oS

http://www.diva-portal.org

Postprint

This is the accepted version of a paper presented at ECMR 2019 : 9th European Conference
on Mobile Robots, Prague, Czech Republic, 4-6 Sept., 2019.

Citation for the original published paper:

Lowry, S. (2019)

Similarity criteria: evaluating perceptual change for visual localization
In: 2019 European Conference on Mobile Robots (ECMR) IEEE
https://doi.org/10.1109/ECMR.2019.8870962

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-79686



Similarity criteria: evaluating perceptual change for visual localization

Stephanie Lowry!

Abstract— Visual localization systems may operate in en-
vironments that exhibit considerable perceptual change. This
paper proposes a method of evaluating the degree of appearance
change using a similarity criteria based on comparing the
subspaces spanned by the principal components of the observed
image descriptors. We propose two criteria — 0,,;, measures
the minimum angle between subspaces and S:.t.1 measures
the total similarity between the subspaces. These criteria are
introspective — they evaluate the performance of the image
descriptor using nothing more than the image descriptor itself.
Furthermore, we demonstrate that these similarity criteria
reflect the ability of the image descriptor to perform visual
localization successfully, thus allowing a measure of quality
control on the localization output.

I. INTRODUCTION

Visual localization — the ability for robots to recognize
and identify their location in a large-scale environment — has
made rapid progress in recent years [1]. Perceptual change
can be challenging for visual localization systems, as places
in the environment may not look the same as they did on pre-
vious occasions and a visual localization system can fail to
correctly identify matching locations due to extreme changes
in appearance. Perceptual change is particularly challenging
when it happens uniformly over a region — for example, if
day turns to night or snow falls — as all places in that region
will become difficult to recognize (Fig. 1). However, the
spatial relationship between places does not change, so as
long some similarity in appearance remains, a weak location
hypothesis can be formed and by observing multiple nearby
locations and the spatial relationship between them, you can
gradually build up confidence in your location belief.

It helps to know whether or not the system is localizing
in a perceptually changing environment. Perceptual change
requires a permissive matching strategy where places may
be matched together even when they do not appear similar
at all, and such an approach may cause incorrect matching if
applied to a less challenging environment: if the appearance
of the environment has not changed, a strict matching strat-
egy where places must be both highly similar and highly
distinctive may be more reliable and stop false positive
matches (this opposing problem is known as perceptual
aliasing where different places may look very similar).

Thus an important consideration for a localization system
is context — is the system in a situation when it should
demand highly rigorous matching expectations or is a more

*This work was supported by the Swedish Research Council (grant no.
2018-03807).

1The author is with the Centre for Applied Autonomous Sen-
sor Systems (AASS), Orebro University, 70281 Orebro, Sweden
stephanie.lowry@oru.se
978-1-7281-3605-9/19/$31.00 (©2019 IEEE

(b) Perceptual aliasing

Fig. 1. Perceptual change and perceptual aliasing are two challenges for
visual localization systems. (a) Perceptual change occurs when the same
location looks different at different times. (b) Perceptual aliasing occurs
when two different locations look similar.

permissive strategy necessary? Furthermore, the environment
may take on a large range of different conditions: not only
may night and day be different, but dawn, noon, and dusk
may also exhibit different characteristics. Weather conditions
could include sun, rain, and cloud, while seasonal changes
may affect whether there are leaves on the trees or snow on
the ground. Since all these factors can operate independently,
it is not feasible to expect a system to be able to predict
all the potential scenarios it may see. Thus we propose a
simplified single-valued criteria based on similarity. This
similarity criteria is intended to subsume all the possible
condition changes and evaluate if the change is sufficiently
major to pose challenges to the visual localization system.

This paper presents a method of quantifying environ-
mental similarity and perceptual change. It uses principal
component subspace comparison to identify the perceptual
context within the environment, and therefore will provide
information to a visual localization regarding the level of
perceptual change. These methods require no external in-
formation and only using the image descriptors included
in the visual localization system. We present two similarity
criteria: one that measures the total similarity between the
perceptual contexts and one the measures the extent to which
the subspaces differ.

This paper demonstrates that both these criteria are cor-
related with the ability of the selected image descriptor to
perform visual localization. This result demonstrates that
these similarity criteria provide information about the likely
performance of the visual localization system, without any
additional information about the environment.

II. PRIOR WORK

Visual localization has developed rapidly as a field in
recent years. One driving motivation is the observation that



changing appearance in an environment, including (most
commonly) lighting change, is a major cause of failure in
location matching experiments [2]. Like many other vision-
based fields, visual localization has been inspired by the
astonishing advances in machine learning for computer vi-
sion and learning methods are utilized to improve location
representations [3], [4], [S], [1]. The results have shown im-
pressive perceptual change invariance, allowing localization
systems to operate successfully in highly perceptually chang-
ing environments. Furthermore, methods such as NetVLAD
[5] and DenseVLAD [6] can perform localization that is
robust to both perceptual change and considerable viewpoint
variation [1].

However, even the most powerful visual description meth-
ods can struggle with drastic perceptual change, especially if
combined with other challenges such as low light, blur, and
general poor image quality. It is useful for a localization sys-
tem to produce a confidence metric that assesses how reliable
the localization system is in the current scenario. Confidence
metrics have typically been provided by frameworks such
as probabilistic localization systems [7], [8], [9]. However,
probabilistic systems depend on prior information, and like-
lihood models of the environment which in a perceptually
changing environment may themselves be unreliable.

A measure of environmental appearance change can be
used as a method of selecting an observation likelihood
model [9]. This paper extends these results to a more
general similarity criteria based on the subspaces formed by
the principal components of image descriptors in different
perceptual conditions. This approach has some similarities
with hierarchical environment selection [10], but in this
case there is no assumption that the same environment will
maintain the same overall perceptual characteristics.

III. APPROACH

Suppose a visual localization system is matching a set
of images A and B. The images within each set are
captured close together both spatially and temporally, and
thus are likely to have similar perceptual characteristics —
for example, it might by day-time or nighttime, or snowy,
or rainy. However, the particular perceptual characteristics
of each cluster are unknown. The goal of the similarity
critieria evaluation is to determine whether the perceptual
characteristics of A and B are similar or different.

The similarity criteria does not perform visual localization
— that is, it does not determine if groups A and B are
from a similar location, as two spatially distant environments
might appear superficially similar if they were viewed at
similar times of day under similar conditions, while the same
environment might appear very different under very different
conditions.

More formally, these groups of images have the same
variables measured on them (that is, the chosen image
descriptor) and we wish to evaluate how similar the groups
are with respect to their overall features. One straightforward
and intuitive procedure to analyze relevant factors is to

describe each group in terms of its principal components
and compare these. We follow the method used in [11].

A. Notation

Let A and B represent two groups of images such as
those described above. Let Lj, be the matrix containing the
first k& principal components of A and let M}, be the matrix
containing the first k& principal components of 3. Define

S, = LM, M, L, . (1)
B. Minimum subspace angle

The first similarity criterion we define is the minimum
subspace angle, denoted 6,,;,. This angle is the minimum
angle between an arbitrary vector in the space spanned
by Li and the space spanned by Mj. The size of the
minimum subspace angle provides a measure of the extent
to which the subspaces differ: a small minimum subspace
angle suggests the subspaces are more similar than a large
minimum subspace angle.

As shown in [11], the minimum subspace angle is given
by

emin = Cosil( V A1) (2)
In this equation, \; is the largest eigenvalue of Sy.

C. Total similarity

The second similarity criteria we define is the fotal similar-
ity, denoted Siota1, as the sum of the squares of the cosines
cos?(6;;) between each of the k principal components in Ly,
and M. The sum is then normalized between O and 1. It is
shown in [11] that if \; is the i-th eigenvalue of Sj then:

k k k
D> cos?(0) = Y\ 3)
i=1 j=1 i=1

= trace(Sg). )

Since the sum of the eigenvalues is constrained between
0 for completely orthogonal spaces and k for coincident
spaces, a normalized Si,ta1 can be calculated via:

Shotar = trackﬂ 5)

D. Descriptor-dependent similarity criteria

These similarity criteria are descriptor-dependent, as they
measure the similarity of the two environments according
to a particular descriptor space. This is a reasonable ap-
proach, since localization is itself descriptor-dependent —
one descriptor may easily perform visual localization on one
environment but be outperformed by another descriptor on
another environment. However, a deficiency in this formu-
lation is that similarity criteria are not able to be compared
between descriptors — because the similarity criteria is de-
fined on the original descriptor space it is not necessarily
meaningful to compare the results between two descriptor
types. The similarity criteria can be used to compare different
environments, as we show in the experiments below.



IV. EXPERIMENTAL SETUP
A. Datasets

The similarity criteria were evaluated using two bench-
mark datasets: the RobotCar Seasons dataset [1],[12] and
the Nordland train dataset. The RobotCar Seasons visual
localization dataset' is derived from a subset of the larger
Oxford RobotCar dataset [12]. The images were recorded in
the city of Oxford, UK on a car driving the same route over a
period of 12 months. The RobotCar Seasons dataset contains
10 traversals under different conditions (see Fig 2 for sample
images from each condition). This paper uses the left cam-
era image from each location, and derives an approximate
ground truth using the GPS+Inertial data provided by the
original dataset [12]%. The Nordland train dataset’® consists of
four traversals of a 700-kilometres Norwegian train journey
during four different seasons (see Fig 3 for sample images).

Fig. 2. Sample images from each of the RobotCar Seasons traversals. The
night-time traversals are particularly challenging due to motion blur and low

image quality.

Sample images from each of the Nordland traversals.

Fig. 3.

For each traversal from the datasets, 358 images were
extracted. For the RobotCar Seasons traversals, the first 358
images were used while for the Nordland traversals, the GPS-
aligned images were sampled and every 100th image was
used.

B. Image Description

The goal of these experiments was to assess whether
the similarity criteria indicated whether the conditions were
perceptually challenging for a visual localization system. To
do so, we used a visual localization system based on two
different image descriptors: NetVLAD [5] and downsampled
images.

1) NetVLAD: NetVLAD is a state-of-the-art image de-
scription technique for visual localization, and has shown
extremely good performance at place recognition on many
datasets. On the RobotCar Seasons dataset specifically,

! Available for download at www.visuallocalization.net

2Available for download at https://robotcar—dataset.
robots.ox.ac.uk/

3available for download at https://nrkbeta.no/2013/01/15/
nordlandsbanen-minute-by-minute-season-by-season/

NetVLAD was demonstrated in [1] to have excellent per-
formance at coarse-precision place recognition (matching
places within 5 metres and 10 degrees of each other) on the
day-time conditions, but struggled on the night-time images.
Nonetheless, it was one of the top two performers (along
with DenseVLAD [6]) for the night-time scenario.

We used the implementation of NetVLAD provided by the
authors*, using the best performing pre-trained model”.

2) Images: Downsampled images can be used as a simple
descriptor for a visual localization system. In this work the
images were converted to grayscale and downsampled to
64 x 64 pixels to retain the same number of dimensions
(4096) as NetVLAD. The small images were whitened using
the method presented in [13].

C. Visual Localization

This evaluation uses an extremely simple visual local-
ization technique. For each image I; with N-dimensional
descriptor d; in dataset D;, to determine the best matching
image in dataset Do, we extracted the descriptor d; for each
image I; € Dy. We then calculated the zero normalized cross
correlation (ZNCC) [14] via:

> (di[u]—dy1)-(d2[u]—d2)

di,dp) = ——=— .
Adr,do) = == s~
u<N u<N

The ZNCC is typically a measure used for comparing
images, but also demonstrates good performance on non-
image descriptors such as NetVLAD. The best match for d;
was considered the image descriptor d € D4 with the largest
ZNCC value z(dy,ds).

D. Localization metrics

To evaluate whether the similarity criteria provide useful
information about the potential success of the visual localiza-
tion success, a very simple localization metric was used: the
Fraction of Correct Matches (FCM). We calculated for how
many images I; its corresponding best matching image I
was a ground truth match, out of the total number of images
for which a ground truth match existed.

A second localization metric was evaluated: the recall at
100% precision (Recall@100), but due to space constraints
only the FCM results are presented in the paper. Recall@ 100
is a much more sensitive metric than FCM. A single false
match can drastically change the value of Recall@ 100, while
a false match can only change FCM a small amount.

V. RESULTS

The results section presents an analysis of the impact of
the primary parameter in the similarity criteria definition, the
number of principal components used. It then evalutes the
relationship between the similarity criteria and the selected
visual localization metric.

4Available from https://www.di.ens.fr/willow/research/
netvlad/.
SVGG-16+NetVLAD+whitening, trained on Pittsburgh



A. Number of principal components to use

The only parameter in the definition of the similarity
criteria is k, the number of principal components used.
Fig. 4 displays the relationship between k and the similarity
metrics. There is a visible qualitative difference for both
Stotal and O, between the easy-to-match traversals (the
night traversal for the night-rain example) and the
more challenging traversals. This qualitative difference is not
significantly impacted by the choice of k, and both metrics
change smoothly and gradually as k increases. Aside from
a peak at low k (around k = 4) in Siota1, there appears
to be little sensitivity to the choice of k. While the peak at
k = 4 might be interesting to investigate for future work, the
remainder of this work uses k& = 20, as it is large enough to
avoid this potential source of noise.

B. Similarity metric evaluation

This section evaluates whether the similarity criteria is
able to evaluate the visual localization ability of a particular
descriptor in different perceptual conditions.

Fig. 5 displays the range of results when comparing the
Nordland traversals to the same environment under different
conditions as well as to a totally different environment (the
RobotCar Seasons dataset). Siota1 is much higher between
the Nordland traversals than between the Nordland and
RobotCar Seasons traversals (where it is close to zero). Sim-
ilarly, 6, is much lower between the Nordland traversals
than between the Nordland and RobotCar Seasons traversals
(it is close to 80°, compared to less than 25° between the
Nordland traversals).

Fig. 6 displays the results for the dawn, dusk, and
night-rain datasets. Fig. 6a displays the results for
NetVLAD and Fig. 6b displays the results for images. The
lines show the linear regression for each base dataset. The
results show that the similarity criteria demonstrates a clear
relationship between the FCM and both Stiota1 and Gppin.
This result is true for both NetVLAD and for images, but
the correlation is weaker for images. To quantify the results
the mean R? value across all RobotCar Seasons traversals
is shown in Table I. The mean R? value for NetVLAD is
0.89 for Stota1 and 0.92 for 0,,;,, while it is 0.63 for Sioa1
and 0.65 for 6.,;, when downsampled images are used as
the descriptor.

TABLE I
MEAN R2 VALUES ON ROBOTCAR SEASONS DATASET

Descriptor R? value
St otal Gmin
NetVLAD 0.89 0.92
Images 0.63 0.65

These results also show some of the limitations of the
similarity criteria. Firstly, they cannot be used to compare
the performance of the different descriptors — for example,
an O, of 45° represents poor performance for an image
descriptor (only about 20% of places are correctly matched)

but good performance for NetVLAD (close to 100% of
places correctly matched).

Fig. 7 displays Siota1 and 6, for NetVLAD on the
Nordland dataset. As for the RobotCar Seasons datasets, a
larger Siota1 Or a smaller 6.,;, are correlated to a higher
FCM.

VI. CONCLUSIONS

Solving the problem of unconstrained localization in un-
controlled environments is of great practical significance as
a fundamental step towards mobile systems that can op-
erate autonomously within real-world environments. Visual
localization is an important component of a localization
and navigation system as cameras provide rich semantic
information about the world unmatched by any other sensor.
However, to be effective a visual localization framework
must be able to independently identify the nature of the
environment in which it is operating. The similarity criteria
presented here represent a step towards this goal.

The similarity criteria here is introspective — it uses no
additional information beyond the image descriptors them-
selves, and provides some insight into the likely performance
of those descriptors on a given environment. This intro-
spective approach could of course also be augmented by
including external sources of information like the time of
day, or the weather forecast. However, it is interesting that
conclusions can be drawn simply from the vector subspace
structure of the visual descriptors, without requiring external
sources of data.

The localization system used for evaluation is very simple
and contains no additional filtering based on prior belief
or secondary verification. While these sophisticated mech-
anisms can of course improve localization performance, any
localization system is fundamentally dependent on the choice
of image descriptors, and the similarity criteria provides in-
formation which can then be used to enhance any localization
system.

An interesting future research direction is also the inter-
play between perceptual aliasing and perceptual change. The
similarity criteria measures the perceptual change between
environment states, while perceptual aliasing is a measure
of similarity within environment states. Future work will
investigate the relationship of the similarity criteria to the
perceptual aliasing within an environment.

The proposed criteria have limitations. As the criteria are
defined according to subspaces within the original descriptor
space, they are unable to systematically compare different
descriptors defined on different feature spaces. However,
similarity criteria across environments have potential to pro-
vide valuable contextual information to visual localization
systems.
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