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ABSTRACT Gas source localization (including gas source declaration) is critical for environmental 

monitoring, pollution control and chemical safety. In this paper we approach the gas source declaration 

problem by constructing a tetrahedron, each vertex of which consists of a gas sensor and a three-

dimensional (3D) anemometer. With this setup, the space sampled around a gas source can be divided into 

two categories, i.e. inside (“source in”) and outside (“source out”) the tetrahedron, posing gas source 

declaration as a classification problem. For the declaration of the “source in” or “source out” cases, we 

propose to directly take raw gas concentration and wind measurement data as features, and apply a median 

value filtering based extreme learning machine (M-ELM) method. Our experimental results show the 

efficacy of the proposed method, yielding accuracies of 93.2% and 100% for gas source declaration in the 

regular and irregular tetrahedron experiments, respectively. These results are better than that of the ELM-

MFC (mass flux criterion) and other variants of ELM algorithms. 

INDEX TERMS Gas source declaration, tetrahedron, gas concentration measurement, wind information, 

extreme learning machine, median value filtering. 

I. INTRODUCTION 

Localization (including declaration) of hazardous or 

flammable gas leakages is of great significance in 

environmental monitoring, security of large factory 

warehouses, investigation of fire sources, inspection of 

prohibited items such as drugs, and search and rescue of 

disaster survivors [1]-[5]. 

Gas sources can be localized using manually collected 

gas measurements [6]. However, for reasons of personnel 

safety, locating (including declaring) the gas source by 

search teams is in many cases not a viable solution [7]. 

Accordingly, a quickly deployable, unmanned measurement 

device is needed. Researchers started to study robots for gas 

source localization (including declaration) in the early 

1990s [8]–[11]. At present, much source localization 

(including declaration) research based on two-dimensional 

(2D) platforms, e.g., gas sensor networks [12]–[27] and 2D 

robot active olfaction (RAO) [28]–[40], have achieved 

good results. Given that gas diffusion is actually three-

dimensional (3D), it is important to study 3D gas source 

localization (including declaration) [41]–[44]. Ishida et al. 

[45] developed a robotic system based on a blimp to track a 

gas/odor plume three-dimensionally and to search for its 

source. The large balloon of the blimp was employed as 

part of a gas sensing system by placing an array of gas 

sensors distributed over the balloon surface. The sensors 

facing toward the gas source exhibit “active” responses 

whereas the sensors behind the large balloon body show 

“quiet” responses. However, blimps have an unfavorable 

size-to-payload ratio and are heavily affected by wind. 

Rather than a blimp, an unmanned aerial vehicle (UAV) 

was adopted by Kuroki et al. [46]. An expert system for 

contaminant mapping based on a genetic algorithm was 

presented [46]. This method was tested by simulations 

using a Gaussian plume/puff model. Neumann et al. [47, 48] 

used a gas sensitive microdrone to obtain a gas distribution 

map and localize gas sources. Luo et al. [49] designed a 

flying odor compass that can be used for gas plume 

tracking (a step of gas source localization). The compass 

was built on a quadrotor helicopter and contains three gas 

https://mrolab.eu/
https://www.oru.se/english/research/research-environments/ent/AASS/
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sensors. Considering the practical application, this paper 

focuses on gas source declaration in 3D environment. 

To declare a gas source efficiently, it is essential to 

collect wind measurements [50]. In fact, wind vector 

estimation, including wind speed and direction, is very 

important as it can provide valuable information for 

estimating the direction towards the gas source. In a 2D 

environment, in general, accurate wind information can be 

obtained by using anemometers [51, 52]. However, the 

weight of anemometers reduces the available payload and 

the flight time of the flying robots drastically [49]. That is, 

due to the limited payloads, anemometers are not applicable 

for flying robots such as UAVs, microdrones and quadrotor 

helicopters. For this reason some authors have proposed to 

estimate wind information without anemometers. Neumann 

et al. [47] proposed a method to derive an estimate of air 

flow without a dedicated anemometer. That was using the 

UAV controller to compensate for air flow. To track the gas 

source precisely in a windy environment, Wei et al. [6] 

arranged three gas sensors in a regular triangle. Based on 

this sensor placement method, a scale-space method used 

for obtaining the feature information of multi-time scale, a 

feature-point matching algorithm to calculate time series of 

the sensor data and a graphical statistical method to 

estimate the direction of the gas source were presented. Luo 

et al. [49] combined the continuous wavelet with modulus 

maxima algorithm to estimate the direction which the gas 

comes from. 

In summary, for gas source declaration, it is important 

and necessary to study the 3D gas source declaration 

problem, and it is useful to obtain accurate gas 

concentration and wind information. Regarding the 

declaration of 3D gas sources, many types of flying robots 

have been adopted or designed. However, when these 

flying robots are used in practice, they face a number of 

difficulties such as the large disturbance of the rapidly 

rotating rotors to the surrounding airflow, the limited 

accuracy of wind estimation and their short endurance. The 

airflow will be affected by the flying robots, especially the 

gas flow field near the flying robots will be seriously 

disturbed, which affects the judgement of gas concentration 

and impedes flying robots for real-time applications. 

Further, the wind information obtained by the estimation 

algorithms is far less accurate than that measured by an 

anemometer, and the robustness of alternative wind 

estimation methods is not clearly described in the literature. 

Last but not the least, flying robots require sufficient power, 

while it is difficult to provide long-term battery life. 

Therefore, an alternative gas source declaration strategy 

that can be used in 3D environments is required. 

In this paper, the aforementioned limitations of flying 

robots are taken into consideration and a 3D gas source 

declaration approach is proposed using a tetrahedral sensor 

structure without using a flying robot. Each tetrahedral 

vertex is composed of a gas sensor and a 3D anemometer. 

From sequences of measurements with this tetrahedral 

sensor structure we aim to distinguish two cases 

corresponding to the situation where a gas source is inside 

the tetrahedron (“source in”) or not (“source out”). In order 

to use all available information, including the gas 

concentration and wind information, we propose to use the 

raw measured gas concentration and wind data to classify 

“source in” against “source out” cases. For this 

classification, we present in this paper a median value 

filtering based extreme learning machine (M-ELM) method.  

The remainder of this paper is organized as follows. Section 

II describes the tetrahedral arrangement of sensor nodes. 

Section III introduces the hardware setup. Section IV details 

the M-ELM based gas source declaration method. In Section 

V, the experimental results are presented. Section VI 

concludes the paper, and Section VII looks ahead to future 

works. 

II. TETRAHEDRON MODEL 

A. TETRAHEDRON-BASED GAS SOURCE 
DECLARATION 

The purpose of gas source declaration is to determine 

whether a gas source is in the immediate vicinity [29] or 

determine the certainty that the source has been found [33, 

34]. By constructing a tetrahedron of sensor nodes (see Figs. 

1 and 2 (b)), which can be irregular, the gas source 

declaration problem can be converted to a two-class 

classification whether the gas source is inside (“source in” 

case) or outside (“source out” case) the tetrahedron. The 

reason we choose the tetrahedron is that it requires the least 

number of gas sensors and anemometers among all the 3D 

structures, which is the most economical and practical 

approach. 

B. TWO WAYS FOR TETRAHEDRON CONSTRUCTING 

Constructing a tetrahedron from four sensor nodes is the 

hardware basis for the proposed gas source declaration 

method. Here, two theoretical ways for tetrahedron 

construction are presented. One is based on a fixed sensor 
node structure (each sensor node consists of a gas sensor 

and a 3D anemometer), and another one is based on a 

mobile sensor node structure. 

1) Fixed sensor node structure 

Tetrahedral sensor node structures using fixed sensor 

nodes are shown in Fig. 1. Each tetrahedron works 

independently, so multiple gas sources can be detected 

simultaneously by the designed multi-tetrahedral structure. 

2) Mobile Sensor Node Structure 

  To reduce the number of sensor nodes and reduce 

installation and calibration issues in a space with obstacles, 

a structure with mobile sensor nodes was designed, which 

needs only four sensor nodes. Its schematic diagram is 

shown in Fig. 2. 

The hardware of our tetrahedral sensing structure is 

composed of several sensor nodes represented by black 

balls, moved along square grid guide rails installed on the 

roof with pulleys and ropes. Each pulley is installed in a 

movement device (as shown in Fig 2(b)) and connected to 
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Gas source

Sensor node

 
FIGURE 1. Tetrahedral constructions with fixed sensor node structure. 

 

Mobile sensor node structure

 
(a) Gas detection stage                               (b) Tetrahedral construction stage 

FIGURE 2.  Tetrahedral constructions with a mobile sensor node structure. (a) and (b) represent the gas detection stage and the tetrahedral 
construction stage, respectively. 

 

Rotating device

 
FIGURE 3. Through rotation of a movement device, its direction on the rails can be changed. 

 
one end of a rope. The other end of the rope is connected to 

a sensor node composed of a gas sensor and a 3D wind 

anemometer. The height of a sensor node can be controlled 

through driving the pulley by the corresponding movement 

device. As shown in Fig. 3, there is also a rotating device 

that can be rotated within 360 degrees at every grid 
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intersection. In this way, the movement device can change 

its direction.  

  With the device shown in Fig. 3, 3D movements of the 

sensor nodes can be realized. In real-world applications, to 

effectively construct a tetrahedron, an obstacle map and a 

feasible 3D path planning strategy including 2D path 

planning and height adjustment of the sensor nodes are 

needed. The proposed 3D path planning strategy is illustrated 

in the Supporting Information. 

III. EXPERIMENTAL SETUP 

In the current research stage, the tetrahedron-based gas 

source declaration method was experimentally verified, and 

a 3D path planning strategy (as shown in the Supporting 

Information) is verified by simulation. Our experimental 

setup is shown in Fig. 4. Four modules, each consisting of a 

wireless gas sensor and a 3D anemometer, were used as 

vertices to construct a tetrahedral structure. The gas sensor 

model used was a MiCS-5521, and among four 

anemometers, three of them were a Young 81000 model 

and the fourth was a Gill R3-50 model. 

The gas sensors and the anemometers were used to collect 

alcohol volatile, i.e., gas concentrations and wind vectors, 

respectively. The gas sensors were calibrated in a container 

which was filled with ethanol vapor of a controlled 

concentration. Before the experiment, the baseline voltage 

baseV  of each gas sensor was measured in clean air. The gas 

response voltage resV  indicating the measured gas 

concentration was then calculated as resV basesen VV −= , where 

senV  represents the detected sensor voltage. As gas source we 

used a cup containing pure ethanol, which was heated to 

accelerate the evaporation process. The gas concentration 

data was measured with a frequency of 20 Hz, and the 

anemometer data was down-sampled to 20 Hz because of the 

anemometers’ higher output rates. For each tetrahedral vertex, 

four values, i.e., a gas sensor response voltage and three wind 

speed values along the x, y, and z directions can be obtained 

at the same time. In this way, for the four tetrahedral vertices, 

16 values can be obtained at the same time, which we use 

directly as 16 feature values of one sample. 

IV. M-ELM RECOGNITION ALGORITHM 

The tetrahedron-based gas source declaration procedure is 

illustrated in Fig. 5. The proposed gas source declaration 

methods are described in detail in this section. 

As a classic learning framework, extreme learning 

machine (ELM) has been extended to different research 

fields and gained great progresses. An incremental ELM (I-

ELM) was proposed in the following [53], where the hidden 

nodes were randomly generated and the output weights were 

analytically calculated. In the case of online sequential 

learning, an online sequential extreme learning algorithm 

(OS-ELM) was developed [54, 55]. With the OS-ELM, data 

can be learned one-by-one or chunk-by-chunk with fixed or 

varying chunk size and the input data can be processed 

sequentially. Huang et al. [56] extended ELM for both 

semisupervised and unsupervised tasks based on the 

manifold regularization, and the unlabeled or partially 

labeled samples are clustered using ELM. To obtain 

satisfactory feature learning performance, in which the 

original ELM and/or the aforementioned variants may not 

achieve, a multilayer learning architecture using ELM-based 

autoencoder as basic building block, was developed in the 

following [57]. The original inputs were decomposed into 

multiple hidden layers, and the outputs of the previous layer 

were used as the inputs of the current one. Recently, to 

improve on the I-ELM, bidirectional extreme learning 

machines (B-ELMs) were developed in the following [58]. 

The B-ELM separates the odd and even learning steps. At the  

(a) “source in” case (b) “source out” case

Side length a=1m

Wireless gas sensor module

Anemometer: 

Young 81000

Anemometer: 

Gill R3-50

Gas source

Wireless gas sensor module

Gas source

Anemometer: 

Young 81000
Anemometer: 

Gill R3-50

0.65m

Side length a=1m

A

B

C

D

E

 

FIGURE 4. Positional relation between the tetrahedron and the gas source. The gas sensors were attached to a quadrotor helicopter and the quadrotor 
helicopter was placed on top of an anemometer. The panels show the case where a gas source is inside (a) or outside (b) the tetrahedron. 
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odd learning step, a hidden node was added like I-ELM. At 

the even learning step, a new hidden node was added via a 

formula based on the formerly added node results. However, 

some of the hidden nodes generated by the I-ELM may play 

a minor role; thus, the increase in network complexity due to 

the B-ELM may be unnecessary. To avoid this issue, an 

enhanced B-ELM method (referred to as EB-ELM) was 

proposed in the following [59]. Several hidden nodes were 

randomly generated at each odd learning step, however, only 

the nodes with the largest residual error reduction would be 

added to the existing network. 

The main characteristic of ELM and the above improved 

algorithms is that the network weights are random [60]. 

When such algorithms are used for classification, the results 

are also somewhat random. To reduce the randomness of 

the results, we propose to use 50 ELM algorithms at the 

same time and find the median average value of the 50 

ELM output results, termed median value filtering based 

extreme learning machine (M-ELM). 

In this study, the raw measurements at one instance in 

time, including four gas sensor response voltages and 

twelve wind speed values, are fed into the median value 

filtering based extreme learning machine (M-ELM) 

classifying the sixteen features as “source in” or “source 

out”. 

Figure 6 shows the principle of the M-ELM algorithm, 

which is a simple neural network algorithm containing 

three layers, namely, input layer, hidden layer and output 

layer. A detailed explanation of the M-ELM follows. 

(1) Input layer: x is the feature vector which is taken as 

the inputs of the M-ELM algorithm. 

                            (1) 

d is the total number of samples for training or testing. xi 

is the feature vector of the ith sample, and n (n=16 in this 

paper) is the feature dimension. 

(2) Hidden layer: The hidden layer contains a number of 

L neurons (L=20 in this paper) and is fully connected to the 

input layer, see Eq. (2). 

            (2) 

As shown in Fig. 6, wi and bi are the input weight and 

threshold of the ith neuron of the hidden layer, respectively. 

The activation function g(·) is a sigmoid function. 

(3) Output layer: The output layer is fully connected to 

the hidden layer, see Eq. (3), 

                                       (3) 

where 

                                 (4) 

                                   (5) 

m=2 is the class number,  is the transformation matrix 

between the hidden layer and the output layer, and S is an 

transition matrix of the target recognition results. 

When the M-ELM algorithm is used for training, S is 

determined by the training samples: 

         (6) 

Sjl is the class label of the lth position of the jth training 
sample in the matrix S. 

When the M-ELM algorithm is used for testing, S is a 

matrix to be solved. For each sample, two values of Sj1 and 

Sj2 corresponding to the “source in” and “source out” are 

obtained in one recognition process. According to [60], the 

recognition accuracy tended to be stable when the number 

of ELM classifiers [63]-[65] was larger than 50. 

Considering the computational complexity and the stability, 

50 ELM recognitions were performed in the M-ELM 

method, and then 50 Sj1 and Sj2 combinations (recorded as 

 and ) corresponding to 50 

ELMs can be obtained. 

Taking the jth testing sample as an example, writing for 

simplicity,  and  are re-

expressed as vectors  and 

, respectively. The calculation process 

of the recognition result vector c is described in Eqs. (7-10). 

       (7) 

where the function sort(·) sorts all values from small to 

large. The sort values corresponding to “source in” and 

“source out” classes are stored in vectors  and 

, respectively. The effect of median value 

filtering in the M-ELM algorithm is to filter out the 

smallest and largest values in an array or a vector, and then 

average the remaining values. Here, we filter out the 

smallest 5 values and the largest 5 values, and the 

remaining values are averaged. 

                   (8) 

The function ave(·) in Eq. (8) calculates the average 

value of the vector. Finally we decide whether the sample 

belongs to the class “source in” or “source out” using Eq. 

(9): 

                          (9) 

The function argmax(·) returns the position (or label) 

corresponding to the maximum in a vector, and the 

recognition result of the jth testing sample is recorded as . 

For the d testing samples, the recognition results are finally 

stored in a vector c. 

.                                 (10) 

V. EXPERIMENT VALIDATION 

In this section, we examine the performance of the 

proposed method for gas source declaration. 
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A.  Experiment and Data Descriptions 
Regular tetrahedron experiments with different side lengths 

were first carried out in an indoor natural ventilation 

environment. Side lengths of the three regular tetrahedrons 

were set to 1.0 m, 1.5 m and 2.0 m. In each regular 

tetrahedron experiment, 2000 training samples (1000 

“source in” and 1000 “source out”) and 2000 testing 

samples (1000 “source in” and 1000 “source out”) were 

obtained by using an MFC-based sample filter [62]. 

Further, an irregular tetrahedron experiment was carried 

out to verify that the proposed recognition algorithm can 

also work adequately for irregular tetrahedrons. Based on 

the regular tetrahedron with a side length of 1 m (Fig. 4), 

two of the four tetrahedral vertices were moved: one was 

raised by 0.1 m and the other one was lowered by 0.1 m to 

construct an irregular tetrahedron. For the irregular 

tetrahedron experiment, also 2000 training samples (1000 

“source in” and 1000 “source out”) and 2000 testing 

samples (1000 “source in”, 1000 “source out”) were 

collected. For each sample, the raw gas concentration 

measurements (represented by gas sensor response voltages) 

and 3D wind data were used as features for recognition. 

B.  Recognition Accuracy of Regular Tetrahedron 
For gas source declaration, it was shown that using the 

mass flux features, the ELM-MFC (mass flux criterion) 

method can obtain a good recognition performance [62]. In 

this paper, we use a 16-dimensional feature vector 

composed of the gas sensor response voltages and the 3D 

wind speed measurements, and compare several variants of 

ELM algorithms, i.e., the average ELM (AVE-ELM), 

voting ELM (V-ELM), maximum ELM (MAX-ELM), 

minimum (MIN-ELM) and the median value filtering ELM 

(M-ELM). The recognition accuracies in the regular 

tetrahedron experiments are shown in Table I. In Table I, 

DTS indicates the regular tetrahedron experiments with 

different tetrahedron setups. Compared with the regular 

tetrahedron experiment with a side length of 1 m, the 

position of the tetrahedron was moved westward by 1 m 

and moved southward by 1 m. In addition, the tetrahedron 

 
TABLE I 

RECOGNITION ACCURACY (%) OF THE REGULAR TETRAHEDRON 

EXPERIMENT USING DIFFERENT ELM-BASED METHODS 

Methods 

Recognition accuracy (%) with different side length of 

regular tetrahedron 

1m 1.5m 2m DTS1 DGSS2 Average 

ELM-MFC [62] 94.5 93.5 94.0 95.0  85.0  92.4  

AVE-ELM 85.7 96.7 98.2 91.4  76.8  89.7  

V-ELM 80.0 99.0 100 85.7  84.2  89.8  

MAX-ELM 89.2 100 100 92.2  73.0  90.9  

MIN-ELM 89.2 100 100 92.3  73.0  90.9  

M-ELM 91.3 100 100 97.4  77.6  93.2  
1 DTS indicates the regular tetrahedron experiments with different 

tetrahedron setups. 
2 DGSS indicates regular tetrahedron experiments with different gas source 
setups. 

TABLE II 

RECOGNITION ACCURACY (%) OF THE IRREGULAR TETRAHEDRON 

EXPERIMENT USING DIFFERENT ELM-BASED METHODS 

Methods Recognition accuracy (%) 

ELM-MFC [62] 93.5 

AVE-ELM 88.1 

V-ELM 99.3 

MAX-ELM 92.3 

MIN-ELM 91.2 

M-ELM 100 

 

was rotated 180 degrees. DGSS indicates regular 

tetrahedron experiments with different gas source setups. 

Compared with the regular tetrahedron experiment with a 

side length of 1 m, the source for the “source in” case was 

located in the symmetrical position of the original source in 

Fig. 4 (a) with plane ADE (determined by the points A, D 

and E) being the symmetry plane, and the distance between 

the source and the tetrahedron of the “source out” case was 

doubled (i.e., the distance for this experiment was 1.3 m, 

compared with 0.65 m for the experiment in Fig. 4 (b)). 

As can be seen from Table I, based on the raw measured 

data, the M-ELM method yields the best average 

recognition accuracy of 93.2%, better than the other ELM-

based declaration methods and better than the ELM-MFC. 

C.  Recognition Accuracy of Irregular Tetrahedron 
Table I shows that M-ELM yielded the best average 

declaration accuracy in the regular tetrahedron experiments. 

We now ask whether good recognition accuracy can be 

obtained also in the irregular tetrahedron experiments. Here, 

based on the regular tetrahedron with a side length of 1 m, 

two of the four tetrahedral vertices were moved: one was 

raised by 0.1 m and the other one was lowered by 0.1 m to 

construct an irregular tetrahedron. The recognition 

accuracies of the irregular tetrahedron experiments are 

shown in Table II. 

As shown in Table II, the raw measured data plus the M-

ELM method again achieved the best recognition accuracy 

of 100% in the irregular tetrahedron experiments, better 

than the other methods, which further verifies the 

effectiveness of using the M-ELM method operating on the 

raw measurements for tetrahedron-based gas source 

declaration. 

VI. CONCLUSION 

For gas source declaration, we propose to use a tetrahedral 

sensor node arrangement (with each sensor node consisting 

of a gas sensor and an anemometer) and a machine learning 

approach to distinguish whether the gas source is inside (i.e., 

the “source in” case) or outside (i.e., the “source out” case) 

the tetrahedron. We propose the median value filtering 

based extreme learning machine (M-ELM) source 

declaration method to declare the “source in” or the “source 

out” case. We validated the effectiveness of the proposed 

method for gas source declaration in real-world 
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experiments, demonstrating in regular and irregular 

tetrahedron experiments, that the proposed method 

outperforms the ELM-MFC and other variants of ELM 

algorithms in terms of gas source declaration accuracy. 

However, it is worth noting that M-ELM algorithm needs to 

use multiple ELM algorithms at the same time, and the real-

time performance is lower than the classic ELM algorithm. 

Besides, for the measurement of the same gas concentration, 

if the ambient temperature and humidity change, the output 

of the gas sensor may also change. To accurately determine 

whether the gas source is ‘source in’ or ‘source out’, the 

sensor response signals in various situations need to be 

trained and learned. 

We discuss two ways for constructing the tetrahedral 

measurement geometry. One is based on a fixed sensor node 

structure, and the other is based on a mobile sensor node 

structure. For the mobile sensor node structure, a 3D path 

planning strategy was proposed and verified through 

simulations, which provides a valuable guidance for practical 

applications of the proposed gas source declaration methods. 

VI. FUTURE WORK 

A.  Ways for Tetrahedron Constructing 

As illustrated in Section II B, two theoretical ways for 

tetrahedron construction were described in detail. One of 

them was verified by experiments and the other by 

simulation. Both of them use multiple sensor nodes 

simultaneously. We ask whether it is possible to use only 

one sensor node. That is the third option: a single mobile 

sensor that carries out the measurements at the tetrahedron 

position in sequence, not in parallel. Compared to parallel 

sensor nodes, a single sensor node has a time delay when 

traversing four nodes. There is also a delay in the large 

change of the gas mass. In order to obtain accurate gas 

information, the sensor node is required to move at a much 

faster rate than the gas diffusion rate. Therefore, the use of 

a single sensor node is also a possibility, and we will 

conduct corresponding research. 

B.  Irregular Tetrahedron 

Table II illustrates that good recognition accuracy of gas 

source by using an irregular tetrahedron are obtained.  

While based on the regular tetrahedron whose side length is 

1 m, only two sensor nodes were moved by 0.1 m to 

construct an irregular tetrahedron. Given that different 

irregular tetrahedron may exist in actual situations, we will 

continue to study the recognition performance based on 

other irregular tetrahedrons. 

C.  Three-class classification 
Theoretically, there is a situation where the gas source is 

placed on the edge/rail of the tetrahedron, but in practice, the 

more concerned is whether the gas (leak) source is in a 

certain area. Generally, the position of the four tetrahedron 

vertices is adjusted dynamically and the gas source is 

confirmed by the two-class classification method proposed in 

this paper. We will design a three-class classification 

algorithm later to verify situation where the gas source is 

placed on the edge/rail of the tetrahedron through 

experiments. 
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