STANDARD DEVIATION.

E. Result of Global Segmentation

The result of the global segmentation has been assessed
mainly by visual inspection. The visual inspection of the
result shown in Figures 11 and 12, and of segmentation
of a larger aerial image illustrates the potential in the use
of aerial images for mapping purposes. The PM based on
ground colour models from regions in Figure 7 and building
colour models from the regions in Figure 10 is presented in
Figure 11.

Fig. 12. PM combined with the local information. Ground is blue, buildings
are red, ties are black and white represents not classified cells.

Compared with the aerial image in Figure 3 the result
is promising. One can now follow the outline of the main
building and most of the paths, both paved paths and roads
and beaten tracks have been found. The major problem that
has been noted during the work is caused by shadowed areas
that look very similar to dark roofs.

The final result is obtained when the PM is combined
with the free areas and the buildings found in the local
segmentation. For these pixels we setp = 0.9, performed
another update (where segmentation is not needed) and got
the resulting map shown in Figure 12.

A formal evaluation of the ground class is hard to perform.
Ground truth for buildings can be manually extracted from
the aerial image, but it is hard to specify in detail the areas
that are driveable. Based on the ground truth of buildings
and an approximation of the ground (driveable areas) ground
truth as the non-building cells, some statistics of the result
are presented in Table III. In the table all values in the
right column, where the results from the combined PM
and local information are shown, are better than those in
the middle column. The increase in true positive rate for
buildings is depending both on the reduction ofties and on
the reduction of false positives on the road along the mobile
robot trajectory. Since the result depends on the relation
between the actual presence of the different classes in the
aerial image, normalized values forΦTP are also presented.
The area covered by buildings is smaller than the ground
area giving an increase in the normalizedΦTP for buildings
and a decrease for ground compared to the nominalΦTP .

Description PM [%] PM + local [%]

ΦTP buildings (normalized) 66.6 (83.2) 73.0 (87.7)

ΦTP ground (normalized) 96.8 (92.4) 97.3 (93.3)

Unclassified cells 55.5 52.4

Ties (unknown) 10.5 8.1

TABLE III

RESULTS OF THE EVALUATION OF THE TWOPMS DISPLAYED IN FIG. 11

AND 12. NOTE THAT THE GROUND TRUTH FOR‘ GROUND’ IS AN

APPROXIMATION AND THESE VALUES WOULD DECREASE USING THE

EXACT GROUND TRUTH.



VII. C ONCLUSIONS ANDFUTURE WORK

This paper discusses how aerial images can be used to
considerably extend the view of a mobile robot. A virtual
sensor for building detection on a mobile robot is used to
link semantic information to a process for building detection
in aerial images. The benefit from the extended range of the
robot’s view can clearly be noted in the presented example.

In the local segmentation it can be hard to extract a com-
plete building outline due to, e.g., different roof materials,
different roof inclinations and additions on the roof, specif-
ically when the robot has only seen a small portion of the
building outline. But the global segmentation is a promising
extension that shows a large potential. Even though the roof
structure in the example is quite complicated, the outline of a
large building could be extracted based on the limited view
of the mobile robot, which had only seen a minor part of
surrounding walls.

A. Discussion

With the presented method, changes in the environment
compared to an aerial image that is not perfectly up-to-date
are handled automatically. Assume that a building that is
present in the aerial image has been removed after the image
was taken. Since it is present in the aerial image, it may be
classified as a building in the PM if it had a roof colour
similar to a building already detected by the mobile robot.
When the robot approaches the area where the building was
situated, the building will not be detected. If the mobile robot
classifies the area as driveable ground, the PM will turn into
unknown(of course depending oncij andp), not only for that
specific area but also globally. Still, the information obtained
from the local segmentation will indicate building where the
mobile robot initially found the building that resulted in the
first colour model.

What about the other way around? Assume that a new
building is set up on an open area and this is not yet reflected
in the aerial image. If the edge matching indicates a wall this
can introduce errors, but if the building is in the middle of,
e.g., a lawn, no edges are found and no segmentation will
be performed. Then the building will only be present in the
probabilistic semantic map in the form of a possible wall.

B. Future Work

We believe that the accuracy of the PM could be further
improved by using a measure of the colour model quality to
assign a value to the parameterp for each model. Also the
probabilities from the semantic map where the ground wall
estimates are extracted could be included in the calculation
of p.

Shadow detection that merges areas in shadows with the
corresponding areas in the sun is desired. We believe that this
would eliminate some false pixels and decrease the unknown
areas caused by ties.

Experiments where PM is used to direct exploration of
unknown areas should be performed. At the same time it
should be investigated whether post-processing of the PM
can increase the detection rates further.
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