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Abstract— This paper investigates the use of semantic infor-
mation to link ground-level occupancy maps and aerial imags.
A ground-level semantic map is obtained by a mobile robot
equipped with an omnidirectional camera, differential GPS
and a laser range finder. The mobile robot uses a virtual
sensor for building detection (based on omnidirectional inages)
to compute the ground-level semantic map, which indicates
the probability of the cells being occupied by the wall of
a building. These wall estimates from a ground perspective
are then matched with edges detected in an aerial image.
The result is used to direct a region- and boundary-based
segmentation algorithm for building detection in the aerid
image. This approach addresses two difficulties simultanesly:
1) the range limitation of mobile robot sensors and 2) the
difficulty of detecting buildings in monocular aerial images.
With the suggested method building outlines can be detected
faster than the mobile robot can explore the area by itself, iying
the robot an ability to “see” around corners. At the same time
the approach can compensate for the absence of elevation aat
in segmentation of aerial images. Our experiments demonsite
that ground-level semantic information (wall estimates) #ows
to focus the segmentation of the aerial image to find building
and produce a ground-level semantic map that covers a larger
area than can be built using the onboard sensors.

I. INTRODUCTION

A mobile robot has a limited view of its environment.
Mapping of the operational area is one way of enhancin

**Department of Computing and Informatics
University of Lincoln
Lincoln, UK

t duckett @i ncol n. ac. uk

mobile robot are matched with edges extracted from an aerial
image. A virtual sensérfor building detection is used to
identify parts of an occupancy map that belong to buildings
(wall estimate). To determine potential matches we use geo-
referenced aerial images and an absolute positioningrayste
on board of the robot. The matched lines are then used in
region- and boundary-based segmentation of the aerialdmag
for detection of buildings.

In this paper, we extend the approach from [19]. The
extension includes a global search for buildings in theaheri
image and the introduction of a ground class. The purpose is
to detect building outlines and driveable paths faster than
mobile robot can explore the area by itself. Using a method
like this, the robot can estimate the size of found buildings
and using the building outline it can “see” around one or
several corners without actually visiting the area. Thehodt
does not assume a perfectly up-to-date aerial image, in the
sense that buildings may be missing although they are presen
in the aerial image, and vice versa. It is therefore possible
to use globally availabfegeo-referenced images.

A. Related Work

Overhead images in combination with ground vehicles
Iaave been used in a number of applications. édfal. [11]

this view for visited locations. In this paper we explore thé/Séd map data to bias a robot motion model in a Bayesian

possibility to use information extracted from aerial image

filter to areas with higher probability of robot presence.

further improve the mapping process. Semantic informatioMOb"e robot trajectories are more likely to fo_II_ow paths in
(classification of buildings versus non-buildings) is ugad the map and using the map priors, GPS position errors due

the link between the ground level information and the aeridf
image. The method speeds up exploration or planning f®

areas unknown to the robot.

reflections from buildings were compensated. This work
sumed that the probable paths were known in the map.
Pictorial information captured from a global perspective

Colour image segmentation is often used to extract infofiaS been used for registration of sub-maps and subsequent

mation about buildings from an aerial image. However, it i
hard to perform automatic detection of buildings in monoc-

ular aerial images without elevation information. Builgin

loop-closing in SLAM [2].

Silver et al.[16] discuss registration of heterogeneous data
(e.g. data recorded with different sampling density) from

can not easily be separated from other man-made structuffyial surveys and the use of these data in classification of

such as driveways, tennis courts, etc. due to the resenwla

ground surface. Cost maps are produced that can be used

in colour and shape. We show that wall estimates found Hf) 109 range vehicle navigation. Scrapparal. [15] used

a mobile robot can compensate for the absence of elevation, . . : ,
. . A virtual sensor is understood as one or several physicalssemwith a
data. In our previous work [19] wall estimates detected by gedicated signal processing unit for recognition of reatlsveoncepts.

*Supported by The Swedish Defence Material Administration

2E.g. Google Earth, Microsoft Virtual Earth, and satellitaaiges from
IKONOS and its successors.



heterogeneous data from, e.g., maps and aerial surveysstxtion we describe the process of extracting wall canelglat
construct a world model with semantic labels. This moddirst from the mobile robot’s perspective and then from deria
was compared with vehicle sensor views providing a fasmages.

scene interpretation. . .

For dete(?tion of man-made objects in aerial images, Iinéa"s' Wall Candidates from Ground Perspective
and edges together with elevation data are the features thatthe wall candidates from the ground perspective are
are used most often. Building detection in single monocul&Xtracted from a semantic map acquired by a mobile robot.
aerial images is very hard without additional elevatioradatThe semantic map we use is a probabilistic occupancy grid
[18] Mayer's Survey [9] describes some existing System@ap augmented with labels for bU|Id|ngS and non'buildings
for building detection and concludes that scale, contegt arl14]. The probabilistic semantic map is produced using an
3D structure were the three most important features @gorithm that fuses different sensor modalities. In tteper,
consider for object extraction in aerial images. Fusion of range sensor is used to build an occupancy map, which
SAR (Synthetic Aperture Radar) and aerial images has bek converted into a probabilistic semantic map using the
employed for detection of building outlines [18]. The build output of a virtual sensor for building detection based on
ing location was established in the overhead SAR imag@n omnidirectional camera.
where walls from one side of buildings can be detected. The algorithm consists of two parts. First, a local semantic
The complete building outline was then found using edgd'ap is built using the occupancy map and the output from
detection in the aeria' image_ Para”e' and perpendicu'&ﬂe virtual sensor. The virtual sensor uses the AdaBoost

edges were considered and the method belongs to edge-oaigorithm [S] to train a classifier that classifies close &ng
segmentation approaches. monocular grey scale images taken by the mobile robot as

Combination of edge and region information for Segbuildings or non-buildings. The method CombineS dif‘fel’ent

mentation of aerial images has been suggested in sevepdles of features such as edge orientation, grey level clus-
publications. Muelleet al. [10] presented a method to detecttering and corners into a system with high classificatioe rat
agricultural fields in satellite images. First, the mosevant [12]. The classification by the virtual sensor is made for a
edges were detected. These were then used to guide both ¥tole image. However, the image may also contain parts
smoothing of the image and the following segmentation ifhat do not belong to the detected class, e.g., an image of
the form of region growing. Freixenet al. [4] investigated & building might also include some vegetation such as a
different methods for integrating region- and boundargeua tree. Probabilities are assigned to the occupied cellsateat
segmentation, and also claim that this combination is tise bevithin a sector representing the view of the virtual sensor.

approach. The size of the cell formations within the sector affects the
probability values. Higher probabilities are given to krg
B. Outline and Overview parts of the view, assuming that larger parts are more likely

The presentation of our proposed system is divided int§ have caused the view’s classification [14].
three main parts. The first part, Section II, concerns the In the second step the local maps are used to update
estimation of walls by the mobile robot and edge detectiof 9lobal map using a Bayesian method. The result is a
in the aerial image. The wall estimates are extracted frogfobal semantic map that distinguishes between buildings
a probabilistic semantic map. This map is basically agnd non-buildings. An example of a semantic map is given in
occupancy map that is labelled using a virtual sensor fdrigure 1. From the global semantic map, lines representing
building detection [12] mounted on the mobile robot. Thérobable building outlines are extracted. An example of
second part describes the matching of wall estimates frofixtracted lines is given in Figure 2.
thg mobile robot_ with the_: edg_es four!d in the aerial_ images \wall Candidates in Aerial Images
This procedure is described in Section Ill. The third part . .
presents the segmentation of an aerial image based on hézd_ges extr_acted from_ar_1 aerial image are used as potential
matched lines. Section IV deals with a local segmentatioplding outlines. We limit the wall candidates used for

to find buildings and Section V extends this to a glc,bajnatching in Section IIl to straight lines extracted from a

segmentation of the aerial image and also introduces tﬁglour aer!al image taken from a nadir view. We. use an
hQutput fusion method for the colour edge detection. The

class driveable ground. Details of the mobile robot, t 8 d o ‘ q | he th RGE
experiments performed and the obtained result are found ﬁgge etection Is performed separately on the three )

Section VI. Finally, the paper is concluded in Section yv|components using Canny's edge detector [1]. The resulting

and some suggestions for future work are given. edge imagd. is calculated by fusing the three binary images
obtained for the three colour components with a logical OR-

1. WALL ESTIMATION function. Finally a thinning operation is performed to rarao
S‘points that occur when edges appear slightly shifted in the

A major problem for building detection in aerial images is’,, ‘ ts. For i traction impl
to decide which of the edges in the aerial image correspor‘ijt'lﬁeren components. For fin€ extractiondnan implemen-
tion by Peter Kovediwas used. The lines extracted from

to building outlines. The idea of our approach, to increas®

the probability that a correct segmentation is perform@t i sy /www.csse.uwa.edu.aupk/Research/MatlabFns/,  University  of
match wall estimates extracted from two perspectives.ifn thwestern Australia, Sep 2005



Fig. 1. An example of a semantic map where white lines dena@h h
probability of walls and dark lines show outlines of noniding entities.
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on the lines are to be matched, and 2) calculate a distance

Fig. 2. lllustration of the wall estimates calculated frame semantic map measure to find the best matches.
(lines drawn in black). The grey areas illustrates buildamgl nature objects

(manually extracted from Fig. 3). The semantic map in Fig.elobhgs to

the upper left part of this figure. A. Finding the Closest Point
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In this section we define which points on the lines are to
) o o be matched. Fol, we use the line midpointP,. Due to
the edges detected in the aerial image in Figure 3, are shoyy possible errors described above we assume that the point
in Figure 4. P, on L} that is closest taP, is the best candidate to be
used in our ‘line distance metric'.
To calculate P,, let e, be the orthogonal line td.}
The purpose of the wall matching step is to relate a wathat intersectsL, in P,, see Figure 5. We denote the
estimate, obtained at ground-level with the mobile robmt, tintersection between,, and L as ¢ where¢ = e, x L
the edgeS detected in the aeria.l image. In bOth cases qi‘%'ng homogeneous Coordinates)_ The interse@iim&y be
line segments represent the wall estimates. We denote a Wglltside the line segmetdt, see right part of Figure 5. We
estimate found by the mobile robot ds, and theN lines  therefore need to check i is within the endpoints and if
representing the edges found in the aerial imagebwith  jt is set P, = ¢. If ¢ is not within the endpoints, theR, is

i € {1,...,N}. Both line types are geo-referenced in theset to the closest endpoint dn,.
same Cartesian coordinate system.

The lines from both the aerial image and the semantic map

1. WALL MATCHING

may be erroneous, especially concerning the line endpoints P ¢
due to occlusion, errors in the semantic map, different@ens e“
coverage, etc. We therefore need a metric for line-to-line ¥
distances that can handle partially occluded lines. We do no L P,

consider the length of the lines and restrict the line matghi
to the line directions and the distance between two poiNtfig, 5. The liner, with its midpoint Py = (P, , P, ), the line L, and
one point on each line. The line matching calculations ar@e normal toL%, e, To the left, P, = ¢ since ¢ is on L%, and to the
performed in two sequential steps: 1) decide which pointight, Py is the endpoint ofL.;, since¢ is not on L.



. 0 )
B. Distance Measure Y ‘ A ]
The calculation of a distance measure is inspired ©) !

[7], which describes geometric line matching in imag

for stereo matching. We have reduced the complexity Fig. 6. lllustration of the edge-based algorithm. a) shovesrll part of

those calculations to have fewer parameters that nee ¢ @1dAstars Inb) e has been dilated and in €} qu has been found.
. . ~~ d) showsAj;,q as the dilation ofA,, 4.

be determined and to exclude the line lengths. Matchin

performed usingL,’s midpoint P, the closest poin, on

L: and the line directionsd, and §,. First, a difference

vector is calculated as to close gaps and then search for a closed area on the side
of the matched line that is opposite to the mobile robot.
rg = [Py, — Pa,, Py, — Pa,,0, — 0.]". (1) When this area has been found the area is dilated in order

to compensate for the previous dilation of the edge image.
Second, the similarity is measured as the Mahalanobis The algorithm is illustrated in Figure 6.

tance
B. Homogeneity Test
dg =g’ R 'rg ) We use the initial starting ared;.,+ as a training sample
and evaluate the rest of the region based on the corresgpndin
colour model. This means that the colour model does not
gradually adapt to the growing region, but instead requires

where the diagonal covariance matiis defined as

o% 0 0
R — g‘ Ulz%y 0 3) @ hompgengou; region on the complete roof part that is
2 under investigation. Regions that gradually change colour

0 0 o5

or intensity, such as curved roofs, might then be rejected.

with o g, ory, @andore being the expected standard dev  However, so far, we did not observe this problem in our
tion of the errors between the ground-based and aerialdk experiments.
wall estimates. Gaussian Mixture Models, GMM, are popular for colour
segmentation. Like Dahlkampet al. [3] we tested both
) ) ) i GMM and a model described by the mean and the co-

This section describes how local segmentation of \arance matrix in RGB colour space. We selected the
colou.r.aena! image is performe_d. Segmgntatlon method_s mean/covariance model since it is faster and we noted that
be divided into two groups; discontinuity- and similarit e mean/covariance model performs approximately equally
based [6]. In our case we combine the two groups uye|| as the GMM in our case. A limi©;;,, is calculated for
first performing an edge based segmentation for detectiq®yn model so that 90% of the training sample pixels have a
of closed areas and then colour segmentation based ON\@halanobis distance smaller thah;,,,. Oy is then used

small training area to confirm the areas’ homogeneity. Thgs the separator limit between pixels belonging to the class
following is a short description of the sequence that igq the pixels that don't.

IV. LOCAL AERIAL IMAGE SEGMENTATION

performed for each lind.: The result from the local segmentation are regions con-

1) Sort the set of lined,, based ondg from Equation 2 nected to the lines i, an example is shown in Section
in increasing order and sét= 0. VI, Figure 10.

2) Seti =i+ 1.

3) Define a start areal,,; on the side ofL! that is V. GLOBAL SEGMENTATION OF AERIAL IMAGES
opposite to the robot (this will be in or closest to the In this step the view of the mobile robot is increased
unknown part of the occupancy grid map). further. The previously found building estimates are used

4) Check if Asqre includes edge points (parts of edgesas training areas for colour segmentation in order to make a
in I.). If yes, return to step 2. global search for buildings within the entire aerial imalye.

5) Perform edge controlled segmentation. addition, another important class is introduced, namelyedr

6) Perform homogeneity test. able areas. The purpose of the global segmentation is td buil

The segmentation based dp, is stopped when a region @ map that predicts different types of areas, e.g., drieeabl
has been found. Step 4 makes sure that the regions ha@y@und and buildings. We call this the predictive map, PM.
a minimum width. Steps 5 and 6 are elaborated in th&€he PM can serve as an input to an exploration algorithm,

following paragraphs. since it includes both driveable ground and obstacles in the
) form of buildings.
A. Edge Controlled Segmentation The global segmentation of an aerial image using colour

Based on the edge imade constructed from the aerial models captures all buildings with roofs in similar coloass
image, we search for a closed area. Since there might Heose buildings that were detected in the local segmenmntatio
gaps in the edges bottlenecks need to be found [10]. We usewever, some colours are very similar to ground covered
morphological operations, with &x 3 structuring element, by, e.g., asphalt and ground in deep shadow. Since correct
to first dilate the interesting part of the edge image in ordaslassification is only possible for colours unique to a darta
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Fig. 7. The combined binary image of free points and edgek in

Fig. 8. Flow chart of the process for calculating the prédéctmap.
class, it is likely that some of the detected building areas
may belong to theground class. In order to reduce these
false areas, the information about the ground that has been

covered by the robot is also used. segmentation results. These layers also have the same size
as the aerial image.
A. Colour Models To calculate the predictive map incrementally two main

The segmentation of the aerial image is based on cologteps are performed; 1) the aerial image is segmented when
models. In the example, models will be calculated for th@ new colour model is available and 2) the predictive map
two classes:building and driveable ground We use the is recalculated using the result from the latest segmemtati
same procedure as for the homogeneity test in the locklgure 8 shows a flow chart of the updating process. This is
segmentation, see Section V. adapted to work also in an on-line situation and is explained

Models of “driveable” ground can be extracted in differenin the following. When a&New sampléelonging to classl is
ways. Vision has been used in several projects [8], [17fvailable a new colour mod€M is calculated. Based on the
[13] to find driveable regions for unmanned vehicles. In ouguality of CM, a measurg, 0 < p < 1 should be estimatéd
implementation we use the already available occupancy grichen the aerial image is segmented using the new model and
map and interpret free areas as ground. To extract colotiie result is scaled witlp and stored in a temporary layer.
models that represent the different ground areas we combihbe old layer/., is fused with the temporary layer using a
the occupancy grid map and the edge version of the aeriiax function.
image, .. The free cells in the occupancy grid map defines The predictive map is based on voting from separate layers
the region in/. that represents the ground. An example using; for the n classes, one layer for each class that we are
our occupancy map is shown in Figure 7. looking for. In this example: = 2; one building layer and

We perform edge controlled segmentation of that regiommne driveable ground layer. The voting is a comparison of
as described in Section IV-A, to find the different groundhe layer’s cell by cell. In the grid cells where the levels ar
areas. The largest aréamint out samples in the aerial imagesimilar, the cells are set tanknown If the unknown areas
that are used to train colour models of the same type as #me classified by the mobile robot as in Figure 9 and 10, that
Section IV-B. result has precedence, see discussion in Section VI.

B. The Predictive Map The .allowed similarity .of the cells are defined i,
' a matrix where the off-diagonal elementg; > 0,i #
The PM is designed to handle multiclass problems and the; —= {1,2,...,n},j = {1,2,...,n}, are used for the
updating of this map can be performed incrementally. Thelassification of cellspm®¥ in PM. n is the number of
colour models used to segment the aerial image are two-claagers and classes, apeh®? denotes cellz, y) in PM. The
models (building or non-building, ground or non-groundetc elements ofC' introduce buffer zones to the voting process
and the classifiers are therefore binary classifiers. Wenket tmaking it possible to adjust the sensitivity of the voting
PM be a grid map of the same size as the aerial image thatlividually for all classes. The voting is performed using
is segmented. For each of the classes, a separate layer|F-THEN rules biased withe;:
l;, with ¢ € {1,...,n}, is used to store the accumulated

4The limit was set to 50 pixels (12.5%nin order to avoid movable SEstimation of the parameteris still an unsolved issue for future work.
objects such as cars and small trucks. In our experiments we usgal= 0.7.



IF Y > lfy + ¢V # i THEN pm™ = class;  (4)

wherel¥ denotes cellz,y) in layeri. If the condition can
not be fulfilled due to conflicting informatiopm®? is set to
unknown If ¢;; = 0 the rules in Equation 4 will turn into
ordinary voting where the largest value wins and where ties
givesunknown

During the experimenté’ was set to:

VI. EXPERIMENTS

Fig. 9. Occupancy map used to build the semantic map in Fig. 1.

A. Data Collection uncertainty (in addition to the uncertainty already présen

The above presented algorithms have been implementedi?! and L)) was introduced. This uncertainty is in the form

Matlab for evaluation and the functions currently work off-of Gaussian noise added to the midpoints énd o,) and
line. Data were collected with a mobile robot, a Pioneer P3irectionss, of Lé”. The tests are defined in Table I.

AT from ActivMedia, equipped with differential GPS, laser

range scanner, cameras and odometry. The robot is equipped[ Test [ o, [m] | o, [M] | oo [rad] | ore [rad] | Nrun
with two different types of cameras; an ordinary camera 1 0 0 0 0.2 1

mounted on a PT-head and an omni-directional camera. The | 2 0 0 0 0.1 1

omni-directional camera gives360° view of the surround- 3 0 0 0 04 1

ings in one single shot. The camera itself is a standard | 4 1 1 0.1 0.2 20

consumer-grade SLR digital camera (Canon EOS350D, 8 | _5 2 2 0.2 0.2 20

megapixels). On top of the lens, a curved mirror from O- TABLE |

360.com is mounted. From each omni-image we compute
8 (every45°) planar views or sub-images with a horizontal
field-of-view of 56°. These sub-images are the input to the
virtual sensor. The images were taken with ca. 1.5 m interval )
and were stored together with the corresponding robots pos-: Quality Measure

DEFINITION OF TESTS AND THE USED PARAMETERS

The trajectory of the mobile robot is shown in Figure 3. We introduce two quality measures to be able to compare
) different algorithms or sets of parameters in an objectiag.w
B. Tests of the Local Segmentation For this four sets (A-D) are defined; A is the ground truth,

The occupancy map in Figure 9 was built using the horia set of cells/points that has been manually classified as the
zontally mounted laser range scanner. The occupied cellstiestedclass B is the set of cells that has been classified
this map (marked in black) were labelled by the virtual sensas class by the algorithm; C is the set of false positives,
giving the semantic map presented in Figure 1. The semantit= B\ A, the cells that have been classifiedctesss B but
map contains two classes; buildings (values above 0.5) add not belong to ground trutd; and D are the true positives,
non-buildings (values below 0.5). From this semantic ma@ = B N A, the cells that have been classified cdass B
we extracted the grid cells with a high probability of being aand belong to ground trutl. Using these sets, two quality
building (above 0.9) and converted them to the Iiriegg measures are calculated as:
presented in Figure 2. Matching of these lines with the , The true positive rateprp = #D/#B.
lines extracted from the aerial image)’, see Figure 4, , The false positive ratepyp = #C/#B.
was then performed. Finally, based on best line matches thgere D denotes the number of cells i, etc.
segmentation was performed according to the description in
Section IV. D. Result of Local Segmentation

The three parameters R (Equation 3) were set top, = The results ofTest 1show a high detection rate (96.5%)
1m,ory = 1m, andors = 0.2 rad. Note that it is only and a low false positive rate (3.5%), see Table Il. The result
the relation between the parameters that influences the lilrgy segmentation is presented in Figure 10. Four deviations
matching. from an ideal result can be noted. Atandb tree tops are

We have performed two different types of tesissts 1- obstructing the wall edges in the aerial imagecat white
3 are the nominal cases when the collected data are usedll causes a gap between two regions, and a false area, to
as they are. The tests intend to show the influence of the left of b, originates from an error in the semantic map
changed relation betweetk,, or, andors by varyingore. (a low hedge was marked as building).

In Test 20y is decreased by a factor of 2 andTiast 3o g The results ofTest 1-3are very similar which indicate
is increased by a factor of 2. Ifiests 4and 5 additional that the algorithm in this case was not specifically seresitiv



Fig. 10. The result of the local segmentation of the aeri@geusing the
wall estimates in Figure 2. The ground truth building owirare drawn in
black.

Fig. 12. PM combined with the local information. Ground igdyl buildings
are red, ties are black and white represents not classifiesd ce

Compared with the aerial image in Figure 3 the result
is promising. One can now follow the outline of the main
building and most of the paths, both paved paths and roads
and beaten tracks have been found. The major problem that
has been noted during the work is caused by shadowed areas
that look very similar to dark roofs.

The final result is obtained when the PM is combined
with the free areas and the buildings found in the local
fo 11 T it of the alopal o of the acriade Usi segmentation. For these pixels we get 0.9, performed
both ground and buiding models. Gréund 15 bluc, buldings red, fes ANOther update (where segmentation is not needed) and got
are black and white represents not classified cells. the resulting map shown in Figure 12.

A formal evaluation of the ground class is hard to perform.
Ground truth for buildings can be manually extracted from
: : the aerial image, but it is hard to specify in detail the areas
to the changes i g. In Test 4ands the scenario oflest 1 tgat are driveable. Based on the ground truth of buildings

was repeated using a Monte Carlo simulation with introduce d imati fth d (driveabl d
pose uncertainty. The result is presented in Table 1l. One c4&Nc an approximation ot the groun (driveable areas) groun

note that the difference between the nominal case s truth as the non-building cells, some statistics of the Itesu

4 is very small. InTest 5where the additional uncertainties '€ presented in Table lll. In the table all values in the

are higher the detection rate has decreased slightly. right CO'UW”’ Whe_re the results from the combined PN.I
and local information are shown, are better than those in

Test| Brp 6] | Srp [%] the middle column. The increase in true positive rate for
1 96.5 35 buildings is depending both on the reductionties and on
2 97.0 30 the reduction of false positives on the road along the mobile
3 96.5 35 robot trajectory. Since the result depends on the relation
4 | 968+02| 32+0.2 between the actual presence of the different classes in the
5 [ 959+17 | 41+17 aerial image, normalized values f@r-p are also presented.
The area covered by buildings is smaller than the ground
TABLE Il area giving an increase in the normalizédp for buildings
RESULTS FOR THE TESTSTHE RESULTS OFTEST4 AND 5 ARE and a decrease for ground compared to the noniinal.

PRESENTED WITH THE CORRESPONDING STANDARD DEVIATION

Description PM [%] PM + local [%)]
7 p buildings (normalized)| 66.6 (83.2) 73.0 (87.7)
7 p ground (normalized) | 96.8 (92.4) 97.3 (93.3)

E. Result of Global Segmentation

. Unclassified cells 55.5 52.4
The result of the global segmentation has been assesse Ties (unknown) 105 81
mainly by visual inspection. The visual inspection of the
result shown in Figures 11 and 12, and of segmentation TABLE IlI

of a larger aerial image illustrates the potential in the USBesuLTS OF THE EVALUATION OF THE TWOPMS DISPLAYED INFIG. 11
of aerial images for mapping purposes. The PM based on AnD 12. NOTE THAT THE GROUND TRUTH FOR GROUND' IS AN
ground colour models from regions in Figure 7 and building ApPROXIMATION AND THESE VALUES WOULD DECREASE USING THE
colour models from the regions in Figure 10 is presented in EXACT GROUND TRUTH,

Figure 11.



VIlI. CONCLUSIONS ANDFUTURE WORK

This paper discusses how aerial images can be used {tj
considerably extend the view of a mobile robot. A virtual
sensor for building detection on a mobile robot is used toy
link semantic information to a process for building detewati
in aerial images. The benefit from the extended range of the
robot's view can clearly be noted in the presented exampleg

In the local segmentation it can be hard to extract a com-
plete building outline due to, e.g., different roof matésja ]
different roof inclinations and additions on the roof, spec
ically when the robot has only seen a small portion of the
building outline. But the global segmentation is a prondsin
extension that shows a large potential. Even though the rodfr’]
structure in the example is quite complicated, the outliine o
large building could be extracted based on the limited view®!
of the mobile robot, which had only seen a minor part of 7,
surrounding walls.

A. Discussion

With the presented method, changes in the environmen[&tg]
compared to an aerial image that is not perfectly up-to-date
are handled automatically. Assume that a building that i 9
present in the aerial image has been removed after the image
was taken. Since it is present in the aerial image, it may be
classified as a building in the PM if it had a roof colour®
similar to a building already detected by the mobile robot.
When the robot approaches the area where the building was
situated, the building will not be detected. If the mobileoo 1
classifies the area as driveable ground, the PM will turn into
unknown(of course depending an; andp), not only for that  [12]
specific area but also globally. Still, the information obéal
from the local segmentation will indicate building where th
mobile robot initially found the building that resulted inet
first colour model.

What about the other way around? Assume that a new
building is set up on an open area and this is not yet reflectéd!
in the aerial image. If the edge matching indicates a wadl thi
can introduce errors, but if the building is in the middle of,
e.g., a lawn, no edges are found and no segmentation Wbl
be performed. Then the building will only be present in the
probabilistic semantic map in the form of a possible wall.

[13]

B. Future Work

We believe that the accuracy of the PM could be furtheyg
improved by using a measure of the colour model quality to
assign a value to the paramegefor each model. Also the
probabilities from the semantic map where the ground wall
estimates are extracted could be included in the calculatigi7]
of p.

Shadow detection that merges areas in shadows with the
corresponding areas in the sun is desired. We believe tisat th
would eliminate some false pixels and decrease the unknowi§!
areas caused by ties.

Experiments where PM is used to direct exploration oft9]
unknown areas should be performed. At the same time it
should be investigated whether post-processing of the PM
can increase the detection rates further.
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