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Difficulties in mathematics learning are an important topic in practice and research. 
In particular, researchers and practitioners need to identify students’ needs for support 
to teach and help them adequately. However, empirical research about group 
differences of students with and without mathematical difficulties (MD) is still scarce. 
Previous research suggests that students with MD may differ in their quantity 
recognition strategies in structured whole number representations from students 
without MD. This study uses eye-tracking (ET), combined with Artificial Intelligence 
(AI), in particular pattern recognition methods, to analyze group differences in gaze 
patterns in quantity recognition of N=164 fifth grade students.   
INTRODUCTION 
Learning difficulties in mathematics are an important topic in practice and research and 
have attracted increased interest not least since inclusive education has gained 
significance. Researchers and practitioners aim to understand knowledge and learning 
in a fine-grained way, and to foster students with MD individually and adequately (e.g., 
Moser Opitz et al., 2016; Scherer et al., 2016).  
Previous research has indicated that students’ strategies in quantity recognition can be 
used to identify difficulties in mathematics learning (e.g., Schleifer & Landerl, 2011; 
Schindler et al., 2019). An important question is how students’ quantity recognition 
strategies can be observed. A promising method for investigating students’ strategies 
in whole number representations such as the abacus or dot field is analyzing students’ 
eye movements through ET (Lindmeier & Heinze, 2016; Rottmann & Schipper, 2002). 
Qualitative eye movement analyses in such representations may even outperform 
thinking aloud analyses in precision and level of detail—especially for students with 
MD (Schindler & Lilienthal, 2018). However, the qualitative analysis of eye 
movements is laborious and potentially subjective, and it is not yet sufficiently clear 
how eye movements in quantity recognition tasks differ between students with and 
without MD. Even though initial studies report group differences in students’ strategy 
use (Schindler et al., 2019), the statistical analyses and the explanatory power of the 
results are limited due to small sample sizes of students. Therefore, this study aims to 
investigate group differences in students’ gaze patterns when determining quantities in 
structured whole number representations—with a computer-supported, i.e., automated, 
evaluation method. We pursue the research question Do the gaze patterns of MD vs. 
non-MD students in quantity recognition in structured whole number representations 
differ?, which contributes to our overall purpose to investigate whether we can 



Schindler, Schaffernicht & Lilienthal 

3 -                                                                                                            PME 43 – 2019 
 

282 

automatize the analysis of group differences in ET data and the evaluation to which 
group a student belongs. 
Automatization of the analysis of ET data is desirable because analyzing eye 
movements for identifying student strategies is extraordinary time-consuming and 
demanding, given that there are—depending of the framerate of the device—100 or 
even 1000 frames per second recorded by the eye-tracker, all of which need to be 
analyzed if strategies are to be identified in videos (like in Schindler & Lilienthal, 2018, 
2019). The effort required to manually analyze ET data is also prohibitive if ET based 
methods are to be used routinely by practitioners, e.g., school teachers.  
Motivated by these considerations, we apply a methodology that makes use of a set of 
pattern recognition methods from AI. In order to compare eye gazes of the groups of 
MD vs. TD (typically developing) students, we analyze differences in students’ gaze 
patterns on digital task sheets. In general, gaze patterns between the groups of students 
could differ in a myriad of ways that arise from combinations of where, when, for how 
long and in which sequence the students look at the stimuli. To render the subsequent 
analysis feasible, we first select a reduced representation: heat maps, i.e., visual 
representations displaying all gazes for each task. Simply put, we then investigate 
whether the heat maps of the two groups can be separated well on task level by our 
pattern recognition system, indicating significantly different gaze patterns. Our 
approach even allows us to semantically interpret group differences: The analysis of 
group-averaged heat maps (displaying all MD (vs. TD) students’ gazes for the tasks, 
Fig. 2) allows us to identify differences that are meaningful for mathematics education 
research and hint at how strategy use might be different between the groups. 
MATHEMATICAL DIFFICULTIES 
To date there is no common definition or term describing the group of students having 
difficulties in mathematics (Scherer et al., 2016). Terms such as mathematical learning 
disabilities, (severe) mathematical difficulties, or developmental dyscalculia are 
used—depending on different educational contexts and research traditions. Medical 
models label a disorder (e.g., WHO, 2018) and support an IQ-discrepancy model. 
However, recent research suggests not to distinguish between students with MD 
depending on the discrepancy between their IQ and their math performance, since 
cognitive patterns of all students with MD, e.g., in counting, subitizing and magnitude 
comparison do not differ qualitatively (Kuhn et al., 2013). In our research, we address 
students with MD following Moser Opitz et al. (2016) and Scherer et al. (2016) as 
those students who encounter difficulties with a certain set of mathematical problems 
both on a conceptual and procedural level, including, e.g., basic arithmetic such as 
counting (also counting principles and counting by groups), (de-)grouping, the base-
10 system, understanding place values, and basic arithmetic operations.  
QUANTITY RECOGNITION 
To determine quantities—i.e., to grasp a set of items and say how many they are—is a 
crucial skill for children to learn. Whereas young children typically already have the 
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ability to grasp numbers of small sets of items in one glance (“subitizing”, Clements, 
1999), they later on learn to count and to subitize conceptually, i.e., to make use of 
patterning abilities and to structure sets into subsets when determining numbers (ibid.). 
For students to apprehend the number range up to 20 or 100, teachers commonly use 
external representations such as the abacus (frame) or dot field (Gaidoschik, 2015, see 
Fig. 2): These representations both visualize substructures (10s, 5s, 50s)—in slightly 
different ways (e.g., through change of colors or gaps)—for the students to understand 
the base-10 system and to develop mental representations of the structures (Wartha & 
Schulz, 2012). Whereas investigating students’ strategies in such representations 
(identifying what structures they use and how) is a challenging task (Obersteiner et al., 
2014), researchers have found that ET may be useful to analyze students’ quantity 
recognition strategies in structured whole number representations (Lindmeier & 
Heinze, 2016; Rottmann & Schipper, 2002; Schindler & Lilienthal, 2018). Lindmeier 
and Heinze (2016) concluded that ET data are useful to infer student strategies, and 
Obersteiner et al. (2014) point out that a combination of tasks on computerized versions 
of structured whole number representations together with ET appears to be a promising 
approach to assess students’ strategies. For investigating students’ quantity recognition 
strategies through ET, researchers particularly analyzed qualitatively students’ 
scanpaths (e.g., Lindmeier & Heinze, 2016) or gaze-overlaid videos (i.e., augmented 
videos of the scene with the gaze visualized as point, e.g., Schindler & Lilienthal, 
2018), which reveal where the students looked at and indicate student strategies. 
However, as Schindler and Lilienthal (2019) point out, the qualitative analysis of such 
gaze patterns is demanding and time-consuming. Therefore, this study uses AI, in 
particular pattern recognition to (partially) automate the analysis of gaze patterns and 
focuses on the spatial distribution of gazes over the task sheet. 
THIS STUDY 
Students. For answering the research question, we use data from a research project with 
164 (92 males, 72 females) fifth-grade students in a German comprehensive school 
(“Gesamtschule”). The mean age was 10;9 (SD = 0;7) with ages ranging between 9;10 
and 12;6. The participating school was in a town of 80,000 inhabitants, situated on the 
edge of a German urban area. The study took place in the first weeks of fifth grade. 
We conducted a standardized arithmetic paper-pencil speed test (HRT; Haffner et al., 
2005) with all 164 students in classroom settings. Only the first part of HRT, which 
can be used solely for diagnosing MD (at percentile rank (PR)<11; Haffner et al., 
2005), was administered (similar to Schleifer & Landerl, 2011). The six subtests 
address mental addition, subtraction, multiplication, division, magnitude comparison  
(e.g., 7 _ 6; correct response: >) and completion tasks (e.g., _ - 2 = 6). We identified 
MD (at PR<11) and TD (PR>25) following the test’s instructions, resulting in 69 MD 
students and 59 TD students. Percentile ranks between 11 and 25 are considered “at 
risk zone” (AR, Haffner et al., 2005, p. 20), which applied to 36 students. For the 
analysis of group differences, we focus on the groups of MD and TD students, 
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disregarding the AR students (see Fig. 1). Their mean t-values on the test were 32.1 
(SD = 6.3) for the MD group, and 49.7 (SD = 7.5) for the TD group. 
Tasks. We used a computerized version of the 100-bead abacus and the 100-dot field. 
The numbers were systematically chosen so that all ones and tens were included once. 
We also included 100, which led to eleven tasks (arranged according to size: 7, 15, 20, 
31, 43, 54, 68, 76, 89, 92, and 100). The tasks were presented in randomized order 
(different randomization for each representation, i.e., abacus or dot field). 
Procedure and eye-tracker. The students were tested individually in a quiet room. They 
were seated in front of a 24’’ full HD computer monitor. We used the remote eye-
tracker Tobii x3-120, which allows for video-based binocular tracking at a sampling 
rate of 120 Hz. Looking like a black stick, it was attached to the bottom frame of the 
monitor and hardly noticeable. Its presence and function was explained to the students, 
yet, it did not interfere with the students’ work on the tasks. For adjusting the eye-
tracker, a nine-point calibration was conducted. Then, before the students started 
working on the tasks, they first saw a picture of the respective representation (100-bead 
abacus, 100-dot field) and were asked to describe it. This was followed by two practice 
tasks with numbers that were not used in further test tasks. The students were instructed 
to correctly name the number of dots in every task as fast as possible. In between the 
tasks, the students were instructed to fixate a star in the middle of the screen before the 
next task appeared. The students received no response whether their answers were 
correct. Verbal answers were recorded through an audio-recorder.  
Heat maps and spatial information. ET provides rich information and a large amount 
of data. The obtained gaze patterns can differ in many ways, including, in our case, 
where, when, for how long and in which order the students looked at the quantity 
recognition tasks. In order to identify group differences, we needed to choose an 
intermediate representation of the recorded gazes to allow for a feasible subsequent 
analysis. This intermediate representation should lower the dimensionality of the 
problem (loosely speaking, it should reduce the amount of data to be handled by the 
pattern recognition system) while preserving the relevant features of the gaze patterns. 
Following previous research that indicated that students’ gaze distributions on the task 
sheets might differ on group level (Schindler et al., 2019), we decided for heat maps 
that show how gazes were spatially distributed over the presented digital task sheets. 
We thus disregard information about the order in which the students looked at the task 
and consider how long the students paid attention to certain areas only relative to the 
total duration of the task. To compute the individual students’ heat maps, we use the 
Tobii Pro Lab Software and aggregate all gazes (not only fixations). We only include 
heat maps of correctly or inversely (common mistake in German) solved tasks for 
further analyses (e.g., for 68: “sixty eight” or “eighty six”), since we intend to sort out 
instances where students guessed rather than perceived the given information. 
AI and pattern recognition methods. In order to assess which tasks’ heat maps allow 
separating TD students from MD students, a Multivariate Analysis of Variances 
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(MANOVA) (Morrison, 2005) is performed. MANOVA is closely related to Linear 
Discriminant Analysis (LDA) (Izenman, 2013). Both methods are based on the same 
mathematical transformation but offer different interpretations of the results. 
Unfortunately, it is not possible to use the heat maps directly for the analysis as the 
dimensionality of the input data that can be processed applying this method is limited 
by the available number of samples. Each heat map image represents a single point in 
a 2764800 (=1280*720*3, width*height*color) dimensional space. Therefore, it is 
necessary to compress the data contained in the heat maps into a lower dimensional 
space (fewer dimensions than students) before applying the MANOVA.  
To this end, grayscale images are used, reducing dimensionality by one third. Then a 
Principal Component Analysis (PCA) (Abdi & Williams, 2010) is performed. PCA 
generates a new orthogonal coordinate system along the directions of high variance in 
the original data and achieves compression by dropping dimensions with the lowest 
variances. Intuitively speaking, those parts of the heat maps that look the same for 
every student, i.e., show low variance, are removed as they contain no information 
about group discrimination. 50 dimensions are chosen as target dimensionality in order 
to have at least 50 examples for both classes available, since the number of samples 
per class has to be higher than the dimensionality for some statistical tests in the 
MANOVA space. Through the use of 50 dimensions, 91% of the information was 
preserved on average in the compressed representation. 
The heat maps, including those from AR students in the HRT test, are used to calculate 
the compression as the aim is to preserve all possibly occurring heat maps in the 
reduced space. Before the next step, the actual LDA/MANOVA, the heat maps of the 
AR students are removed from the data set to investigate differences between MD und 
TD students. The LDA/MANOVA can be understood as another compression method 
with the goal to maximize linear separability between the classes, i.e., TD and MD 
students, in the reduced space. Since we are considering a two-class problem, this step 
reduces to a single dimension (see the processing pipeline in Fig. 1).   

 

Figure 1: Pattern recognition system.  
RESULTS 
For pursuing the question if the spatial gaze patterns in quantity recognition differ 
between groups on task level, we used t-tests on the remaining dimension after PCA 
and LDA (Fig. 1). The group differences (MD vs. TD) were significant on a p<.01 
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level for all tasks, confirming significant differences between the groups’ spatial gaze 
pattern data for each task. Yet, significant group differences do not guarantee for linear 
separability, since the actual performance of a classifier depends on the overlap of both 
data distributions. It is common practice for pattern recognition systems to report error 
rates as a practical assessment of how well groups can be distinguished, not just 
whether the differences are significant from a statistical point of view. Hence, we 
performed an actual classification on the given data to assess with what error rate it is 
actually possible to discriminate between the two groups. We report the Balanced Error 
Rate (BER) for a linear classifier using 3-fold cross validation (Kohavi, 1995). The 
BER is calculated according to 𝐵𝐸𝑅 = U

.
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}, with fn – number of false 
negatives, tp – number of true positives, fp – number of false positives, and tn – number 
of true negatives. A BER of 5% means that the average number of students wrongly 
classified is 5% of all samples. Any classifier that would assign classes by chance 
achieves a BER of 50%. The BERs are provided in Table 1. 

task 7 15 20 31 43 54 68 76 89 92 100 
dot 
field 15.93% 18.20% 28.26% 10.19% 8.96% 16.71% 12.99% 9.42% 5.96% 18.95% 18.93% 

abacus 18.05% 17.40% 14.14% 16.41% 17.32% 21.32% 4.88% 12.11% 9.73% 13.79% 17.91% 

Table 1: Balanced Error Rates per task separating TD and MD students. 
Certain quantities have low BERs in both representations: For these tasks, the 
percentage of wrongly classified students is low and the students’ gazes differ 
substantially on group level. For 43, 68, 76, and 89 we found BERs of below 10% in 
at least one representation. For other quantities (e.g., 20), BERs are higher, indicating 
less pronounced, but still relevant differences between the groups of students in these 
tasks. 

   

 
Figure 2: Average heat maps and difference maps for 89 
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Through average heat maps, the group differences in students’ spatial gaze patterns can 
be visualized (Fig. 2; Note: Heat maps have warmer colors where the students looked 
at more often, and difference maps visualize the group differences of the gazes: the 
brighter the bigger the differences in the respective area; maps self-produced by 
authors). As can be seen in the examples, MD students’ gazes appear to be more on the 
right edge of the dots/beads.  
DISCUSSION 
The aim of this paper was to investigate group differences in students’ gaze patterns 
when determining quantities in structured whole number representations. We used 
pattern recognition from AI to find differences in students’ spatial gaze patterns on the 
100-abacus and dot field—in eleven tasks per representation.  
Looking at statistical comparisons, we found that the spatial gaze patterns in quantity 
recognition on the abacus and dot field differed significantly between MD and TD 
students for all tasks. In every task, when determining quantities of 89, 54, or 7, the 
groups’ gaze distributions on the (digital) task sheets were significantly different. 
Calculating furthermore error rates (BER in particular), we found that every task 
contains exploitable information to separate MD from TD students (i.e., for none of 
the tasks the classifier came close to 50%, i.e., guessing). In summary, through AI we 
found that the groups’ gazes differed—substantially in some tasks. This result may hint 
at different strategy uses of the groups of students. This is in line with results from 
previous explorative, qualitative studies which revealed that MD students tend to use 
other strategies on such representations than TD students (Rottmann & Schipper, 2002; 
Schindler et al., 2019). In our study, the visualizations of average heat maps 
(cumulative heat map of all MD/TD students, see Fig. 2) helped to understand group 
differences. These visualizations shed light on the students’ spatial gaze distributions 
on the task sheets and indicate that MD might count rows more often than TD students. 
Besides these empirical findings, our results indicate what tasks (quantities) might be 
most adequate for identifying students with MD. Our results do not suggest that the 
abacus is better suited than the dot field or vice-versa, but instead certain tasks produce 
the lowest errors of our pattern recognition system—often in both representations. 
While the lower error rates (e.g., for 89) are promising, the results indicate that a highly 
reliable classification based on a single task is hard to achieve—and also not reasonable 
from a pedagogical perspective. Future research should investigate what a reasonable 
set of tasks may look like to perform a classification with high confidence. This would 
help identifying students’ needs in order to support them adequately. 
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