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Registration of Colored 3D Point Clouds with a
Kernel-based Extension to the Normal Distributions Transform

Benjamin Huhle, Martin Magnusson, Wolfgang Straßer and Achim J. Lilienthal

Abstract— We present a new algorithm for scan registration
of colored 3D point data which is an extension to the Normal
Distributions Transform (NDT). The probabilistic approach of
NDT is extended to a color-aware registration algorithm by
modeling the point distributions as Gaussian mixture-models
in color space. We discuss different point cloud registration
techniques, as well as alternative variants of the proposed al-
gorithm. Results showing improved robustness of the proposed
method using real-world data acquired with a mobile robot and
a time-of-flight camera are presented.

I. I NTRODUCTION

Registration of 3D point clouds is an essential part of
many applications. In robotics, many of the common Simul-
taneous Localization And Mapping (SLAM) solutions rely
on the registration of point clouds. For object detection and
visualization, e.g., the 3D point cloud is typically textured.
However, during the model building color data is often used
in the texturing step only.

Enhancing the information by adding color in an early
stage of the pipeline should help to increase registration
quality and robustness. Approaches where visual cues are
employed for registration are often based on local features
in images that are mapped to single points in the range data.
Using these small samples of the geometry for matching
can lead to significant errors, especially when using noisy
or erroneous depth sensors. Therefore, color data should be
incorporated also in registration algorithms that make use of
all available geometric information and which can then be
combined with feature-based methods if needed.

We present an extension to the Normal Distributions
Transform (NDT, see section II-C) which adds color infor-
mation to NDT’s probabilistic local surface models.

II. OVERVIEW OF REGISTRATION ALGORITHMS

The goal of scan registration is to find a rigid-body
transformationT that minimizes a certain error function
between adata set X and another set of pointsY (the
model set), where both point sets can be partially or fully
overlapping. The following three algorithms can be classified
as local registration methods, which means that they search
for the closest local optimum. Therefore, they rely on a good
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estimate of the initial pose in order to converge to the correct
solution.

A. Iterated Closest Point (ICP)

The ICP algorithm is widely used today for registration
of 3D point clouds. ICP iteratively updates and refines the
relative pose by minimizing the sum of squared distances
between corresponding points in the two scans. The two
seminal papers on ICP are by Besl and McKay [3] and Chen
and Medioni [5]. Since its conception, a large number of
variants have been developed, and a good survey of different
variations of ICP was presented by Rusinkiewicz [16].

At each iteration of the ICP algorithm, a set of point pairs
is built, where each point in the data scan is associated with
its closest neighbor in the model. A closed-form solution
exists for finding the transformation that minimizes the sum
of distances between associated pairs. Although the closest
point does not generally correspond to the same point on the
scanned surface, especially if the scans are far apart from
each other, successive iterations will still usually converge
to a good solution. However, for only partially overlapping
scans, special care has to be taken in order to discard
correspondences that connect points in the border regions
that do not have a matching point in the model at all. Since
this is not handled inherently by the ICP algorithm, such
correspondences would otherwise introduce a shift towards
a completely overlapping solution.

The two main problems of ICP are that it is point-based,
and as such does not make use of the local surface shape
around each point, and that the nearest-neighbor search in
the central loop is rather time consuming.

B. Color-ICP

The ICP algorithm can naturally be extended to colored
data by measuring the distance between corresponding points
between the six-dimensional color-space vectors [11]. When
using that algorithm, one needs to pay attention to the scaling
of the feature elements, depending on the sampling distribu-
tion of scan points. For example, if we assume the RGB
components of the features have range[0, 1] and the spatial
features are measured in centimeters, the colors will have
little influence on the result in large-scale environments. With
different scaling, or different sample distributions, points
with similar colors will be preferred over spatially proximate
points. This problem is especially pronounced for data where
the scan points are unevenly distributed.



Fig. 1. Feature-based registration in a dynamic environment. Left: Corresponding SIFT-features. Right: Resulting model.

C. The Normal Distributions Transform (NDT)

The normal distributions transform method for registration
of 2D data was introduced by Biber and Straßer [4]. The
key element in this algorithm is a new representation for
the model point cloud. Instead of matching the data point
cloud to the points in the model directly, the probability
of finding a point at a certain position is modeled by a
linear combination of normal distributions. This gives a
piecewise smooth representation of the model surface, with
continuous first and second order derivatives. Using this
representation, it is possible to apply standard numerical
optimization methods for registration. Because the points in
the target scan are not used directly for matching, there is no
need for computationally expensive nearest-neighbor search,
as in ICP. Computing the normal distributions is a one-off
task that is done during a single pass through the points of
the target scan.

NDT has been extended to 3D and shown to perform
well in comparison with ICP [14]. In particular, the normal
distributions transform is insensitive to uneven sample dis-
tributions, and does not employ an explicit nearest neighbor
search. When using NDT for localization and mapping, the
original point clouds do not need to be stored, and the NDT
representation efficiently compresses the scan data, largely
reducing the memory requirements for large-scale maps.

D. Local feature based registration

We now discuss a number of approaches that, in contrast
to the methods of the preceding section, use more salient
features of the scene for registration.

Good local surface descriptions should be invariant to rigid
motion (that is, rotation and translation), so that correspond-
ing surface parts can be found regardless of the initial poses
of the scans. If sufficiently discriminative features can be
found, the need for a good initial pose estimate is alleviated.

Several ways of describing local surface shape have
been proposed, such as spin-images [12] and surface sig-
natures [17]. A common weakness of these methods is that
they rely onoriented points— that is, points with a surface
normal. If the surface normal cannot be accurately computed,
as is the case for noisy data, the local surface descriptions
are not useful for finding corresponding surface patches.

When images are available in addition to range data,
point clouds can be registered by relying on the local

visual structure of the scene for solving the data association
(correspondence) problem using visual features (e.g., [2]).

Since feature-based methods rely on a small number of
3D points, instead of using all the available data, noisy
range readings can cause significant errors. Similarly, a
single false correspondence can lead to severe misalignment
even in the presence of several correct correspondences.
Even though the state of the art Scale-Invariant Feature
Transform (SIFT, [13]) features are generally very robust,
false correspondences can occur if part of the model has a
repetitive texture, for example. In a dynamic environment,
a small modification can cause these methods to fail (cf.
Figure 1) as well, even if the scene remains the same on a
larger scale. The methods discussed in Sections II-A–II-C,
as well as the proposed Color-NDT, however, would yield
correct results.

E. Combined Features/NDT registration

In order to reduce the effect that noisy range data have on
feature-based registration, a method was proposed by Huhle
et al. [10] that uses an energy function

E = αENDT + (1− α)EF , (1)

which combines the NDT score functionENDT and an
energy functionEF that penalizes distances of corresponding
color features. The weightα is determined by the result
of the preceding rough alignment using the same feature
correspondences. Scans captured by sensors with a narrow
field of view often have limited geometric structure, in which
case NDT can fail. Therefore,α should favor the feature
solution for such scenes.

III. C OLOR-NDT

NDT has a number of valuable properties and has been
shown to perform well in comparison to standard registration
methods. In order to increase the robustness, especially for
scenes with few geometric constraints, we extend NDT into
a color-aware registration method to gain from the additional
sensor information.

Note that another approach to use NDT in the color
domain has been presented by [1]. That method is also called
Color-NDT. However, it is meant for change detection and
cannot be used for registration applications.
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Fig. 2. This figure shows one cell with conditional distributions of 6D-NDT (thick blue/red), distribution of 3D-NDT (black), and of Color-NDT with
adaptive kernels (thin blue/red). For visualization, dimensionality has been reduced to 2D space and color consists of only the hue channel. Left: conditional
distribution/kernel for exactly matching colors. Right: The colors of the data and the model are slightly different.

A. Color-NDT using adaptive kernels

In order to incorporate color information into the NDT
registration, we represent the point distribution in each cell
of the NDT grid as a mixture model in color space. (In the
following we use the notationxi for spatial coordinates and
x̃i for color coordinates of data points.) For each cellk we
build the mixture model of the color distribution

pk(x̃) =
M∑

j=1

αjN (q̃k,j , Σ̃k,j),

employing M components with means̃qk,j and covari-
ancesΣ̃k,j .

This mixture density is estimated with the Expectation
Maximization algorithm (EM, [6]) using the color space
coordinatesỹi of the points belonging to the reference
scan. We apply the EM algorithm for maximum likelihood
estimation of mixture densities as described in [15]. The
initial guesses of the component distributions are determined
via k-means [8].

The next step is to build a Gaussian Mixture Model
(GMM) of the point distributions in each cell. The compo-
nents of the color space model are used as kernel functions
centered on their means in color space. The kernels weight
the influence of the points when building the spatial model.
Thus, for each kernelj, we get a corresponding componentj
of the GMM. Accordingly, the color weights

ξij = exp
(
−1

2
(ỹi − q̃c(i),j)tΣ̃−1

c(i),j(ỹi − q̃c(i),j)
)

(2)

are determined by evaluating the color kernels. The index
c(i) here points to the cell where data pointyi falls into.

Building the model for the Color-NDT cells is done by
computing the weighted spatial means

qk,j =
1

Ξk,j

N∑

i=1

δ(c(i), k) ξij yi (3)

and weighted spatial covariances

Σk,j =
Ξk,j

Ξk,j −
∑

i δ(c(i), k) ξ2
k,j

(4)

N∑

i=1

ξij(yi − qc(i),j)(yi − qc(i),j)t (5)

for each cellk, where δ denotes the Kronecker delta. In
Equations 3–5, the sum of all color weights for cellk and
mixture componentj,

Ξk,j =
N∑

i=1

δ(c(i), k) ξij ,

is used for normalization. A visualization of the spatial dis-
tributions computed by Color-NDT can be seen in Figure 5.
Note that differences in color (brightness) appear due to the
artificial illumination of the rendering of the ellipsoids.

The registration algorithm employing the necessary adap-
tations for solving the presented color-aware version of NDT
is as follows: In order to register a new scan to the Color-
NDT of the model point cloud, the scores depending on the
transformationTp is to be optimized. This transformationTp

in our case is a rigid-body transformation parametrized by
a 6D parameter vectorp. Given a sample ofN points
belonging to the new scan, we compute the score

s(p) =
N∑

i=1

M∑

j=1

ξij exp(−1
2
(x′i − qc(i),j)t

Σ−1
c(i),j(x

′
i − qc(i)j)),

where the spatial coordinates of the points are denoted by
x′i = Tp(xi).

The optimization of the score function with regard to the
transformation parameters can be done with arbitrary numer-
ical optimization methods. We experienced fast convergence
with Newton’s method incorporating a line search.

We optimize iteratively over transformationTp, which
consists of a translation and a rotation that is parameterized
as a rotation vector [7]. Assuming only small angular differ-
ences for each step of the iteration, we use the small angle
approximation for the first partial derivatives ofT . For the
second partial derivatives, this leads to an all-zero Hessian
matrix which reduces the computational cost computing the
second partial derivative of the score functions(p).

Note that, usually, a critical point in mixture density
estimation is the choice of the number of componentsM that
are used to represent the density. However, our main concern
is not to build a highly accurate model in color space. As
in standard 3D-NDT, where the point distributions mainly



Fig. 3. Door data set (2 frames). Left: initial pose of both frames. Right: registered with Color-NDT.

distinguish differently oriented planar structures, we are
interested in a color-space model that distinguishes different
colors and enables us, intuitively speaking, to draw the points
to be registered into the correct direction depending on their
color. Since we are dealing with 3D spatial data it then
suffices to compute a3-components mixture model for each
cell in order to fix the registration result to a unique pose
even if the actual density in color space is more complex.

Based on these considerations we tried different approx-
imations for representing the color space density which
demand less computational effort. One could use kernels
with fixed mean and fixed variance. However, as can be
expected, this method is less accurate since the resulting
distributions are not as expressive as our proposed method.
Another approach is to estimate discrete kernels by apply-
ing k-means clustering in color space only. However, this
approach suffers from discretization effects. Computing an
(isotropic) variance in color space from the clustering result
and applying this solution as weighting kernels in the spatial
domain shows decreased performance compared to the EM
estimated kernels version as well.

B. NDT using combined color-space distributions (6D-NDT)

An alternative method for fusing color and range data for
NDT is to discretize only along the spatial dimensions, as
for standard 3D-NDT, and store six-dimensional normal dis-
tributions over the combined 6D color-space feature vectors
in each cell. This is the most straight-forward analogon to
the Color-ICP version introduced by Johnson and Kang [11].
Building such 6D structures is faster than finding the color
kernels as described in section III-A. Optimizing the score
is also faster because only one distribution needs to be
evaluated for each point in the data scan.

However, in many cases, a single normal distribution
is not a good model for the color-space distribution of
points. To get a better understanding of this six-dimensional
representation, and in order to compare the 6D-NDT with
the above described kernel-based Color-NDT, we investigate
the conditional distributions of the 6D-NDT, i.e., the spatial
distribution given a certain color. We compute the conditional
means

µk(x|x̃) = qk + Σx,x̃
k Σ̃−1

k (x̃− q̃k)

and conditional covariances

Σk(x|x̃) = Σk −Σx,x̃
k Σ̃−1

k Σx̃,x
k ,

where(qk, q̃k) is the 6D mean andΣk and Σ̃k denote the
covariances in the spatial and the color subspaces of cellk,
respectively. Analogously,Σx,x̃

k andΣx̃,x
k denote the cross-

covariances in the color and spatial subspaces.
A visualization of the resulting distributions is given

in Figure 2. Whereas points that meet the color of the
model points exactly (left) are attracted to the correct spatial
position, a blue point in the right subplot of Figure 2 is
expected by 6D-NDT to lie even further on the left compared
to the almost-blue model points. Contrarily, the kernel-based
Color-NDT handles this case well, expecting a point with
color different from the model’s colors to lie closer to the
overall (standard NDT) mean.

IV. EXPERIMENTS

A. Sensor setup

Fig. 4. The sensor setup used in the experiments. The PMD camera is
mounted on top of a SICK laser scanner that was not used in this work.

Data were collected using the experimental robot platform
Tjorven, a Pioneer P3-AT equipped with an Amtec pan/tilt
unit (see Figure 4). Range and color images were acquired
with a combination of aPMD vision 19ktime-of-flight cam-
era and aMatrix-Vision Blue Foxcolor camera, mounted on
the pan/tilt unit. The data from the two cameras are combined
as described in [9]. The time-of-flight camera illuminates the
scene with modulated near-infrared light using an array of
LEDs. It both measures the reflectance and computes range
values for each pixel of the image based on the phase shift



of the incoming modulated light. The resolution of the gray-
scale image and depth map is160 × 120 pixels, and the
maximum refresh rate for the camera is approximately 15 Hz.
The PMD camera is sensitive to the lighting conditions of the
scene. The range data are quite noisy and contain frequent
outliers, especially at depth discontinuities. Outliers in the
resulting colored point clouds due to sensor error are pruned
and depth data are smoothed with the methods described in
[10]. Still, the noise level is significant.

B. Results

Registration methods that use geometric information only
cannot correctly align surfaces that lack prominent spatial
structure, such as the two scans shown in Figure 3. The
extension to NDT proposed in Section III-A also incorporates
knowledge about the surface texture into the registration
process, and therefore is able to match both point clouds.

The data set depicted in Figure 5 was recorded while
driving the robot platform past the scene, looking sideways.
We relied on the robot’s odometry for the initial pose
estimates of the scans. Even though the data set as a whole
contains some geometric features, registration using standard
3D-NDT misaligned several of the partial scans, mainly
because of two reasons. Firstly, single frames of the set
can suffer from the aperture problem, i.e., not capturing
enough structure in one view. Secondly, the surface model
also describes the high noise level of the depth sensor. The
same problems also affect Color-NDT. However, because
of the more descriptive surface representation, it performs
significantly better on the same test set. The difference is
most obvious around the microwave oven in the upper right
corner of the images, where strong contrasts occur on mostly
planar surfaces.

We also applied the combined energy function approach
(proposed in [10], cf. Section II-E) to a data set collected at
the same scene. Due to too large steps between the frames,
a global alignment using image features is necessary, i.e., a
registration using solely 3D-NDT or Color-NDT is not pos-
sible. The additional gain of replacing 3D-NDT with Color-
NDT in the combined method is shown in Figure 7. The
initial alignments, based only on SIFT features, expose some
of the problems of relying on a small set of corresponding
points with noisy range data. Additionally, we encountered
false feature correspondences due to the repetitive patterns
in the scene (cf. Figure 6). We increased the weightα from
(1) to better show the influence of NDT. Similarly to the
previous experiment, we noticed an improved registration
along the normals of the planar structures, though coupled
with large offsets along the other directions for standard 3D-
NDT. Once again, the improved robustness of Color-NDT
shows in a significantly enhanced registration result.

V. SUMMARY

The two main contributions of this paper are, firstly, a
discussion of several approaches to scan registration using
spatial and partially also color information. Secondly, a new
algorithm for scan registration of colored 3D data has been

Fig. 5. Data set A (21 frames, sequentially registered in an incremental
fashion). Top: illustration of the Color-NDT cell grid. Middle: registration
using Color-NDT. Bottom: registration using standard NDT.

Fig. 6. False correspondences in two frames of data set B.

presented. We have demonstrated its increased robustness
compared to the original 3D-NDT algorithm as well as to
a combined features/NDT method proposed recently. The
comparisons were made using real-world data collected with
a mobile robot equipped with a PMD time-of-flight camera.

In future work, the matter of adaptive cell splitting should
be investigated further.



Fig. 7. Data set B (11 frames, sequentially registered in an incremental fashion) with detail views seen from above in the right column. Top: Feature-based
registration only. Middle: registration using combined features/NDT method. Bottom: registration using combined features/Color-NDT method. The figure
shows the additional gain of replacing 3D-NDT with Color-NDT.
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