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Uncertainty and Fuzzy Modeling in Human-robot Navigation

Rainer Palm and Achim J. Lilienthal
AASS, Dept. of Technologyrebro University, SE-70182rebro, Sweden

Keywords:  Human-robot Interaction, Navigation, Fuzzy Modeling, Gaussian Noise.

Abstract: The interaction between humans and mobile robots in shared areas requires a high level of safety especially
at the crossings of the trajectories of humans and robots. We discuss the intersection calculation and its
fuzzy version in the context of human-robot navigation with respect to noise information. Based on known
parameters of the Gaussian input distributions at the orientations of human and robot the parameters of the
output distributions at the intersection are to be found by analytical and fuzzy calculation. Furthermore the
inverse task is discussed where the parameters of the output distributions are given and the parameters of the
input distributions are searched. For larger standard deviations of the orientation signals we suggest mixed
Gaussian models as approximation of nonlinear distributions.

1 INTRODUCTION get tracking approach for robots and other agents are
discussed from the point of view of a higher control
Activities of human operators and mobile robots in control level. In our paper we concentrate on the one-
shared areas require a high degree of system stabiltobot one-human case in order to go deeper into the
ity and security. Planning of mobile robot tasks, problem of accuracy and collision avoidance in the
navigation and obstacle avoidance were major re- case of short distances between the acting agents. De-
search activities for many years (Khatib, 1985; Firl, pending on the distance between human and robot,
2014; Palm and Lilienthal, 2018). Using the same uncertainties in the orientation between human and
workspace at the same time requires adapting the be+obot with standard deviations of more than one de-
havior of human agents and robots to facilitate suc- gree can lead to high uncertainties at the points of
cessful collaboration or support separate work for intersection. For security reasons and for effective
both. (O.H.Hamid and N.L.Smith, 2017) present a cooperation between human and robot, it is therefore
general discussion on robot-human interactions with essential to predict uncertainties at possible crossing
the emphasis on cooperation. In this context, recog- points. The relationship between the position and ori-
nizing human intentions to achieve a particular goal entation of the human/robot and the intersection coor-
is an important issue reported by (Tahboub, 2006; dinates is non-linear, but can be linearized under cer-
Fraichard et al., 2014; Palm et al., 2016; Palm and tain constraints. This is especially true if we only con-
lliev, 2007). The problem of crossing trajectories be- sider the linear part of correlation between input and
tween humans and robots is addressed by Bruce etoutput of a nonlinear transfer element (R.Palm and
al. who describe a planned human - robot rendezvousDriankov, 1993; Banelli, 2013) and for small stan-
at an intersection zone (Bruce et al., 2015). In this dard deviations at the input. For fuzzy systems two
connection the goal to achieve more natural human- main directions to deal with uncertain system inputs
robot interactions is obtained by human-like sensor are the following: One direction is the processing
systems as they share their functional principle with of fuzzy inputs (inputs that are fuzzy sets) in fuzzy
natural systems (Robertsson et al., 2007; Palm andsystems (R.Palm and Driankov, 1994; L.Foulloy and
lliev, 2006; Kassner et al., 2014). Based on an es- S.Galichet, 2003; H.Hellendoorn and R.Palm, 1994).
timate of the positions and orientations of robot and Another direction is the fuzzy reasoning with proba-
human, the intersections of the intended linear trajec- bilistic inputs (Yager and Filev, 1994) and the trans-
tories of robot and human are calculated. Due to sys- formation of probabilistic distributions into fuzzy sets
tem uncertainties and observation noise, the intersec-(Pota et al., 2011). Both approaches fail more or less
tion estimates are also corrupted by noise. In (W.Luo to solve the practical problem of processing a proba-
et al., 2014) and (J.Chen et al., 2018) a multiple tar- bilistic distribution through a static nonlinear system
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Uncertainty and Fuzzy Modeling in Human-robot Navigation

that is both analytically and fuzzily described. The (xy;yn) andxg = ( Xg;yRr) are the position of human
motivation to deal with uncertain/fuzzy inputs in an and robot and iy andf  their orientation angles (see
analytical way is to predict future situations such as Figs. 1 and 2).

collisions at speci ¢ areas and to use this information

for feed forward control actions and re-planning of

trajectories. In the case of a static fuzzy system we

have to deal with fuzzy problems twofold: the fuzzy

system itself in form of a set of fuzzy rules and an in-

put signal being interpreted as fuzzy input. This is es-

pecially important when human agents come into play

whose intentions, actions and reactions are dif cult to

predict and interpret by a robot. There are many is-

sues to consider in this context but the point to avoid

collisions or enable cooperations between human and

robot is one of the basic issues that is going to be dis-

cussed. Therefore in this paper we address the fol-

lowing direct task given the parameters of Gaussian

distributions at the input of a fuzzy system, nd the

corresponding parameters of the output distributions.

Theinverse taskneans: Given the output distribution

parameters, nd the input distribution parameters. An

application is the bearing task for intersections of pos-

sible trajectories emanating from different positions

for the same target. In the following we restrict our

consideration to the static case in order to show the

general problems and dif culties. In the context of Figure 1: Human-robot scenario.

larger standard deviations at the input, we address the

case of mixed Gaussian distributions. The paper is  Then we have the relations

organized as follows. Section 2 deals with Gaussian
noise and the bearing problem in general and its an-
alytical approach. In Section 3 the inverse problem YH = YR+ druSIN(f r+ dR) 1)
is addressed that is to nd the input distribution pa- XR = Xq + drpcogf 4 + dn)

rameters while the output parameters are given. Sec- _ :

tion 4 deals with the local linear fuzzy approximation YR= i+ OrrSin(f i+ du)
of the nonlinear analytical calculation. In Section 5 where positive angledy anddg are measured from
the extension from two orientation inputs to another they coordinates counterclockwise. Andbe= p

four position inputs is discussed. In Section 6 mixed dr dy is the angle at the intersection.

Gaussian distributions and their contribution to the in- The variablexy, Xg, f r, dn, dr, dry and the an-
tersection problem are presented. Section 7 deals withgle g are supposed to be measurable. The unknown
simulations to show the in uence of the resolution of orientation anglé ; is computed by

the fuzzy system on the accuracy at the system output. .

Finally, Section 8 concludes the paper. fru=arcsi(yn yr)=dre) di+p  (2)

After some substitutions we obtain the coordinates
Xc andy, straight forward

X4 = Xr+ drucogfr+ dr)

2 GAUSSIAN NOISE AND THE
BEARING PROBLEM % = A B

tanfr tanfy
Atanfy Btanfr

2.1 Computation of Intersections - Yo7 “anfp tanfy 3)
Analytical Approach A = xgtanfr YR
B = xutanfy yH

The following computation deals with the intersection
(Xc; Yc) of two linear pathxg(t) andxy (t) in a plane

along which robot and human intend to mowe, = Rewriting (3) leads to
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Figure 3: Camera geometry.

From the robot's point of view a picture from the

scene is taken from which we obtain a projection of
the human image onto the camera screen(see Fig. 3).
From the focal lengtHiengtn, the widthD of the screen
and the distanca, an anglalr is computed

dr = arctarf(D=2 a)=fiengtn) (6)

from which the orientation angliey of the human is

Figure 2: Human-robot scenario: geometry.

X = XR% yR1 XH% )/H1
G G G G
_ tanf gtanf y4 tanf 4
Ye = G G
y tanf y GtanfR » tang @
G = tanfr tanfy

which is a form that can be used for the fuzzi cation
of (3)

Having a look at (4) we see thag = (Xc;Ye)' is
linear inXrH = ( XR; YR XH; YH) T

Xc = ARH XRH %)
where
Arn = f(fRifH) =
1 tanf g 1 tanf 4 1
G tanfgrtanfy tanf 4 tanf gtanfy  tanfpy

To achieve the orientation of the human operator
a scenario is recorded by human eye tracking plus a
corresponding camera picture that is taken from the
human's position and sent to the robot (Palm and
Lilienthal, 2018). The robot measures its own posi-
tion/orientation and the human's position. From the
human's screen-shot the robot calculates
- orientation of human
- expected intersection
- direction of human's gaze to robot or object
- position of object

298

calculated (see also Fig. 2) and (2)

The TS-fuzzy approximation of (5) is given by

(Palm and Lilienthal, 2018)

Xc = éWi(f RIWj(fH) ARrHi;j XrH 7)
1)

wi(fr);wj(fn) 2 [0;1] are normalized member-

ship functions withé; wi(fr) = 1 anda ; w;(fn) = 1.
The following paragraph deals with the accuracy of
the computed intersection in the case of distorted ori-
entation information.

2.2 Transformation of Gaussian

Distributions

2.2.1 General Considerations

Let us consider a static nonlinear system

z=F(X) (8)
with two inputs x = (x1;x2)T and two outputs

z=(z,2)" whereF denotes a nonlinear system. Let
further the uncorrelated Gaussian distributed inguts

andx, be described by the 2-dim density

}e§1+i

g2 2
2°sy, sy,

1
zps Xls X2

X1, X1 - mearfxy), Sy, - standard
X2, X2 - mearfxz), Sy, -

fxixo = exf( ) )
whereey, = X1

deviationx; andey, = X

standard deviatioRr,.
The question arises how the output sigraland

2z, are distributed in order to obtain their standard de-

viations and the correlation coef cient between the
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outputs. For linear systems Gaussian distributions are  Differentiating (4) withxgy = const yields
linearly transformed which means that the output sig-

nals are also Gaussian distributed. In general, this =Jf o
does not apply for nonlinear system as in our case. f=(fr fu)T: J= Jir 12 (15)
However, if we assume the input standard deviations ' o1 J22
small enough then we can construct local linear trans-
fer functions for which the output distributions are where
Gaussian distributed but with correlated output com-
ponents. v tanfu 1 tarf XRH
1 Ju H H G2 cogfr
fa2, = 4 (10) f, = taffr 1 tanfr 1 —R”d__
2pszSz, 1 13, T2 R R G2 co2fn
1 e% e% 2r 2,62, €, J~21 = J~11 tanf y
exy 2 2 ( 2 ) J = Jpp tanfr
1 rg,) s S S2Sz 22 12
r ., - correlation coef cient. 2.2.4 Output Distribution
2.2.2 Differential Approach To obtain the densityf,,.;, of the output signal we
invert (13) and substitute the entriesegfinto (9)
Function F can be described by individual smooth and _ 3 (16)
nonlinear static transfer functions (see block scheme &=J&
4) where(x;x2) = (fr;Th) and(z1;22) = ( Xe; Ye) withJ=J *and
71 = fi(xiix2) gz o J2 e 17)
2= fa(x1;%2) (11) a1 g2 Iyz
Linearization of (11) yields wherejx; = (J11;J12) andjy; = (Jo1; o2). Entriesd;;

dz=J dx or e=J e 12) are the re_sult of the inversion df From this substi-
tution which we get

with

fX1 X2 T KX1 X2

1 d . i
exf 5 ezT (Jxl;zT;sz;ZT) S(l }Xliz e) (18)
X2,Z

e =(ey56,)" and ec=(6q;84)" (13)
dz=(dz;dz)" and dx=(dx;dx)"

whereKy, x, = »=—=— and
j= Tf1=Txq; Tf1=Tx2 (14) o zpsxlS)((f 1
T2=1xa; Tf2=1%2 &0
=@ 1y A (19)
03
Sk
The exponent of (18) is rewritten into
_ 1 2
Figure 4: Differential transformation. Xpo= > (ST(ezlJll"' €7,J12)
X1
1
2.2.3 Speci c Approach to the Intersection + 57(9@121+ €,92)%) (20)
X2
In addition to the exact solution (4) we look at the and furthermore
differential approach. This is important if the con- )
tributing agents change their directions of motion. A, o 1 [eg(Ju 321) e%(JlZ Jzz)+
further aspect is to quantify the uncertainty>qfin s%,  S% s%,  S%
the presence uncertain angfesandf y or in Xgy = J1di2 1o
2 + 21
(XR; YR XH; YH) T 8l s% s%, ! &)
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Now, we compare xpo in (21) with the exponent With
in (10) of the output density (10) &6, =(J~11%+ J~1zes<2) (J~21€s<1+ J~22€s<2);

Let TiTs 15
& J'S Jec=
A=( ‘J121 + ‘]221)- B=( ‘J122 + ‘]222) jj%l ‘]21 le
S)2(1 S%z S>2(1 S§2 651(3724- S eﬁ (
c=( \111\112+ 321\]22) (22) : J1d: J J
X s%, + 264,66 ( oot 22) 27)

s2 s,
then a comparison of xpo in (21) and the exponent in \ye gbtain for the exponerxtpoz
(10) yields

J
Xpo, =
1 i:A; 1 1_g P 2(1 r%lz (ei(sgl s§2
T 12)s2 @ 12)s2 > 2 P
11912 21922
oo 1 o (23) efz(%’“ %)J’ 28080(—5 * ~o2 )
(1 r%z) 321522 Y4\ V)
2r 210
. . . Ji +J J; +J 28
from which we nally get the correlation coef cient szlsZZ( 18y + Ji280) (Brey + 2oey)) (28)

r z,, and the standard deviatiosg, ands, and further

C

= P= 32 32 25, ~ ~

Mz, B Xpo, = 7(e>2< ( 1 4 S221 s ;12 JllJZl):(l rglz)

1 c? 1 c? zoTaTE

—=A —; =B — (24) 32, B, 2, . -

s2 B s2 A eg( 12 4 % —22 3001 12)

S2  SzSy
So once we have obtained the parameters of the 26, &, (J~11J~12 Jo1d2
input distribution and the mathematical expression for a r %12) s2 s2
the transfer functio (x;y) we can compute the out- . N
put distribution parameters directly. %52 (J11d22+ J12321)))
(29)

3 INVERSE SOLUTION Now, comparing (29) with the exponent of (10) of

the input density we nd that the mixed term in (29)
In the previous presentation we discussed the prob-should be zero from which we obtain the correlation
lem: Given the parameters of the input distributions coef cient and the standard deviations of the inputs
of a nonlinear system, nd the parameters of the out-
put dlstnbgyons. In a bearing task that runs from dif- _ dide . 3 S2Sz
ferent positions for the same target it might be helpful ra,=(—5—+ -5 = T
S s3, * (Jiadoa+ J12J21)
to de ne a particular bearing accuracy while nding o
out the necessary accuracy of the bearing instruments 1 _ (£+ Iy g, Fad)=(1 r2 31
2 11 21)_( r 212) ( )
with regard their bearing angles. S A 7252
This inverse task we apply is similar to that we dis- 1 2 32 or o
cussed in section 2.2.2. The starting point is equation — =( 22+ =2 —223,5)=(1 rZ)) (32)
(13). Equations (10) describe the densities of the in- z 252
puts and the outputs, respectively. Then we substitute

13) into (10) and di th I
(13) into ( )an iscuss the exponepio, only 4 EUZZY SOLUTION

30)

~ 2r 2,,€7, €
— TiTe 1 212%2) =22
Xpe= ——5—(&'J Jeg —*2—=72) (25
P 2(1 r%z ( = $2Sz ) (25) The previous presentation shows that the computa-
here tion of the output distribution can be associated with
w 0 1 high costs which might be problematic especially in
10 the on-line case. Provided that an analytical represen-
SZ @ (S) % A (26) tation (8) is available then we can build a TS fuzzy

g, model by the following rule®;;
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0 1
s2 0 = 0
R'J (33) Ol S2 0 §
_ W
IF X1=Xii AND %= X Se= % oo
. 2
THEN r212: CI] 0 0 SXe
AijBij The output density is again described by
AND
1 Cf 1
—=An L froye = ——P— 37
S%l A” Bij < ZPchSyc 1 r? ( )
AND 1 Te 1 2r .8y,
1 _ . Cizj exy( 21 r?) (&S & xSy, )
352 ! Aij r - correlation coef cient.
whereXyj; Xo; are fuzzy terms foxy; Xz, Ajj;Bij;Cij In cor_respondence to (8) and (11) function F can
are functions of prede ned variables= xi; andx, = be described by
X2i
From (33) we get X = f1(X) (38)
C. Yo = fa(x)
fz,= QW (Xl)Wj(Xz)Pﬁ Furthermore we have in correspondence to (15)
ij ibij
1 _» G =3 (39)
o2 - awl)w()(A; 57) (34) &c = &
Sa i .
with
L= woawita®; o)
g (Wi () (B~ p— -
s% i l : 1A j=  dun Jd2 oo Jie (40)
Wi(x1) 2 [0;1] andw;(xp) 2 [0;1] are weighting for Jez e
functions withd; wi(x1) = 1&;wj(xz) = 1 where
7,_ﬂfi. . - u=ik WL
Ji= T =12 ;j=1u56 (41)

5 EXTENSION TO SIX INPUTS
AND TWO OUTPUTS

Inversion of (40) leads to
— 1t —

The previous section dealt with two orientation inputs &=J & =J & (42)
and two intersection position outputs where the posi- with the pseudo invers# = J of J
tion coordinates of robot and human are assumed to
be constant. Let us again consider the nonlinear sys- 0 I I 1
tem J=@ ;o A (43)
Xe= F(X) (35) Y1 Je2
where F denotes a nonlinear system. Here we where
have 6 inputsx = ( X1;X2; X3;X4; X5, %) T and 2 out-

putsxc = (Xc;Ye)'. For the bearing problem we get S%;o
X = (fRif HIXR; YR XH: YH) S'= g (44)
Let further the uncorrelated Gaussian distributed 'sf
inputsx; ... Xg be described by the 6-dim density Substituting (39) into (36) we obtain
fo= oy e 567 '8)  (36) Lo T3, 1
T (2p)62S 12 2 fxeye = KxcBXH E(Q(c IS “Je.)) (45)
whereey, = (&x1;6x2; 5 6) | & = X X, X - meank), where K, represents a normalization of the output
S, - covariance matrix. density and
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several distributions with small standard deviations,
where the linearization of the fuzzy system around

A B
Je =378 W= cC D their mean values applies. The following analysis ap-
plies with the analytical approach and the fuzzy ap-
where proximation too. Let us concentrate on an example of
51 51 a mixture of two distributions/densitieigy, and fy,
A= a TJizl; B=a J1d2 (46)
i=1 5% i=15% L L& @
6 6 — 1 1
o 1 o 1 fog = ——expg = (= + == 49
C=a s D=a 5% 7 s O 2 S% Sy »o w9
i:lSXi i=1°X
Substitution of (46) into (45) leads witd= C to B 1 1 932 952
fxye = ﬁexr( 552 ) (50)
1 PSx,Sy2 X2 Sy
Freiye = Kic@XH E(Aeiﬁ De§c+ 2C8.8)) (47) that are linearly combined
Comparison of (47) with (37) leads with (44) to
fxy: a1 fxyl+ a fxyg (51)
C with gy >= 0 anda;a = 1 wherei = 1;2
r = —
Pﬁ and
1 cz 1 C?
sz - Ao 2P 48 6 =X X €&,=X X

81=Y1 Y. &2=Y2 Y2
Xi;yi are the mean values &f; ;.

which is the counterpart to the 2 dim input case (24).

5.1 Fuzzy Approach The partial outputs yield

The rst step is to compute values;, B; and G i 1

from (46) at prede ned positions/orientations= friz = — 9 > (52)
(X1; X2; X3; Xa; %5 X6) T . Then, we formulate fuzzy rules 2psysy, 1 r!

Ri, according to (33) and (34) witi= 1:::n, | - num- 2 j 2 il g

ber of fuzzy termsk = 6 - number of variables = 1X ex ;_2( e’_le + e'%zz %))

- number of rules. With such an increase in the num- 2(1 r'%) sy, s, SuS%

ber of inputs, one unfortunately sees the problem of . Y B - ) .
an exponential increase in the number of rules, which €=z Z,€,=2 Z;r'-correlation coef cient.

is associated with a very high computational burden. ~ From this we nally obtain the output distribution
For| = 7 fuzzy terms for each input variabie,

k= 6 we end up withn = 75 rules which is much 2

to high to deal with in a reasonable way. So, one faiz, = Q &ifyy (53)

has to restrict to a reasonable number of variables at =1

the input of a fuzzy system. This can be done ei- The mixed output distributioriz, .z, is a linear com-
ther in a heuristic or systematic way (J.Schaefer and bination of partial output distributions, ., as a re-
K.Strimmer, 2005) to nd out the most in uential in- — sylt of the input distributionsf},. Given the mean
put variables which is however not the issue of this

Pl — 1 ; i 2 ; .
paper. Z:;k= 1,2 and variancs,, -~ of the partial output dis

tributions f;l;ZZ. Then we nd for mean and variance
of the mixed output distribution

6 MIXED GAUSSIAN
DISTRIBUTIONS Z

2
a z (54)
i=1

For input signals with larger standard Qeviations_one s, 2 = al(SZkl)2+ az(Szkz)2+ aa(zn )2
cannot assume that the fuzzy system is almost linear _ _ o
within the operating area. For this reason a distribu-  from which we obtain the standard deviatisp
tion with large standard deviation is approximated by Of the intersection straight forward.
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7 SIMULATION RESULTS Table 1: Standard deviations, fuzzy and non-fuzzy results.
[ inputstd | 0.02 Gauss, bell shaped (GB) | Gauss | 0.05GB |
Gaussian |nput Distributions. | sectorsize/ | 60 [ 30 [ 15 [ 75 | 75 [ 75 |
nOn-fuZZSZlC 0.143 0.140 0.138 0.125 0.144 0.366

i i fuzz Sz, 0.220 0.184 | 0.140 | 0.126 0.144 0.367
Based on the human-robot intersection example, the[ non-fuzzs,, | 0.160 | 0.144 | 0.138 | 0126 | 0142 | 0368
following simulation results show the feasibility to 225y, | 0555 | 0224 | 0061 ] 0225 | 0164 | 0381

d- t t . t t bl . t t b non-fuzstZC 0.128 0.132 | 0.123 | 0.114 0.124 0.303
predict uncertainties at possible intersections by us- —gs_ o R el o B e B

ing analytical and/or fuzzy models for a static situa- [ nonfuzzs;, | 0134 | 0120 | 0123 | 013 | 0129 | 0310

tion (see g. 2)). Position/orientation of robot and MzzSzy | 0599 | 0171 ] 0034 ] 0154 ] 0139 | 0325
human are given byR — ( XR'yR) — ( 2 O)m andXH - nofn-fuzzr 210¢ 0.576 0.541 0.588 0.561 0.623 0.669

’ ’ UzZZr 705 -0.263 0.272 0.478 0.506 0.592 0.592
(XH;YH) =(4,10m andf g= 1:78 rad,(= 102 ), and non-fuzzr 5, | 0572 | 0459 | 0.586 | 0549 | 0.660 | 0.667
f b= 369 rad, (: 212 ) f R andf Hare Corrupted fuZZrzlzm 0.380 0.575 0.990 0.711 0.635 0.592

with Gaussian noise with standard deviations (std)
of sf; = Sy, = 0:02 rad, (= 1:1). We compared
the fuzzy approach with the analytical non-fuzzy ap-
proach using partitions of 6030 ;15 ;7:5 of the
unit circle for the orientations with results shown in
table 1 and gures 5-8. Notations in table 1 asg; .

- std-computeds, ., - std-measured etc. The num-
bers show two general results:

1. Higher resolutions lead to better results.

2. The performance regarding measured and com-
puted values depends on the shape of membership

functions (mf's). Lower input std's (0.02 rad) require

Gaussian mf's, higher input std's (0.05 rad 99

require Gaussian bell shape mf's which can be ex-

plained by different smoothing effects (see columns 4

and 5 in table 1).

Results 1 and 2 can be explained by the comparison of

the corresponding control surfaces and the measure-

ments (black and red dots) to be seen in gures 9 - Figure 7: Sector size: 15 Figure 8: Sector size: 7.5

Figure 5: Sector size: 60 Figure 6: Sector size: 30
deg. deg.

13. Figure 9 displays the control surfacesndy, deg. deg.
for the analytical case (4). The control surfaces of the
fuzzy approximations (7) (see (Palm and Lilienthal, The following computed non-fuzzy and fuzzy (su-

2018)) are depicted in gures 10 - 13. Starting from perscriptF) and measured numbers (superscript
the resolution 60( g. 10) we see a very high devia- according to (54) show the correctness of the previ-
tion compared to the analytic approach ( g. 9) which ous analysis for the analytical case.
decreases more and more down to resolutién (7g.

= 0:487; Z = 0:413; Z'= 0:485

13). This explains the high deviations in standard de- 2

viations and correlation coef cients in particular for = T746; % =7T737;, &=7737
sector sizes 60and 30. Sy = 0222, s,"=0235 s,M=0:199
Mixed Gaussian Distributions. S;, = 0184; 5,7 =0184; s;,m=0:178

Due to larger uncertainties of the orientations of

robot and human we assume the input signals to

be a mixture of two Gaussian distributions with the

following parameters:

fri=1.779 rad,(102 deg}t,, = 0.02 rad

f 1= 3.698 rad,(212 degys,,, = 0.02 rad

f rp=1.762 rad,(101 deg}s,, = 0.03 rad

fHo=3.716 rad,(213 deg}s,,, = 0.03 rad

Sz, = 0.1300 rads,,, = 0.1157 rad Figure 9: Control surface non-fuzzy.
Sz, =0.2274 rads 4, = 0.1978 rad
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are dif cult to predict and interpret by a robot. We
discussed the problem of intersections of trajectories
in human-robot systems with respect to uncertainties
that are modeled by Gaussian noise on the orienta-
tions of human and robot. This problem is solved by
a transformation from human-robot orientations to in-
tersection coordinates using a geometrical model and
Figure 10: Control surface Figure 11: Control surface its TS fuzzy version. Based on the input standard de-
fuzzy, 60. fuzzy, 30. viations of the orientations of human and robot, the
output standard deviations of the intersection coordi-
nates are calculated. The analysis was performed un-
der the condition that the nominal position/orientation
of robot and human are constant and known. The
measurements of their orientations are distorted by
Gaussian noise with known parameters. This analy-
sis together with the fuzzy extension also applies to
robots and humans in motion, as long as the positions
of robots and humans can be reliably estimated. We
also extended our method to six inputs and two out-

Figures 14 and 15 show the regarding input and PUts which includes human/robot positions as well.
output densities where Figs. 16 and 17 depict the scat-FOr the analytical and the fuzzy version of two-input
ter diagrams (cuts at certain density levels). Finally it €@se the following inverse task can also be solved:

turns out that the fuzzy approximation is suf ciently 9iven the standard deviation _for _the intersection co-
accurate. ordinates, nd the corresponding input standard devi-

ations for the orientations of robot and human. For
larger standard deviations of the orientation signals
the method is nally extended to mixed Gaussian dis-
tributions. In summary, predicting the accuracy of
human-robot cooperation at a small distance using the
methods presented in this paper increases the system
performance and human safety of human-robot col-
laboration. In future work this method will be used

Figure 14: Mixed Gaussiarrigure 15: Mixed Gaussian, for robot—humap sc_ene}rios in faptory works_hops and

input. output. for robots working in dif cult environments like res-
cue robots in cooperation with human operators.

Figure 12: Control surface Figure 13: Control surface
fuzzy, 15. fuzzy, 75 .
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