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Abstract—In human-robot communication it is often im-
portant to relate robot sensor readings to concepts used by
humans. We believe that access to semantic maps will make
it possible for robots to better communicate information to
a human operator and vice versa. The main contribution of
this paper is a method that fuses data from different sensor
modalities, range sensors and vision sensors are considered, to
create a probabilistic semantic map of an outdoor environment.
The method combines a learned virtual sensor (understood
as one or several physical sensors with a dedicated signal
processing unit for recognition of real world concepts) for
building detection with a standard occupancy map. The virtual
sensor is applied on a mobile robot, combining classifications
of sub-images from a panoramic view with spatial information
(location and orientation of the robot) giving the likely locations
of buildings. This information is combined with an occupancy
map to calculate a probabilistic semantic map. Our experiments
with an outdoor mobile robot show that the method produces
semantic maps with correct labeling and an evident distinction
between ‘building’ objects from ‘nature’ objects.

I. INTRODUCTION

The use of human concepts is very important in human-
robot communication. Skubic et al. [13] discuss the benefits
of human spatial concepts (which they call ‘linguistic spatial
descriptions’) for different types of robot control, and point
out that these descriptions are especially important for novice
robot users. To enable human operators to interact with
mobile robots in, e.g., task planning, or to allow the system
to use data from external sources, e.g., GIS, it is necessary
for the robot to be able to relate its sensor readings to human
spatial concepts. One way to achieve this is to construct
semantic maps, where objects in the map are labelled with
human concepts.

The number of publications on semantic mapping is still
quite limited. Most publications relate to mapping of indoor
environments and only a few consider the problem that
the robot itself extracts the semantic labels for the map.
The combination of SLAM and semantic information was
proposed by Dellaert and Bruemmer [3]. Extracting planes
from 3D laser range data has been used to achieve semantic
scene interpretations of indoor environments [10] in the form
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of floors, walls, doors, etc. Mozos et al. [8], [9] semantically
label indoor environments as corridors, rooms, doorways,
etc. using a classifier trained with AdaBoost. Range data
from laser scanners are the main input and in addition some
features extracted from a vision sensor are used. In human
augmented mapping [17] a person follows a mobile robot
during a tour in, e.g., a domestic environment and gives the
robot information about different locations. Galindo et al.
[5] present a method to describe an indoor environment with
two hierarchies based on spatial and semantic information.
Anchoring establishes links between the spatial and semantic
information and the result can be classified as a hybrid
metric-topological-semantic map.

Wolf and Sukhatme [19] describe outdoor semantic map-
ping using laser scanners and supervised learning with HMM
and SVM. One map is based on the activity caused by
passing objects of different sizes. Using this information
roads and sidewalks can be distinguished from each other. A
second type of map is based on the roughness of the terrain
and is intended to be used for path planning. Closely related
work concerns detection of driveable areas for mobile robots
using vision [2], [6], [14]. These works do not primarily build
maps but use the information for road localisation.

In our previous work [11] we introduced a virtual sensor
that can be used to facilitate human-robot communication. A
virtual sensor is understood as one or several physical sensors
with a dedicated signal processing unit for recognition of
real world concepts. As an example of a virtual sensor, we
described a virtual sensor for building detection using meth-
ods for classification of views as buildings or nature based
on vision. The purpose was to detect one very distinctive
type of object that is often used by humans, for example,
in textual description of route directions. The method was
based on learning a mapping from a set of generic features
to a particular concept.

The main contribution of this paper is a method that fuses
data from different sensor modalities, such as range sensors
and vision sensors, to create a semantic map of an outdoor
environment. The method combines a learned virtual sensor
for building detection with a standard occupancy map. The
result is a semantic map with two object classes; ‘buildings’



and ‘nonbuildings’. The training set of nonbuildings con-
sisted of nature images and therefore also the word nature
is used instead of nonbuildings in this paper. The virtual
sensor uses different types of visual features selected by the
boosting algorithm AdaBoost. The pose information from the
mobile robot is combined with the output from the virtual
sensor to give the direction to buildings. These directions
are used to update the occupancy grid map with semantic
information.

The paper is organised as follows. An overview of the sug-
gested approach is given in Section II. Section III describes
virtual planar cameras that give the input images to the
virtual sensor. These are constructed from images acquired
by an omni-directional vision system mounted on a mobile
robot. Section IV describes the virtual sensor with its set of
features from which weak classifiers are calculated and how
these are used by an AdaBoost classifier. The algorithm to
calculate probabilistic semantic maps is presented in Section
V. Experiments are described in Section VI and an evaluation
of the results is given in Section VII. Finally, conclusions and
future work are found in Section VIIL

II. SUGGESTED APPROACH

We use an omni-directional camera mounted on a mobile
robot, which gives a 360° view of the surroundings. From
the omni-directional image N planar views or sub-images
are created with a horizontal field-of-view of A° (the values
of N and A are provided in Table II). The sub-images are fed
into a learned virtual sensor for building detection. We use
AdaBoost for training a classifier that classifies close range
monocular grey scale images into ‘buildings’ and ‘nature’
[11].

Based on the result from the virtual sensor we create
local maps for building objects and nature objects. A local
map is built for each robot position where images have
been acquired. The local maps are then fused into a global
probabilistic semantic map. For clarity we discuss a few
issues concerning the process:

1) The robot has to be able to determine its pose (position

and orientation) for each point.

2) Objects that should be included in the semantic map

are given.

3) The result from the virtual sensor applies for the whole

sub-image.

The positioning issue can be handled in different ways,
e.g., by using SLAM (simultaneous localisation and map-
ping) or GPS. In our case we use differential GPS and
odometry to compute the robot poses along the trajectory.

The requirement on the availability of map objects means
that a standard occupancy map that includes the objects that
should be labelled is available. An occupancy map can be
built using a laser scanner or objects could be detected using
stereo vision. Throughout this paper, object is understood as
a connected component in a binarized occupancy grid.

The virtual sensor that we use classifies a complete view
into one of two classes; nature and building. This means
that all objects within the view are assumed to belong to
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Fig. 1. Projection of the unwrapped image I onto the sphere S.

the same class. To focus the attention on the main objects
in the view, probabilities assigned for single objects are
adjusted according to their proportions of the view. It is
further assumed that the objects are large enough in height
to contribute to the classification by the virtual sensor.

III. VIRTUAL PLANAR CAMERAS

In our previous work, we used a digital camera mounted
on a pan-and-tilt head to create a panoramic view with
about 280° field-of-view horizontally [11]. A sweep of
the pan-and-tilt head required a few seconds, making the
method time-consuming. In order to acquire a 360° field-
of-view panoramic image in one single shot, we now use
an omni-directional camera. As an additional benefit, the
centre of the image plane is now the same throughout the
whole panoramic view. The omni-directional camera is fitted
on a Pioneer P3-AT from ActivMedia. The camera itself
is a standard consumer-grade SLR digital camera (Canon
EOS350D, 8 megapixels). On top of the lens, a curved
mirror from 0-360.com is mounted. This camera-mirror
combination produces omni-directional images that can be
unwrapped into high-resolution spherical images by a polar-
to-Cartesian conversion.

From a large spherical image I, we extract smaller sub-
images that appear as if they were acquired by a regular,
finite projective camera. To do this, we project the image
twice. The image I is folded into a cylinder and projected
onto the inside of S as if there was a lightbulb placed in the
common centre of the cylinder and sphere (extending the ray
from the centre O to the intersection with I at A, we want
to determine the intersection with S' at B, see Figure 1). The
projection on a sub-image plane II is then easily found by
normal perspective projection. Figure 2 shows an example
of the omni-directional image, the unwrapped image, and
some planar images. For further details on projections, see
for example [7].

IV. VIRTUAL SENSOR

The virtual sensor that we use for building detection in out-
door environments is described in detail in [11]. The virtual
sensor is based on a method that combines different types
of features such as edge orientation, grey level clustering,
and corners into a system with high classification rate. The
method was applied on a mobile robot as a virtual sensor for



Fig. 2. The upper part of the figure is an omni-directional image from the
experiment, the middle part is an unwrapped version of the same image,
and the lower part shows some flat images extracted from the unwrapped
image.

building detection in an outdoor environment and is expected
to be extendable to other classes, such as windows and doors.
AdaBoost is used for learning a classifier that classifies
close range monocular grey scale images into ‘buildings’
and ‘nature’. AdaBoost has the ability to select the best so-
called weak classifiers and produces a strong classifier as
a linear combination of the weak classifiers. This section
shortly describes the features that are used, the classifier
AdaBoost and some previous results using the virtual sensor.

A. Feature Extraction

We select a large number of image features that are
assumed to capture the properties of man-made structures.
These features can be divided into three groups. The first
type of features is derived from edge orientation in order
to calculate the relative content of vertical and horizontal
edges. The second type of features combines the edges into
more complex structures such as corners. The third type of
features uses grey level clusters based on the observation that
buildings often contain surfaces with constant grey level. The
particular set of features was selected with regard to a virtual
sensor for building detection. In general, i.e., as a base for
other virtual sensors, an even more generic set of features
would have to be used. In total 24 features are extracted
and all features except two are normalised in order to avoid
scaling problems. In the following we give a short overview
of the features. For a more detailed description see [11].

1) Edge Orientation: After edge detection with Canny’s
edge detector [1] and line extraction! in the edge image, the
absolute values of the lines’ orientations and the line lengths
are used to calculate the features. These features are based
on different histograms of the line orientation, with various
number of bins and weighted or selected based on the line
lengths. The objective is to capture the frequency of vertical
and horizontal edges in relation to other orientations.

2) Edge Combinations: Building facades often contain
right-angled corners at connections of vertical and horizontal
edges and rectangles, e.g. doors and windows. In order to
capture these properties the lines extracted from the edge
image are combined to form right-angled corners. The lines
and corners found are then combined in order to detect
rectangles. Examples of features of this class are the number
of right-angled corners and rectangles, their relation to each
other and their relation to the number of detected edges.

3) Grey Level Clusters: Buildings are often characterised
by large homogeneous areas in their facades, while nature
images typically show larger variation. Other areas in images,
however, can also be homogeneous, for example, roads,
lawns, water and sky. This group of features is based on
grey level clusters. For a feature that works globally in the
image we use an equally spaced 25-bin grey level histogram,
normalised by the image size and sum up the largest bins.
To find local areas with homogeneous grey levels we search
for the largest 4-connected areas with the same grey levels
as used for the 25-bin grey level histogram. The features are
based on different sums of the largest values and areas, and
normalised with the image size.

B. AdaBoost

AdaBoost is the abbreviation for adaptive boosting. It was
developed by Freund and Schapire [4] and has been used
in diverse applications, e.g., as classifiers for image retrieval
[16], for ball tracking with soccer-robots [18], and to classify
laser scans for learning of indoor places [8], [9].

The main purpose of AdaBoost is to produce a strong
classifier by a linear combination of weak classifiers, where
weak means that the classification rate has to be only slightly
better than 0.5 (better than guessing). The principle of
AdaBoost is as follows (see [12] for a formal algorithm).

The input to the algorithm is a number, N, of positive
(buildings) and negative (nature) examples. The training
phase is a loop. For each iteration ¢, the best weak classifier
h: is calculated and a distribution D; is recalculated. The
boosting process uses D, to increase the weights of hard
training examples in order to focus the weak learners on the
hard examples. The general AdaBoost algorithm does not
include rules on how to choose the number of iterations T’
of the training loop. The training process can be aborted
if the distribution D; does not change, otherwise the loop
runs through a manually determined number of iterations 7.
Boosting is known to be not particularly prone to overfitting

'Implemented by Peter Kovesi, University of Western Australia,
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[12]. We used T' = 30 for training and did not see any
indications of overfitting when evaluating the performance
of the classifier on independent tests.

To be able to handle feature arrays (as opposed to scalar
values) from the histogram data, we use a minimum distance
classifier, MDC. We use the distribution D; to bias the hard
training examples by including it in the calculation of a
weighted mean value for the MDC prototype vector:

—
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where My, is the mean value array for iteration ¢, class
k, and feature | and y, is the class of the nth image. The
features for each image are stored in f (n,l) where n is the
image number. For evaluation of the MDC at iteration ¢, a
distance value dj, ;(n) for each class k (building and nature)

is calculated as

My ft =

dy,1(n) = Hf(na 1) — Tﬁl,k,t”

and the shortest distance over all features [ indicates the
winning class for that feature.

C. Training and Evaluation of the Virtual Sensor

For the experiments we trained AdaBoost on a set of
images taken by an ordinary consumer digital camera (Sony
DSC-P92). The images were taken over a period of several
months in an environment similar to our intended outdoor
environment. The training image set (Set 1 in [11]) contains
40 images of each class. A hand-held digital camera was
used to take the training images in order to collect images
from a larger area than was practical when using a mobile
robot for data collection. The images were converted to grey
scale and the resolution was lowered to 240 x 240 pixels.
We know from previous experiments that a scale change by
a factor of 2 (both from 120 to 240 pixel side lengths and vice
versa) can be handled by the virtual sensor. The resolution of
the sub-images used here is 320 x 320 pixels giving a scale
difference of 1.33 (240 to 320 pixels). Examples of images
from the training set are shown in Figure 3. The training set
does not contain images from the same area as the performed
experiments presented later on in this paper.

Previous tests have shown high classification rates for the
virtual sensor. In a test using the same data for training as
in this paper (Set 1 in [11]), 90 images of size 240 x 240
collected by a mobile robot were used for evaluation. In
this test AdaBoost achieved a classification rate of over 92%
with a false positive rate of 0% and a false negative rate
of 11%. This showed that it is possible to build a classifier
that achieves very good results with images obtained with
a different camera on our mobile robot, even though the
corresponding image sets had structural differences.

V. PROBABILISTIC SEMANTIC MAP

In the implementation presented in this paper we use
occupancy grid maps. The semantic map is built assuming
that we have an occupancy grid with objects of a certain

Fig. 3. Example of images used for training. The two upper rows show
buildings and the two lower rows show nature.

minimum height. Using this grid we search for objects within
view of the virtual sensor and create a local semantic map
of the area around the robot. In a second step local maps are
used to update a global map using a probabilistic method.
The result is a global semantic map where building and
nature objects can be distinguished.

A. Local Semantic Map

We assume that an occupancy map is supplied or built by
the mobile robot. Occupancy maps can be built by different
means, e.g., from stereo vision, motion stereo or laser range
scans. The local grid map is a probabilistic representation
of a sector in the occupancy map as seen by the robot.
The sector is defined by the robot pose, the direction of
the virtual planar camera (sub-image), the assumed opening
angle 0 of the sector and the expected maximum range
of the virtual sensor, VS. The horizontal covering angles
{a;} = a1,a9,...,a, of all objects within this sector are
calculated. The total coverage angle is denoted oy and is
defined as

n
aN:ZaiSG
i=1

where 6 is the sector opening angle. Probabilities
Pi(class|VST , a;) are assigned to the n objects in view (the
grid cells within the sector and seen from the robot) in
relation to their visible size using the following expression:

Pi(class|VST ;) = % + %(P(classWST) - %) (1)
and P(class|VST) is the conditional probability that a view
is class when the virtual sensor classification at time 7" is
class. P(class|VS™T) gets different values depending on the
output of VS and the two combinations that are interesting
here are (where b indicates the class “building”):

> 0.5
<0.5

P(b|VS=b)

P(class|VS") = { P(—b|VS=-b)



Note that we give the largest objects within sight a higher
probability than smaller objects (Eq. 1) because larger objects
are more likely to influence the virtual sensor.

B. Global Semantic Map

In the second step we use the standard Bayes update equa-
tion (as described in, e.g., [15] p. 28) to update the global
semantic map with the local map produced in the previous
step. The probability that grid cell (x,y) is occupied after
T sensor updates is denoted by P(occ, ,|st,s?,...,sT).
Assuming that the conditional probability P(s)|occ, ) is
independent of P(s(™|occ, ,) if ¢t # 7 and that the prior
probability for occupancy is set to 0.5 the probability at
(z,y) can be computed as:

N T P " (r) 1
Ploceygfs"T) = 1= (1+ [, Eeeale ) )

resulting in the update formula

P(occy ,|stT) =
l:T—l)

P(occy, y|s P(occy 4 |sT) (
1= (1 + lfP(occ;y|slﬁT—1) lfP(occj,y|sT))
In our case the sensor reading s is the output VST from
the virtual sensor at time 7" and the grid cells are assigned
a probability denoting whether they belong to class. Using
these notations Eq. 2 can be rewritten as:

P(class|VS"T) =

1—(1+ P(class]VS¥ =) P(class|VST) !
1—P(class|VSTT=1) 1—P(class|VST)

which is the update formula used for the grid cells (the grid
cell index (x,y) has been left out). The resulting global map
will contain three different classes:

Building it P(class|VS"T) > 0.5
Unknown if P(class|VS*T) =0.5
Nonbuilding if ~ P(class|VS"T) < 0.5.

The map is initialised with all cells set to Unknown (0.5)
and will then be incrementally updated as the robot travels
along the trajectory and evaluates the views with the VS.

VI. EXPERIMENTS
A. Data Sets

Two data sets are used for the experiments described in
this paper, see Table I. The sets consist of omni-images
and pose information from the odometry and DGPS on the
mobile robot. Each omni-image was converted into eight sub-
images, where each sub-image has a resolution of 320 x 320
pixels and a horizontal field-of-view of 56°. This means that
there is a small overlap between sub-images generated from
the same omni-image. Examples of the sub-images are given
in the lower part of Figure 2. The images were collected at
Orebro Campus and the mobile robot trajectories are shown
in Figure 4.

Using the aerial image presented in Figure 4, an occupancy
map that serves as input to the semantic mapping algorithm

Fig. 4. The figure show the trajectories for the two data sets. Set 1 is
the right trajectory (white, dashed) and Set 2 is the left trajectory (yellow,
solid). The starting points are marked with a circle.

Set | Omni-images | Planar images | Length
1 88 704 146 m
2 210 1680 317 m

TABLE I

USED DATA SETS.

grid map was constructed, see Figure 5. The building outlines
and groups of trees around the trajectory have been marked
as filled polygons by hand and the occupancy map is binary,
i.e., a grid cell is either empty or occupied. A probabilistic
occupancy map could have been directly used with the
suggested algorithm, since the grid cells in the occupancy
map can be assumed to be independent from the output of
the virtual sensor.

B. Used Parameters

Table II lists the important parameters discussed so far.
They can all be set to different values depending on the
desired properties of the system. In our work we have set
the last four parameters (planar camera field-of-view to grid
cell size) according to the values in the table. The setting of
the first three parameters (the sector opening angle 6 and the
probability pairs P(b|VS=b) and P(—b|VS=-b)) have been
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Fig. 5. The occupancy map used as input. The two building objects are

marked with a "B’. All other objects are nonbuildings. This map with the
labels also serves as the ground truth in the forthcoming evaluation.



varied in order to optimize the performance of the system.
It would be preferable to be able to relate the classifica-
tion rate of the virtual sensor directly to P(b|VS=b) and
P(—b|VS=-b). However, in reality there are a lot of views
that contain a mix of buildings and vegetation that make a
proper ground truth evaluation difficult. We have therefore
decided to set the parameters based on the evaluation of the
performance of the complete system including the virtual
sensor and the map building algorithms. We use Set 1 for
finding a good set of parameters and evaluate these on Set
2 in Section VII.

Parameter Value | Description
P(b|VS=b) > 0.5 | Building probability
P(—-b|VS==b) | < 0.5 | Nature (nonbuilding) probability
0 15-56 | Sector opening angle [deg]
A 56 Planar camera field-of-view [deg]
N 8 Number of planar views
- 50 VS maximum range [m]
- 0.5 Grid cell size [m]
TABLE II

DESCRIPTION OF PARAMETERS USED AS SETTINGS FOR THE PLANAR
CAMERA VIEWS, THE SECTOR SIZE AND THE PROBABILITY MAPS.

We have in total evaluated 28 combinations of different
field-of-views 6 and probability pairs using Set 1 in order
to find a good parameter setting. The following four 6
were used: 56°,45°,30°, and 15° and the following seven
probability pairs: (0.8, 0.3), (0.8, 0.4), (0.8, 0.45), (0.9, 0.3),
(0.9, 0.4), (0.9, 0.45), and (0.95, 0.48). With #=56° we have
the same field-of-view as the virtual sensor. With 6=45°
there is no overlap in the local maps belonging to the same
position. Using #=30° and 6=15° we want to see how the
system works when only the centre of the virtual sensor’s
field-of-view is used and the border parts are neglected.

One can note that P(b|VS=b) is always proportionally
larger than P(—b|VS=-b). The main reason for this is
that in our previous work the virtual sensor for building
classification produces substantially more false negatives
than false positives (see Section IV-C), which motivates the
asymmetrical setting of these values.

For each parameter combination we calculate four mea-
sures:

o The true positive building detection rate, ®;. Number
of cells correctly classified as buildings / number of
covered building cells.

o The true negative detection rate, ®,,. Number of cells
correctly classified as nature / number of covered nature
cells.

« The false positive rate, ®,. Number of cells wrongly
classified as buildings / number of covered nature cells.

o The false negative rate, ®,,. Number of cells wrongly
classified as buildings / number of covered building
cells.

We calculate the measures based on the global map and
use the total detection rate ®; + ®,, as the primary se-
lection criterion. It turns out that combination 6 (6=56°,

Resulting map for data set 2

Fig. 6. The resulting map using data set 2. The outlines of both building
and nature objects are correct to a large extent.

P(b|VS=b)=0.9, and P(—b|VS=—b)=0.45) and combination
12 (6=45°, P(b|VS=b)=0.9, and P(—b|VS=-b)=0.45) pro-
duce the highest detection rate and also result in the lowest
total false rate.

VII. RESULT

We use Set 2 to evaluate the semantic map and present
the result for the two best parameter settings (combination 6
and 12) as found in the previous section.

A. Evaluation of the Nominal Maps

The final map using Set 2 (comb. 6) is presented in Figure
6. We can see that most of the outlines of the objects have
been correctly labelled. Small parts that are not correct are
the rightmost part of the building (marked with ‘a’) and a
part of a grove close to the left building (marked with ‘b’).

Table III presents the detection rates for Set 2. The first
row shows the result for combination 6 and the second row
for combination 12. The evaluation was performed based on
all cells in the grid map that are not equal to 0.5. We can see
that the true detection rates are all equal to or higher than
96.7% and that combination 6 gives a slightly better result
than combination 12 (it was the other way around for Set 1).

Test | @, (%] | ®n (%] | ®f, (%] | D (%]
6 98.3 98.7 13 17
12 | 9.9 98.4 1.6 3.1

TABLE TII

RESULTS FOR PARAMETER COMBINATION 6 AND 12 USING DATA SET 2.

B. Robustness Test

To evaluate the robustness of the system two different
Monte Carlo simulations were performed. First, the sensi-
tivity to changes in robot pose was tested (pose noise) and
second, the dependency on variations in the detection rate
of the virtual sensor was evaluated (classification noise). We
model the uncertainty with o-values for the position, opos =



2 m, and direction, o4;, = 5°. This position uncertainty
is approximately the accuracy of standard GPS. Table IV
shows the result for Monte Carlo simulations with 20 runs
per test. The first two rows contain results after introducing
the additional pose uncertainty. The detection rates are lower
than the comparable ones presented in Table III. The total
average detection rate has decreased from 98.1% to 96.3%.

The second two rows contain the result with classifica-
tion noise. Here we have randomly changed 5% of the
classifications (building to nature and vice versa) obtained
from the virtual sensor. We can see that the result for
building detection is close to the nominal case (average
97.0% compared to 97.6%), but that nature detection is
clearly affected by the changed detection rates of the virtual
sensor (average 81.7%). This is an effect of the assumption
that building estimates are true to a higher extent and it shows
that the selection of P(b|VS=b) and P(—b|VS=-b) should
be carried out with this in mind.

Test Dy, [%] Dy, [%] | Ppp (%] | Py [%]

6 (pose unc.) | 95.843.6 | 97.5£1.0 | 2.5£1.0 | 4.243.6

12 (pose unc.) | 94.64+2.8 | 972412 | 28412 | 54428

6 (cl. noise) | 97.6+12 | 84.74£3.7 | 153+£3.7 | 2.4+1.2

12 (cl. noise) | 96.5+£1.0 | 78.74+6.2 | 213462 | 3.54+1.0
TABLE IV

RESULTS FOR DATA SET 2 PRESENTED WITH STANDARD DEVIATION.
THE FIRST TWO ROWS SHOW RESULTS WITH POSE UNCERTAINTY AND
THE SECOND TWO ROWS SHOW RESULTS WITH CLASSIFICATION NOISE.

VIII. CONCLUSIONS

In this paper we have shown how a virtual sensor for
pointing out buildings along a mobile robot’s track can be
used in the process of building a probabilistic semantic map
of an outdoor environment. The presented results show that
with the probabilistic mapping algorithm the uncertainty of
the virtual sensor can be reduced. The method can handle the
wide field-of-view of the planar camera (56°) and despite the
fact that we do not know the location of the classified object
in the image, an almost correct semantic map is produced.
We also achieved good performance for both buildings and
nonbuildings in the presence of pose uncertainty.

The benefit of using the virtual sensor with its good
generalisation properties is that it produces results that are
useful even though 1) the training set was quite limited (in
total 80 low resolution images with side length 240 pixels),
2) we use another resolution in the sub-images (320 x 320
pixels), and 3) that we train on images using a standard
digital camera, but the experiment images are taken using
an omni-directional vision system.

A natural extension to this work would be to introduce
other classes of objects. For example, drivable areas could
be detected using the onboard sensor system. The map
would also have to be extended to handle more than two
classes. We further intend to use the semantic map to control
segmentation of aerial images to find complete buildings and
in this way improve the mobile robot mapping process.
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