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Abstract

Thomas Wiedemann (2020): Domain Knowledge Assisted Robotic
Exploration and Source Localization. Orebro Studies in Technology 89.

Deploying mobile robots to explore hazardous environments provides an
advantageous way to avoid threats for human operators. For example, in
situations, where airborne toxic or explosive material is leaking, robots can
be dispatched to localize the leaks. This thesis investigates a novel
exploration strategy to automatically localize such emission sources with
multiple mobile robots that are equipped with sensors to measure the
concentration of the emitted gas.

The problem of localizing gas sources consists of two sub-problems that are
addressed here. First, the thesis develops a method to estimate the source
locations from sequences of localized concentration measurements. This
approach can be also applied in case the measurements are collected by
static sensor networks or human operators. Second, the thesis proposes an
exploration strategy that guides mobile robots to informative measurement
locations. With this strategy, a high level of autonomy is achieved and it is
ensured that the collected measurements help to estimate the sources. As the
main contribution, the proposed approach incorporates prior available
domain knowledge about the gas dispersion process and the environment.
Accordingly, the approach was coined Domain-knowledge Assisted Robotic
Exploration and Source-localization (DARES). Domain knowledge is
incorporated in two ways. First, the advection-diffusion Partial Differential
Equation (PDE) provides a mathematical model of the gas dispersion
process. A Bayesian interpretation of the PDE allows us to estimate the
source distribution and to design the exploration strategy. Second, the
additional assumption is exploited that the sources are sparsely distributed
in the environment, even though we do not know their exact number. The
Bayesian inference approach incorporates this assumption by means of a
sparsity inducing prior.

Simulations and experiments show that the sparsity inducing prior helps to
localize the sources based on fewer measurements compared to not
exploiting the sparsity assumption. Further, the DARES approach results in
efficient measurement patterns of the robots, which tend to start in
downwind regions and move in upwind direction towards the sources where
they cluster their measurements. It is remarkable that this behavior arises
naturally without explicit instructions as a result of including domain
knowledge and the proposed exploration strategy.

Keywords: Mobile Robot Olfaction, Robotic Exploration, Gas
Dispersion Modelling, Bayesian Inference, Sparse Bayesian Learning
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Chapter 1
Introduction

1.1 Motivation: Applications for Model-based
Multi-Robot Exploration

Nowadays most robots are employed in industrial applications, where they take
over repetitive or physically hard tasks in order to relieve human operators.
However, there is another important field of robotic applications with a long
history, but different objectives compared to industrial applications: robotic
exploration. In this field mobile robots are dispatched to explore, inspect or
monitor an unknown area with the goal to gather information. For example,
mobile robots already serve as emissaries of mankind on foreign planets and as
our “eyes” in extraterrestrial exploration missions. Their story of success (and
failures) reaches back to as early as 1970 when for the first time a lunar rover
— Lunokhod 1 — was successfully sent to the moon by the Soviet Union [160].
Also for underwater and deep-sea exploration missions, mobile robots are the
means of choice. A famous early example is the teleoperated underwater robot
CURV-I developed by the U.S. Navy, which successfully recovered a lost H-
bomb from the Mediterranean Sea in 1966 [169].

In general, mobile robots are very suitable when it comes to explore or
operate in hazard and inaccessible environments. Most important, employing
robots in such exploration missions has the distinct advantage that threats for
human operators are avoided. This does not only apply to extraterrestrial or
deep-sea missions. It also pertains to Chemical, Biological, Radiological and
Nuclear (CBRN) events and disaster relief scenarios where an environment to
be explored is contaminated by toxic or dangerous material. In such disaster
relief scenarios, robots are required to explore the environment as fast as pos-
sible and provide reliable information early enough to civil protection agencies
and first responders. Here, the required time to explore a region can make the
difference between life and death.

In this respect, multiple robots are superior compared to a single robot.
Multiple robots can observe different locations at the same time and can dis-
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tribute the workload among each other. In this way a multi-robot system can
accelerate the required exploration time. Moreover, a multi-robot system con-
tains natural redundancies which make the whole system more robust, since a
failure of an individual robot can be compensated by others.

To the present day, most of the robots employed in exploration missions are
teleoperated [48, 58, 156]. This means that a human operator remotely controls
the robot, while the robot provides measured information about its surround-
ing, like pictures or videos to the operator. Whereas a single robot might be
easily controlled by a single, skilled operator, steering and coordinating many
robots in real time is far too complex for a single operator. Even for a team of
operators coordinating a large number of robots would be challenging. More-
over, in disaster scenarios human resources taking care of controlling multiple
robots might be scarce. Thus, a high level of autonomy of the robots is desir-
able in order to coordinate and control the multi-robot system independently
of an operator. The robots should decide on their own where to go and how
to coordinate with other robots, e.g. to avoid collisions. They should efficiently
explore the environment in order to collect as much information as possible
and as fast as possible. The design of such an intelligent exploration strategy
guiding the robots is the topic of this thesis.

Unfortunately, robots have two major drawbacks compared to a human op-
erated exploration mission. First, compared to human operators, robots lack
of curiosity. Curiosity can be defined as a strong desire to know more about
something, which is the essential motivation driving exploration missions. For
an exploration strategy it is thus fundamental to develop an “artificial curios-
ity”, which guides and drives the robots. In practice, this thesis will show how
to quantify the knowledge and uncertainty about the exploration environment.
By successively reducing the uncertainty about the environment based on new
observations, the proposed exploration strategy will mimic a behavior as if the
robots are being driven by their curiosity.

Second, human operators typically contribute their expert knowledge —
which the robot does not have — to the exploration mission. Human oper-
ators often possess a deeper understanding of what is to be expected in the
exploration environment. Their understanding will help a-priori to distinguish
informative locations from less informative ones, which makes the exploration
more efficient. In order to accomplish a similar behavior of the autonomous
robots, this thesis proposes to assist the robots with a-priori available domain
knowledge. The domain knowledge will be encoded in a mathematical model
describing the environment surrounding the robots. This thesis will show how
such a model-based exploration strategy for a multi-robot system can be de-
signed and how it performs.

In general, the presented concept of model-based exploration for a multi-
robot system can be applied to a wide variety of exploration tasks. Neverthe-
less, this thesis focuses on one particular application: the problem of exploring
a gas distribution in order to localize gas sources.
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Figure 1.1: The thesis tackles the problem of finding gas sources, such as those
caused by a technical accident, using multiple robots. The robots are able to
measure the gas concentration as well as other environmental parameters, like
wind, at their current position.

1.2 Challenge: Gas Source Localization

As a dangerous implication of many CBRN events or technical accidents, toxic
or dangerous material could leak and spread as airborne trace substances. In
such scenarios it is important to localize the leaks in order to fix them. Also in
other applications it is of interest to find sources of airborne trace substances.
For example in geophysics volcanic emission sources, e.g. SOy, can be explored
by a flying robot [117]. Localizing methane leakage from landfill sides is an-
other application [13, 28].

Likewise, this thesis addresses the gas source localization problem by means
of a multi-robot system. More precisely, we deal with the following setup: We
consider a spatially bounded region, which we refer to as the exploration envi-
ronment. We assume that multiple gas emission sources are spatially distributed
in the region. These sources emit a certain invisible, airborne gas, which is
spreading over the whole environment. We do not know the number of sources;
neither do we know their locations nor their strength. However, our goal is to
find and localize these sources.

To this end, multiple mobile robots are dispatched. The robots are equipped
with sensors in order to measure environmental parameters. More specifically,
the robots can measure the gas concentration at their current position. Other
environmental parameters, like wind, are considered to be either known or
measurable, too. It is important to note that the robots cannot directly mea-
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sure a emission source. They can only measure concentrations and based on
their measurements infer information about sources. Correspondingly, the gas
source localization in the context of this thesis can be considered as an inference
problem. As such, the first challenge tackled in this thesis is:

@ Infer the spatial source distribution based on concentration
measurements taken by the robots!

As a second challenge it has to be decided where to take the measurements.
We conjecture that by sampling the gas concentration in an intelligent way, the
inference problem may be solved more easily. Or looking at it the other way
round: if the gas concentration measurements are taken at disadvantageous
locations, it might be difficult or even impossible to infer the spatial source
distribution. Therefore, the second challenge considered in this thesis is:

®

The exploration strategy needs to determine informative measurement loca-
tions for the multi-robot system. In our context an informative location implies
that a measurement at this location facilitates the inference of the sources. By
providing these informative locations as way points for the multi-robots sys-
tem, the exploration strategy actually guides the robots.

In general, the two outlined challenges — inferring the source distribution
and designing an exploration strategy — might be treated separately. However,
it is the nature of the beast that the two problems are tightly coupled. Thus, in
this thesis we choose a holistic point of view and handle the two problems as
one.

It is important to note that while this section only provided a rough
overview about the problem tackled in this thesis, a formal and more detailed
formulation of the problem will be provided later in Chapter 3 and 4.

Design an intelligent sampling strategy for a multi-robot
system!

1.3 Contribution: Model-based Exploration Strategy

As already indicated in the motivation, one of the main contributions of this
thesis is to assist the source localization strategy by domain knowledge. In the
thesis we will refer to this approach as the Domain-knowledge Assisted Robotic
Exploration and Source-localization (DARES) strategy, which also leads to the
first research question of the thesis:

@

How to incorporate domain knowledge from physics into
an exploration strategy for gas source localization?
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Figure 1.2: The DARES approach sends robots to locations where the uncer-
tainty of the gas dispersion process according to the model is currently high.

In particular, we would like to incorporate knowledge about the physical
behavior of gas dispersion. Our approach is to make use of a mathematical
model that describes the physics of gas dispersion. The use of such a mathe-
matical model turned out to have three distinct advantages:

1. An appropriate gas dispersion model enables us to infer the sources driv-
ing the gas dispersion. The model sets up a mathematical relation between
the gas concentration distribution in the environment and the spatial dis-
tribution of sources. Essentially, the gas sources can be considered as pa-
rameters of the gas dispersion process. In this way the gas source localiza-
tion problem turns into a parameter estimation problem. In other words,
our inference problem boils down to calculating the spatial source dis-
tribution based on the gas dispersion model and gas concentration mea-
surements.

2. Adding domain knowledge to the exploration strategy in the form of a
gas dispersion model speeds up the gas source localization. While this ar-
gument may seem speculative at this stage, the experimental evaluation
presented further down in this thesis will show that it is actually true.
Loosely speaking: the advantage comes from the capability of the model
to interpolate in between measurement locations correctly (in a domain-
knowledge informed way). Thus, there is no need to sample the explo-
ration environment everywhere and the sources can be localized with
fewer measurements compared to a model-free exploration approach.

3. Based on a mathematical gas dispersion model it is not only possible to es-
timate the sources, but also to quantify the uncertainty of these estimates
at different locations in the exploration environment. Uncertainty quan-
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tification is in general a very useful information-theoretical tool. Here, it
is used to build a gauge for information available about certain locations
in the environment. By means of this gauge, the exploration strategy can
propose locations with currently high uncertainty, i.e. low information.

It is important to remark that the DARES strategy proposed here is adap-
tive (sometimes also called reactive). In contrast to a predefined strategy that
follows a plan or trajectory that was defined beforehand, an adaptive strategy
reacts to current measurements and adjusts its plans accordingly [98]. This im-
plies that the processing of measurements and the calculations of informative
locations has to be done online and in real-time.

By having a closer look at other gas source localization approaches in the
literature, it becomes apparent that the usage of a gas dispersion model is not
uncommon. In fact the DARES approach proposed here can be categorized
as an infotactic source localization strategy. (Section 6.1.2 will give a more
detailed explanation of infotaxis.) The phrase infotaxis is an umbrella term for
all information or entropy-driven source localization approaches [180, 70, 126,
152]. As such, all these approaches require a mathematical model in order to
define and calculate information content, or entropy.

However, model-based approaches have a categorical disadvantage: The
model might be wrong! Essentially, all models only approximate reality. There-
fore, there is always a mismatch between the model’s predication and the real
phenomenon. This mismatch is actually crucial in case a mathematical model
makes use of strong simplifications of the real phenomenon. Strong simplifica-
tions are often unavoidable and are the necessary price for keeping the compu-
tational complexity of the model reasonably low. In our case, the real gas dis-
persion process is a very complex phenomenon. The mathematical model, how-
ever, has to be simple enough for online calculations required by the DARES
approach. Hence, here we have to face strong model mismatch effects.

Paradoxically, when making use of simplifications, most scientists and en-
gineers are aware of the mismatch and limitations of their model. Nonetheless,
often they cannot exploit their knowledge about limitations. This circumstance
leads to the second research question of this thesis:

@

To address this question, we propose to embed the gas dispersion model in
a probabilistic framework. While a classical deterministic model sets up hard
mathematical constraints, in a probabilistic framework we can relax and soften
model assumptions. We will even show how to parametrize and quantify the
relaxation of model assumptions. With this parametrized relaxation it becomes
possible to express our trust in the model. Experimental evaluations carried
out in this thesis will analyze the effect of the relaxation on the exploration

How can we quantify the trust into our model and take it
into account in the exploration strategy?
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performance. By taking into account the imperfection of the model and model
mismatch effects, we obtain an overall more robust system even with a simple
gas dispersion model.

State-of-the-art model-based gas source localization strategies known from
literature can handle either only a single gas source or an a-priori known num-
ber of sources [152, 51, 24, 11]. Knowing the number of sources may be an
unrealistic assumption, especially in disaster scenarios. As another contribu-
tion, this thesis aims to avoid assumptions about the number of sources, which
leads to the third research question:

@

In general not knowing the number of sources makes the problem of esti-
mating the source distribution based on concentration measurements extremely
complex. While for a single source it is sufficient to estimate a single location
and the source strength, the solution space for an unknown number of sources
is infinitely large. A large solution space is particularly problematic in the con-
text of exploration, since only few measurements are available to support the
estimation (at least at the initial phase of the exploration). However, for non-
artificial applications it is justified to assume that the number of sources is not
infinite. Actually, for many applications we can even assume that there are only
a few sources, although we do not know their exact number. Therefore, in this
thesis we will make use of the assumption that the sources are only sparsely
distributed in the environment. By designing an appropriate prior for the prob-
abilistic model, we take this additional information into account. As we will
show, it does not only regularize the source estimation problem, but also turns
out to be very beneficial for the performance of the proposed DARES strategy.

Finally, besides answering the three research questions mentioned above,
the thesis also aims at answering the following question:

How can we avoid assumptions regarding the number of
sources?

@ How to take advantage of the multi-robot system in the im-
plementation?

In fact, the multiple robots with their on-board computers and a commu-
nication system can be considered as a mobile computer cluster. By using dis-
tributed algorithms, we can profit from this architecture. Thus, thesis will also
provide a novel way to implement the required calculations in a distributed
fashion. In other words, the robots can share the computational costs of the al-
gorithm. To this end, the probabilistic gas dispersion model is translated into a
factor graph [88] representation. Based on the factor graph, a message passing
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algorithm is developed, which is extremely suitable for a distributed implemen-
tation.

1.4 Terminology

Robotic gas source localization as tackled in this thesis is challenging because of
its interdisciplinary character. As we will see, the used methods vary from vari-
ational calculus over numerical analysis and information theory to robotics.
To avoid misunderstandings and to take various backgrounds of readers into
account, the following list will define the most important phrases and terminol-

ogy.

Robot The thesis refers to a robot as a wheeled mobile robotic platform ca-
pable of moving around in the exploration environment and carrying
sensors. We further assume that robots are equipped with an on-board
computer to carry out calculations required by the exploration strategy.
The term agent might be used synonymously in literature.

Multi-Robot System denotes the union of multiple robots. In this work we will
consider less than 10 robots. To make the system functional we assume
that the robots are able to share information among each other by means
of a communication system. As a synonym one may find multi-agent sys-
tem or robotic swarm in literature.

Environment The thesis refers to the term environment to describe the spa-
tial area surrounding the robots that has to be explored. This region
is bounded and its boundaries are a-priori known. In the mathematical
derivation we will also refer to the environment as spatial domain.

Process is always understood as a gas dispersion process in this thesis. It de-
notes the dynamic phenomenon of gas emitted from sources spreading
out into the environment. To be precise: it is actually this process that has
to be explored and not the environment itself, where the process takes
place.

Model In this thesis a model is a mathematical description of the gas disper-
sion process. The model is used to encode domain knowledge a-priori
available and to assist the exploration.

Exploration Strategy In the context of gas source localization, exploration
means to take observations of the gas dispersion process, and to es-
timate the sources based these observations. The exploration strategy
denotes the algorithmic procedure where and when the observations
should be taken by the robots. As a key contribution this thesis pro-
poses the Domain-knowledge Assisted Robotic Exploration and Source-
localization (DARES) strategy. It is an reactive strategy which means that
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the location of the next observation depends on the previously taken ob-
servations.

Distribution In this thesis, the word distribution occurs in two different con-
texts, which may lead to some misunderstanding. In one context it is used
for spatial distributions like the spatial source distribution describing the
placement of the sources or the distribution of gas in the environment.
The word distribution is also used in a probabilistic context to describe
Probability Density Functions (PDFs) of random variables. These two dif-
ferent concepts can be, however, distinguished from their context.

Sparsity It is assumed that the sources are sparsely distributed in the environ-
ment. This means that only a few sources are located within the explo-
ration area. It does not require that the sources are far away from each
other. The assumption only concerns their number. Later on we will rep-
resent the source distribution by a vector. Then the sparse source distri-
bution is reflected by the fact that this vector is sparse, i.e. most elements
are zero.

Ground Truth data describe the actual situation, e.g. the actual source distri-
bution. In the evaluation part of this thesis we compare the estimates,
e.g. estimated source distribution, to the ground truth data. In a real ap-
plication, ground truth data are not always available; however they are
essential in experiments for a scientific evaluation.

1.5 Publications

A long with this thesis, several journals and conference publications have
emerged from the research work presented here. The following list summarizes
the most important publications that directly contributed to the thesis.

Wiedemann, T.; Manss, C.; Shutin, D.; Multi-agent exploration of
spatial dynamical processes under sparsity constraints; Journal of
Autonomous Agents and Multi-Agent Systems (JAAMAS), 2018
[189]

This article presented model-based exploration strategy for the
first time (submitted 2016). However, the model used [189] in had
very strong simplifications and limitations. Nonetheless, the fac-
tor graph representation and message passing algorithm shown in
Section 5.1 of the thesis were first developed in this article.
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Wiedemann, T.; Manss, C.; Shutin, D.; Lilienthal, A.]J.; Karolj, V.;
Viseras, A.; Probabilistic modeling of gas diffusion with partial
differential equations for multi-robot exploration and gas source
localization; European Conference on Mobile Robots (ECMR),
2017 [190]

This paper implemented exploration strategy presented in this the-
sis based on a simplified gas dispersion model in Hardware-in-the-
Loop experiments.

Wiedemann T.; Shutin D.; Lilienthal A.J.; Model-based gas source
localization strategy for a cooperative multi-robot systems - A
probabilistic approach and experimental validation incorporating
physical knowledge and model uncertainties; Journal of Robotics
and Autonomous Systems (RAS), 2019 [192]

This article is an extension of the ECMR 2017 paper [190]. Still
based on a simplified model, the exploration strategy was evalu-
ated in Hardware-in-the-Loop experiments, but also in real-world
experiments. The results of these experiments are also shown in
Chapter 7 of this thesis.

Wiedemann, T.; Shutin, D.; Hernandez, V.; Schaffernicht, E.;
Lilienthal, A.].; Bayesian gas source localization and exploration
with a multi-robot system using partial differential equation based
modeling; ISOCS/IEEE International Symposium on Olfaction and
Electronic Nose (ISOEN), 2017 [191]

This paper showed the capability of the presented exploration
strategy in the presence of model mismatch effects. To this end
Hardware-in-the-Loop experiments with a filament based gas sim-
ulator were carried out.

Wiedemann, T.; Lilienthal, A.J.; Shutin, D.; Analysis of Model
Mismatch Effects for a Model-Based Gas Source Localization
Strategy Incorporating Advection Knowledge; Sensors, 2019 [188]

This article introduced a more complex gas dispersion model for
the exploration strategy. This model and its numerical and proba-
bilistic treatment are explained in Chapter 3 and 5 of this thesis.
Also the variational inference approach developed in the article is
presented in Section 5.2. Moreover, the article presented an exten-
sive parameter evaluation in simulations. Section 7.1 reproduces
these parameter studies.
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1.6 Outline

The rest of the thesis is structured as follows:

Chapter 2 The next chapter provides information on technologies and state-of-
the-art of robotic gas sensing. It explains operating principles of common
gas sensors suitable to be carried by a robot and robots suitable to carry as
gas sensor. In addition, different objectives of robotic gas sensing related
to this thesis are presented.

Chapter 3 selects an appropriate gas dispersion model, after presenting the
most relevant options found in literature. Namely, the thesis chooses
the advection-diffusion Partial Differential Equation (PDE) to mathemat-
ically describe the dispersion process. The chapter explains how we can
handle the Partial Differential Equation (PDE) numerically. This results
in a system of algebraic equations as a final description of the gas disper-
sion process. The chapter also presents an observation model represent-
ing the sensor characteristics of the gas sensors carried by the multiple
robots. In addition, in this chapter we comment on the importance of a
proper regularization in order to estimate the source distribution based
on gas concentration measurements. There, the assumption of sparsely
distributed sources plays an important role. Finally, an example shows
how to estimate the source distribution based on measurements, the pre-
sented deterministic model and the sparsity assumption.

Chapter 4 translates the deterministic model developed in Chapter 3 into a
probabilistic form. In particular, a Bayesian approach is chosen. Thereby,
the novel ideas of relaxing the model assumptions and parametrizing our
trust into the model are introduced. Further, the chapter shows how to
represent the assumption of sparsely distributed sources in the proba-
bilistic framework. This is achieved by Sparse Bayesian Learning (SBL)
techniques and designing an appropriate sparsity inducing prior for the
Bayesian inference approach. Last but not least, a probabilistic airflow
model is presented to incorporate wind information into the probabilistic
framework.

Chapter 5 is divided into two parts. While the previous chapters only focused
on formulating the estimation problem, the two parts of this chapter
show how to actually solve the problem, i.e. estimating the source dis-
tribution (and gas concentration distribution). The first part tackles a
special case of the gas dispersion model, where the system of algebraic
equations is linear. For this case the probabilistic model is cast into a
factor graph. Based on the factor graph, a message passing algorithm is
developed suitable for a distributed implementation on the multi-robot
system. The performance of the message passing algorithm is compared
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to other state-of-the-art solvers. The second part shows how to imple-
ment a solver for the general, non-linear gas dispersion model. To this
end, a variational inference approach is presented.

Chapter 6 develops the actual exploration strategy for a multi-robot system.
It first gives an overview on other common gas source localization ap-
proaches. Then, the chapter explains how to make use of the probabilistic
framework presented in Chapter 4 and the implementation of Chapter 5
in order to design the Domain-knowledge Assisted Robotic Exploration
and Source-localization (DARES) strategy for a multi-robot system. Fur-
ther, the chapter shows how multiple robots can be coordinated in order
to follow the exploration strategy without colliding with each other.

Chapter 7 evaluates the proposed DARES approach. In particular, it is eval-
uated how well robots are able to localize the sources, i.e. estimate the
source distribution. Therefore, numerous experiments are presented. The
DARES strategy is first tested in pure simulations. The simulation setup
enables an extensive study of parameters used to regulate the exploration
strategy. In a second step, the DARES approach is evaluated in Hardware-
in-the-Loop experiments, where the gas dispersion is still simulated, but
a real multi-robots system is employed. These experiments reveal how
the performance of the exploration strategy is affected by real-world con-
straints like the dynamics of the robots or communication constraints.
Beside the gas source localization performance, the chapter also shows
the capability of the air flow model used in the experiments. In a last step,
the airflow model is incorporated into the exploration strategy. Then, the
whole system is finally tested in real-world experiments with ethanol.

Chapter 8 summarizes and discusses the thesis and its contributions. It further
suggests future research directions that arise from this thesis.



Chapter 2
Background on Robotic Gas
Sensing

This chapter provides a general overview on technology, state-of-the-art and
research fields related to gas source localization and gas sensing robots. First,
it will explain fundamentals of gas sensing and operating principles of state-of-
the-art gas sensors. Then, robotic platforms typically employed for gas sensing
and Mobile Robot Olfaction (MRO) tasks are summarized. Finally, different
objectives of robotic gas sensing are explained as well as research work carried
out in these fields.

2.1 Sensor Technologies

When it comes to explore gas distributions, monitor gas concentrations or
search for gas leaks with robots, gas sensors are essential. Gas sensors, espe-
cially sets of gas sensors, are often considered as an artificial, electronic nose
of the robot [96], [115] A large research field with a long history is dedicated
to the development of such electronic noses, see e.g. [136], [65]. The following
text will give a short overview of available sensor technologies which are suit-
able to be carried by a robot and have been used in robotic applications. These
are sensing technologies we considered for this thesis as well.

2.1.1 Electrochemical Cell
H,O0 CO CO, Sensing

An electrochemical cell consists basically e NV S 4 Plectrode
"

of two electrodes: the sensing electrode

(sometimes called working electrode) and i H*| < «Electrolyte
the counter electrode. Both electrodes are _

in touch with an electrolyte, e.g. sulfuric e> /X glc;lé?:gge
acid [15]. Gas, which comes in contact H,O O,
with the sensor, diffuses to the surface of
the sensing electrode, where either an oxi-

dation (for CO, H,S, NO, SO,) or reduc- Electrochemical Cell (adapted
tion (NO,, Cl,) occurs [15]. This reaction from [8])

Figure 2.1: Operating principle of

13
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is catalyzed by the material and surface properties of the electrode [43]. In
figure 2.1 the working principle is shown for carbon-monoxide (CO) as an
example. On the sensing electrode the carbon-monoxide is oxidized to carbon-
dioxide (CO;) by means of water contained in the air [15].

H,0 4+ CO — COy +2e +2H* (2.1)

The resulting protons (H") travels through the electrolyte to the counter elec-
trode, while the resulting electrons causes a measurable current flowing from
the sensing electrode to the counter electrode. On the counter electrode a re-
duction of oxygen takes place [15]:

%Oz +2e” +2H" — H,0 (2.2)
Since a current is generated, this type of sensor is also referred to as an
amperometric gas sensor or a micro fuel cell [43]. In practice, most elec-
trochemical gas sensors possess a third electrode (reference electrode). The
reference electrode is used to stabilize the potential of the sensing electrode. A
stable and constant potential of the sensing electrode is important to achieve a
constant sensitivity, good linearity and minimum sensitivity to other interfering
gases [15]. Electrochemical cells are light and can be carried by small robotic
platforms, e.g. Unmanned Aerial Vehicles (UAVs) [117], especially for the
purpose of air pollution monitoring [183].

Target Gases: CO, H,S, NO, SO,,NO;, Cl,

Advantages: low power consumption, high sensitivity, light-weight
Disadvantages: long response and recovery times (typically > 10 seconds),
cross sensitivity

Donor Semi- ¢ - » .
Blectrons . conductor QVOC EVOC EVOC
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Figure 2.2: Operating principle of a MOX sensor (adapted from [8])
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2.1.2 Metal Oxide (MOX) Gas Sensors

The measuring principle of MOX gas sensors (also called Metal Oxide
Semiconductor (MOS)), was first proposed in [157]. The sensor consists of
two electrodes as depicted in Figure 2.2. The two electrodes are connected
by a thin semiconductor layer, such as oxides of tin or zinc (SnO,, or ZnO)
[187]. These n-type materials act as a donor of electrons. When heated up,
the surface layer of the semiconductor absorbs oxygen of clean air. The
oxygen attracts the donor electrons at the surface layer and the resistant of the
semiconductor increases (see Figure 2.2a). When exposed to reducing gases e.g.
Volatile Organic Compounds (VOC), the surface layer also absorbs these gases
and the gas reacts with the already absorbed oxygen. As a consequence the
bound electrons are released and the resistant of the semiconductor decreases
(see Figure 2.2b) [187]. Thus, in a MOX sensor the surface conductivity of
semiconductors changes based on reactions of gases with atmospheric oxygen
that is already absorbed by the semiconductor’s surface layer [187]. This
change of conductivity can be measured and is related to the concentration
of the gas. MOX sensors are very popular in robotic applications and can be
found in many publications [103, 28, 185, 115, 118, 101].

Target Gases: CO, VOC, CHy
Advantages: high sensitivity, light-weight, inexpensive
Disadvantages: drift, cross sensitivity

2.1.3 Photoionization detector (PID)

The main component of a PID sensor is
a short-wavelength ultra-violet lamp. This 0 <j/@VOC

lamp emits high energy photons which Q Membrane
are entering through a crystal window a

chamber that contains gas samples [142]. ﬁ.-":*{‘?Cathode
Commonly, the gas can freely diffuse into the > @‘\«I
chamber through a membrane filter [14]. In o e” on

the chamber VOC molecules, are ionized by \A Anode
the emitted photons. This results in positively |« Photon

charged ions and ejected electrons [142].
The chamber is surrounded by an anode and <« Lamp
cathode as indicated in Figure 2.3. These
electrodes cause an electrical field in the
chamber that attracts the positive charged Figure 2.3: Operating princi-
ions and electrons [14]. The resulting current ple of a PID sensor (adapted
can be measured and is proportional to VOC from [142])

concentration. Note that the photoionisation effect only takes place, if the
ionization energy of the the VOC is below the energy of the photons. The
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energy of the photons, however, depends on the used lamp. While an Argon
lamp with 11.7 €V can detect the largest range of VOC, a Xenon lamp with
9.6 €V has the highest selectivity [14]. The most common lamp, however,
is a Krypton lamp that emits photons with 10.6 eV. Because of their fast
response time and long term stability, PIDs are common in robotic applications
(29, 124].

Target Gases: most VOC
Advantages: high sensitivity, fast response, linear characteristics
Disadvantages: price, limited target gases

2.1.4 Tunable Diode Laser Absorption Spectroscopy (TDLAS)
TDLAS gas sensors work based on the spec-

troscopy principle. Every molecule absorbs

light-energy in very specific narrow bands 4 f

around certain wavelengths in the electro- Backscatter
magnetic spectrum [63]. The wavelengths
are specific for different types of molecules
[93]. This effect is used in the TDLAS sensing
principle. A TDLAS sensor consists of a
laser with a wavelength tuned to the specific
wavelengths of a target gas. When the laser
beam transverses a plume of the target gas, the
gas attenuates the laser energy [63]. As shown
in Figure 2.4, the laser beam needs to be scat-
tered back by any surface in the environment.
The returning light is then analyzed by a
photodetector in the TDLAS sensor. Based on Figure 2.4: Operating prin-
the absorbed energy for a spec1ﬁc? wavelength, ciple of a TDLAS sensor
the gas concentration along the light path can (adapted from [63])

be inferred. Essentially, the sensor provides a

concentration value integrated along the light path. TDLAS can be categorized
as a remote sensor, since the sensor itself does not need to be inside the gas
plume. In contrast, the in-situ sensors listed above only provide a point-wise
gas concentration measurement and need to be inside the gas plume. A TDLAS
sensor has been used on robotic platforms (including UAVs) for gas sensing
tasks [31, 20, 132]. However, the processing of the collected measurements is
more involved [20], as compared to other sensors.

Target Gases: commonly CHj (but not limited to)
Advantages: high selectivity, fast response, remote sensing
Disadvantages: price, weight
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2.2 Robotic Platforms

Besides a gas sensor, a robotic platform to carry the gas sensors is required
for robotic gas sensing tasks. The following section gives an overview about
common state-of-the-art robots and robotic platforms dedicated to carry gas
sensors. Two main classes — ground based robots and flying platforms — are
discussed with respect to their advantages and disadvantages. As a remark,
measuring water pollution is quite similar to airborne gas sensing. In those
cases autonomous surface vehicle (vessels) or unmanned underwater vehicles
are employed, e.g. [21]. However, such platforms are not part of the following
overview.

2.2.1 Ground Based Robots

For the purpose of this work, as a “ground based robot” we typically under-
stand a mobile robotic platforms that are driven by wheels, tracks or legs. How-
ever, their action space is limited to two dimensional movements. Ground based
robots are very popular for gas sensing tasks, because of their high payload ca-
pability and long operation time [28]. For sensing gases heavier than air, their
limitation to move on the ground is noncritical. For gases lighter than air which
do not stay close to the ground, the limited action space might be a problem.
When the research field of robotic gas sensing and MRO started to emerge
in the 1990s, most research work was focused on small scale ground based
robots [154], [86]. Over time bigger ground based robotic platforms are em-

Figure 2.5: Two examples of a ground based robot: The robots depicted in (a)
was for example used in [145] and the robots shown in (b) in [31] (photograph
courtesy of Han Fan and colleagues).
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ployed, since they are capable of carrying multiple gas sensors and additional
sensors like anemometers or laser scanners to measure environmental param-
eters or to navigate [144], [118], [31]. A higher payload also allows carrying
more powerful computers for advanced on-board data processing and decision
making. It is remarkable that most gas sensing robots are developed solely for
research purpose, and only few commercial robots are available dedicated to
gas sensing tasks (as an exception see e.g. SMP Robotics Systems Corp. [9]).

When it comes to control ground based robots for gas sensing tasks, recently
there is a clear trend towards advanced and sophisticated planning and control
algorithms. In the past the robot’s motor controller was often directly coupled
to the gas sensors as for example by the Braitenberg vehicle [34], [99]. Nowa-
days, robots make use of path planning algorithms that allow moving without
collisions in complex outdoor [31], [144] or indoor environments [29], [118],
[125], [20].

2.2.2 Flying Robotic Platforms

Flying robotic platforms — UAVs — are of particular interest for gas sensing
tasks, since they are able to move in three dimensions. Thus, they can be
employed to generate 3D gas distribution maps [111]. Nevertheless, they are
sometimes still constrained to operate in a 2D space on a constant height over
ground [130], [129]. Even in these cases they have an advantage compared to
ground based robots, because of their higher mobility and fewer restrictions by
obstacles or rough terrain.

There are three main types of small scale UAVs operating in gas sensing
tasks: fixed wing UAVs, rotary wing UAVs and blimps.

Fixed wing UAVs

In general a fixed wing UAV has a longer endurance and flies at higher speeds
compared to rotary wing UAVs. However, they lack of hovering capability,
which is often important for accurate in-situ measurements [110] where the
sensor needs to stay at a location for a certain time. Still, fixed wing UAVs
are sometimes employed for air quality monitoring tasks; for example to mea-
sure the carbon dioxide [186] or particulate matter concentration [73], [18].
In [128] a fixed wing UAV is even used to quantify methane leakage from a
natural gas compressor station.

Rotary wing UAVs

Due to their hovering capability, rotary wing UAVs are more popular for gas
sensing tasks. Especially modern multi-copter platforms with an electric propul-
sion system are often used to carry gas sensors [129], [131], [168], [80], [164],
[76]. Also traditional unmanned helicopters with combustion engines can be
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Figure 2.6: The picture in (a) shows the nano rotary wing UAV as used in [36]
carrying a MOX sensor (photograph courtesy of Javier Burgués). In (b) a UAV
is shown as used in [130] (photograph courtesy of Patrick Neumann).

used for gas sensing applications. For example in [117] a helicopter platform
was used to measure the carbon dioxide flux at a volcano. Again air quality
monitoring is a common task for rotary wing UAVs [17], [182], [55]. In some
approaches like [41], the UAV does not directly carry a gas sensor. Instead, it
transports a sampling device to collect a gas sample stored in a canister that is
brought back to be analyzed in a laboratory later on.

When employing rotary wing UAVs for gas sensing, it is important to be
aware of the interaction of the UAV’s propulsion system with the gas or plume.
The down wash of the propulsion system disturbs and destroys the natural
structure of a gas plume and has to be considered. Studying the effect of the
down wash of multi-copters is therefore an active research field [54], [110],
[197], [45]. The impact of the down wash is mostly dependent on the size
and weight of the UAV. This fact makes nano UAVs particularly interesting,
because of their small size and weight and thus their modest interaction with
the gas dispersion. For example in [36] a nano UAV with a total weight of
about 30g carrying a MOX sensor was employed for gas mapping and source
localization.

Blimps and balloons

The use of a third type of UAVs can reduce the impact of the propulsion system
even further: for small scale blimps (airships) and balloons the effect can be
neglected. Furthermore, they possess a longer endurance compared to fixed or
rotary wing UAVs. Unfortunately, they are strongly affected by weather con-
ditions, such as wind [182], and show a bad size-to-payload proportion [130]
compared to other UAVs. Nevertheless, small scale blimps have been employed
in gas sensing tasks, for example in [84] or [140] to create a 3D gas distribution
map in an indoor environment. Tethered balloons on the other hand are very



20 CHAPTER 2. BACKGROUND ON ROBOTIC GAS SENSING

common for atmospheric measurements, e.g. [62], and can carry heavy gas
sensing equipment compared to small UAVs. However, their limited mobility
disqualifies them for most robotic gas sensing tasks.

The approach presented in this thesis relies on a model of the gas dispersion
process based on physics. The interaction of an UAV’s propulsion system with
the gas dispersion is a very complex phenomenon and could over complicate
the analysis of the presented approach. Therefore, in this thesis we stick to
ground based robots as a platform for carrying gas sensors.

2.3 Objectives of Robotic Gas Sensing

Robots are employed in gas sensing applications with different objectives. One
of the objectives we follow in this work is localizing gas sources. Apart from gas
source localization, the following section provides a short overview on other
objectives commonly found in literature and their relation to the approach pro-
posed in this thesis.

2.3.1 Gas Source Localization

Robotic gas source localization aims at finding (a) gas source(s) based on gas
concentration measurements taken by sensors mounted on a robotic platforms.
Often additional environmental parameters are measured to support localizing
the source, such as wind [144]. Even visual information can help to identify
potential source candidates, as in [123]. However, the main practical challenge
to find gas sources is the fast decrease of gas concentration with increasing dis-
tance from the source [86]. Thus, the gas plume emitted from the sources shows
a diluted structure further away from the source [86], which makes detection
and localization challenging.

According to [75] the source localization task can be divided into three sub-
tasks: first finding the gas plume, then tracing the plume back to the source
(often called plume tracking) and, finally, declaring the source as found. Most
of the research is focused on the first two steps, while the declaration of a
source is often neglected or assigned to a human supervisor. The holistic ap-
proach presented in this thesis will cover all three points in a single framework.
It will be shown that the model-based uncertainty-driven exploration strategy
will just uniformly sample the environment as long as no gas concentration is
measured. As soon as a gas concentration is measured, i.e. the plume is de-
tected, the presented approach will automatically concentrate the samples in
areas with higher gas concentration. This can be considered as plume tracking.
Further, due to the use of a gas dispersion model the presented approach is able
to infere where the sources are, based on the concentration measurements.
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In general, it is difficult to compare different source localization approaches
regarding their performance, since they employ different robots, different sen-
sors and consider different environments [86]. In the past, many source lo-
calization strategies were inspired by nature [100], [106], [130], [64], e.g. the
behavior of moth, lobsters etc. A more detailed description of these bio-inspired
strategies will be provided in Section 6.1.1. However, these approaches show
significant limitations. Often, they rely on gradients of the gas concentration
and assume smooth gas concentration distributions. In reality, the gas con-
centration is often patchy and disturbed by turbulence, which results in poor
performance of these approaches [133]. In general, bio-inspired gas source lo-
calization strategies have to be carefully adapted to robotic applications as dis-
cussed in [28],.

With respect to the limitation of bio-inspired approaches, more sophisti-
cated gas source localization strategies have been developed. For example, in-
fotaxis is a quite popular gas source localization strategy in robotics nowadays
[70], [152], [118], [126]. Briefly speaking, these approaches try to maximize
information about the gas sources. Section 6.1.2 will give a more detailed ex-
planation of infotaxis. Also, the exploration strategy proposed in this thesis
can be considered as an infotactic approach. Furthermore, we employ multiple
robots as in [118], [163], [69], [70], [33], instead of a single robot as in early
approaches of robotic gas source localization [82], [83]. Even though multiple
robots are employed, most approaches consider only a single source, e.g. [118],
[163], [69], [70]. In this respect the DARES approach of this thesis particularly
contributes a gas source localization strategy that is capable to localize multiple
sources and does not require knowing the number of sources a-priori.

2.3.2 Plume Tracking

As mentioned above, plume tracking (also called plume tracing) is actually a
sub-task of gas source localization [75]. However, many research publications
focus solely on this topic. Often the core idea of plume tracking by means of
a mobile robot is to stay in the gas plume and move in upwind direction to-
wards the gas emitting source. This strategy is grounded on the fact that wind
or air flow is the main transportation mechanism of airborne gas [99]. There-
fore, this approach requires a wind or air flow sensor. In order to stay inside
the gas plume or re-discover the plume, in case the robot lost track of it, differ-
ent approaches were investigated. For example in [85], the sensor readings of
multiple gas sensors, spatially distributed on a robot are compared in relation
to each other. In this way loosing and detecting the plume can be recognized.
The bio-inspired approaches for gas source localization mentioned in the pre-
vious section actually imitate mechanisms observed in nature to stay inside the
plume or re-discover the plume if it is lost. For example, they follow so called
casting trajectories [74] or spiraling trajectories [107] in order to keep track of
the plume.
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Especially for plume tracking, multiple robots are of an advantage. For ex-
ample, in [162] and [112] a swarm of robots is controlled so that the robots
take an optimal formation with respect to plume tracking. In [69] and [118] a
multi-robot system is controlled by particle swarm optimization techniques and
in [95] the robots are controlled to arrange themselves along the plume front
and to track the plume front over time.

The proposed DARES strategy in this thesis shows implicitly a kind of
plume tracking behavior. In fact, based on the DARES strategy robots start
to sample the gas distribution in downwind regions and tend to follow the
upwind direction towards areas with higher gas concentration. It is remark-
able that this behavior is not explicitly programmed or designed. It emerges
naturally from the DARES approach and the used gas dispersion model that
declares for example downwind regions as informative according to physics of
gas dispersion.

2.3.3 Gas Distribution Mapping

Another objective of robotic gas sensing is building gas distribution maps. In
contrast to gas source localization where only the localization of the source is
of interest, gas distribution mapping approaches aim at computing a map of
the gas concentration for the whole environment. Consequently, the gas sam-
ples need to be taken more densely and need to cover possibly the whole area.
To achieve this goal, a reasonable alternative to an installation of many static
sensors are mobile robotic sensors. The high fluctuation and dynamics of gas
distributions [86] as well as their patchy structure [113] make gas distribution
mapping challenging. Statistical mapping approaches like the Kernel DM+V
model [98] are a possible solution. They account for the intermittency of gas
distributions by statistic features, e.g. mean and variance. A time dependent
version of this approach in [22] can also adapt to changes in the environment.
A slightly different but similar approach has been proposed in [113] where
the fluctuations in the gas concentration are tackled by low pass filtering. In
general, gas concentration maps need to provide a mechanism to interpolate
between spatial locations in 2D or 3D [111] where the gas concentration has
been measured. It is even possible to map different substances at the same time
[30].

It is also of advantage for mapping tasks to incorporate additional knowl-
edge about the environment. For example in [124] information about obstacles
is used to build the gas distribution map. In the field of air pollution monitoring
building gas distribution or pollution maps is also of significant interest. Here
different mobile platforms carrying gas sensors show their advantage such as a
Google street car [19], bicycles [71], or small UAVs [182],[17],[41].

The main objective of the DARES strategy proposed in this thesis is to only
localize the sources. Building a gas distribution map is not its goal in the first
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place. However, the developed approach also delivers an estimate of the spatial
gas distribution as a side product.

2.3.4 Gas Tomography

In the last decade a new research branch of gas distribution mapping has be-
come popular: gas tomography. It is induced by the property of modern TDLAS
sensors that provide integrated gas concentration measurements along a laser
beam in contrast to classical in-situ sensors (see also Section 2.1.4). Computer
assisted gas tomography aims at building a gas distribution map (or a map of a
gas plume) based on multiple integral measurements [177]. Thus, for an accu-
rate gas distribution reconstruction measurement beams from different angles
of view are required (ray tracing) and the beams need to cover the whole en-
vironment. In case the measurements are carried out by a robot equipped with
a TDLAS sensor, accurate information about the robot’s position and orienta-
tion are required for the reconstruction [31]. In addition, for gas tomography
the TDLAS sensors is often combined with a laser rangefinder [20], [131] that
allows to compute the length of the beam along which the gas concentration is
integrated. Reconstructing a gas distribution map from the measurement beams
is more involved compared to in-situ measurements and requires solving a least
square optimization problem [177]. The map can be either a two dimensional
map generated by ground based robots [31], [20] or even a three dimensional
map generated by a flying robotic platform [131]. To generate the gas distri-
bution map efficiently, in [20] the measurement location and the orientation of
the measuring robot are optimized. In this way the number of measurements
can be minimized while still covering the whole environment.

In contrast to gas tomography, the exploration strategy in this thesis is fo-
cused on in-situ gas concentration measurements. However, a future extension
to gas tomography would be of interrest. In fact, the used sensor model de-
scribed in Section 3.4 can be extended to integral measurements for future ex-
tensions of the proposed method.






Chapter 3
Gas Dispersion Model for
Robotic Exploration

For the Domain-knowledge Assisted Robotic Exploration and Source-
localization (DARES) strategy presented in this thesis we need a mathemati-
cal description for the dynamic behavior of gas dispersion. This mathematical
description is called a “model”. In our context, the purpose of the model is
twofold. First based on it we can infer the sources from gas concentration mea-
surements and predict the gas concentration in between measurements loca-
tions. Through the use of a model the source localization turns into a parameter
estimation problem which will be investigated in chapter 4. Second the mathe-
matical model enables us to quantify uncertainties in the model parameters and
informativeness of measurements. The DARES strategy presented in Chapter 6
will be build up on this capability. Besides the two main objectives, the model is
further used for forward simulations of gas dispersion in the simulation studies
in chapter 7.

In the following we first give a short review of possible models and select
the most suitable one based the advection-diffusion PDE. We show how
to numerically solve this PDE and present the resulting algebraic system
of equations. Besides the dispersion model we introduce a measurement
model to characterize the concentration measurements carried out by a
multi-robot system. We will comment on the necessity of regularization
which will be important for the estimation problem presented in the next
chapter. Finally, an illustrating example shows how to apply the develop model.

25
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Dispersion Models

| Models Based on Domain Knowledge |

| Data Driven Models

Neural Land Use | |Kernel DM+V Eulerian Lagrangian Plume
Networks | | Regression Model Models Models Models
Reynolds-Averaged | | Large Eddy Lagrangian Stochastic Gaussian Plume | | Filament
Navier-Stokes Simulation Dispersion Models Model Models

Figure 3.1: Classification of most common gas dispersion models

3.1 Theoretical Models for Gas Dispersion and
Mapping

We are interested in modeling the dispersion of a single airborne trace
substance. Modeling of dispersion is an active research topic with different
applications. Usual applications are in meteorology [57], atmospheric research
[94, 165], air quality modeling [44] or in emergency scenarios for evacuation
plans [198]. Due to different objectives, different modeling approaches can
be found in literature. Here we have a short look at such models that are
most appropriate to support robotic exploration. In general, this pertains to
small scale dispersion models (<1km) moderately effected by turbulent air
flow. Figure 3.1 provides a rough classification of the models surveyed in the
following (cf. [143]).

3.1.1 Models Based on Domain Knowledge
Gaussian Plume Model

One of the simplest gas dispersion model is the Gaussian Plume Model. It mod-
els airborne transportation of trace substances released by a single point source.
The model considers turbulent diffusion and advection caused by wind as the
main dispersion mechanism [121]. The model can be analytically derived from
the advection-diffusion PDE as a simplified case (see the later section 3.2 for
more details on the PDE) under the following main assumptions [165]:

e The material is emitted by a single source with a constant rate.
e The wind velocity is constant and uniform.

e The model only considers a steady state of the plume, i.e. all parameters
are independent of time.



3.1. THEORETICAL MODELS FOR GAS DISPERSION AND MAPPING 27

e The diffusion in wind direction is much smaller than the advection.

If these assumptions hold, the dispersion plume can be described by 2D Gaus-
sian distributions on planes perpendicular to the downwind direction. The
standard deviation of the Gaussian distributions depends on the atmospheric
parameters, wind, distance from the source etc. [44]. Even though the model
is quite old [147, 167], it builds the foundation of modern, more advanced
dispersion models. As an example, the OML (Danish: Operationelle Mete-
orologiske Luftkvalitetsmodeller) dispersion model is based on a Gaussian
Plume model [7]. Also, for gas mapping tasks with robotic mobile sensors
the Gaussian plume model was shown to be useful to design a rule-based
sampling strategy [92]. Nevertheless, with respect to the robotic source
localization task considered in this thesis, the Gaussian Plume model has two
disadvantages. First it only considers a steady state of the plume and constant
wind conditions, which is a strong limitation for possible applications. Second,
classical Gaussian Plume models consider the plume of a single source, while
we are looking at scenarios with multiple sources.

Lagrangian and Eulerian Models

Lagrangian and Eulerian modeling approaches are based on the conservation
laws (conservation of mass, energy, momentum) [181]. As such, they consider
physical knowledge about the dispersion process. The conservation of mass
leads to the advection-diffusion PDE - also sometimes referred to as atmo-
spheric transport equation [94]. Both approaches make use of numerical tech-
niques to solve this equation. However, the approaches consider the dispersion
process from different points of view. The Eulerian approach makes use of
a Cartesian coordinate frame that is static and fixed with respect to the en-
vironment. In order to solve the PDE the Eulerian approach discretizes the
environment by means of a grid or mesh. In general the Eulerian modeling ap-
proaches are computationally very expensive [44]. Most numerical Computa-
tional Fluid Dynamics (CFD) simulations, like the later mentioned Large Eddy
Simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS), can be classi-
fied as Eulerian models. Sometimes even the Gaussian Plume model is classified
as a Eulerian model [199], even though it does not require the characteristic
discretization.

In contrast to the fixed frame, the Lagrangian approach takes the point
of view of the moving dispersive material. The dispersive material or gas
is divided into packages - sometimes called puffs - or particles [200, 49].
The Lagrangian approach simulates the movement and trajectories of these
packages in quasi-continuous space. Consequently, they suffer less from
numerical discretization issues than the Eulerian approach. For calculating the
trajectories of the gas packages a Markov process is assumed driven by a PDE
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[94]. Due to lower computational complexity the Lagrangian approach was
often preferred in the past [171] compared to the Eulerian approach. But even
modern dispersion models, e.g. FLEXPART (FLEXible PARTicle dispersion
model) [137] or GADEN [122], are based on the Lagrangian model. While the
Lagrangian approach is convenient for a forward simulation of gas dispersion
with known sources, it is less suitable as an inverse model to estimate a gas
source based on concentration measurements. Therefore, in this thesis we will
follow the Eulerian approach to get a dispersion model aiding the robotic
source localization task.

Computational Fluid Dynamics (CFD) Models

Advanced and sophisticated CFD dispersion simulations make use of the
Navier-Stokes equations to account for the physical behavior of airflow [181].
In this way they are able to simulate dispersion based on turbulence. The
Reynolds number is a common indicator of turbulent or laminar air flow. With
increasing Reynolds numbers turbulence effects get more and more important
[57]. CFD simulations numerically approximate of the Navier-Stokes equa-
tions based on a discretization of the environment by a 2D/3D grid or mesh.
Three different ways to approach the Navier-Stokes equations can be found
(181, 114]:

e Direct numerical simulation (DNS) models solve the full Navier-Stokes
equations without any further assumptions or simplifications. In order
to resolve small scale eddies, a fine discretization is required. In turn the
DNS models are computational extremely expensive and only make sense
for small Reynolds numbers [202, 114]. On the other side this brute force
approach could be considered as quite accurate.

e In Reynolds-Averaged Navier-Stokes (RANS) models a so called
Reynolds’s decomposition is applied to the variables of the Navier-Stokes
equations. As such all variables are described by a mean value (aver-
aged over time) and a fluctuation part [57], where only the mean val-
ues are considered to be of interest. By averaging over time the Navier-
Stokes equations, new terms appear in the resulting PDEs - the so called
Reynolds stress. Due to these new terms the system of equations is under-
determined. In order to solve the RANS, turbulence models are required
that provide additional constraints to solve the Reynolds stress terms.
The most popular example of such a turbulence model is the k— e model,
which provides two additional PDEs: one for the turbulent kinetic energy
k and one for the dissipation of the turbulent kinetic energy € [181]. The
RANS models show a moderate computational complexity compared to
DNS. However, the model’s predictions may be wrong or give inaccurate
results in some cases [202].
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® The main idea of Large Eddy Simulation (LES) models is to separate the
influence of large and small eddies on the air flow. In contrast, RANS
models make use of a single turbulence model for all scales of eddies. In
order to separate large eddies from small ones, LES models make use of
spatial filters on the Navier-Stokes equations. (In contrast RANS averages
over time.) Eddies smaller than the cut-off-width of the spatial filters are
unresolved in the LES [181]. To account for the interaction of smaller
eddies a sub-grid stress term is needed in the filtered Navier-Stokes equa-
tions [202]. A common and popular approach is the Smagorinksy-Lilly
sub-grid stress model [105, 161]. In general, LES are computationally
more expensive compared to RANS. (Of course also depending on the
turbulence model of the RANS.) On the other hand LES provides higher
resolution in space and time [57] and can be considered more accurate
[202].

As a remark, we would like to note that essentially the CFD models describe
rather the airflow than the actual gas dispersion. Of course, both phenomena
are tightly coupled because of the advection mechanism in the dispersion
process. Since an adaptive model-based robotic source localization strategy
requires real-time updates of the model and due to the high computational
complexity of the mentioned CFD airflow models, we do not consider them in
our approach. Nevertheless, with increasing power of modern computers and
with improved approximation or simplification techniques CFD models may
get suitable for robotic gas mapping or source localization tasks in the future.

3.1.2 Data Driven Models
Land Use Regression (LUR)

Land Use Regression for monitoring air quality and pollution mostly in cities
or urban areas was originally proposed in [35]. It is a stochastic model that
makes use of concentration measurements and predictor variables [78] (some-
times called covariates). The measurements come from monitoring stations
that are spread over the area of interest. Typically, the number of monitoring
stations is about 20-100 and they are installed at fixed locations close to roads
or other relevant locations [78]. However, in some project also measurements
from mobile sensors are used [71, 119, 19]. Since nowadays particulate matter,
NO; and NOy are mostly responsible for air pollution in modern cities, LUR
models typically focus on these trace substances. LUR provides a method to
interpolate the concentration of these substances between the measurement
locations. Therefore, additional predictor variables gained from geographic
information systems are used. Such variables consider for example the traffic
conditions, e.g. by taking into account the distance to the next road and the
traffic density on the road. Further, the predictor variables describe land use
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or land coverage, i.e. distance to industrial areas, housing unit density, etc.
Other parameters often considered are population density and topological
conditions like altitude over sea level or slope of the terrain. LUR models
provide good results for predicting the spatial annual mean concentration [35]
to a certain degree. For higher resolutions and hotspot prediction, actual, local
measurements are required [119]. At a small scale, short term dispersion model
LUR models seem not advisable and thus inappropriate for the considered
robotic source localization task in this thesis.

Kernel DM+V

The Kernel DM+V algorithm is popular model for gas distribution mapping
in the robotic and MRO community. The model is purely data driven and
provides a 2D statistical spatial map of the gas distribution. The model predicts
or interpolates the gas distribution in between locations with measurements
either collected by a mobile robot or by static sensors. In order to fuse the
spatially distributed measurements, a Gaussian kernel function is used to
calculate weights for individual measurement locations. The basic idea of this
approach was proposed in [97, 98]. The statistical model based on a map for
the mean and variance of the gas distribution was introduced in [104]. It is
possible to account for wind or air flow in the model. Therefore, in [144] the
kernel functions are stretched so that the principle axis of the 2D kernels is
aligned with the wind direction. Moreover, the modeling approach provides
a confidence map. Loosely speaking, the confidence map shows how many
measurements were used to predict the distribution at an unknown location
and how strongly they were weighted. The computational complexity of the
model depends on the number of measurements and the width of the Gaussian
kernel function. In general the complexity is comparably low and suitable for
robotic real time applications. Nevertheless, in this thesis we would like to
avoid a purely data-driven model, since in the exploration procedure - especial
at the beginning - we lack of data. Instead, we would like to incorporate
physical knowledge about the gas distribution, which is ignored by purely data
driven models.

Neural Networks

Neural Networks are a good regression approach because they can capture
strong nonlinearities. Therefore, they are also an option when it comes to gas
dispersion modeling. The use of Neural Networks as dispersion models is an
on-going research topic that started in the nineties [66, 141]. The approaches
can be classified according to the way the network is trained. Most approaches
train the network based on measurements from data sets. For example in [138]



3.2. DISPERSION MODEL-BASED ON THE ADVECTION-DIFFUSION PDE 31

a Neural Network is used as a dispersion model. It was trained during an ex-
periment where an artificial chemical tracer was released in the Grand Canyon
area. The trace substance was measured by several measurement stations. Neu-
ral Networks are also used as pollution dispersion models in urban scenarios
trained on measurements from air quality monitoring stations [66, 79]. In con-
trast to training with real concentration measurements, Neural Networks were
also trained with artificial data gained from simulations. For example in [50] a
Neural Network combined with Cellular Automata is proposed as a dynamic
dispersion model for industrial accidents. It is trained based on a data set cal-
culated by means of a RANS simulation. This second approach can be used
as a simplification or approximation technique to circumvent the high com-
putational complexity of CFD simulations. Therefore, in the future this mod-
eling approach might be useful for the exploration strategy proposed in this
thesis (for further discussion see Section 8.3). On the other hand, Neural Net-
works trained with real measurement data are less suitable as models for the
exploration purpose. At the beginning of an exploration procedure no data are
available to train the model. However, one would already like to have a model
telling, where to collect data.

3.2 Dispersion Model-based on the
Advection-Diffusion PDE

In order to express domain knowledge to assist robotic exploration, for ex-
ample for gas source localization, we need a model that describes the physical
phenomenon of interest sufficiently well while its computational complexity is
suitable for online calculations. The latter is required to adaptively incorporate
new measurements during the exploration. Unfortunately, the complex physical
mechanisms behind gas propagation do not allow a simple and exact mathe-
matical description of the phenomenon. As discussed in the previous section
many common gas dispersion model show significant disadvantages in this re-
spect, especially CFD models. Nonetheless, models with low complexity exists
that can approximate the dynamics of gas dispersion. Here we make use of an
Eulerian approach, where we approximate the complex gas dynamics using a
Partial Differential Equation (PDE) with modest complexity.

Within this thesis we use the advection-diffusion PDE to model gas disper-
sion. The dynamic process is taking place in a bounded and connected spatial
domain Q, which we refer to as the environment. In this thesis we consider the
PDE as 2-dimensional, i.e. Q C R?, although the true gas dispersion is taking
place in 3D. This is a assumption and simplification that is motivated by two
facts. First, in our experimental evaluation we consider gas heavier than air
and ground based robots that are able to sample only in a plane close to the
ground. Second, the 2D approximation keeps the mathematical model feasible
for online calculations on our multi-robot system.
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Figure 3.2: This figure illustrates the 2-dimensional domain Q, where our gas
dispersion modeled by a advection-diffusionPDE takes place. The domain Q is
bounded by the border T'. The color map shows as an example the gas concen-
tration f(X, t) driven by two sources located at the peaks of the concentration.

In the following, the continuous function f(X,t) € R models the gas con-
centration at point X and time t in our exploration environment Q. Further,
the vector valued function V(X,t) € R? expresses the air flow or wind veloc-
ity in the environment. The function (X, t) represents a spatiotemporal source
strength at point X and time t which drives the evolution of the gas concentra-
tion. This function can be considers as the source distribution, since it describes
the amount of inflow at point X and time t. The advection-diffusion equation
(sometimes also convection-diffusion) put these functions into a relation [46]:

of (%, t

% —kVH(X,t) + V&) TVIXt) =u(X,t), XeQ, teR, (3.1)
Here, we assume that this velocity field is divergence free, i.e. we assume there
are no sources of airflow (e.g. fans, ventilation etc.) inside the environment. The
left hand side can be split into three terms:

e The first term is the time derivative of the concentration. Later, we will
look at special cases of the PDE. One is the steady state of the dynamic
process without any time dependencies that we we gain by setting this
time derivative to zero.

e The second term models the diffusion of the concentration. This disper-
sion mechanism is parametrized by the diffusion coefficient k in front
of the Laplace operator (V?). The negative sign causes a flow from re-
gions with high concentration to regions with low concentration. Please
note that this term does not only serve to describe the physical molecular
diffusion mechanism. Instead, we use it to generally model the isotropic
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spreading of the gas concentration caused by different effects, including
the dispersal and mixing introduced by small local turbulence or eddies
(turbulent diffusion).

e The third term describes the propagation of the concentration based on
advection. In other words it models the transportation of gas by moving
of the air. It is important to note that considering the air flow velocity
V(X, t) and the concentration f(X, t) as unknown makes PDE (3.1) a non-
linear because of this bi-linear relationship. In absence of air flow or wind
in the environment, we will set the advection term to zero. This gives us
a linear diffusion PDE. It may be an appropriate approximation in an
indoor scenario with very low air flow speeds.

To have a complete and well defined model of the gas dispersion dynamics
we further need initial and boundary conditions. As the initial condition we
assume:

f(%,0) = 0,X € Q (3.2)

The boundary conditions on the border I' depend on the structure of the en-
vironment. For example the environment maybe bounded by a wall. Alterna-
tively, the environment border can be open so that material can flow off. For
the boundary conditions within this thesis we restrict ourselves to two types of
homogenous boundary conditions [166]:

f(X,t) =0, X € Tq,t € R,, and (3.3)
of(x,t) .
o =0, ¥ teR,. (3.4)

Here we split the border T" of our environment Q into two parts: TqU T, =T
T4 is the part with the Dirichlet boundary condition (3.3) and T}, is the part
with the Neumann boundary condition (3.4) where i is the outward normal to
the boundary. The Dirichlet boundary condition can be physically interpreted
as an open bound where material is flowing off so that the concentration at the
boundary vanishes (i.e. the concentration at the boundary is zero). In contrast,
the Neumann boundary condition can be interpreted as an obstacle or wall
where no material is able to flow off (i.e. the concentration gradient perpen-
dicular to the boundary is zero). At this point note that the PDE (3.1) together
with the boundary conditions (3.3) and (3.4) is a variational problem, since we
are looking for the unknown functions, e.g. the source distribution modeled by
w(X, t). Such variational problem is hard to handle analytically. Therefore, we
are in need of numerical approximation techniques.

3.3 Numerical Approximation

In general solving the PDE (3.1) for the unknown functions
f(x, 1), u(x,t),V(x,t) is analytically impossible. However, numerical methods
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like the Finite Difference Method (FDM) and the Finite Element Method (FEM)
provide approximative solutions for the problem [166, 203, 47]. This section
explains how to make use of numerical approximation methods to solve the
PDE(3.1) modeling gas dispersion. Loosely speaking, the methods turn the
variational problem described by a PDE into the problem of solving a system
of algebraic equations. In the following we will derive the system of equations
based on a FDM and a FEM approach.

The FDM makes use of a grid based discretization of the environment and
sets out by identifying equations that describe the relationships between neigh-
boring cells. Therefore, the results are easier to understand and interpret. A
comprehensible system of equations will get more important later on in the
thesis when it is shown how to solve the system of equations in a distributed
fashion in Section 5.1.

In contrast to an FDM approach, FEM shows more flexibility regarding the
spatial discretization schemes. Where in FDM the operators of the PDE are
discretized spatially, FEM discretizes the functions of the PDE. Thus, we are
no longer restricted to a grid-based discretization and can make use of flexible
mesh-based discretization of the environment (compare Figure 3.3 and 3.4).
On the downside the resulting system of equations is harder to construe. Both
approaches have advantages and disadvantages and we will make use of both
during the thesis and choose the most suitable one depending on the case. In
the following it is only shown how to apply the numerical approximations to
our specific PDE (3.1). For a more detailed introduction to FDM and FEM we
refer the interested reader to standard references, e.g. [47],[203],[166].

3.3.1 Finite Difference Method

The FDM approximates differential operators in our PDE (3.1) by finite differ-
ences. The calculation of finite differences requires the evaluation of the func-
tions in (3.1) at discrete time stamps and discrete points in space. For the time
discretization we consider equidistant time stamps t = n- At forn = 0,1, 2...
with the sampling period At. For the space discretization we divide the two
dimensional environment Q into smaller sub-domains Q.,c € € with the car-
dinality C of the set of cells C. For simplicity, we use quadratic cells Q. forming
a grid of I rows and ] columns, so that C = J - I. The width of the cells is
denoted as p. Moreover, we define the set of grid cells B C € that belong to
the boundary of the environment Q. Figure 3.3 illustrates this discretization
scheme.

The numerical approximation considers the continuous functions f(x,1t),
u(x, t), V(x, t) of the PDE (3.1) as constant within each cell for a time stamp n.
Thus, we can describe the concentration field by individual scalar value f.[n]
representing the concentration in cell ¢ at time stamp n. All values f.[n] are
aggregated in a vector fin] = [fi[n], fan], ..., fem]]T. It is important to note
that the row and column indexes i,j map to a unique cell ¢ and the four neigh-
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] n—1
time n =% B C y
o N Bt e - fc[n_l]
i ( et fexaln]
0 : \\‘ R\ i e 5 fc—l[n]\fc[n] fC-I-l[n]_
0 j :J fc—J[n}

Figure 3.3: The left side illustrates how the continuous domain is discretized
by grid cells. The indexes i and j are used to define the location of a cell ¢ in
the grid. All cells ¢ € € form the domain. The cells ¢ € B correspond to the
border. Please note the border belongs to the domain, too (B C @). The extract
on the right indicates the spatial and temporal neighborhood of a cell ¢ in blue.
It shows the four special neighbors as well as a grid cell ¢ at a previous time
stamp n — 1.

boring cells of ¢ are indexed by ¢ +1, ¢ — 1, ¢ + J and ¢ — J. Analogously to the
concentration, the source distribution vector i[n] = [u;[n],unl,...,ucm]]’
contains the source strength or amount of inflow for each cell. Further, the ve-
locity field is described by two vectors V1 [nl, v, [n] representing the two spatial
components of the velocity in each cell.
Based on the backward Euler method we can approximate the time deriva-
tive as:
of(xX,t) _ feln] —fcm—1]

~

ot At >

(3.5)

for all cells ¢ € € and for the time stamps n > 0. Note that we have chosen
the implicit backward Euler method because it is more stable compared to a
forward Euler method for larger At [166]. With a central difference scheme the
first and second order spatial derivatives are approximated as:

VH(x, 1) ~ | Tt ;fc_l[n]’ sy nl ng[n] ! (3.6)
V(1) ~ —4fc ]+ fep1nl + fc;; ] + feyyn] + fe_ynl (3.7)

These difference schemes can be applied for all cells ¢ € € that do not belong
to the border B (c ¢ B). Further, we introduce an auxiliary vector

Scnl = [fcml, fepiml, fe1Mml, fety [nl, fe—y ], fem — i (3.8)
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which collects the concentration value of cell ¢ and the concentration of the
neighboring cells c4+1,c—1, ¢+, c—J as well as the concentration in cell ¢ of the
previous time stamp 1. — 1. This set of cells is also depicted in Figure 3.3 on the
right. Making use of this auxiliary vector and plugging in the finite difference
approximations into the PDE (3.1) we obtain the following equation:

R'5.n) — kd"5c M) 4 ViG] Sen] + Vo MGT 5] —ucnl =0,  (3.9)
ceC\B, n>0.

Note that we move the source term also to the left side. Here, the vectors h,
d, g1, G2 are defined so that equation (3.10) reproduces the PDE (3.1) with the
discretization scheme of equation (3.5) to (3.7)

L1 -
= 1,0,0,0,0,~1] (3.10)
d= %[—4,1,1,1,1,0}T

P

1

gl = 7[0’19_19()’0’0}1-
P

L .

g = 5[0, 0,0,1,—1,0]".

The single equation (3.10) holds for a single cell and builds up a system
of equations when combined for all cells. We can rewrite this system of equa-
tions in a matrix notation. This provides just another formulation that is more
suitable for calculations in a computer with state-of-the-art solvers:

1 . . .

EH(F[“] — fln— 1]) — kDffn] + % [n) 0 Gy fin] +%[n 0 Goffn] —dMn] =0
(3.11)

where o is the Hadamard product, i.e. an element-wise multiplication. The ma-
trices H, D, G and G, implicitly contain our discrization scheme (3.5) to (3.7),
the auxiliary vector S¢[n] and the organization of the grid cells in the vectors
F[n}, vi[nl, ¥2[n] and t[n]. Unfortunately, it is not easy to explicitly write down
the definition of these matrices. Generally they are build - also called assembled
- by FDM software tools.

Since we get |C\ B| equations, the matrices are in RI\BXI€l The vectors
fin], ¥1[nl, ¥»[n] are in RI®! and the vector @[n] in RI®\BI. According to the
chosen boundary conditions, the system of equations has to be extended. We
obtain one equation for each cell on the boundary. In section 3.2 we split the
boundary into a Dirichlet and Neumann bound. Analogously, we divide the set
of boundary cells B into a set B4 and a set B,, (B = BqUB,,). Here By is the set
of cells belonging to the Dirichlet bound and B, is the set of cells belonging to
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the Neumann bound. For the homogenous Dirichlet boundary condition (3.3),
we get:

fenl =0,c € By. (3.12)

For a Neumann boundary condition (3.4) we have to approximate the gradient
in normal direction with a finite difference scheme. Since the cells are on the
border a central difference scheme as in (3.6) is not defined. Instead, a forward
or backward difference scheme is required, depending on the location of the
boundary, e.g. left or right border. We get:

0 on a left border (3.13)
0 on a right border

=0 on a lower border
0 on a top border

ce Bn.

Again all equations of boundary conditions can be arranged in a matrix formu-
lation:

—

Bfln] = 0. (3.14)

3.3.2 Finite Element Method

FEMs are another option to obtain a numerical approximation of the PDE.
Similar to FDM, FEMs turns our variational problem (3.1) into a system of
algebraic equation. In the following we first derive the system of equations for

the advection-diffusion PDE as a general case and then discuss special cases
O (%ot
3 ot
Note that during this chapter the notations [A]; j and [b]; are used to index an

in the next section. For simplicity f(X,t) is used as a short form of

element in row i and column j of a Matrix A or a vector b.

The formulation of our PDE (3.1) is called strong form. It has to be fulfilled
locally at each point in our domain. FEM, however, makes use of a slightly
different formulation of the problem. This formulation is called weak form or
sometimes weighted residuals [47]. We obtain this formulation by multiplying
the strong form by an arbitrary test function ¢(X,t) (sometimes called weight-
ing function) and integrating the product over the whole domain [203]:

J (%, 1) (f(RX,t) — kVH(R, 1) + (X, 1) VF(R, 1)) dX = (3.15)
Q
= J ¢ (X, u(x, t)dx.
Q

Here, we only consider the two dimensional case. Thus, gradients and the ve-
locity field ¥(X, t) have two components. If the weak formulation (3.15) holds
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for every arbitrary function ¢(X,t), then also the strong formulation (3.1) has
to hold at every point in the domain [47]. “It is a somewhat surprising fact that
often this weak form is more realistic physically than the original differential
equation which implied an excessive smoothness of the true solution”[203].
Further, the weak formulation is not just a mathematical trick. It also has a
physical meaning. It can be derived via the principle of virtual work. The weak
form can be seen as an minimization of a quadratic functional that can be in-
terpreted as a kind of energy [47].

In the weak form (3.15) we can approximate the function space with a
corresponding finite dimensional subspace. Therefore, we decompose all con-
tinuous functions by a finite number of weighted basis functions 1 (X)

NZf Wi (%), (3.16)
%Zui ()i (%), (3.17)

with 1 = 1,2,...,C and C being the number of basis functions. In general, the
test function ¢ (X, t) can be chosen arbitrarily. Here we make use of the Galerkin
method that uses the same basis functions i (X) to construct the test function

(%, 1).
~ D bi(ti(R), (3.18)

The basis functions are weighted by the values f;(t), u;(t) and ¢;(t). These
values we aggregate in vectors

ft ) £1(t), F2 (), ooy e (1] (3.19)
at) = () 2 (1), et (D)]T, (3.20)
dt) = [¢1()¢2(t)> ,d>c(t) . (3.21)

These vectors together with the basis functions approximately represent the
continuous functions f(X,t),u(X,t), $(X,t). Let us now construct the basis
functions ¢ (X). To this end we first dlscretlze the spatial environment Q into
small triangles forming a mesh. These triangles are also called elements. The
discretization of the environment by such a mesh is illustrated in Figure 3.4 on
the left. We make use of Lagrange elements of first order [203]. This means that
the basis function are designed in a way so that they linearly interpolate on the
triangle the values at triangle’s vertexes. We refer to these vertexes as nodes in
the following. They build the set € (cf. grid cells in case of FDM). The weights
of the basis functions correspond to the values at the nodes. In total the number
of basis function C is the same as the number of nodes (C = |€|). In Figure 3.4
on the right a basis function is plotted as an example. At the corresponding
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node the basis function is 1 and decays linearly to zero on the neighboring el-
ements. The basis function is zero on all on all other elements. Note again the
the weights contained in e.g. f(t) are actually the values of the function f(X, t)
to be approximated at corresponding node’s location.

So far we skipped the wind field (X, t). Its components are approximated
in the same way by a set of C weighted basis functions {; ():

-
V) ~ ) viahi®), Y vai(tbi(R)] (3.22)

where we aggregate the weights vy ;(t) and v, ; (t) in vectors
\71 (t) = [Vl,l (t)avl,l (t)a s V1,C (t)]Ta (323)
W (t) = a1 (), V22 (), ey va,c ()] (3.24)

In contrast to the basis functions 1; (%), the basis functions {; (X) are chosen as
Lagrange elements of order zero. This implies that the function is 1 within the
element and 0 everywhere else (see also Appendix A).

At this point we would like to mention that during the thesis we have only
considered basis functions which are defined on single elements and are zero
elsewhere. Thus, spectral methods making use of globally defined sinusoids etc.
as basis functions [38] were not consider.

In what follows we apply the approximation (3.16)-(3.18) to each term
in the weak formulation (3.15) to obtain a system of algebraic equations
approximately solving the PDE (3.1).

feln]

Figure 3.4: The left side shows the spatial discretization of the domain by a
mesh of triangles. The nodes indicated with an “0” belong to the border of the
domain. Note that these nodes are also in €. The extract on the right illustrates
a single basis function . (x) associated with the node ¢ and weighted by the
value f.[n]. This function is equal to f.[n] at the node ¢ and decays linearly to

zero over the neighboring triangle elements.
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Source term:
In the source term of equation (3.15), i.e. the right hand side, we replace ¢ (X, t)
and u(X,t) according to (3.18) and (3.17):

J (%, Du(X, 1) dX ~ (3.25)
Q

i
=Y S Bl J Py (R ()
i

S Y @y L b (X (R)dx = (3.26)

= $OTAU(); (Al = L b () () 4%,

The matrix A can be assembled by any FEM software tool. Further note that
since the basis function ;(X) are just piecewise defined function on elements,
the integral over the whole domain Q becomes a sum of integrals over all
elements, which can be calculated analytically.

Diffusion term:
For the diffusion term in equation (3.15) we can do integration by parts and
apply the Green’s theorem:

— KJ G (X, 1) V(X, t)dX = (3.27)
O

of (X, t)

d_’:
o

= KJ VX, t)TVF(X, t)dX — KJ b(X, 1)
Q r

= KJ VX, t) VR, t)dx.
Q

To achieve the last line we have to demand that either ¢(X,t) = 0 or M =0

on the boundary I'. The second condition is fulfilled on Neumann boundarles T
naturally. Therefore, the Neumann boundary condition is implicitly considered
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solving the weak formulation. The Dirichlet boundary 'y will be considered
separately later on. With the approximations (3.18) and (3.16) we get

KJ V(R 1) VX, t)dx = (3.28)
Q

KJQ;; [ (¢ )TV (%) d%

As can be seen, because of the partial integration of the weak formulation it
is sufficient that the basis functions are continuously differentiable. Again, the
summation can be rewritten as a matrix multiplication:

J ZZ () Vi3 (%) Vpi (X)X = (3.29)

= k(1) TDF(t)
Dl = | V(0" V(e
fo}
where the matrix D can be assembled by any FEM software tool.
Advection term:

For the advection term of equation (3.15) we make use of the approximation
(3.16) and (3.22).

J (%, 9%, 0T VX, 1)dX ~ (3.30)
Q

[éﬂ,-,i:j by (%) Vi ()] d, [éﬂj,izj B (@ (L%, (3.31)
Q Q

Here, in order to rewrite the summation as a matrix multiplication, we make
use of the Hadamard product, i.e. an element-wise multiplication. Since the
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derivation in equation (3.31) is more involved, a more detailed derivation with
intermediate steps is given in Appendix A. Again the matrices G1,G, can be
obtained from standard FEM software tools.

Time derivative term:
Finally, the term in equation (3.15) containing the time derivative of f(X, t) is
approximated analogously to the source term.

J (X, f(R,t)dx ~ (3.32)
Q

Af(t) + kDT(t) + %1 (1) 0 G1 (1) + () 0 Gof(t) —AT(H) =0 (3.33)

We further simplify the equations by multiplying with A" which results in
a new system of equations. As can be seen from the definition of A in equa-
tion (3.33), it symmetric an positive definite, since the basis functions are al-
ways positive. Therefore, it’s inverse exists. Note that we also switch the sign
of the diffusion term so that the algebraic system is congruent with the original
PDE (3.1).
f{t) — kDF(t) + Vi (t) 0 G1f(t) + V2 (t) 0 Gof(t) —ii(t) = 0 (3.34)
D= /~\71]~3; G| = /~\71G1; G, = /-\71@2
Solving this system of equations provides a numerical approximation of the
original variational problem (3.1). Instead of the spatial functions f(X,t),
u(X, t), ¥(%, t) we are looking for the vectors f(t), ©(t), ¥ (t), ¥, (t). However,
these vectors are still time dependent functions. A numerical implementation
requires a further discretization of these time continuous functions. Therefore,
we make use of the backward Euler method to numerically approximate the
time derivative. Instead of vector-valued functions e.g. f(t) with respect to time
we get a vector f[n] at each discrete time stamp t = n- At forn = 0,1,2, ... and
the sampling period At. Note that in this context the index n does not indicate
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a single element of a vector but represents the whole vector at a certain time
stamp n. We obtain:

— — — — —

iH(f[n] —fn—1]) — kDf[n] +Vi[n] o Gif[n] +V2[n] o Gof[n] — ti[n] = 0.
(3.35)

Essentially, here the matrix H is the identity matrix. We introduce this matrix
to have the same structure as in equation (3.11). Note that in contrast to equa-
tion (3.11) all matrices in equation (3.35) are in RI€*€l and the vectors are
in RI®/. When deriving this equation, we made use of the Green’s Theorem in
equation (3.27). There the Neumann boundary condition (3.4) was implicitly
used so that it is already considered in equation (3.35). This is the reason why
the number of equations, i.e. number of matrix rows, is higher in case of FEM
compared to FDM.

However, the homogenous Dirichlet boundary condition (3.3) has to be
considered separately, too. It can be simply superposed to equation (3.33).
Therefore, we define a subset of our nodes B4 C € which belong to the Dirich-
let border of T'q. For these nodes we get the additional equations:

[flcn] =0,c € Bq. (3.36)

This can be also written in a matrix form:

—

Bfn] =0, (3.37)
where B selects the node values contained in fin] that are on the Dirichlet
border.

3.3.3 Results

Both approximation methods turn the general gas dispersion PDE (3.1) into a
system of algebraic equations (equation (3.35) for FEM and equation (3.11)
for FDM plus boundary conditions). Essentially, in the matrix form they have
exactly the same structure. However, they are not exactly the same since the
content of the matrices is different and also the content of the vectors has a
different interpretation. Nevertheless, the same numeric solvers can be applied
to both systems of equations. In the following, we collect the results from the
last two sections. Further, we will show the different regimes of the PDE and
discuss them as special cases. In the previous sections, the systems of equations
where always set to zero, e.g. equation (3.35) or equation (3.11) or the bound-
ary conditions (3.14), (3.37). Now, we are going to introduce a residual vector
T[nl, instead of setting the equations to zero. This is a first perpetration toward
the probabilistic formulation in the next chapter. While in the current chapter
we demand the residuals to be zero, we will relax this constraint in the next
chapter.
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Dynamic Advection-Diffusion:
We derived the numerical approximation starting from the most general case
considered in this thesis, i.e. advection-diffusion based dynamic dispersion:
1. . . . . .

A—tH(f[n] — fln —1]) — kDf[n] + V{[n] o G{fn] + V,[n] o Gof[n] — wn] = ¥[n],

As long as the concentration fln] and the wind velocity field ¥ [n],V,[n] are
treated as unknowns, equation (3.38) presents a non-linear problem, because
of the bi-linearity in the advection term. If we consider the wind velocity field
vi[nl, ¥, [n] as deterministically known, the problem turns into a linear system
of equations.

Static Advection-Diffusion:
As a special case, we will consider later on the steady state of the advection-
diffusion gas dispersion process. For the static case time derivatives in the PDE
vanish. In other words the change between two successive time stamps is zero,
which results in:

—xDfn] + v1[n] o G1fIn] + 2] o G2 fln] — dn] = Fn (3.39)

Again depending whether the wind velocity field is known or not, we have to
solve a linear or a non-linear system of equations.

Dynamic Diffusion:
Another special case considered in this thesis is gas dispersion without an ad-
vection mechanism, e.g. an indoor scenario where airflow can be neglected.
Setting the velocity field to zero, simplifies the problem to:

1 - - N
EH(f[n] —fln—1]) — xDf[n] — t[n] = ¥[nl. (3.40)
In this case the problem is linear.
Static Diffusion:
The problem gets even simpler if we consider the steady state without advec-

tion. By setting the time derivatives to zero we get the linear system of equa-
tions:

—kDf[n] — d[n] = ¥[n]. (3.41)

Boundary Conditions:
The boundary conditions can be obtained by equation (3.37) in case of FEM
or by equation (3.14) in case of FDM.

Bfln] = b. (3.42)
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Here we also introduced a residual vector b. Note that these boundary condi-
tions have to be combined with any of the previously mentions cases. Other-
wise, the system of equations will be ill-posed.

3.4 Multi-Robot Measurement Model

For inspection robots that explore an environment, the central goal is to es-
timate the unknown vectors F[n], vi[nl,v,[n] and t[n] based on the collected
measurements. We consider L ground based robots equipped with gas sensors
to measure the gas concentration f[n]. The robots are capable of driving to
requested 2D locations in the environment and are able to carry out measure-
ments there. The focus of this thesis is on in-situ gas sensing. Thus, we will
assume that the width of a sensor point spread function (sensor footprint) is
essentially infinitesimal small. This assumption is justified considering a rela-
tively rough discretization of the environment compared to the sensor’s size.
Further, gas sensors often have a low-pass time characteristic due to physical
constraints of the measurement principle. However, we consider the time of
the impulse response of the sensor as small compared to the time discretiza-
tion At of the numerical approximation. This implies that the actual process
measurement yi[n] of the robot 1 only depends on the current concentration
distribution f[n] as:

yinl = @] mifin] + &, 1=1,2,..L (3.43)

Here, the vector m;[n] selects a single element from the concentration distribu-
tion f[n]. This vector depends on the position of the robot and since the robots
is moving is time dependent. In other words, it is a zero vector except for one
element that is 1 at an index that corresponds to the discrete spatial cell or
mesh node measured by the robot 1 at time n.

The measurements are disturbed by additive noise &;[n]. We assume our
noise to be a spatially and temporally white, normally distributed process
with zero mean and precision (a reciprocal of the variance) t.,, i.e., & [n] ~
N(0, 1.

In a realistic and efficient implementation of an exploration strategy, it is not
practical to require synchronization of the robots so that we get a measurement
of each robot at each time stamp. For example a robot may have to move a
longer distance to the next measurement location compared to others. Thus,
a synchronized measurements procedure would require all robots to wait for
it. Instead, we design a system where we can plug in measurements of robots
whenever they become available. This implies that measurements of a robot 1
are not necessarily available for all time stamps n.

In the following, the individual measurements y;[n] are aggregated in a
measurement vector §[n]. Based on (3.43) we can write:

§nl = Mnlfln] + Enl, (3.44)
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where M = [myMml, ..., M]]T. In case a robot 1 does not provide a measure-
ment at time n, the corresponding row m[n] in M is missing. As such, the
dimensions of §j[n] is not the same for all time stamps n, since the number of
measurements is varying.

3.5 Sparse Regularization

The numerical models descibed above can be used in different ways depending
on which values are known or unknown. If the source distribution represented
by t[n] and the air flow velocity represented by vj[nl,v,[n] are known, we
can simulate the gas concentration fIn]. We refer to this as the forward prob-
lem. In combination with sufficient boundary conditions this problem is well
posed. In other words the solution is unambiguous. While we can use the for-
ward problem to build a simulator for gas dispersion, for exploration and gas
source localization we have to solve the inverse problem. In the inverse prob-
lem the source distribution [n] is unknown as well as the gas concentration
fln). However, we have additional information about the concentration based
on collected measurements by a gas sensor. Therefore, the system of equations
can be extended by the measurement model (3.43). Nevertheless, even by incor-
porating measurements, the inverse problem is ill posed, especially in the early
phase of the exploration procedure, where no or only few measurements are
available. This fact requires a regularization of the problem. At this point we
can make use of further a-priori knowledge about the observed gas dispersion
process. In the mathematical model (3.1) the source distribution is modeled
by the continuous function u(X, t) and numerically approximated by the vector
u[n]. This modeling approach shows maximal flexibility and has no restrictions
regarding the number of sources. However, in a realistic source localization sce-
nario we would expect 1(X,t) to be a composition of a few single peaks rather
than a continuous function. In other words, even though we do not know the
exact number of sources in a realistic scenario we can assume a few sparsely
distributed sources. This a-priori knowledge can be exploited in the regulariza-
tion of the problem. Since the solution of the inverse problem is ambiguous, we
choose a regularization that provides us the solution with the sparsest source
distribution.

After the numerical approximation the vector [n] represents the source
distribution. More precisely, each element u.[n] of @[n] represents the source
strength in the grid cell ¢ for an FDM approach, or at a mesh node ¢ in case of
a FEM approach. In short, a sparse source distribution corresponds to a parse
vector i[n]. Mathematically the regularized numerical problem can be written
as:

min [l (3.45)
un]



3.6. ILLUSTRATING EXAMPLE 47

subject to the equations (3.38)-(3.41) (depending on the dispersion process) and
the boundary conditions (3.14) or (3.37). Here the 1) pseudo norm represents
the number of non-zero elements in the vector w[n]. This kind of regularization
is common in compressed sensing [59, 37, 53]. Compressed sensing techniques
try to reconstruct signals from fewer samples than the Shannon sampling the-
orem would require assuming that the signal could be expressed by a sparse
vector in some domain [67]. In general solving the 1y optimization is NP hard.
However, if the optimization is subject to a linear system that fulfills the re-
stricted isometry property, the 1y norm can be replaced by an 1y norm [42]. In
this case the optimization will often be still able to reconstruct sparse signals
exactly.

The techniques could be applied for compression or de-noising of signals
but it is also quite often applied to the regularization problem like consid-
ered here. For example in connection with PDEs, sparsity has been used in
[116], where 1; regularization was used for estimating activation time of a
known number of sources. In contrast to temporal sparsity, as in [116], an
li-regularization was used in [91] for identification of a spatially-sparse right-
hand side of a PDE using FEM discretization and measurements from non-
mobile sensors. Similarly, [77] covers the problem of sparse input for PDEs but
in the context of optimal actuator placement.

The Least Absolute Selection and Shrinkage Operator (LASSO) is one op-
tion to tackle the 1; regularization [173]. LASSO can be considered as an 1,
constrained least square problem [134]. For a linear system, e.g. (3.41) Df = 1,
it can be writen as [134]:

min

HDF-&H + oy, 5 (3.46)
in] L

During this thesis we will make use of the state-of-the-art LASSO as a bench-
mark algorithms for sparse regularization. However, in the next chapter we will
transform the estimation problem to a probabilistic framework, where we can
apply more powerful and more efficient techniques to archive a sparse regular-
ization.

3.6 lllustrating Example

Let’s apply the methods and tools presented so far to an example. For a simple
example we consider the case of a static purely diffusion based gas dispersion.
We make use of FEM as a numerical approximation. The environment and
the discretized mesh are illustrated in Figure 3.5. The white circles indicate the
mesh nodes belonging to the border of the environment. This case corresponds
to equation (3.41), where we set the diffusion coefficient k = 1. Thus we get
the linear system of equations:

Df +1=0. (3.47)
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Here we only look at a single time stamp and skip an explicit dependency of
variables on the time index n. Further, we get additional constraints from our
boundary conditions. We consider here an Dirichlet bound assuming that the
concentration at the border of the environment is zero:

Bf = 0. (3.48)

In our example the mesh consists of 500 nodes, where 85 belong to the border.
Hence, the vectors f and @ are in R3%. Further: D € R590%500 3nd B € R85x500,

Let us first simulate the gas concentration f given a source distribution 1,
i.e. the forward model. For our example we placed two sources: one at location
X1 &~ 46,x; =~ 46 with strength 0.8 and one at location x; & 65,%x; =~ 101 with
strength 1.0. Therefore, our the source distribution vector 1 contains only zeros
except for one element with 0.8 and one with 1.0. This source distribution is
shown in Figure 3.5(a). We can combine equations (3.47) and (3.48):

[g}ﬁ[ﬂ:o (3.49)
Sf+g=0
We can calculate the concentration by
f=8%4q, (3.50)

where S denotes the pseudo inverse of S. Here we introduce the auxiliary
vector § = [@" 07]T and the system matrix S = [D" B']T.
The result of the concentration distribution is shown in Figure 3.5(b).
Now let us also have a look at the inverse case needed for the exploration.
For this case we would like to estimate the source distribution i given measure-
ments . In our example we generate the measurements from our simulated gas
concentration f.

J=MF+£ (3.51)
We pick 100 random locations in our environment as measurements. These
locations are reflected in the matrix M which maps all concentration values f to
the 100 measurements aggregated in §j € R'%. The additive noise £ is sampled
from a normal distribution center at zero with variance 10~*. By plugging in
equation (3.50) into equation (3.51) we get:

§=MS* { ‘5 } . (3.52)

Unfortunately the matrix MS™ is underdetermined. (It has only rank 100.) So
it is not possible to estimate the source distribution @ without a regularization.
Let’s try to treat it as a regularized least square problem:

L +1:L
g—MS [0}

i=arg ‘min + [lonrti]]y, (3.53)
uw

L
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Figure 3.5: The Figure illustrates the source estimation problem. In (a) the
ground truth source distribution is shown. This was design arbitrarily. In (b) the
gas concentration distribution is plotted. This distribution is calculated based
on the source distribution in (a). The plots in (c) and (d) depict reconstruc-
tions of the original source distribution (a) based on measurements at locations

indicated with the black stars. In (c) a least square regularization is used and
LASSO in (d).
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We found that for our example a regularization parameter «;; = 10~ achieves
the best result. For implementation the least square algorithm of the numpy
library [2] was used. The estimate of the source distribution { is shown in
Figure 3.5(c). From the visual impression the estimate is not so bad, however
there is a clear discrepancy compared to the original source distribution shown
in Figure 3.5(a). Moreover the result is not sparse as requested.

Let’s consider an alternative regularization. As discussed in the previous
section, we can formulate the inverse problem as a LASSO problem:

+ Ho‘lassoﬁul] (354)
L

0

o]

U = arg min
i

Again we found a regularization parameter otiqss0 = 1073 as a good choice.
In the implementation we used the scikit-learn [4] library. The resulting source
distribution 1 is plotted in Figure 3.5(d). This time the result corresponds very
well to the original source distribution shown in Figure 3.5(a). The estimate
clearly shows the two original source peaks at the right location an with the
right strength. Further, the estimate does not contain any additional, artificial
artifacts as in case of the least square regularization in Figure 3.5(c).

This example illustrates that it is possible to estimate the source distribution
based on the underdetermined model and only a few measurements. Further, it
shows the importance of an appropriate regularization to achieve sparse and
good results. Let us remark again that we were able to estimate the 415 un-
known elements of the source distribution vector i by only 100 measurements.

3.7 Summary

In this chapter we found the advection-diffusion PDE to be a suitable mathe-
matical model for gas dispersion. We explained how to approximate the func-
tional problem by numerical methods in order to translate the advection- diffu-
sion PDE to a system of algebraic equations. Further, we introduced a measure-
ment model characterizing the gas concentration measurements of our multi-
robot system. Last but not least we discussed that estimating sources based on
the dispersion model and measurements requires regularization. A small exam-
ple illustrated how to apply the tools introduced in this chapter in a determin-
istic setup to estimate a source distribution based on measurements. In the next
chapter we are going to look at the source estimation problem in a probabilistic
framework.



Chapter 4
Probabilistic Problem
Formulation

In the previous chapter we introduced a mathematical model for the gas dis-
persion process based on the advection-diffusion PDE. In what follows, we
are going to translate this deterministic model into a probabilistic framework.
In the probabilistic framework all variables, vectors and most parameters are
treated as random variables. This allows us to apply Bayesian inference to esti-
mate the gas sources based on concentration measurements. Further, the proba-
bilistic framework will be used on Chapter 6 to design the Domain-knowledge
Assisted Robotic Exploration and Source-localization (DARES) strategy for a
multi-robot system.

4.1 Bayesian Inference for Source Estimation

Mathematically, the source localization problem means to find the source dis-
tribution based on observed concentration measurements. This is a classical
estimation problem in the field of statistics. The gas dispersion can be seen as a
stochastic process.

Let us consider the process described by equation (3.38) that we obtain by
a numerical approximation of the advection-diffusion PDE (3.1) in the previ-
ous chapter. The gas concentration f[n] at a time stamp n depends on the gas
concentration of the previous time stamp fln — 1]. Moreover, it depends on
the source distribution #[n] and air flow V;[n],¥,[n]. The Bayesian network in
Figure 4.1 illustrates this relation. Further, our observation §j[n] depend on the
current gas concentration f[n], according to the measurement model presented
in section 3.4. As can be seen from the Bayesian network in Figure 4.1, the
source distribution is not directly measurable. The network can be identified as
a Hidden Markov model, with the hidden variable ti[n], since the all variables
at time stamp n only depend on the previous concentration fin — 1]. In con-
trast to the deterministic point of view of the previous chapter, we now treat
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Figure 4.1: This figure shows the Bayesian network of the gas dispersion process
for time stamp 1. It can be identified as a Hidden Markov model, where the
source distribution is the hidden variable.

all variables and vectors in the Bayesian network shown Figure 4.1 as random
variables. As such, they are described by PDFs.

We propose as Bayesian approach. Our main objective is to find a PDF
describing the source distribution. To this end we first aim at the joint PDF
p(fin], @], 1], ¥2[nl, fin — 1][§[0], ..., §n]) of source distribution, concen-
tration and - in the most general case - air flow. Based on the joint PDF it is
then easy to obtain the source distribution PDF by marginalizing over all other
variables. In the same way we can get the concentration PDF out of the joint
PDF. Note that our may focus is to estimate the source distribution. However,
we will see that we get the gas concentration nearly for free, as a side product.

The ingredients of our proposed Bayesian approach are (i) the likelihood
given by the measurement model, (ii) the gas dispersion model describing the
transition from time stamp n — 1 to n and (iii) prior distributions. The prior
distributions can be selected freely, and are designed by us in a way to encode
a-priori known information. Using the Bayes theorem and Figure 4.1, the pos-
terior joint PDF for a single time stamp n is given by

p(finl, @nl, v nl, % M, fin — 1G[0]; ..., §nl) o (4.1)
(i) pGmIfn)
(i) p(fnliiml, viml,voml, fin — 1))
(iii) p(¥in],v2n)
(iv) p(um)
(v) p(fin—11[gl0l, ..., gn —11),

according to the Markov assumption. So the posterior is a factorized function
of five terms that can be interpreted as follows:
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(i) This term is the likelyhood arising from the measurement model (3.43).
It will be further discussed in the next Section 4.2.

(ii) This term is the transition of the concentration distribution between two
time stamps. This is the probabilistic equivalent of the gas dispersion
model presented in Section 3.3.3. It will be further discussed in the next
Section 4.2, too.

(iii) This term is the prior distribution of the air flow or wind. Through this
term we can incorporate a-priori information about the air flow or wind
velocity. We will have a closer look at this prior in Section 4.3.

(iv) This term is the prior PDF of the source distribution. In this prior we will
encode the a-priori assumption that our sources are sparsely distributed
in the environment.

(v) This term summarizes the concentration distribution of the previous time
step. We make use of this term since temporal interdependence between
two time stamps cannot be easily resolved for the concentration distribu-
tion. As a possible solution we include this PDF that can can be computed
from the posterior (4.1) obtained at the time step n—1 and appropriately
marginalized as follows:

p(fn — IGO0}, ... i — 11) = (4.2)
_ J---Jp(f"[nf 1, — 11,91 i — 1],V [n — 1], fin — 2)1g[0], ..
ey M — 1])dV; [ — 1]dtn — 1]d¥,[n — 1]dfin — 2]

In this way, the estimation of the parameters of interest for a single time
step can be implemented similar to a filtering procedure.

4.2 Probabilistic Gas Dispersion and Measurement
Model

Let us now have a closer look at the term (ii) p(fIn]|@[n], v;n], ¥>[n], fin — 1)
of (4.1) and how to obtain this PDF. The conditional PDF represents the prob-
ability of a gas distribution fin] given the current source distribution, wind field
and the gas distribution of the previous time stamp. The deterministic equiva-
lent to the conditional PDF is the system of algebraic equations obtained from
the numerical approximation of the PDE in the previous chapter. It provides a
solution for the gas distribution f[n] given the other environmental parameters
by setting the residual vector ¥[n] to zero. In contrast to the deterministic case,
where each equation has to hold exactly, i.e. ¥F[n] = 0, in a probabilistic frame-
work we propose to relax the equations and assume that the equality holds
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within a certain precision. This is an important difference to classical determin-
istic approaches and one of the main contributions of our work. By relaxing the
residual vector we are able to quantify our trust into the dispersion model. We
propose that elements of the residual vector r.[n] are spatially and temporally
white, normally distributed with zero mean and a precision .

We further assume that the elements r.[n] are statistically independent. This
can be justified by the following consideration: Let us consider the system of
equations obtained by FDM. These equations are a numerical approximation
of the PDE (3.1). The PDE is valid in every infinite small point in the considered
domain. Similarly, the single equation (3.11) is valid for each individual cell c.
The equation holds everywhere in the environment independent where the cell
is or what is going on in surrounding cells. Thus, also the residuum r.[n] of an
individual cells must be independent of other residua. Therefore, in a proba-
bilistic framework the elements of the residual vector r.[n] can be assumed as
statistically independent.

To summarize, we allow the system of equations to deviate from 0, yet with
an expected deviation to be zero. This permits us to define a conditional PDF
(i1) in (4.1) as follows:

—

p(finfinl, v ], vo ], fin — 1]) oc [ [ e~ = <M, (4.3)

where 7. [n] actually is a function of fin], @nl, v, ], %,m] and fin—1] according
to (3.38). The Gaussian shape arises from the fact that we have chosen r.[n] to
be normally distributed with zero mean and a precision ;. It can be considered
as an analogon to least square optimization in a deterministic framework. This
thesis focuses on this special case of normal distributed residuum. Other option
maybe considered in the future work.

By means of the precision Ts the trust into the dispersion model is
parametrized. In other words the parameter 15 quantifies the uncertainty of
our model assumptions. By setting T; — oo, i.e. high trust or low uncertainty,
the original algebraic system of equations is recovered exactly. For small T35 we
allow the dispersion process to deviate from the model assumptions and thus
“tolerate” a certain model mismatch caused by dynamic effects that are not
captured with an advection-diffusion PDE. This is a nice feature of our ap-
proach, since we already know that our simplified dispersion model is only an
approximation of the complex dynamic gas dispersion process in reality.

So far we have not considered the boundary conditions in the conditional
PDF (4.3). In order to extend (4.3), we have to translate the equations arsing
from the boundary conditions (3.42) to the probabilistic framework, too. This
is done in the same way as for the system of equations (3.38) and their residual
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vector ¥[n]. Again we relax the residual vector b of the boundary conditions by
a precision Typ. Then the extended conditional PDF is given as

p(ﬂn]\fi[n],\'fl ], v nl, fin — 1]) x H e FreMmr H e’TTbeC, (4.4)

where we use the precision Ty to model the trust into the boundary conditions.
Practically, a large value of T, would demand that the boundary constraints are
fulfilled strictly, where as a low value would relax the boundary constraints.

Besides the dispersion model, we introduced a measurement model in Sec-
tion 3.4 characterizing the gas sensors carried by the multi-agent system. Based
on equation (3.43) and the Gaussian assumption of the measurement noise we
can formulate the conditional PDF of a measurement.

p(gin) o T e lviim-mimin” (4.5)

leLn]

Here £[n] is the set of robots that provide a measurement at time stamp mn.
The precision Ty, is the inverse variance of the measurement noise introduced
in Section 3.4.

4.3 Sparsity Inducing Source Prior

An important contribution of the approach presented in this thesis is the design
and choice of the prior PDF for the source distribution. Essentially, the prior
has two functionalities. First it acts as a kind of regularization to our problem.
As discussed in Section 3.5, the solution of the source estimation problem is
ambiguous in general. However, through the design of the prior we are able
to restrict the solution space and favor source distributions with certain prop-
erties. This also leads to the second role of the prior: It enables us to model
possibly available a priori knowledge about the sparsely distributed source. In
our case we do not know the exact number of sources but we know that the
sources are sparsely distributed in the environment. By a proper design of the
prior we can encode this knowledge. Here let us recap what a sparse source
distribution means from a mathematical point of view. For the deterministic
case (see Section 3.5) the vector U represents the spatial distribution of sources.
A sparse distribution means that most of the entries in U are zero. Similarly,
in the probabilistic framework a high likelihood is assigned to source distribu-
tions that are sparse. In other words the posterior PDF possesses its maximum
at a constellation where most of the elements of U are zero.

In the following we illustrate the effect of the sparsity inducing prior by
means of an example and we turn to the question: How can we design a prior
PDF in order to induce sparsity of the source distribution?
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4.3.1 |lllustrating Example

To better understand the concept of sparsity introducing priors let us have a
look at a simplified example for a low-dimensional space. Therefore, we assume
an underdetermined linear (system) of equation(s) for two parameters u; and
u, arising from a single measurement y = 1. The residuum r may be, for
example, given by the single equation

r=u +2u; —y. (4.6)

Analogously to the relaxation of the residuum of the gas dispersion in the pre-
vious section, we relax the residuum r due to measurement noise and model
uncertainties. Thus, for our example we get a likelihood PDF:

plyhu,w) e~ 7 (witw—y)? (4.7)

For the confidence into the model T3 = 20, the PDF is plotted in the first column
of Figure 4.2. Now let’s have a look at a few different prior distributions and
their resulting posterior PDF. Gaussian Prior:

plug,wp) oc [ Jem 20, (here: 1q = 20) (4.8)

Laplace Prior:

plur,uz) He*%‘u” (here: Ty = 10) (4.9)

Student’s t Prior:

u.2 —(n+1)/2
plu,w) < || (1 + ?) (here: 1 = 0.001) (4.10)

These prior distributions are illustrated in the middle column of Figure 4.2.
The resulting posteriors, i.e. p(uy, waly) = p(yhug, w2) X p(ug,wy), are shown
in the last column. Especially, the maximum of the posterior is of interest. Here
we would like to remark again that a sparse solution lies either on the u; or
W, axis, since then either u; or wy is zero. For our example the two desired
sparse solutions that fulfill the linear equation (4.6) are: (i) w; = 0,u; = 0.5
or (ii) w3 = 1,u; = 0. For the Gaussian prior finding the maximum of the
posterior corresponds to a least square problem with 1, regularization. As can
be seen from the posterior in Figure 4.2, this maximum of the posterior is far
away from one of the desired sparse solutions. For the Laplace prior finding
the maximum of the posterior is similar to a least square problem with an 1;
regularization and can be found by a LASSO solver (see also section 3.5). In
this case the maximum is close to one of the desired sparse solutions (u; =
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Figure 4.2: This figure illustrates the effect of different prior PDFs on the result-
ing posterior PDFs. The left column shows the same likelihood for all cased. In
the first row a Gaussian prior is shown in the middle as well as the resulting
posterior on the right. The second row shows the case of a Laplace prior and
the third row the case of a Student’s t prior. Only in case of the Laplace and
Student’s t prior, the maximum of the posterior is located on the axes. States on
the axes are sparse, since either uy or u; is zero.
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0,u, = 0.5). Similarly, for the Student’s t prior the maximum of the posterior
is close to this sparse solution. In addition, for the Student’s t prior the other
sparse solution at u; = 1,u, = 0 has a high probability. To sum up, while a
Gaussian prior is not appropriate to achieve a sparse solution, the Laplace and
Student’s t distribution are suitable priors to incorporate sparsity assumptions
in the probabilistic framework. Loosely speaking, their distributions put a lot
of probability mass on the axes and thereby favor solutions that are sparse.
Following this interpretation, the heavy tailed Student’s t distribution seems
even superior to the Laplace distribution.

4.3.2 Sparse Bayesian Learning

In order to realize a Student’s t distribution we use SBL methods. SBL is realized
by imposing a hierarchical factorized prior [174, 195]

C
p(an], yinl) = [ [ plucmllyemhp(yeml). (4.11)
c=1

Here we introduced a new hyper-parameter y.[n] for each element in G[n].
The hyper-parameters y.[n] are also treated as a random variable and has to
be estimated as well as t[n]. The product p(ucMm]lyc[nl)p(yc[nl) builds a so
called Gaussian scale mixture, where p(uc[nlly.[n]) is a zero-mean Gaussian
PDF with precision y.m] (p(ucmliyc.m]) = N(uc.ml0,y.Mm]~")). The hyper-
prior p(yc[n]) is selected as a Gamma distribution G(y.[nl]la,b),c =1,...,C
with fixed hyper-prior parameters a and b. It was shown in [174] that when
marginalizing over v, we obtain

plucn]) = Jp(uc dlye (n)p (ve [n]) dye In] =

- JN(uc[nno,yc[nrl)ewc[nua,b)dmn} _

r(xH) w2\ T mf
_\/ﬁ(%) (1+ S ) , with F(XJ_L t* et dt.

(4.12)

Since the Gamma distribution is a conjugate prior of the Gaussian distribution
with fixed mean, i.e. zero, and unknown precision, i.e. Y., the marginalization
has a closed form solution, which turns out to be the Student’s t distribution
with the degree of freedom v depending on a and b.

Finally, here we will make use of a popular version of SBL that uses the
non-informative hyper-prior p(ycMml) o y.ml~! obtained when a, — 0 and
by, — 0 [194, 195, 174]. The motivation for this choice is twofold. First, the
resulting inference schemes typically demonstrate superior (or similar) perfor-
mance as compared to schemes derived based on other hyper-prior selections
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[67]. Second, very efficient inference algorithms can be constructed and studied
[175, 158, 194, 72].

4.4 Air Flow Prior

In the probabilistic approach introduced in Section 4.1 we need a prior PDF
p(Vim],¥2[nl) for the two components vi[n],V,[n] of the airflow vector for
each point in space and every time stamp n. In the following we call this PDF a
probabilistic airflow model. Such kinds of models are common in meteorology
or atmospheric research [57]. However, in this field the models aim to describe
the airflow on a macro (> 100km) or meso (1km — 100km) scale. For robotic
source localization we rather require a micro scale airflow model for a region
smaller than 1km?. For this scale CFD models are commonly used [122]. As
discussed in Section 3.1, the main disadvantage of these models is their high
computational costs. Therefore, we follow the data driven modeling approach
inspired by [27], but with two simplifications:

(i) we do not distinguish between laminar and turbulent components in the
extrapolation (essentially the main contribution of [27]) and

(ii) instead of using a histogram based representation of PDFs as in [27],
we use approximating closed form representations of the probabilistic
distributions.

Commonly, analytic probabilistic descriptions of airflow or wind make use of a
Weibull distribution [40] for the absolute wind velocity and a von-Mises distri-
bution for the wind direction [39, 26]. For computational simplicity we prefer a
PDF (or joint PDF) of the two wind velocity components in a Cartesian coordi-
nate system and propose to use two Normal distributions for the wind velocity
components that are statistically independent. This choice is mostly motivated
by simpler and analytically tractable calculations. However, as we will show in
Section 7.3.2, measurements also support this assumption. Consequently, the
airflow model is essentially a spatial map providing the mean and variance for
the two velocity components (in a Cartesian coordinate system) at each point in
space and for every time stamp. This map is build based on wind measurements.
Since, during the exploration procedure we do not have wind measurements for
all points in space at the same time, we need a way to interpolate in between
available measurements and thereby predict the wind velocity at all locations.
Let us assume we have taken wind measurements yy1,i,Yvz,i for the two
wind components at the time stamp n; at a location X; € Q. In general multiple
measurements (i = 0,1,2,...) are available. For the current time stamp n we
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can calculate the probabilistic airflow map as follows: For all points X} of our
airflow map the predicted mean values are
cW(Xk, N, Xi, N4 i
uvl,k[n} _ Zl ( k: 5 1: 1)yv1,1 (413)
Zi, W(Xk9 n, X4, ni)
Zi W(zk, n, 7_51'.9 ni)yvl,i

2kl = e (4.14)
v Zi W(Xkan,xiani)
where w() is a Gaussian shaped weighting function of the observations
W(Rie,m, Ky ny) = e b 1Bl g (nimn)?, (4.15)

Loosely speaking, an observation is down weighted when the observation lo-
cation X; is further away from Xy and when the observation time stamp n;
was further in the past. The shape of the Gaussian weighting function is
parametrized by the kernel widths ks and k.. The choice of these parameters is
further investigated in Section 7.3.2. Further, we can calculate the variances at
all points Xy of our airflow map as:

i WKio 1, K, 1) (Yyri — ek n])?

oyl = = =
Ziw(xk,naxiani)

2 > WK, M X, 1) (Yo, — Byt )2

_ . 417
sz,k[n] > WXk, n, Xi, 1) ( )

(4.16)

Please note that this interpolation technique is quite similar to the Kernel
DM+V algorithm [104]. However, here we apply the technique to the wind
velocity components instead of the gas concentration as was done in [104].
The down weighting of measurements further in the past is adopted from the
work in [22] By evaluating the means and variances at the cells or nodes ¢ of
our discretized environment we get the probabilistic airflow map:

p(Vilnl,¥a[n]) = (4.18)

C C
[ TN mlpvem], 03 M) - T [N(Faleml,e M, o3, cl).

(Note: here [V/{]. indicates the cth element of the vector V). This PDF acts as
our prior distribution of the air flow or wind and can be directly plugged into
the probabilistic formulation (4.1).

4.5 Summary

In this chapter we made use of the deterministic gas dispersion model devel-
oped in the previous chapter and translated it into a Bayesian probabilistic
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framework. More precisely, we formulated the posterior PDF for the gas con-
centration, source distribution and wind field. The posterior PDF factorizes
into different parts: the likelihood makes use of the measurement model, the
gas dispersion model is used to problematically model transition from time
stamp n — 1 to n and prior distributions account for a-priori knowledge. For
the design of source prior we apply Sparse Bayesian Learning (SBL) techniques
to incorporate the prior assumption that sources are sparsely distributed in our
environment. As a prior for the wind field, we developed a data driven prob-
abilistic airflow map that can be generated before the exploration procedure
or in parallel to the exploration by means of wind measurements. Finally, let
us remark that so far we only formulated the posterior PDF. In a next step we

have to “solve” this PDF, i.e. to calculate parameters and features of interest
from the PDF.






Chapter 5
Implementation for
Multi-Robot Applications

In the previous section we cast gas source localization into a probabilistic esti-
mation problem and formulated the posterior PDF for the spatial gas distribu-
tion, the spatial source distribution and the wind field given our gas concentra-
tion measurements. Now we are interested in certain features of this posterior
PDF, for example its maximum. This maximum tells us which combination of
gas and source distribution has the highest probability for the given observa-
tions. Actually, this maximum can be considered as the solution to our inverse
problem: the estimated source distribution given concentration measurements.
Besides the maximum, we are interested in the second central moment of the
posterior, i.e. the variance. This second moment will be used later on as a gauge
for the information content of different regions in the exploration environment.
It will be the foundation of the DARES strategy designed in section 6.2. Fur-
ther, we need to calculate marginal distributions of the posterior, since we are
interested in the PDF of the source distribution in a individual single grid cell
but not in the whole domain. In this chapter we therefore investigate different
algorithms to calculate such features of the posterior. The chapter is divided
into two main sections. In the first section we have a look at the simpler case
of a linear dispersion model and how we can profit from a multi-robot system
and a distributed implementation. In the second section we will consider the
more complex case of a non-linear dispersion model.

5.1 Distributed Implementation of the Linear Model

In this section we study the case of a linear dispersion model for a process
purely driven by diffusion, i.e. absence of air flow). This means the residual
vector T[n] in equation (4.4) and accordingly in the posterior (4.1) is calcu-
lated based on the linear equations (3.40). Further, for ease of interpretation,
we assume the equations are constructed using FDM and the environment is
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discretized into grid cells as explained in section 3.3.1. In case of FEM the
presented approach will work in a similar way. However, the mathematical for-
mulation will be more involved. This section develops a distributed inference
algorithm to calculate the marginal PDF of the posterior as well as their mean
and variances. The algorithm also accounts for the sparsity inducing prior of
the source distribution.

5.1.1 Factor Graphs Representation

The inference approach that we consider
here is based on representing the pos-
terior (4.1) using a factor graph [88].
A factor graph is an undirected bipar-
tite Bayesian network being composed
of value nodes, which represent random
variables, and factor nodes, which model
functional dependencies between them.
The origin of the factor graph is in cod-
ing theory [170, 61], where it is used
for error detection and correction. How-
ever, it is a powerful framework for gen-
eral probabilistic modeling. The factor
graph is used as a graphical represen-
tation of relationships between different
random variables. Concerning a factor-
ized form of a PDF, each factor node in
the graph corresponds to a factor of the
product in the posterior (4.1) (See [108]
for a more detailed introduction to factor
graphs). In our case we profit from the
already nicely factorized form of the pos-
terior (4.1). Note that not only (4.1) is a Figure 5.1: This factor graph rep-
product, but also the factors of the prod- resents a single grid cell in the
uct themselves are factorized e.g. (4.4) posterior PDEF. Cubes denote fac-
or (4.11). Let us shortly recap the FDM tor nodes, while spheres stands for
of section 3.3.1. Essentially, each line of variable nodes. The graph could
the system of equations we gain from be defined into two parts (BP and
the FDM according to (3.10) puts the VYMP), which will get important in
concentration value f.[n] and the source Section 5.1.2.

strength . [n] in a grid cell ¢ into a math-

ematical relation with the concentration values fe1[n], fo_1[nl, FC+] nl, fe_ ym]
of the neighboring grid cells and the concentration value of the previous time
stamp f.[n—1]. With this insight let’s have a look at the factor graph of a single
grid cell shown in Figure 5.1 The graph shows factor nodes as cubes and vari-
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Y. measurement
concentration

R. PDE model
source strength
G, prior

hyper-parameter
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Figure 5.2: This simplified factor graph illustrates how the graphical represen-
tation of the whole posterior PDF looks like. For simplification time depen-
dencies and boundary conditions are neglected. The blue cubes represent mea-
surements. They only exist at cells where in this example a measurement was
actually taken.

able nodes as spheres for a single grid cell and its direct neighbors are shown.
The factor nodes in the graph put all connected value nodes into a functional
relationship. The relationship of the neighboring concentration values and the
source strength given by our PDE model is represented by the factor node R..
Further, a factor node Y. represents the state likelihood of a single grid cell
arising from a measurement as given by (4.5). Note that this node exists only
when the measurement at the associated grid cell is available. Moreover, the
factors G, and H, capture the hierarchical source prior (4.12) of the sparsity
assumption. Here, G. represents the parametrized prior p(u.[nlly.[nl), where
H. represents the hyper prior PDF p(y.[n])

Based on the graph for a single grid cell as shown in Figure 5.1, we can
design the graph for the combination of all grid cells in the domain. This over-
all graph is shown in Figure 5.2. To simplify the graph in order to make a
visual representation possible, time dependencies to previous time stamps are
not shown. In practice, the whole graph as shown in Figure 5.2 would exist
for the previous time stamp, too, and all concentration nodes of both graphs
are connected. Furthermore, the constraints or relations given by the boundary
conditions are not shown for simplicity. The boundary conditions would add
additional factor nodes to the graph which are connected to the concentration
nodes on the border.

At this point let us remark on the structure of the factor graph in the context
of the chosen numerical approximation of the PDE. The graph in Figure 5.1 is
specific for the chosen form of the discretization. Especially, the part connected
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to the factor node R. is closely related to the used FDM. In case of other ap-
proximation schemes or other PDEs, the graph will have a slightly different
topology. Yet the graph design for another numerical approximation is still
straight forward and follows the same steps. Loosely speaking, the connectivity
of the graph and its adjacency matrix is given by the system matrix of linear
equations arising from the approximation scheme. Moreover, for a diffusion
PDE the parts in the graph related to the prior and the measurement nodes
are the same independent of the numerical approximation of the PDE. In other
words, the numerical approximation of the PDE only affects the nodes R, at
their connection, while the rest of the graph remains the same.

5.1.2 Inference via Message Passing

The purpose of the factor graph in Figure 5.2 is to facilitate inference of the
concentration distribution F[n}, source distribution w[n], and the correspond-
ing hyper-parameters y[nl. In this thesis inference is performed using message
passing on factor graphs [88], [108]. Message passing algorithms are a power-
ful tool to calculate marginal PDFs of random variables in general. In a nutshell,
the message passing algorithms work as follows. Messages are exchanged be-
tween nodes of the factor graph along its edges, i.e. from factor nodes to vari-
able nodes and from variable nodes to factor nodes. The messages are PDFs
themselves (sometimes also referred to as beliefs). Outgoing messages from a
node are calculated based on the incoming messages at a node. Message passing
algorithms provide update rules how to calculate these outgoing messages. By
interactively exchanging the messages between nodes the outgoing messages of
the variable nodes converge to the marginal PDF of the corresponding random
variable. A nice property of these algorithms is that they can be implemented
in a distributed fashion very easily. Thus, they are particularly useful for a
multi-agent system. Note that the following derivation of the message passing
algorithm was first published in [189].

Before we begin with the detailed description of the message update rules,
let us have a look at the shape of the individual factors of the posterior (4.1).
For the linear case considered here (without wind) all messages are Gaussian
except from the messages connected to the sparsity inducing prior. This has
an important practical consequence. We can divide the graph into two parts
as shown in Figure 5.1. For the part above the dotted line, the estimation
can be efficiently solved via a standard sum-product algorithm (or Belief
Propagation (BP)) [135]. Moreover, all corresponding messages can be ex-
pressed in closed form. For the lower part, however, which is responsible for
sparsity constraints, applying the sum-product algorithm [135] will lead to
analytically intractable messages. To circumvent this we will approximate the
resulting messages in the lower part using variational Bayesian techniques.
Specifically, we follow the approach proposed in [146], where the authors
applied Variational Message Passing to some parts of the factor graph in order
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to compute analytical approximations of the messages, whereas the rest of the
graph is solved by the sum-product algorithm.

The sum-product algorithm

The sum-product algorithm [135],[88],[108], also known as belief propagation
(BP), computes marginal distributions of value nodes by exchanging messages
— functions (or rather PDFs) of graph variable nodes — between the nodes along
the graph edges. In cases, where a factor graph is free of loops, all messages
have to be sent only once in order to calculate the exact marginal distributions.
For graphs that contain loops, as in our case due to the spatio-temporal neigh-
bourhood relations, the sum-product algorithm is not guaranteed to converge.
Yet in many practical cases it is known that loopy belief propagation [60],
when messages are transmitted several times in the graph, does converge to an
approximative solution [127]. As we will show later in Section 5.1.3, this is
also the case for our graph topology and parametrization.

In the following, we will derive all messages that are needed for inference on
the factor graph. To this end, we make use of the following notation. The nota-
tion vec(A) arranges all elements of the set A in a vector. Similar the notation
diag(A) generates a diagonal matrix with the elements of A. The statement
M¢, (n]—R,. represents the PDF — a message — sent from a variable node f[n] to
factor node R.. As will become apparent, most of the messages will be Gaussian
functions N(x|u, '), which simplifies their exchange between graph nodes.
Gaussian messages are parametrized by the message mean p and precision T,
and thus only these parameter values need to be communicated. We will use
Wf, n]—R. to represent the mean of a Gaussian message sent from node f¢[n]
to node R¢, and T¢_ ) g, to represent the corresponding message precision.
In contrast, non-Gaussian messages generally require an appropriate numerical
representation of the PDF (e.g., a discretization) to ensure that messages can
be exchanged between the nodes. Also, note that messages going out from a
node depend naturally on the incoming messages, for example following the
BP algorithm [135]. Thus, due to the presence of loops, the derivation below
contains references to messages that are defined later in the text.

We begin with the message my__,¢_[n] sent from the top factor Y, to the
corresponding variable node f.[n] (c.f. Fig. 5.1). Due to the structure of the
graph, my_ ¢, is merely the likelihood of the state in cell ¢ given by (4.5):

My, St n) = NIy, St in)s T s (5.1)

with Wy, ¢, ) being the actually measured value yc[n] in cell ¢ at time n.!

Here, the precision T, corresponds to the measurement noise. Note that this

Note that this is true provided that M[n] is a selection matrix, i.e., when y.[n] is a noisy
version of f¢[n].
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message is sent (computed) only when the corresponding measurement at the
cell ¢ at time n has been made. Otherwise the node Y. would not exist (see
Figure 5.2).

The computation of messages sent from the variable nodes f.[n], fc_{[n],
fer1ml, fe_ynl, feqpyml, feln — 1] toward R is a bit more involved but still
straightforward. Due to the assumed probabilistic model, the message is in fact
a product of several normal distributions. With the auxiliary neighborhood set
Ne ={c,c—1,¢c,c—], c+]J}, we can write

1 .
M R = MY, —f5[n] H MR; —f;[n] X N(ﬂufi [n]—>RcsTfj [TL]—>RC)’ jeNe

iENc\j
(5.2)
The parameters of the normal distributions can be calculated as
Th >R =Tm + ) TRiof;n>  and
ieN, \]
1
Hijml—»Re =— { Z MR —F; ] TRy —f; ] T Hy; 5 [n]Tm} > (3.3)
Tf; ] =R, e\

j € N(c).

The update rule for messages sent from node R, can also be computed in
closed form. There are seven different types of messages depending on their des-
tination node. We define the set X = {fc[n], fc_i[nl, fer1[nl, fe_jml, feiyml,
fcn — 1], uc.M]} containing the seven different destination nodes. In order to
calculate all outgoing messages mg.—j,j € X we define auxiliary variables,
vectors and matrices to simplify the derivation. Let’s recap the definition of the
residual vector ¥[n] for a grid cell for the linear diffusion equation (see equa-
tion (3.10) and (3.40)). We can write

Ten] = Z ait , with (5.4)
ieX
4 1 —1 1 -1
QAf [n] = o7 + At Qaf. i [n] o foyrm] 5> Of, ] = re
—1 1
a =—, Qf.fn_11=—, a =—1.
feyyn] p2 > feln—1] At’ ucn]

Further, for the calculation of the message towards j € X we introduce

§5 =vec({i:ie X\j})

i =vec({pisgr, :1€ X\ j}

T; =diag({ti = Rc : 1 € X\ j})
Ej =vec({a; :1 € X\ j})

(5.5)
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Using these definitions and standard rules for computing messages from a
factor node to a value node [88], we obtain for the message from R, towards a
variable node j € X:

mRC—)j Q(‘[e*TTS(Tc[n])Z X H mi%Rcdgj
Xy (5.6)
O(Je*%(g‘;?i*aiﬂz « e*(g'j*ﬁj)Tfj(?i*ﬁHdg'j,

Since the integrand in (5.6) is a product of Gaussians, i.e. again a Gaussian ,
the message mg, —,j can be computed exactly. After some algebra, we get

—1
MR.—j = N(U“LRCH)ETRC_)]'); (5.7)
with the mean and the precision given as

o2 2FT 2T ® ATy 17
TR —j =Ts@j — T5a aj (Tj + 154505 ) §;
~1

o2 -1, RTE-17
=qj (TS + 4y T). a])

ST (T X ATV—17%
Ty T (Tj + 150505 ) @ (5.8)
HUR.—j =
TRe—j

1 -
T
_7H] aj,

4

with the final expressions having been obtained by applying the Sherman-
Morrison formula [23, 68] to (T‘] + T éj (xl'jT)*l.

Unfortunately, the other messages in the factor graph cannot be computed
in closed from. The reason for that is the hyper-parameter 'y with its Gamma
shaped PDF. In order to efficiently represent all intractable messages, we
approximate them using a class of analytical approximation tools. Specifically,

we use variational Bayesian techniques as discussed in the following.

Variational Message Passing (VMP)

While in general the loopy BP algorithm is applicable to arbitrary factor graphs,
the analytical tractability of the messages is often limited. For example messages
sent from factor nodes require a marginalization (integration), which may be
intractable for non-linear factor nodes. In our case, messages related to the
sparsity prior lead to non-Gaussian PDFs, which also prohibits exact evaluation
of the messages. Bayesian variational methods, and in particular VMP [193],
are a class of analytical approximation techniques that allow circumventing the
intractability of message computations.
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In VMP, the belief distributions are approximated with simpler messages,
typically chosen from a certain parametric family to minimize a Kullback-
Leibler divergence [90] between the true beliefs and an approximation. Nat-
urally, message computation rules for VMP differ from those computed with
BP (see [193] for more details). In what follows, we give a summary of the
corresponding computations specifying the required messages. In our case, we
need to compute messages that propagate between variable node u.[n] and
factor G, (see also Figure 5.1):

My =6 XMG.=u. [m]MR>uc[n]s and (5.9)

G, cexp | InN a0, el 1) x My s dvelis  (5.10)
between variable node y.[n] and factor G.:

My ml=Ge XMG. =y MIMH >y n)> and (5.11)

G,y xexp | 1Nt B0, Yol ™) X M s, duclnls  (5.12)

and the message between y.[n] and factor H,

My, sy ] X 1/vcMl. (5.13)

Finally, the connection between VMP and BP is the message
T m]—=Re X MG sucMIMRe—ucn] (5.14)

Fixed point of Variational Message Passing (VMP)

Since our graph contains loops, we have to send these messages several times
until convergence. Instead of performing multiple iterations of message updates
in the whole graph, we propose first to perform updates of the VMP part of the
graph by fixing messages Mg_ sy, [n]. In other words we keep all part, i.e. mes-
sages, belonging to the BP in Figure 5.1 fixed and only update VMP messages.
After convergence of the VMP messages, the resulting messages are propagated
into the BP part. This approach is largely inspired by [159]. In fact the fixed
points of the VMP messages performed ad infinitum can be computed in closed
form. The corresponding analysis not only accelerates the convergence of VMP,
but also reveals a condition under which the corresponding sparsity parameter
YcInl is finite. It is this condition that corresponds to the detection of a source
signal. Let us now study this in more detail.
Consider mg,_ sy, [n] at a first update cycle k = 0:

me=% = No, (yk=oh 1, (5.15)

Ge—ucn
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which is just the prior for the source signal at the first iteration. We initialize
the hyper parameter Y= by a small value like 10~3. Here, the superscript k
is the update iteration counter. Now, consider the computation of m,,_[n)—c,
from (5.9). Note that the messages mg_ ., [n] are proportional to a Gaussian
PDF

MR, ) < N{ulpe, 7. 1), (5.16)

where we define
Te =TR.sucm)>  and (5.17)
He =HR: —uc n] (5.18)

to keep the notation short. By plugging (5.15) and (5.16) in (5.9) we get

=0 UeT —0]\—
mim}wcmN<@cﬁ;mwn+v¥°U1). (5.19)
Te +Ye

The message Mg, ] to the node yc[n] can be computed in closed form,
because (5.12) is Gaussian. The resulting distribution can be recognized as a
Gamma distribution with the corresponding PDF

k=0
W2l 4 e + oyl

_ 2
(Tc+v§*m)

(k=0] 31
ch"‘Yc[n] x G Y‘E’ 5

(5.20)

Likewise, the message m, _(n]— g, in (5.11), which now accounts for the hyper-
prior H, is also a Gamma PDF given by:

[k=0]
m[k:O] _ v 1 1 H%T% + Te +Ye (5.21)
Yelnl—=Ge 2°2 (k=01 2
Te +Ye

This ends one update cycle of the VMP. At iteration k = 1, an updated version
of the message mg,_ .. in (5.10) will take the form

k=0
Wit + 1, + k=0l

2
(Tc + Y<[:k70]>

[k+1] o
Ge—ucen] — N

ulo, (5.22)

When comparing (5.22) and (5.15), it becomes apparent that the variance of

[k+1] P22y
Ge—ue

the message m 5
[—0)
(Tc +Ye )

m) becomes . By induction we can show

that for k > 0 the following holds:

-2
Y = (122 + ety ) (e +v) (5.23)
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Instead of actually sending the messages in the graph, it is more reasonable to
proceed with updating the messages (5.9)-(5.12), and study the behaviour of
Ay[CkH] = y[CkH] — y[ck] as k — oo, which is governed by equation (5.23). The
stationary point y* of (5.23) is found by solving

Yo = (M2t + e +77) (Te +72) 2, (5.24)

which after some straight forward manipulations, can be found at

Tz —1

*

Y2 (5.25)

To prove the stability of the solution (5.25) we examine y: using the

Lyapunov criterion. To this end we define a Lyapunov function v(ygd) =

%(y[ck] —v%)? and investigate the behavior of

Av(,y[k]] :V(,YEkJrl]) 7V(Y[ck])' (5.26)

By plugging (5.23) and (5.25) in (5.26) we get

3 k .
(v md =y — e )A(riud + 2y + 3o

Avlyd) =~
‘ 201272 + v + T2 (12t — 1)

(5.27)

From the Lyapunov theory we know that the point vy¥ is stable if Av < 0,
which is true when p2t. > 1.2 To demonstrate the behaviour of the Lyapunov
function, we evaluate Av(y.) and plot it in Fig. 5.3 for p. = 1 and different
values of T.. Observe that when T.u2 > 1, Av(y.) is negative-definite, which
ensures convergence to the stationary pointy:. Otherwise, v becomes unstable
in the sense that y[ck] will diverge from the fixed point towards positive infinity.
In case that T.u2 = 1, the update iteration is mathematically stable according to
the Lyapunov criterion, however the stationary point in (5.25) becomes infinite.

This observation allows us to define the final update rule for the message
My, (n]—R, 10 (5.16), which is transmitted from the source node towards the
factors R; it is this message that effectively combines BP and VMP inference
on the graph. Using (5.22), where the variance is computed using (5.25), we
get

N(ueBret (r 4 —T )=1), 12 —1>0
My, [n] R, = Hee Tewem17 2 ¢ (5.28)
N(ucl0,0071) = 8(uc); Tcli%_l <0.

Table 5.1 summarizes all messages introduced in this section. We would
like to point out that due to the proposed VMP iterations the corresponding
messages are in fact not calculated. Instead, the outgoing message from wu. is

2Note that T, > 0
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Figure 5.3: Stability analysis of the hyper-parameter y.: the evolution of the
Lyapunov function Av has to be negative semidefinite (here < 0), otherwise the
update rule for the hyper-parameter is not stable (blue). This is only the case
when the denominator of equation (5.25) is greater than zero.

directly computed in closed form according to (5.28). The BP messages, on
the other hand, are calculated iteratively until some convergence criterion is
met, or until a certain number of iterations is reached. In our case the updates
are stopped after a certain number of iterations (see Section 5.1.3). We use a
serial scheduling for the message passing updates. Consequently, all messages
are successively calculated once per iteration of the algorithm and in a ran-
dom order. Moreover, we simplify the algorithm by propagating messages only
forward in time. Such an assumption is not uncommon (see [120]) and signif-
icantly reduces the complexity of the message passing algorithm. In particular,
the messages mg__,_[n—1] are discarded. Consequently, the concentration and
source distribution of the current time stamp only depends on the last time
stamp. Thus, the computational complexity does not increase with respect to
time and remains the same for all time stamps. This simplification is practically
very reasonable, since we are often interested in an online estimation of our
current states and sources for the exploration task. Improving the estimation
of states or sources lying in the past is not directly helpful in our case.

Since the complexity of the proposed message passing algorithm is pro-
portional to the number of messages, the complexity of one update iteration
is O(C + M[n]), where C is the number of cells and M[n] the number of
measurement taken at time stamp n. (For the static case M[n] is the total
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| Message | Equation |
My, —fn] (5.1)

MR —fe(n] (5.7) with j = f.[n]
MR —ucnl (5.7) with j j =ucn]
MR, ., m] | (5.7) withj = fe_i[n]
MR sty | (5.7) withj = fepqn]
MRty | (5.7) with j = fe_ym]
MR —feyym] (5.7) with j = fc+] ]

Mt ml-Re (5.3) withj =c¢
Me sk | (9:3)withj=c+1
Mt i n]—Re (5.3) Wlth) =c—1
M. jnl—=Re (5.3)withj=c+]J
Mt yml—Re (5 3)W1th] —C—]

My [n]—Re (5.28)

Table 5.1: A summary of all transmitted messages

number of measurements take so far.) As we will see in Section 5.1.3, the
number of update iterations needed to converge is insensitive with respect to
the number of cells C and can be considered as constant.

Distributed Implementation

This message passing algorithm can be easily implemented in a distributed fash-
ion on our multi-robot system by partitioning the factor graph. As an example,
the graph can be divided into four partitions, as shown in Figure 5.4. Each par-
tition is assigned to one robot of our multi-robot system. Every robot is respon-
sible for calculating all messages within its assigned partition on its on-board
computers. Only messages crossing the boundary of the partitions have to be
communicated to other robots. Note that therefore it is of interest to partition
the graph in such a way that the boundaries are small. Smaller boundaries cause
fewer messages to be send to other robots and require less communication. Fur-
ther, we would like to remark that the partitioning of the graph and assignment
of partitions does not correlate with the spatial position of the robots. A robot
could be responsible for a partition that belongs to a spatial region of the en-
vironment while it is currently not physically in this region. In these cases also
measurements taken in a certain region have to be communicated to the robot
responsible for this particular region.
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Figure 5.4: The figure illustrates how the factor graph can be divided into four
parts. Each part is assigned to one robot. The robot calculates all messages
within its part on its on-board computer. Only messages along common borders
(red arrows) have to be exchanged between robots.

5.1.3 Performance Evaluation

In order to analyze the performance of the proposed inference algorithm, we
set up a numerical simulation. The purpose of the simulation is to evaluate how
well the algorithm is able to estimate the concentration and source distribution
based on measurements. In addition, this section analyzes the convergence of
the proposed algorithm. At this stage the exploration strategy — i.e. where the
measurements are take — is out of the scope. Therefore, the measurements are
take and randomly chosen locations.

For the evaluation we consider the static case of the linear diffusion equa-
tion (3.41) gained from FDM. We consider a quadratic domain with quadratic
cells as shown in Figure 5.5. For simplicity the edge length p of a cell and the
diffusion coefficient are set to 1. The size of the domain and therefore the num-
ber of cells is varied in order to analyze the effect of the discretization. We
place three sources with strength 1 in the domain by designing a ground truth
source distribution tig¢. Figure 5.5 shows the ground truth concentration field
as well as the ground truth sources distribution (sources correspond to the back
squares). The ground truth concentration field th can be gained by solving:

—1 —
fot =—{ g ] [ gt } (5.29)
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Figure 5.5: The performance evaluation uses a simulation setup as depicted
in this figure. In the simulations different resolutions of the grid are analyzed.
Here the case of 40x40 cells is shown. The three sources are always place at the
same position in relation to the number of cells, e.g. at 1/4 of the grid’s width
and 1/2 of the grid’s height. The three back cells in (a) illustrates the position of
the three sources, while the plot in (b) shows the simulated gas concentration.

Here the equation system arises from the combination of the linear diffusion
equation (3.41), D, and the Dirichlet boundary condition (3.14), B. Note that
this forward problem is well posed since the boundary condition and source
distribution are given.

Measurements are placed randomly in the domain where the actual sim-
ulated measured values are taken from the ground truth concentration th.
Measurements are taken in a certain percentage of cells pysmt. E.g. we may
take measurements in pismt = 70% of the cells which means that 30% are
not measured. Please note that in general 100% of the cells has to be measured
in order to get a well posed inverse problem that can be solved without regu-
larization. Loosely speaking, if we only use 70%, it implies that the algorithms
has to “guess” 30% of the information.

Let’s have a look at the convergence of the proposed message passing algo-
rithm. The algorithm is implemented according to the previous sections where
we have chosen T, = 103 and 1., = 10°. (For a detailed explanation and study
of reasonable parameters see Section 7.1) Further, numerically it is not possible
to set the precision in the update (5.28) to infinity. Thus, we set it to a very
high number, i.e. 10°. In each iteration of the algorithm all messages of the
factor graph are calculated once in random order. That the algorithm in fact
converges is shown in Figure 5.6 for different sizes of the domain and averaged
over 100 runs. The error is calculated as the NMSE of the estimated concen-
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Figure 5.6: The curves show the convergence of the NMSE with respect to
the number of message passing iterations. During one iteration all messages
are calculated once. The number of messages to be calculated depends on the
number of cells. The curves are averaged over 100 runs. The light colored areas
are bounded by the maximum and minimum out of these 100 runs

tration f compared to th. As can be seen from the curves, the error of the
estimation converges to small values. It is not a surprise that it does not reach
zero, since “30% of the information is missing”. Further, it has to be remarked
that by a higher resolution the finally achieve NMSE is better. Surprisingly, the
algorithm converges for all different domain sizes within the same number of it-
erations (approximately 8). Of course the number of messages to be calculated
in an iteration is higher for a lager domain size. However, this number and the
computational time scale linearly with the number of cells. Further, it has to be
remarked that by a higher resolution the finally achieve NMSE is better.

Now let’s analyze the quality of the estimate provided by the algorithm.
To this end we compare the error of the estimate with other state-of-the-art
solvers. Namely, we are using a least square solver and a LASSO solver which
we already applied in Section 3.6. For the least square solver we use the pseudo-
inverse function of the numpy [2] library. Further, we use the LASSO imple-
mentation of the scikit-learn [4] library (« = 0.4). We compare the solvers by
means of the NMSE of the estimated concentration. Additionally, we evalu-
ate the EMD between the ground truth source distribution and the estimated
source distribution. The EMD is especially suitable for measuring the error of
sparse signals (see also Appendix C). Figure 5.7 shows the error depending on
the number of measurements for a fixed resolution of 40x40 cells. The sources
were placed as shown in Figure 5.5. Let’s first have a look at the case where
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Figure 5.7: The plots compare the quality of the estimates of concentration
(first column) and source distribution (second column) depending on the num-
ber of measurements. The violin plots depict the probability density of the er-
rors (NMSE and EMD) based on 100 simulation runs. The proposed message
passing algorithm is compared to a least square and a LASSO solver. For the
first row, 90% of the grid cells were measured, in the second row 50% and in

the last row only 30%.
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many measurements are available (psmt = 90%). There the performance
for estimating the concentration distribution is very similar for all three algo-
rithms. Namely, the NMSE is below 0.1 for all estimates and the averages is
close to 0.02 for all three. However, the performance for estimating the sparse
source distribution differs. Message passing with SBL achieves a lower EMD
compared to the LASSO and a lower variance in the EMD compared to the
least square solver. For cases with fewer measurements (pmsme = 50% and
Pmsmt = 30%), the situation changes. The performance of the message pass-
ing algorithm gets worse for estimating the concentration. Nevertheless, the
performance of estimating the sparse source distribution — measured by the
EMD — remains better compared to the LASSO and much better compared
to the least square solver. As a further note: for fewer measurements the per-
formance of the LASSO gets better compared to least square for estimating the
source distribution.

To sum up, for our purpose of source estimation the proposed message
passing algorithm performs very well, especially in cases were only few mea-
surements are available. The reason for that is the sparsity inducing prior imple-
mented with SBL. This prior helps the algorithm to “guess” the right solution
in case the measurements do not provide enough information.

5.2 Approximate Solution of the Non-Linear Model

In the previous section we developed a message passing algorithm to calculate
mean and variances of the posterior (4.1) (more precisely the mean and vari-
ances of marginal distributions of the posterior). Unfortunately, we can only
apply this algorithm in case of a linear model, i.e. as long as the residuum (4.4)
is linear in the unknown concentration and source distribution. As explained in
section 3.3, the advection-diffusion PDE with unknown air flow is non-linear.
The reason for the non-linearity is the bi-linear term in equation 3.38 where the
air flow Vi [n] is multiplied by the concentration fln]. Due to the non-linearity
and due to the form of the used hierarchical prior, calculating mean and vari-
ances of the posterior is generally harder. Therefore, we make use of variational
inference techniques to approximate the posterior. This approach was first pub-
lished in [188].

To simplify the following notation, during this section we introduce the
auxiliary variables win] = [F[n]T,Vl M7, v, [n]T,F[n —1]"]7 that contains the
concentration at the current and the previous time stamp as well as the wind
field. Likewise, we introduce the auxiliary variables 6[n] = W7, @n]T]7 that is
an extension of wn] by the source distribution. Further, we define Y as the set
{glo] , ..., gnl} of all measurements taken until time stamp n. We will from
now on not refer explicitly to the dependency of variables on the time index n
to further simplify notation. Now, consider the evidence of the model p(Y):

—

p(y) = | p(s,8,7)aday. (5.30)
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The key idea of a variational Bayesian inference is to introduce a proxy distri-
bution ¢(6,¥) to approximate the posterior of interest as follows [32] :

log p(Y) logjq(é’,wp“% ;))de*dv
i Gy (5.31)
(H 9)7) e

The difference between the true log marginal probability and the lower bound
£(q(0,¥)) is known to be Kullback-Leibler divergence from q(6,¥) and the
posterior (4.1):

KL(allp) =~ [ q(87)log 221 agay. (5.32)

Since logp(Y) is a constant quantity for given observations, by maximizing
the lower bound £(q(6,¥)) we minimize the Kullback-Leibler divergence and
q(6,7) will become close to the desired posterior p(8,V[Y).

In order to solve the variational problem, i.e. maximizing £ with respect to
q(0,7), we make use of the mean field approximation:

q(6,7) = qo(6) qu‘ (5.33)

In SBL the approximation PDFs q¢ and g, are chosen from conjugate fam-
ilies. This choice ensures that during the updates the distributions keep their
representation and stay in their family. Further, it ensures analytical tractability
of the inference expression. Classically in SBL, the posterior would be a combi-
nation of a Normal distribution and a Gamma distribution, the choice we also
make here. In particular, we choose q¢ and qy,,j = 1,...,C as (see also [32]):

qo (%, ) = N(Bfio, £o) = N q w } H H } , { Do Zwu D (5.34)

u

dv; (¥;) = G(¥jlaj, b), j = 1...C. (5.35)

Reconsidering the dimension of the concatenated vectors w and 6, the co-
variance matrices Zg is in R3*5C (respectively: Zww € R4Cx4C and Ly €
RCXC)'

Now, using (5.33), we iteratively maximize £ by updating each factor of
q(0,7¥) as follows [32]:

Lo, 1 7o
qe(w,u) A &exp (<logp(y’e”Y)>qyiH.:1 ..C) (536)



5.2. APPROXIMATE SOLUTION OF THE NON-LINEAR MODEL 81

1 =

B

where (a(x))y () stands for an expectation of a function a(x) with respect to
the PDF b(x), and « and B are normalization constants.
Let’s start to apply the update rules to our problem. In our case we obtain

qoe,qy, li=1...C,i#j

(5.39)

1
~Y log—
Ogy_.

c

¢ >G(Vi|ai,bi)il...c
To compute the expectations we make use of the following facts

{Hog(p (YP)P (WD) 6 (17 a0, it = log(p(YIW)p(IT))

_ a
<Z’Ycu%> . :Zi(uC)z
¢ G(vilai,bi)li=1..C c
1 : — —
Z log — = const. with respect to w and .
c Yo/ svilanbili=t..c
This results in
!
Go (v, 1) oc p(YWo)p(Wi) [ [N ( tclo, (7) (5.40)
c bc

Unfortunately because of the non-linearity in (3.38), (W, ) is not a normal
distribution. The factor q¢ (W, 1) in (5.34) is, however constrained to be nor-
mal. Therefore, we minimize the Kullback-Leibler divergence from qg (W, ) to
Go(w, ). To this end, we need the moments of qg (W, ). These can be achieved
by setting the mean of qg (W, @) to the maximizer of §e (W, 1) with respect 0,
and covariance of qg (W, 1) to the curvature of §o (W, 1) around the maximiz-
ing value. For this task we use a numerical solver. In particular, we use the
Newton-CG optimization implementation in scipy [5]. Further, from a numer-
ical perspective it makes sense to consider the optimization in the log domain
as follows.

fio = arg max log §e(6). (5.41)

g
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To estimate the covariance matrix Lg we compute the inverse of the Hessian
matrix evaluated at [ig:

(5.42)

. 1
- d?log Go(0)
Lo = 7ﬁ‘ﬁe
do;do;

Now, we proceed similarly with factors q;,j = 1,..., C. We compute
S 1 P _
Gy, (¥5) ¢ gexp <<10g(p(HW)p(WIu)) - yeii—
C

1
- 1 — )
Sl )

(61f0,50),G (Vilai,bi)|i=1..C,i#j

(5.43)

with

(log(p(IW)P(WIT))) N (817t0,50 1,6 (Vi las,bi ) [im1..Cizj = COTSt. with respect to y;

<Z YUl

> = (Zu;; + H3, )y + const.
c N(0]fio,50),G (Vilai,bi)li=1..C,i#j

1 .
Z log — = const. with respect to v;.
< Ye /[ n (

0lite,Z6),G(Vilai,bi)li=1..C,i#j

This results in:

" 1 = I = _
dy; (Vj) < exp (—(Zuj,uj + iy, )vj) o G(¥I1, (Zuj; + fi3,))

B (5.44)

ie.aj =1and bj + fui,ui + FL%L],.
Ultimately, we can combine the two update rules in the following algorithm:
1. initialize y¥i; i = 1...C with a low value
2. compute the mean and variance of q(W, @) using (5.41) and (5.42).
3. update qv,(vi),j =1,...,C from (5.44) .

By repeating step 2 and 3 iteratively, we get our approximated solution of the
posterior qo (W, 1) and gy, (¥j),j = 1,..., C. The computational complexity of
this algorithms is dominated by the inversion of the Hessian in equation (5.42)
for calculating the covariance matrix. In the worst case, when the sparse struc-
ture of the Hessian matrix is not exploited, the complexity is therefore O(C?),
where C is the number of cells or nodes used to discretize the environment.

At this point we would like to remark that one would get the same up-
date rules following the Expectation Maximization (EM) algorithm. For more
details we refer to the appendix in [174].
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5.3 Summary

In this chapter we provided two algorithms to calculate interesting features of
the posterior PDF introduced in chapter 4. Namely, we are interested in the
mean and variance of the posterior PDF. Since the mean is the most likely
combination of concentration, source and wind distribution, it is actually the
solution to our inverse problem. The variance will get important in the next
chapter for deriving the exploration strategy, since it can be used as a gauge of
information. The first presented algorithm can be applied to the linear disper-
sion model. This novel algorithm is based on message passing on factor graph
and therefore extremely suitable for a distributed implementation. It shows a
better performance when estimating the sparse source distribution compared
to LASSO or a least square solvers. The second algorithm makes use of varia-
tional inference in order to cope with the non-linearity of the dispersion model.
For the second algorithm, so far only a centralized version is presented, where
a distributed implementation is part of future work.






Chapter 6
Exploration and Source
Localization Strategy

In the previous chapters we designed a PDE based gas dispersion model in
a probabilistic framework that allows to infer the parameters of gas sources
based on concentration measurements. In this chapter we are going to make use
of this probabilistic model to design our Domain-knowledge Assisted Robotic
Exploration and Source-localization (DARES) strategy. DARES is used to co-
ordinate multiple robots and to guide them to informative new measurement
locations. The main objective of DARES is to localize sources efficiently. That
means: as fast as possible and with as few measurements as possible. Besides,
we have to coordinate the multi-robot system in a way to avoid inter-robot
collisions. Before presenting our approach, we summarize the state-of-the-art
of gas source localization strategies.

6.1 Related Work

The use of robots for gas source localization is an active research field since the
90s of the last century [87]. Here we focus our short survey on gas source lo-
calization approaches according to the topic of this thesis. Nevertheless, there
exists a certain overlap to other closely related research fields like gas distri-
bution mapping or plume tracking. For an overview of different approaches
and terminology we refer the reader to the review papers [87], [86], [196],
[103], [201]. Further, we focus on adaptive - sometimes called reactive - source
localization strategies. Adaptive strategies react in real time to measurements
and adapt the robot’s path accordingly, in contrast to proactive (or predefined)
strategies. Proactive strategies follow a fix predefined path often with the ob-
jective to cover the whole environment [98]. In this thesis we only refer to one
predefined sweeping trajectory in Section 7.3 as a benchmark to compare our
proposed strategy.

85
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source
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Figure 6.1: The Figure illustrates three common bio-inspired gas source local-
ization strategies (adapted from on [153]). The gas plume and gas concentra-
tion are depicted from yellow (low concentration) to green (high concentra-
tion). The “gradient” approach follows the concentration gradient towards the
source. The other two strategies follow the air flow in upwind direction and
adapt their trajectories as soon as they loose the plume. The figure shows ide-
alized rather than typically observed trajectories.

6.1.1 Bio-Inspired Gas Source Localization Strategies

Searching for chemical sources is also a challenging task for a lot of animals or
bacteria. Popular examples are moths looking for mates, lobsters searching for
food, escherichia coli bacteria seeking for nutrients or dung beetles localizing
feces [87]. Therefore, in the field of MRO scientists try to mimic or copy such
behavior to mobile robots.

One category of bio-inspired strategies are gradient based approaches [130],
[115], [133]. Often this kind of approaches are referred to as chemotaxis [196],
[82]. Gradient based approaches for gas source localization assume that the gas
concentration rises monotonously when approaching the source. By following
the spatial gradient of the gas concentration the robot is supposed to ends up
at the source location. An example of this approach are the Braitenberg vehi-
cles [34] in [99]. Unfortunately, gas dispersion is typically dominated by turbu-
lence and air flow causing a chaotic, patchy and intermittent distribution [113].
Therefore, the concentration gradient does not necessarily lead towards the gas
source [133]. Furthermore, since the robot tends to get stuck at the location
of the source (location of the highest concentration), a purely gradient based
approach is not suitable for searching for multiple sources.

In addition to pure concentration measurements, anemotaxis also considers
observations of the air/fluid flow, e.g. in [153], [69], [82], [162]. Since air flow
is the main mechanism transporting the gas plume from the source to the robot,
anemotaxis instructs the robot to move in upwind direction as soon as the robot
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detected gas. This strategy is expected to lead the robot to the source similar to
gradient-based chemotaxis.

The zig-zag or dung beetle algorithm [83],[153],[130] is a popular bio-
inspired algorithm making use of chemotaxis and anemotaxis. The algorithm
follows the plume in upwind direction in a zig-zag pattern and the robot is
turning back to the plume every time it is reaching the plume’s border. An-
other algorithm that uses chemo- and anemotaxis mimics the silkworm moth’s
behavior [100], [153],[130]. If the silkworm moth algorithm is triggered by a
high concentration measurement, the robot moves in a certain pattern based
on three steps. First the robot moves in upwind direction for a fixed amount
of time. Then it starts to move side to side in a zig-zag fashion, followed by
a circular movement in order to find the plume again. Whenever a high con-
centration is detected, the pattern re-starts with moving in upwind direction.
This silkworm moth algorithm is similar to the surge-cast algorithm proposed
in [106]. Figure 6.1 illustrates the trajectories of the zig-zag, silkworm moth
and the gradient based algorithm.

6.1.2 Infotaxis and Probabilistic Source Localization

In the last decades, more sophisticated gas source localization strategies
have emerged, often no longer bio-inspired. Increasingly many researchers
nowadays approach gas source localization in a probabilistic framework
[118],[11],[56],[152]. This is reasonable in order to account for the often
chaotic and random behavior of gas dispersion caused by e.g. turbulence [113].
Probabilistic approaches lend themselves naturally to exploration strategies
based on information theory. This class of strategies has been labeled as Info-
taxis [180]. They aim at maximizing the information on the gas sources. Max-
imizing the information gain is often equivalent to an entropy reduction [126].
For instance in [25] the objective of a path planner is to reduce the entropy
of a sensor- and gas dispersion model using the Fischer information matrix.
Comparably, in [11] an information-theoretic sensor-path-planning algorithm
is developed to reduce the uncertainty about the source emission rate. As an
alternative to reducing the entropy, in [56] the proposed robot path planner
maximizes the likelihood of detecting a source based on a probabilistic source
map.

Let us remark that infotactic approaches in general need a mathematical
model of the gas dispersion process or at least a sensor model. This model is
required to define and calculate the information gain, entropy or Fischer in-
formation matrix. Besides simple Gaussian Plume models as in e.g. [152], the
advection-diffusion equation was used quite often [126],[70],[118] as a disper-
sion model. The strong dependence on an accurate dispersion model is a major
limitation of Infotaxis. As soon as the model does not represent the reality ac-
curately, the performance of infotactic strategies drops [149].
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6.1.3 Optimal Experimental Design and Optimal Sensor
Placement

Finding an exploration strategy is closely related to an optimal sensor place-
ment problem and optimal experimental design [139],[178]. These methods
from the field of control theory try to find optimal sensor locations to observe
a distributed parameter system, similar to our concentration distribution gov-
erned by a PDE [89]. For example, in [52] a controller for a multi-agent system
was designed considering the performance of a state estimator for a spatio-
temporal process represented by a PDE. Similar, in [51] the authors make use
of a Luenberger observer for an advection-diffusion PDE modeling gaseous
release. They design a controller for multiple UAVs coupling the dynamic con-
straints of the UAVs and the observer performance. Observer design techniques
are also explicitly applied for plume tracking. In [95] a non-linear observer is
designed to track a plume with a multi-robot system. And in [112] the for-
mation of a robotic swarm is optimized by a coverage criterion to track a
plume modeled as a Gaussian Plume. Likewise, [163] proposes a source local-
ization strategy based on wind and concentration measurements, where a flock
of robots positions itself relative to a gas plume in order to track it in upwind
direction. In general, such approaches are very similar to infotactic source lo-
calization strategies, since they are often making use of the Fischer information
matrix [179]. In the field of optimal experimental design different properties
of the Fischer information matrix are optimized to determine optimal sensor
locations. The most popular ones are A-optimality and D-optimality criteria.
The A-optimality criterion optimizes the trace of the inverse information ma-
trix, which can be interpreted as the optimization of the average parameter’s
variance. The D-optimality optimizes the determinant of the information ma-
trix, which corresponds to the optimization of the volume of the parameter’s
uncertainty ellipsoid [139]. For example, D-optimality is applied in [176] to a
2D diffusion PDE in order to plan optimal trajectories for mobile sensors. In
[12] the A-optimality in a Bayesian context is investigated to place sensors in
order to estimate the initial condition of a PDE.

6.2 Domain-knowledge Assisted Robotic Exploration
and Source-localization (DARES) strategy

The key idea of our Domain-knowledge Assisted Robotic Exploration and
Source-localization (DARES) strategy is to direct robots to regions, where our
knowledge about the explored process is currently uncertain. We assume that
measurements in these regions are more suitable to estimate the source distri-
bution (i.e. to localize the sources) compared to measurements in regions where
we already know the process very well. Therefore, our proposed DARES ap-
proach can be classified as infotaxis. Like infotactic strategies in general, our
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approach requires a mechanism for quantifying the information we have about
the process itself and about process parameters. In particular, in our context if
the uncertainty about the gas concentration value or source strength at a loca-
tion is high, this location is a good candidate for the next measurement loca-
tion. In the following we present how the uncertainty can be quantified based
on the developed probabilistic model. The probabilistic model introduced in
Chapter 4 provides the posterior probability of all combinations of discretized
concentration values, source strengths and wind velocities. One may call this a
global point of view on the process. However, for DARES, we want to quantify
the uncertainty at individual locations and we want to compare these locations
to find the most uncertain location. To this end, we calculate marginal PDFs for
each location based on the posterior (4.1). Note that in our discretized environ-
ment a location corresponds either to a grid cell ¢ in case of FDM or a mesh
node ¢ in case of FEM. In the following we are using the term location as a
substitution for either a cell or a node. In general the marginal PDF of the con-
centration or source strength at a location could be calculated by integrating
over all other variables and parameters. E.g. for the concentration value f.[n]
the marginal is defined as:

—

p(Fe G0, ..., ) ocj...jp( I, nl, ¥ Ind, ¥ [, fin — 11G10], ..., gn))

dfoml...dfc_q[m]df.,1mldfcn]dupgml...duc(n]

dvl,o [Tl} ...deC [TL] dV2,() [Tl} ---dVZ,C [Tl]
(6.1)

Actually, it is not necessary to solve these computationally expensive inte-
grals explicitly. Based on the distributed message passing algorithm presented
in Section 5.1.2 we compute the marginal distribution of the source strength
U [n] and gas concentration f,,[n] for free. In particular, the outgoing messages
of variable nodes u.[n] and f,,[n] are the marginal PDFs we are looking for. It
has been shown in Section 5.1.2 that the marginal distributions of both gas con-
centration and source intensity are Gaussian PDFs. As such, the second order
moments of these variables can be used as a gauge of the information content at
the location ¢ (grid cell or mesh node). Note that for a Gaussian random vari-
able the entropy is related to the square root of the variable’s variance. Thus,
the variance of either the source or concentration marginal PDF can be used to
quantify the uncertainty; locations with a higher variance are more uncertain
and therefore are more “interesting” as potential location for a new measure-
ment. In this context interesting means that a measurement at this location will
help to reduce the error in the parameter estimation more compared to other
locations. Let us remark that an accurate estimation of the source distribution
actually implies a successful localization of the sources.

Unfortunately, as has been shown in Chapter 5 for a non-linear model the
message passing algorithm is not applicable. However, the solution presented in
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concentration fc
concentration f,

Figure 6.2: The figure illustrates the uncertainty quantification used for the
DARES strategy. For each grid cell the marginal gas concentration PDF is avail-
able. If the variance of the marginal PDF is high, the cell is considered to be
more uncertain compared to a cell with lower variance.

Section 5.2 provides an approximate Gaussian PDF for the multivariate poste-
rior. More precisely, it provides the covariance matrix of the posterior based on
equation (5.42). As it is commonly known the marginal distribution of as mul-
tivariate Gaussian is a Gaussian again, where the variance is the corresponding
diagonal elements of the covariance matrix. As such, also for the non-linear
case approximations of the marginal PDFs are easy to obtain.

Based on the variances of the marginal PDFs of the concentration for each
region, we can create an uncertainty map for the whole environment. A high
variance in the concentration marginal PDFs corresponds to a high uncertainty
in the map. While in general the uncertainty map could be also generated
based on the variance of the marginal PDFs of the sources, the concentration
marginals seem more intuitive. This is because we are able to directly mea-
sure the concentration, and therefore directly reduce the uncertainty in the con-
centration by new measurement. Even though concentration and sources are
tightly coupled by the dispersion model, the source are not directly measurable
and a concentration measurement would not directly reduce the uncertainty in
the sources.

To sum up: the variance of the marginal PDFs of the concentration value
at a certain location is used to propose potential locations of interest for mak-
ing new concentration measurements. All locations are rated according to the
inverse variance, i.e., precision. A pre-defined number of locations with the
lowest precision are selected as a proposal for new measurement locations. The
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robots of the multi-robot system select from this set of measurement locations.
While this approach seems reasonable from the information theoretical point
of view, a simulation and experimental evaluation will be provided in the next
chapter.

6.3 Multi-Robot Coordination

As described in the previous section, our DARES approach generate a list of
of new measurement locations for the robots. This section explains how the
multiple robots choose from this list and how they are coordinated so that
they do not collide on their way to their next measurements location. Since the
gas dispersion process is considered as a two dimensional phenomenon, this
section assumes ground based robots which operate only in a two dimensional
plane. We assume that the robots are able to localize themselves perfectly which
means with an accuracy much higher than the spatial discretization. Further,
the robots have the capability to move to a desired way-point and avoid static
obstacles marked in an obstacle map. To address the path planning problem we
make use of state-of-the-art solutions and implementations.

The multi-robot system is following the procedure shown in Figure 6.3.
As explained in the previous section, based on the probabilistic gas dispersion
model we can generate a set of locations where new measurements are most
helpful to improve our estimation of the gas dispersion process and thus help
to localize the sources. This set of candidate locations can either be generated
by a single processing unit or in a distributed fashion (see Section 5.1.2). The
robots choose their next way-point from this set and move there. However,
choosing from the set of locations and reaching the chosen location is not a
trivial problem. The multi-robot system has to fulfill additional constraints.

Most importantly, the robots have to make sure that they do not collide
when moving toward their next goal. In addition, two robots should avoid
approaching the same location for reasons of efficiency. In our experimental
evaluation we propose two different mechanisms to avoid collisions between
robots and coordinate the robots. These mechanism will be explained a bit
further down.

At this point let us have a closer look at the system presented in the flow
chart in Figure 6.3. As can be seen, the robotic navigation and the update
of the probabilistic model are actually two separate processing loops. These
loops run independently of each other and asynchronously. In other words,
the navigation loop of the robots is not synchronized with the model update
loop. It just considers the last generated set of interesting locations.Further
the navigation loop does not run with a constant frequency, since the time to
reach a new goal always differs depending on the distance to the new location.
We would like to stress that the navigation loop of each robot is also not
synchronized with other robots. Thus, no robot has to wait for results of the
other robots. Whenever a measurement becomes available for a time stamp,
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Figure 6.3: Flow chart depicting the procedure of the DARES approach: It
mainly consists of two independent, unsynchronized loops, which either take
care of the robot’s navigation or processing and generating of new set of way
point proposals.

it is directly inserted into the dispersion model. As can be seen, the two loops
are only connected by the exchange of the proposed measurement location and
taken measurements. The update rate of the model and the periodic generation
of interesting locations are fix. It is actually the time discretization At of the
dynamic model (see Section 3.3.3) or an arbitrary time in the order of one to
several seconds in our setting for the static case. It is important that update
rate is fast enough so that the set of locations proposed to the robots never gets
empty. In other words, the proposed set of locations must be generated faster
than the time required by the robots to visit all of them. The robot’s navigation
loop is implemented in two different ways to account for collisions with other
robots as described below.

6.3.1 Collision Avoidance: Rescheduling

Based on the probabilistic gas dispersion model the set of interesting location
is periodically updated. The locations are further rated according to their in-
formativeness, i.e. uncertainty. This ordered set of locations is then sent to all
robots. Whenever a robot is in need of a new way-point, it selects the point
with the highest uncertainty from the set. The robot moves to the selected
way-point while periodically communicating its current location and goal to
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all other robots. The other robots mark the selected goal as uninteresting for
themselves. When the robot reaches the goal, it takes a measurement. This mea-
surement is either sent to all other robots (in case of a distributed algorithm) or
to a central processing unit (in case of a central implementation). With the new
measurement the probabilistic model is updated and a new set of proposals
for measurement locations is created. The robot does not wait for this update,
since the current set of locations still contains enough interesting locations. It
will thus select a new location from the current set. This behavior is the same
for all robots.

To avoid collisions the robots periodically check their distance to all other
robots, while they are moving. If the distance is lower than a safety distance,
both robots stop and select another goal. In this situation the robots do not
choose from the hole set. Instead the goal is only chosen from those locations
in the set so that going there will increase the critical distance again. If no such
location is available, the robot has to wait either for an update of the set of
interesting measurement locations or it has to wait for the other robot within
the safety distance to clear the way. This algorithm is illustrated in Figure 6.4.

sojyeprpues uedol

safety- dist l a p 2

robot 2

sojeprpues uepdor

(a) (b)

Figure 6.4: Illustration of the collisions avoidance mechanism based on
rescheduling: In (a) robot 1 and robot 2 select an interesting location as their
next goal (lighter colors correspond to more interesting locations). They follow
a straight line trajectory towards their goal. As soon as both robots get too
close to each other (below safety distance) in (b), both robots have re-planed
and selected a new goal that will increase their mutual distance.

6.3.2 Collision Avoidance: Evading

Analogously to the previous collision avoidance mechanism, the probabilistic
model generates the set of interesting locations periodically and the rated loca-
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tions are communicated to all robots. Again each robot selects a location from
the set and moves there periodically checking the distance to other robots. For
that the robots sent their current location and goal to all other robots periodi-
cally. If the distance between two robots gets lower than the safety distance and
a collision is impending, both robots stop. For this collision avoidance mecha-
nisms priorities are assigned to each robot. The robot with the lower priority
keeps standing still. The robot with the higher priority adds the other robot
to its static obstacle map and continues toward its goal. In this way the path
planner will avoid the other static robot considering it as an obstacle. As soon
as the robots are further away than the safety distance plus a hysteresis, the
static robot is removed from the obstacle map and starts to move again. Un-
fortunately, this approach may cause deadlocks. For example, if robots with
lower priority are blocking the goal of a robot with a high priority. In this case
the path planner of the robot will not find a way to the goal and the robot
has to keep where it is. The other robots cannot clear a way because they have
no permission to drive since they are to close to a robot with a high priority.
To solve such constellations the low priority robots observe continuously the
movement of robots with higher priority in their range. If the robot with higher
priority does not move (since it is blocked) for a certain time, the robot with
low priority re-plans its path to the goal considering the robot with higher pri-
ority in its static obstacle map. It will follow this path very slowly as long as
the other robot is within the critical safety distance. As soon as it detects that
a robot with higher priority within the safety distance starts to move, it will
immediately stop again.

When a robot reaches its goal it takes a measurement and send the measure-
ment to the processing unit that updates the probabilistic model. Afterward, it
can select a new location from the current set of proposed interesting loca-
tions. This algorithm is illustrated in Figure 6.5. Further, Appendix B presents
a detailed flow chart of the collision avoidance algorithm.

The two collision avoidance mechanisms differ in two important points.
Evading makes sure that the original chosen measurement location will be
reached by the robots. In contrast, when rescheduling the robots choose other
location in the re-planning step. Therefore, the actually most interesting loca-
tion may not be measured. However, rescheduling has a significant advantage.
While in case of the evading robots sometimes have to wait until others clear
the way, rescheduling makes sure that robots are always moving. Thus, the
rescheduling mechanism is preferable if the environment is small compared to
the number and size of robots. In a small environment the evading mechanism
can be more inefficient, since robots may often block each other and only the
robots with high priority are allowed to move. On the other hand, evading has
an edge in larger environments, where robots rarely get close to each other.

It is important to note that both mechanisms are not optimal from a global
point of view. As can be seen in constellations shown in Figure 6.4 and 6.5, the
goals could have been assigned in a way that avoids the possibility of a colli-
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Figure 6.5: The figure illustrates the collisions avoidance mechanism based on
evading. In (a) robot 1 and robot 2 select an interesting location as their next
goal (lighter color more interesting) and follow trajectories towards their goals.
As soon as both robots get to close to each other (below safety distance) in (b),
both robots stop. The robot with higher priority (here blue), re-plans a new
trajectory towards the its goal while the second robot (here red) is considered
as a static obstacle. In (c), when the distance between the robots is large enough
again, also the second robot with lower priority (here red) re-plans a trajectory
to its goal.

sion. (The robots would just need to swap their goals.) However, the presented
collision avoidance mechanisms are based on simple rules with little commu-
nication overhead. They scale nicely with the number of robots and they are
robust. More sophisticated approaches can be considered in future work.

6.4 Summary

Based on the gas dispersion model which encodes our domain knowledge, in
this chapter we introduced the DARES strategy for a multi-robot system. The
DARES strategy guides the robots to informative locations for taking new mea-
surements. In this chapter we presented how to quantify uncertainty of differ-
ent locations in the environment based on the probabilistic model presented
in Chapter 4 and the solvers presented in Chapter 5. This chapter further pre-
sented the system setup to coordinate multiple robots which cooperatively ex-
plore the environment by taking measurements. At this point we have fused
all ingredients into the DARES strategy developed in this thesis to localize gas
sources. Now, we are in the position to evaluate the proposed approach in
simulations and experiments.






Chapter 7
Evaluation

7.1 Simulations

Simulations are essential to evaluate gas source localization algorithms. In con-
trast to real-world experiments, they permit full control of environmental pa-
rameter, like the position of the source, wind, etc. Furthermore, simulations
are reproducible and facilitate to carry out a statistically significant number of
experiments for evaluation. Also while ground truth data may be available for
source locations, real-world experiments lack of ground truth data of the actual
gas concentration and its distribution.

Even though this work mainly focuses on gas source localization, an accu-
rate estimation of the gas concentration is also of interest. In simulation the
ground truth gas concentration is available and allows us to quantify the er-
ror in the estimated gas concentration. Therefore, in this section we are using
simulations to evaluate and parametrize the proposed DARES strategy.

Our goal is to get an empirical understanding of the different parameters
and to make sure that the proposed DARES strategy is able to find the gas
sources. The finding in these simulations will allow us to parametrize our algo-
rithm in real-world scenarios later on. In the next section we first present the
used simulation setup in more detail. After that we will present and discuss the
results of the parameter evaluation. The results and discussion in this chapter
were originally published in [188].

7.1.1 Simulation Setup

For simulating the gas dispersion we are solving the forward problem of the
advection-diffusion PDE (3.1). This means we treat the source distribution and
wind velocity as known and calculate the resulting gas concentration. In the
simulation we have full control over the wind condition and the number and
location of sources. The simulated gas concentration is used to simulate point-
wise synthetic measurements of the robot at requested locations in the environ-
ment. In most of the cases in this section we consider five robots (i.e. L = 3)
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guided by the proposed our DARES strategy of Section 6.2. Their dynamics and
other constraints are neglected and we assume that the robots can reach every
desired point in our environment within infinitesimal small time and without
any collision. Further, we consider the time to carry out a measurement to be
zero. These simplifications allow us to study purely the performance of DARES
that is not disturbed by side effects and is independent of the robotic platform
Or Sensor.

The simulated measurements are plugged into the probabilistic model de-
scribed by equation (4.1) in order to estimate the gas concentration and source
distribution as well as the uncertainty map. From the implementation perspec-
tive, it means that in every update loop of the model according to Figure 6.3,
five new measurements are incorporated.

The simulated gas concentration provides us with ground truth values for
calculating the error of the estimated gas distribution. Similarly, the source dis-
tribution used to simulate the gas dispersion is used to quantify the error of the
estimated source distribution. During this chapter we are going to evaluate the
performance of the DARES strategy by means of two different error metrics
which compare the estimates with the ground truth values. For the estimated
gas concentration we look at the NMSE. Since we expect the estimated source
distribution to be sparse, we measure its difference to the ground truth with the
EMD [151]. Both metrics are explained in the Appendix C.

In practice, the FEM approach of Section 3.3.2 is used to numerically simu-
late the concentration. Based on equation (3.38) we can calculate the gas con-
centration fin] with predefined wind velocities V| [n] and ¥, [n], and source dis-
tribution [n]. The matrices of equation (3.38) are assembled based on the FEM
software FENICS [109]. Note that since the wind velocity is treated as known,
equation (3.38) is linear. To have a well posed problem, additional boundary
conditions are needed. In our case we selected a Dirichlet boundary condition
which corresponds to an open field scenario. As an initial condition, we set
0] =0 (all source start at time n = 0). For our parameter evaluation we as-
sume a rectangular environment and choose to use a discretization mesh as a
grid with 26x26 nodes. This results in 676 nodes. For gas simulation we con-
sider a unit-less concentration and source strength. The diffusion coefficient
in Equation (3.38) is set to 1 and the distance between two nodes in the mesh is
also unit-less set to 1, without loss of generality. By using these normalized val-
ues we minimize possible numerical issues. The time discretization At is part of
the simulation studies in the following. For some simulations we consider only
the steady state of the PDE, i.e. equation (3.39).

The robots are guided by the DARES strategy described in Section 6.2. In
short, locations with a high uncertainty in the gas concentration are preferred
as new measurement locations. In order to calculate the uncertainty, the im-
plementation described in Section 5.2 is used. The numerical optimization in
equation (5.41) and (5.42) requires searching for 2304 unknowns in total at
each time iteration. This is so since we are looking for the concentration, source
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Figure 7.1: The figure compares the simulated gas distribution based on
mantaflow in (a) and the advection-diffusion PDE in (b). While in (b) the space
discretization is 26x26, in (a) the resolution of the simulation is 96x96 for a
nicer visualization (linear interpolation between nodes in both cases).

strength and two wind components at each node. We would like to remark that
we treat the boundary condition as known in the model for the exploration.
Thus, the nodes at the border are accounted as known values.

With the simulation setup described so far, we are able to analyze the ef-
fect of model parameters such as the relaxation T, the influence of our sparse
prior or wrong wind measurements. However, for simulating the environment
we use exactly the same model as for the DARES approach. For evaluating the
robustness of our approach regarding model mismatch, we need a different sim-
ulation that is not based on the PDE (3.1). We therefore used the fluid/smoke
simulator mantaflow [172], which accounts for turbulence effects. The soft-
ware is based on solving the Navier-Stokes equations and is able to simulate
small scale turbulence and vortexes, which we are specially interested in. As
an example, Figure 7.1 shows the instantaneous simulated gas distribution in
(a) compared to a simulated distribution based on the advection-diffusion PDE
in (b). However, mantaflow primarily targets realistic smoke dispersion in the
context of computer animations. It does not solve the full Navier-Stokes equa-
tions in DNSs. Instead, the RANS equations are solved and wavelets are used to
model small scale turbulence. Therefore, the physical accuracy of the simulated
gas dispersion process is limited. This does not matter so much for our pur-
poses since we are interested in the effect of model mismatches and therefore
our intention is to use a simulation that differs from our model assumptions.
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Figure 7.2: Comparison of the exploration performance: The plots in (a) and (b)
demonstrate the impact of the sparsity assumption on the source distribution.
In (a) the error of the estimated concentration field is shown as NMSE. In (b)
the error of the source distribution is plotted by means of the EMD. The curves
are averaged over 45 simulation runs, where as the shaded areas are limited
by the best and worst case. (Simulation setup: advection-diffusion PDE; steady
state; uniform, constant wind)

7.1.2 Parameter Evaluation

In the following we will study the influence of different parameters and adjust-
ments of the proposed DARES strategy and their impact on the performance.
These studies were partially published in [188].

Effect of Sparsity Inducing Prior

One of the main aspects proposed in this thesis is the sparsity inducing prior.
It enables us to model the a-priori assumption that we do not know the exact
number of sources, but we know that they are sparsely distributed. Now, we
would like to analyze what we gain from introducing the sparsity assumption
and how it affects the source localization performance. To this end, we carried
out a set of experiments where we used a constant and uniform wind distribu-
tion with vi = 1 and v} = 0. Further, only the steady state (3.39) is considered.
This makes the analysis easier, since no time dependencies have to be consid-
ered. For analysis, we averaged the performance over several simulation runs.
In the individual runs we varied the number and the position of the sources, the
relaxation parameter T and the measurement noise T, (see Chapter 4 for the
definition of these parameters). More precisely, we carried out 45 simulations
covering all possible parameter summarized in Table 7.1.



7.1. SIMULATIONS 101

(12,17)
(10,17) (8,12)
source(s) at (10,10) | (15,13) (5,10)
(17,7) (15,12) (15,12)
Ts 10% 10° 106
Tm 10% 10° 10°

Table 7.1: Parameters used for simulation runs shown in Figure 7.2. The simu-
lations cover all 45 (5x3x3) combinations of values for the three parameters.

The results in Figure 7.2 show the NMSE of the estimated concentration in
Figure 7.2a and the EMD of the estimated source distribution in Figure 7.2b.
The 45 simulation runs of the exploration were performed two times: once
with sparsity inducing prior and once without the prior assumption. From the
plot we can clearly see, that the performance of the exploration is better in case
the sparse prior assumption is used: the error is reduced faster, i.e. lower error
values are achieved with fewer iterations. Note that after each iteration five
new measurements were added to the estimation problem. From the EMD plot
in Figure 7.2b we can conclude that on average after 20 iterations the sources
are correctly identified. From a numerical point of view, this means we were
able to estimate the 576 elements of 1 with only 100 measurements.

As a possible intuitive explanation of this observation, let us have a look
at the example in Figure 7.3 where the sampling locations are marked by
white stars. When inspecting the sampling pattern of the DARES strategy more
closely, we can see that the proposed DARES strategy prefers regions close to
potential sources in case when the sparsity prior is used. This pattern is the rea-
son for the successful and faster identification of the exact source distribution.
DARES prefers these locations close to sources, because every newly estimated
source contradicts the assumption that the sources are sparsely distributed. As
a consequence, the uncertainty at such a location rises and attracts more mea-
surements. In contrast, without a sparsity inducing prior, the samples end up
being approximately uniformly distributed over the environment as can be seen
in Figure 7.3b.

Trust in PDE Model and Sensor Noise

The second important contribution of our approach is the relaxation of the
model assumptions. With the precision parameter Ts we parametrize our trust
in the PDE model. From the results of the simulations we will see how this
parameter influences the performance of the source localization. Actually, it is
the ratio of the precisions T to the precisions T,, of measurement noise that
plays an important role. For these simulations we have chosen the parameters
according to Table 7.2. The simulations cover all possible 125 combinations
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Figure 7.3: The two plots show as an example the sampling pattern of the
DARES strategy with a sparsity prior in (a) and without the use of a sparsity
prior in (b). The parameters chosen are T,,, = 10, T, = 10*. The white stars
indicate the measurement locations. The color map represents the ground truth
gas concentration field in (a) and (b). The sources are actually located at the
locations with the highest concentration in (a) and (b). The estimated source
distribution is shown in (c) with the sparsity prior and in (d) without the spar-
sity prior. In both cases the scene is a snapshot after 18 iterations. (Simulation
setup: advection-diffusion PDE; steady state; uniform, constant wind)

of parameter from this table. Again, we used a constant and uniform wind
distribution with vi = 1 and v3 = 0 and consider the steady state (3.39).

In Figure 7.4 compares different ratios of T, /Ts. We averaged over all sim-
ulation runs where the respective parameter combination corresponded to a
certain value of the ratio T, /Ts. The plots in Figure 7.4a and 7.4b show the
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(12,17)
(10,17) (8,12)
source(s) at (10,10) | (15,13) (5,10)
(17,7) (15,12) (15,12)
Ts 102 10° 10% 10° 10°
T 1072 10° 10% 10° 10°

Table 7.2: Parameters used for simulation runs shown in Figure 7.4

performance with respect to the NMSE. Once again, we compare the perfor-
mance with (in Figure 7.4a) and without (in Figure 7.4b) the sparsity inducing
prior. As can be seen, if no sparsity assumption is used, the performance is not
as sensitive to the choice of T, and t5 compared to the case with a sparsity
inducing prior. Moreover, from Figure 7.4a it gets clear that a wrong choice
may have a crucial impact on the exploration performance. In order to find out
the reason for this, let us look more closely at the number of sampling loca-
tions. The number of measurement locations is shown in Figure 7.4c and 7.4d.
Please note this is not the number of measurements. The number of measure-
ments is increasing in every iteration by five, i.e. the number of sampling points
per iteration. However, some sampling points may be visited more than once.
Therefore, the number of measurement locations not necessarily increases by
five per iteration. As can be seen from Figure 7.4d, without a sparsity inducing
prior the number of measurement location increases linearly by five for each it-
eration. This means that each new measurement is carried out at a new location
that has not been visited before. If the sparsity prior is used, this is not the case
for samll ratios of T, /7s. Figure 7.4c shows that the number of measurement
locations converges for some ratios.

A possible intuitive explanation of the convergence of measurement loca-
tions is as follows. The presence of an estimated potential source implies a
tendency to a violation of the prior assumption, which assumes that only few
sources are distributed in the environment. Evidence for a new source slightly
contradicts this assumption. As a consequence the uncertainty in the respective
region grows making it more favorable for further measurements. In general
the new measurements in the region automatically reduce the uncertainty again
and thus compensate this effect. However, in case of low ratios of 1., /s, the
trust in the measurements is comparably low. In other words, sensor noise is
assumed to be high and measurements are not considered highly informative.
Therefore, evidence from measurements is not able to compensate the effect of
the sparsity inducing prior. As a consequence, the DARES strategy will tend to
allocate measurements always within the same region, and the number of mea-
surement locations does not increase with time. The measurements are repeated
only in these regions and it is difficult to find other sources and thus the true
source distribution.
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Figure 7.4: Effect of different ratios of T,,/Ts: On the left in (a) and (c) the
case with a sparsity inducing prior is shown, the panels on the right (b) and (d)
result without a sparsity inducing prior. The first row (a) and (b) depicts the ex-
ploration performance by means of the NMSE of the estimated concentration
field. The second row (c) and (d) plots the number of measurement locations.
Note that in each iteration five measurements are carried out, however even-
tually at the same locations as before. (Simulation setup: advection-diffusion

PDE; steady state; uniform, constant wind)

From the different combinations in Table 7.2, we found that t,,/ts = 10
seems to be a good choice. Further, we found the best exploration performance

for the combination t,, = 10° and T, = 10*.
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Time Discretization

So far we have considered only the steady state performance of our dynamic
process. Now let us analyze the effect of the chosen time discretization in the
numerical approximation of the PDE. Essentially, we examine the performance
of the exploration for different values of At in equation (3.38), still performing
five measurements in each iteration. So actually, At describes the inverse sam-
pling frequency of our measurements. It is the effect of this sampling frequency
that we would like to analyze here.

For this purpose we ran multiple simulations based on the advection-
diffusion PDE for the dynamic case parametrized with all 90 combinations
shown in Table 7.3. Apart from that we have chosen a constant wind field. For
the dynamic case, an initial condition for the PDE is required. We have chosen
the concentration field to be zero (f{0] = 0) at the start of a simulation run. Fig-
ure 7.5 shows the corresponding results averaged over different combinations
of parameters for fixed value of At. Analyzing and interpreting these results is
quite difficult because different effects play a role and they cannot be studied
separately.

(12,17)
(10,17) | (8,12)
source(s) at (10,10) | (15,13) (5,10)
(s) (17,7) | (15,12) | 2 )
Ts 103 ‘ 10% ‘ 10¢5
T 10° \ 106
At 0.2 ‘ 1.0 ‘ 5.0

Table 7.3: Parameters used for simulation runs shown in Figure 7.5

First, let us consider the effect of increasing At. Higher values correspond to
more time in between measurements. So the dynamic process is faster or more
dynamic compared to the sampling frequency. In other words, the gas spreads
out faster with respect to the number of measurement iterations as in case of
Figure 7.5. In contrast, a low At means that a lot of measurement iterations
pass until the gas is spread out. Thus, in case of a low At, gas is mostly con-
centrated around the source and not widely spread during the first iterations.
This makes it more difficult to find the sources. This effect may explain the
fact that the exploration require fewer iterations for higher At; as can be seen
in Figure 7.5a. However, if absolute time is considered, with a lower At (i.e.
higher sampling rate) the error converges faster. Of course in case of a lower
At, also more measurements are collected with respect to time.

Another effect that has to be considered in the dynamic case is aging of
measurements. Because of the iterative update of the model in each time stamp
1, the influence of a preceding measurement decreases over time. Note that pre-
vious measurements are indirectly encoded through the term fin — 1] in (3.38).
If the time between two update iterations is higher (i.e. higher At), this aging
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Figure 7.5: Comparison of the performance with respect to different values of
At, i.e. the time discretization of the PDE (note that At can be interpreted as the
inverse sampling rate): The plots in (a) show the performance of the exploration
measured by the error in the estimated source distribution by the EMD. In (b)
the number of measurement locations is shown. Note that in each iteration five
measurements are carried out, however measurements may be carried out at the
same locations as before. (Simulation setup: advection-diffusion PDE; dynamic
case; uniform, constant wind)

or forgetting of measurements has a stronger impact. As a consequence the
DARES strategy tends to repeat measurements at locations, which have been
measured already in the past. This effect can be seen in Figure 7.5b. Moreover,
we would like to remark that also the identification of sources in combination
with the sparsity inducing prior may influence the saturation of the number
of measurement locations as we have seen in the previous section for different
ratios of T, /Ts. However, it is hard to separate those two effects.

Number of Robots

The proposed DARES approach is designed for a multi-robot system. Thus, the
question rises, if we profit from using multiple robots compared to a single one.
Therefore, in the following the source localization perfromance with respect to
the number of robots is analyzed.

Until now, all performed simulations used five robots. Now we are going
to evaluate different numbers of robots as summarized in Table 7.4. Let us
recall that in the simulations the number of robots is reflected by the number
of new measurements available in each update loop of the model according to
Figure 6.3. We will investigate the effect of this number of new measurements
per update loop. In the simulations we consider the static case (steady state)
and the dynamic case of the diffusion equation (no wind). Up to four sources
are placed at different locations according to Table 7.4 and the performance is
averaged over these 10 different scenarios (in total 100 simulations).
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Table 7.4: Parameters used for simulation runs shown in Figure 7.6

The results are shown in Figure 7.6. Let us first have a look at the perfor-
mance of the source estimate. For both cases - the static in (a) and the dynamic
in (b) - the estimation error gets better with the number of employed robots.
However, for the static case in (a) shows no benefit for employing more than
five robots in our setup.

From the plots in (b) and (d) is can be seen that the number of measure-
ments locations saturates after a certain number of iterations. Again, note that
the number of locations is not to be confused with the total number of mea-
surements. Of course the number of measurements increases in every iteration,
but some locations maybe measured multiple times. Actually, as we have seen
when studding the sparsity inducing prior the robots focus their measurements
at locations close to an estimated source. This can cause issues if fewer robots
than sources are used: A single robot will concentrate its measurements around
the location of the first source that was found, which would prevent it to ex-
plore other regions and find other sources. This effect is especially strong in the
dynamic case where measurements are aging (see also previous section). For
further details on the effect of the number of robots we refer to [190].

Another interesting effect can be observed in the static case in Figure 7.6a.
While the final estimate of the sources is worse for fewer robots, the conver-
gence rate is quite similar for all robots: the estimates converged after approxi-
mately 20 iterations. However, it has to be noted that 10 robots actually carried
out 200 measurements at this stage, while five robot only used 100 measure-
ments and a single robot only 20. This effect can be ascribed to a disadvan-
tage of the proposed DARES strategy. In the simulation the new measurements
are carried out simultaneously at locations with the highest uncertainty at the
moment. For example in the case of 10 robots, 10 locations with the highest
uncertainty are chosen as the set of most interesting locations. However, if a
measurement would be carried out at one of these 10 locations, the remain-
ing 9 locations are not necessarily the locations with the highest uncertainty
anymore.

A possible solution to this problem, would be to search only for a single
location with the highest uncertainty first (as for a single robot). Then, the
model can be update based on a virtual or predicted measurement at this lo-
cation. After the update of the model, the next location with the now highest
uncertainty can be added to the set of interesting locations. Of course such a
procedure comes with a higher computational cost, since in every iteration the
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Figure 7.6: Effect of the number of robots on the exploration performance: In
the first row (a) and (b) the EMD is shown and in the second row (c) and (d) the
number of measurement locations for different numbers of robots is displayed.
The left column (a) and (c¢) show the static case, where the right column (b) and
(d) consider the dynamic case. (Simulation setup: diffusion PDE; dynamic and
static case; no wind)

model has to be update several times in order to construct the set of interest-
ing locations. In the real-world experiments this issue is less significant. There,
measurements of the robots are carried out asynchronously and with a lower
update rate compared to the update of the model. In this way, the model and
the set of interesting locations is updated more often than measurements are
taken. We will see this effect already in the Hardware-in-the-Loop experiments
in Section 7.

Model Mismatch

This thesis proposes the DARES approach for gas source localization which
relies on a model of the gas dispersion process. Therefore, we are also inter-
ested in the effect of model mismatch on the source localization performance.
A model mismatch occurs when the used PDE model does not approximate the
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Figure 7.7: Exploration of a gas distribution simulated with mantaflow after
10 iterations (50 measurements): Plot (a) shows a snapshot of the gas con-
centration field simulated by mantaflow and averaged over 20 seconds. In (b)
the estimated concentration field is shown and (c) depicts the estimated source
distribution.

true physical gas dispersion process accurately. Instead of using the same PDE
for forward-simulation and DARES, we thus simulate the ground truth gas
dispersion using the mantaflow smoke simulator. The mantaflow smoke simu-
lator models realistic flow dynamics in more details and allows us to generate
a situation that we expect also in real-world applications. In contrast, the PDE
model that is used by the DARES strategy makes use of a stronger approxima-
tion of the gas dispersion. It models important components of fluid flow, but
not all its complexity. Using a simplified model allows us to exploit domain
knowledge and to constrain the computational complexity but, of course, it is
important to know the consequences of this model mismatch. To address this
question, we simulated a single source. An exemplary snapshot of the instanta-
neous concentration field is shown in Figure 7.1a. Measurements taken during
exploration are averaged over 20 sec. In this way we take the typically slow
sensor response of gas sensors into account. Please note that, as a side effect,
this smoothes out rapid fluctuations caused by turbulence in the gas dispersion.
The PDE process model used in the exploration is parametrized as follows. We
use five robots and the wind prior is set to 2 for the component in x;-direction
(0 for x,-direction). The precision T is selected from {103, 10%, 10°} while the
ratio T, /ts = 10 is fixed. Moreover, we consider a steady state of the gas
dispersion process.

The results are shown in Figure 7.7 and 7.8. As expected, the performance
of the estimate is worse compared to the results without model mismatch. Both,
the NMSE of the estimated concentration and the EMD of the estimated source
distribution is relatively high. To illustrate the quality of these values, Figure 7.7
shows a snapshot of the estimation during the exploration after 10 iterations
(ts = 10* and T, = 10°), i.e. 50 measurements. Figure 7.7a shows the con-
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Figure 7.8: Performance of our DARES strategy when a different model
(mantaflow) is used for simulation and for exploration: the plot in (a) shows
the NMSE of the estimated concentration field. In (b) the EMD of the estimated
source distribution is plotted. Besides, the Euclidean distance of the location of
the simulated source and the peak in the estimated source distribution is shown.

centration field averaged over 20 sec. These values from this field are used as
measurements in the simulation. Figure 7.7b depicts the estimated concentra-
tion field and Figure 7.7c¢ the estimated source distribution, respectively. While
we would expect the source distribution to be a single peak, it can be seen that
the actual estimated source distribution is a wider shaped distribution. This is
the reason for the rather poor EMD value. However, in this simple case with a
single source we can also calculate the distance of the maximum of the source
distribution (peak) as the most likely location of the source from the ground
truth location of the source. This is plotted in Figure 7.8b. There we see that
despite the shape of the source distribution is not a simple peak, the location of
the source is correct.

To sum up, we observed a certain drop in the performance of the estimate
of the source distribution based on the DARES strategy when we change to the
mantaflow simulator. In general we would expect a similar behavior in a real-
world application. Whether the estimated location of the source is good enough
to claim that the source was successfully found, depends on the requirements
of the particular application.
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7.2 Experimental Infrastructure

In the previous section we evaluated the DARES strategy purely in simulations.
In the rest of this chapter we are going to evaluate the DARES strategy in ex-
periments. The experiments require appropriate gas sensors, robotic platforms
and other infrastructure, such as a precise localization system as well as a com-
munications system. All these components will be discussed in this section.

7.2.1 Sensors

The experiments use ethanol as a “toy” gas, because it does not imply any
threats for the scientists conducting the experiments nor does it cause environ-
mental pollution. In order to measure the ethanol vapor, two types of sensors
were used.

Metal Oxide (MOX) Gas Sensor

The first sensor is the low-cost
MiCS5524 MOX sensor from SGX
Sensortech Ltd that is sensitive to
VOC, carbon monoxide and ethanol
[1]. MOX sensors consist of a heat-
ing element and a grain, semicon-
ducting surface. In presents of a re-
ducing gas, the resistance of the sur-
face layer decreases, since the poten-
tial barrier is lowered [65, 102](see
also Section 2.1.2). In general MOX
sensors suffer from long response
times and even longer recovery times, g o 7 9. \MiCS5524 MOX sensor
which cause a limited time resolution th microcontroller

[155]. Further, they show long and wi crocontrofier

short term drift [96], which requires

frequent recalibration. However, they are inexpensive and highly sensitive. Let
us also remark that in the planned experiments we are looking only for one
known substance. Thus, the capability to select between different gases is not
important in our setting.

The change in the resistor of the MOX sensor proportional to the gas con-
centration is measured by an Analog-to-Digital Converter (ADC) of a micro-
controller. The data sheet of the sensor [1] specifies a linear dependency in the
log-log domain between the sensor’s resistor R and the ethanol concentration.
Therefore, we can model this dependency by an exponential function [81] as
follows:

yr=pi-RS1L=1,..,L (7.1)
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where y; is the measured gas concentration plugged into our Bayesian approach
(Note: L is the number of robots, i.e. number of gas sensors). The parameter «
in (7.1) corresponds to the slope of the sensor sensitivity in the log-log domain.
According to the data sheet [1] « = —1.6. The parameter 3; was chosen in
such a way that y; is normalized to be unit-less and roughly in the range of
[0,1]). The parameter 1 is individually adjusted in a calibration step for the
sensor of each robot 1 = 1,2..., L. In this way the sensor responses are roughly
the same across the swarm when exposed to the same constant concentration.
The resistor Rg was calculated according to the measured voltage drop U on a
load resistance Ry of a voltage divider consisting of Rs and Ry as follows:

Re =R (5V/U—1) andthus y=p (5V/U—1)%. (7.2)

It is this voltage U that is actually measured by the microcontroller. We would
like to remark that we incorporate R in the constant (3; when inserting (7.2)
into (7.1).

Photoionization detector (PID) Sensor

The second sensor employed in the
experimental evaluation is the Pho-
toionization detector (PID) Sensor
PID-AH2 from Alphasense [10]. It
is sensitive to a lot of substances,
among others also to ethanol. The
PID Sensor consists of a high energy
ultraviolet lamp. The lamp transmits
photons through a chamber contain-
ing the gas of interest. The pho-
tons are absorbed by the molecules
in the chamber and this photoion-
ization generates electrically charged
ions. The ions are attracted by an
electrical field generated between two
electrodes, which causes an electric
current proportional to the amount
of molecules, i.e. the gas concentration [14] (see also Section 2.1.3). In case of
the PID-AH2 Sensor, the concentration is provided as an analog output voltage.
It is important to note that the photon energy emitted by the lamp has to be
higher than the ionization potential of the gas. In our experiments we are using
a Krypton Lamp emitting photos with 10.6eV [14]. This is sufficient to detect
ethanol [16].

The main advantages of PID sensors compared to MOX sensors are their
fast response characteristics and a linear relation of concentration and output
voltage. Further, they are stable for a long time and do not suffer from drift.

Figure 7.10: PID sensor with microcon-
troller
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In addition, the power consumption is quite low (< 100mW for the PID-AH2)
and they are light weighted (< 8¢ for the PID-AH2) [10]. Thus, PIDs are very
suitable for robotic gas source localization or gas mapping experiments.

In our experiments, the output voltage of the PID-AH2 sensor is sampled
by a microcontroller with an ADC. The measured gas concentration y; for the
robots 1 = 1,2..., L plugged into our measurement model is linear proportional
to the measured voltage as

Y1 =Rl — o) (7.3)

The offset o caused by sensor characteristics and the ADC must be calibrated
in clean air. The scaling factor 1 is likewise calibrated, such that y; is unit-
less and roughly in the range of [0, 1]. Since the sensors show all a very similar
characteristics the calibration factors turned out to be the same for the sensors
of each robot.

Anemometer

The experimental evaluation in this thesis
requires a sensor to measure the air flow
(wind). Both, wind speed and wind direc-
tion, are needed in order to build an air flow
model as described in Section 4.4. For in-
door scenarios the air flow is expected to be
quite low (e.g. 0.1 — 1m/s). Based on these
requirements an ultrasonic anemometer was
chosen, namely the model 8600 from the R.
M. Young Company [6]. It is a two dimen-
sional anemometer which provides the wind
direction only in the horizontal plane. Ultra-
sonic anemometers consist of several acous-
tic transmitters and receivers. By measuring
the time of flight of sonic pulses they are
able to infer the wind velocity. An ultrasonic
anemometer has the advantage compared to
mechanical devices that it measures low wind
speeds more accurate and reacts faster to
changes in the wind velocity.

In our experiments the anemometer was
either mounted on static tripods or mobile robots (e.g. see Figure 7.11). In case
the anemometer is mounted on a robot, the robot’s orientation has to be taken
into account to translate the wind velocity into a global coordinate frame.

Figure 7.11: Anemometer
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7.2.2 Robots and Navigation

The proposed DARES approach is evaluated in an indoor scenario in a lab-
oratory and in outdoor scenarios. Depending on the location of the scenario
different robotic platforms and infrastructure are employed. However, in all
cases the software implementation of all required components is build up on
Robot Operating System (ROS) [3].

GadiG tracking cameras
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Figure 7.12: The picture in (a) shows a small rover used in indoor experiments.
The schematic in (b) depicts the system architecture of the infrastructure used
in the indoor experiments.

Laboratory Scenario

For the laboratory scenario, custom-built ground-based robots are used as de-
picted in Figure 7.12a in order to carry the gas sensors. They are all equipped
with low power on-board computers (Raspberry Pi 2900MHz quad-core ARM
Cortex-A7 CPU, 1GB RAM) supplying Linux OS. We will show that even with
these low power computers it is possible to perform all calculations required
for our DARES approach. This is possible due to the use of the distributed
algorithm (see Section 5.1) where the computational load is shared among all
robots. From the on-board computer it is possible to send control commands to
a micro-controller that implements a velocity controller for two motors driving
the tracks of the robot. The velocity commands are generated by a path planner
running on the on-board computer and driving the robot to desired way-points.

This path planner as well as the collision avoidance mechanism described
in Section 6.3 requires an accurate position and orientation. To this end, the
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laboratory is equipped with a commercial optical tracking system. Using active
infrared LEDs mounted on the robot the tracking system is able to compute
accurately the robot’s location and orientation in real-time. It can be consid-
ered as an accurate and reliable localization (error < 1cm) with respect to the
discretization of the environment with a cell size larger than 10cm. Further, the
robots are able to exchange data among each other through a WLAN commu-
nication link. Also, through this link the robots receive their current positions
and orientation from the tracking system. The gas sensors mounted on the
robots provide their measurement to the whole system through WLAN, too. A
central PC enables a scientific operator to start and monitor the whole system.
Moreover, the central PC shows intermediate results of the estimated source
and gas concentration on a Graphical User Interface (GUI). The schematic in
Figure 7.12b depicts the whole setup.

WLAN monitoring

_________ .| PC (GUI)
ass 1 (5)
robot 4
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Figure 7.13: The picture in (a) shows the rover used in outdoor experiments.
The schematic in (b) depicts the system architecture of the infrastructure used
in the outdoor experiments.

Outdoor Scenario

For the outdoor scenario, a commercial robotic platform is modified for the
planned experiments. In particular, it is the Summit-XL robot from Robot-
nik [148] modified as shown in Figure 7.13a. The robot is equipped with a
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powerful Intel NUC (i7-4790S CPU 3.20GHz, 8GB RAM) computer for on-
board processing. Additionally, the robots are equipped with an anemome-
ter and gas sensors, which are directly connected to this on-board computer.
For navigation and path planning the open source navigation stack of ROS is
used. The path planner makes use of the Time Elastic Band approach [150] to
generate collision free trajectories through a static obstacle map (see also Sec-
tion 6.3). The robots carry a Real Time Kinematic (RTK) Global Navigation
Satellite System (GNSS) system which not only provides accurate position in-
formation (error < 10cm) but also the heading of the robot without the need
of a magnetic compass. This GNSS position and orientation is further fused
with the robot’s odometry data. The on-board RTK requires real-time correc-
tion data from an RTK base station. Communication among the robots and the
base station is implemented by a dedicated communication link in the SGHz
WiFi band. The whole system can be controlled and monitored with a central
PC (Laptop). The schematic in Figure 7.13b depicts the whole setup.

7.3 Experiments

Based on the robots and infrastructure presented in the previous section, we
carried out different experiments to evaluate the DARES strategy proposed
in Section 6. In this section we first present results of Hardware-in-the-Loop
experiments. Afterward, we evaluate the proposed air flow model and finally
present results of experiments with ethanol vapor.

7.3.1 Hardware-in-the-Loop Experiments

Evaluation of gas mapping or gas source localization strategies in realistic real-
world scenarios is challenging. The main reason is the lack of ground truth
data to evaluate the performance of the developed approach. Of course ground
truth data can be obtained for the source locations. However, the true spatial
gas concentration distribution is generally unknown. In the previous section we
circumvent the lack of ground truth data by using a simulator. While, in this
way, it was possible to evaluate the performance of the developed source local-
ization strategy, the simplified simulations do not account for real-world con-
straints like the robot’s dynamics, communication limits, etc. To evaluate the
impact of such constraints, this section evaluates the DARES strategy by means
of Hardware-in-the-Loop experiments. Basically, we employ a real multi-robot
system. However, the gas dispersion process is simulated as well as the synthetic
gas concentration measurements taken by the robots. In this way we use ground
truth data from simulation, while the DARES approach is still affected by real-
world constraints, e.g. limited speed of the robots, delay in communications
etc.
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Indoor Small Scale Experiment

The first setup for the Hardware-
in-the-Loop Experiments is a
small scale environment in a lab-
oratory '. The five small robots
described in Section 7.2.2 car-
ried out the experiments. We
make use of the DARES strat-
egy of Section 6.2 and the robots
were coordinated according to
the collision avoidance mecha-
nism described in Section 6.3.1
based on rescheduling. The size
of the experimental environment
was 2.4m x 6.0m. We used FDM
and discretized the environment
into 12x30 cells in order to sim-
ulate the gas dispersion process.
In this experiment we consider a
pure diffusion-based gas disper-
sion process, i.e. the wind field is assumed to be zero. Thus, the dynamic linear
model of equation (3.40) is used to simulate the gas dispersion.

The simulated ground truth gas concentration is shown in Figure 7.14 and
Figure 7.15a. The concentration is driven by three sources. One is placed at
x; = —0.2m,x, = —1.6m with source strength 1.0, the second at x; =
—0.6m,x; = 1.0m with strength 1.0 and the third at x = 0.4m,y = 1.6m
with strength 0.8. As can be seen, one source is isolated in the lower region of
the exploration area, while the other two are more close to each other. The lat-
ter incurs some strong spatial correlation between them. Further, one of those
is placed in an area with a generally higher concentration level.

We have chosen Dirichlet boundary conditions for all borders except for
the right one, where we use a Neumann boundary condition. This corresponds
to an open field scenario, where material can flow off at all boarders except
for the right one (which represents e.g. a wall or a similar obstacle). When-
ever a measurement is demanded by the DARES procedure for a robot, equa-
tion (3.40) is evaluated at the current position of the robot in order to generate
a virtual measurement. The concentration and source strengths are considered
to be unit-less. The discrete grid size, the time difference between two discrete
time stamps and the diffusion coefficient k are all set to 1. However, in the
experiments the concentration field is downscale to match our laboratory envi-
ronment.

Figure 7.14: Laboratory environment: The
picture shows five robots in the indoor sce-
nario during an experimenter. The overlay
depicts the simulated gas concentration.

Note: results were already partially published in [190] and [192].
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The same model as in the simulator is used by the probabilistic formulation
of the DARES strategy (see Section 4.2). While the simulator runs centrally,
the DARES strategy is implemented in a distributed fashion according to Sec-
tion 5.1. All calculations required to generate the way points for the robots
are done on-board the robots cooperatively. To this end, the discretized envi-
ronment is partitioned into 5 parts as shown in Figure 7.15a. Each robot is
then responsible for the inference of parameters associated with one part only.
Further, the robots also exchange messages across common borders.

In this experiment, we compare the proposed DARES approach against ex-
ploration with a predefined sweeping trajectory for the case of 5 robots. The
sweeping trajectories are generated by simply dividing the environment into
five equal regions and generating a predefined “meander” trajectory for each
of these regions. These trajectories will fully cover the whole environment after
a certain time, i.e. each grid cell is measured at least once. We make use of the
NMSE to quantify the error of the estimated gas concentration compared to
the simulated ground truth. To compare the estimated source distribution we
use the EMD criterion. Both metrics are explained in Appendix C.
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Figure 7.15: Tllustration of the Hardware-in-the-Loop experiments: In (a) the
gas concentration is shown as well as the assignment of regions to robots in-
dicated by the rectangles. The plots in (b) and (c) compare the meander trajec-
tories in (b) with an example of trajectories resulting from DARES in (c). The
trajectories are shown on top of the estimated source distributions (black and
red pixels indicate the sources, i.e. peak in the source distribution).



7.3. EXPERIMENTS 119

1.00 1 —— meander trajectory 10.0 —— meander trajectory
—— proposed strategy —— proposed strategy
ey 5 7.59
5 o
w 2 5o
5.0
= =
2.5
T T T 0.0 T T T
0 100 200 300 400 0 100 200 300 400
# measurements # measurements
(a) (b)

Figure 7.16: The two plots compare the performance of the meander trajectory
and the DARES strategy. In (a) the error is measured regarding the estimated
source distributions by means of the EMD. In (b) the NMSE of the estimated
concentration field compared to ground truth is shown.

Figure 7.15b and Figure 7.15¢ present the trajectories of the meander and a
typical example of the proposed DARES strategy. Let us remark that the very
nature of DARES is adaptive, i.e., the algorithm will react to the measurements
taken. As such, the trajectory is not deterministic and Figure 7.15¢ shows one
experiment as an example. The generated trajectories are overlaid with the es-
timated source distribution after 240 measurements in Figure 7.15¢ and after
360 measurements in Figure 7.15b. In both cases the three sources were nearly
perfectly estimated. Figure 7.16 depicts the performance of DARES and the me-
ander. The curves in Figure 7.16a depict the NMSE between the estimated con-
centration field and the ground truth in relation to the number of collected mea-
surements. Figure 7.16a shows the EMD error between the estimated source
distribution and the true source distribution. As we see, using the meander
trajectory the multi-robot system is able to identify the source distribution cor-
rectly after approximately 340 measurements. This is indicated by the drop of
the EMD towards zero. As we already saw in Section 7.1, measurements close
to the source are needed to successfully localize it. Unfortunately, this means
that the performance of the meander trajectory highly depends on the position
of the sources with respect to the meandering pattern. If they are already cov-
ered at the beginning of the trajectory, fewer measurements are needed. In con-
trast to the meander, the error of the DARES strategy converges after only 230
measurements as can be seen in Figure 7.16b. This indicates that robots were
able to localize the sources with fewer measurements. As can be seen from the
trajectory in Fig. 7.15¢, this is since the measurements are concentrated around
the source locations. Obviously, the corresponding measurements contain more
information about the sources, which is the reason for the better performance
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of DARES. Based on Figure 7.16a, it can be seen that the estimated concentra-
tion field for both strategies reaches a low NMSE. Here the performance of the
proposed strategy is better, too. However, subjectively speaking the difference
is relatively small.
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Figure 7.17: Depiction of the time line of a Hardware-in-the-Loop experiment
as an example: The figure shows a time window of 100 seconds. At the top
the data sent by the five robots are shown as well as the CPU usage of the
robot’s on-board computers. The lower part illustrates the time stamps when
(i) messages are exchange with other robots, (ii) a new list of informative way
points is generated by a robot and (iii) an actual measurement is taken by a
robot.

The Hardware-in-the-Loop experiments further enable us to analyze other
performance indicators of our distributed algorithm develop in Section 5.1.
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Namely, we can measure communication data rates, the workload on the on-
board computers and the frequency by which new interesting way points are
generated. All these values are shown in Figure 7.17 for 100 seconds as an ex-
ample. On average, less than 80kBytes/s are sent by the robots to their neigh-
bors and the monitoring PC, including all overhead caused by ROS, TCP and
the operating system. The low power on-board computers (see Section7.2.2)
show less than 50% CPU usage. The lower plot in Figure 7.17 indicates the
time stamps when (i) a robot exchanged messages with its neighbor according
to the distributed message passing algorithm, (ii) a robot generated new way
points as proposals for new measurement locations and (iii) a robot took a mea-
surement. As can be seen, the robots are able to generate way point proposals
approximately every second. This is sufficient, since the way points are more
often generated than measurements are taken. The frequency of measurements
depends mostly on the size of the environment and the robot’s speed.

To sum up, the robots in the Hardware-in-the-Loop experiments are able
to localize the simulated sources based on the proposed DARES strategy. In the
experiments the robots are affected by numerous real-world constraints, which
could not be considered in pure simulations described in Section 7.1. For exam-
ple, the robots have to coordinate themselves and are affected by the collision
avoidance mechanism which may prevent reaching the desired way points. The
communication between robots is imperfect and affected by jitter, thus mes-
sages may be delayed. Nevertheless, the whole approach is robust enough to
compensate for such effects and localize the sources correctly.

Outdoor Large Scale Experiment

As a second larger scale scenario, Hardware-in-the-Loop experiments were
carried out in a gravel pit. The infrastructure and five robots as described in
Section 7.2.2 were employed. The size of the environment was approximately
100m times 50m. A static advection-diffusion gas dispersion process accord-
ing to equation (3.39) is considered with k = 1. This equation was used to
simulate the gas concentration driven by two sources. The synthetic sources
were placed at x; = —10,x; = —10 and at x; = —50,x, = —20 both with
strength 1. Again, the source strength and the concentrations are considered to
be unit less. Further, Dirichlet boundary conditions are used to model an open
field scenario, where material can flow off at all boarders. The wind is consid-
ered to be uniformly distributed with vi = —0.4m/s and v, = —0.4m/s (see
also Figure 7.19). The simulated gas concentration is used to generate synthetic
measurements at the robots positions.

Our model-equation (3.39) was generated using FEM. The environment
is discretized by a mesh consisting of 120 nodes (vertexes) and 183 elements
(triangles). In Figure 7.18, the gravel pit and the five robots are depicted. The
simulated gas concentration in the environment is shown as a colored overlay.



122 CHAPTER 7. EVALUATION

Figure 7.18: The picture shows the gravel pit where the outdoor experiments
have been conducted. The color overlay represents the simulated gas concen-
tration.

Since we consider a non-linear case here (advection-diffusion model), the
DARES approach is implemented according to Section 5.2. Thus, the proposed
interesting way-points are generated centrally on the monitoring PC (see Fig-
ure 7.13) and send to the robots. The robots are coordinated according to
collision avoidance mechanism of Section 6.3.2.

The results for one example run are shown in Figure 7.19 and Figure 7.20.
In Figure 7.19 three snapshots of the estimated source distribution are shown.
These snapshots correspond to the three time stamps marked by dash lines in
Figure 7.20, namely 655 for Figure 7.19a, 150s for Figure 7.19b and 300s for
Figure 7.19¢. As can be seen, the two sources are successfully identified after
approximately 300 seconds, which is also indicated by the low EMD between
the estimated source distribution and the ground truth source distribution. The
EMD in Figure 7.20 shows the difference between the estimated source distri-
bution and the ground truth source distribution which has been used to sim-
ulate the gas dispersion process (see also Appendix C). It can be seen that the
EMD values are much higher as in the small scale experiments in Section 7.3.1.
This effect is due to the very nature of the EMD, which depends on the scale
of the spatial distributions that are compared to each other. Loosely speaking;:
in the small scale experiment, the mass of the source distribution has to be
moved only a few meters to convert the estimated distribution into the ground
truth distribution. In the large scale experiment this effort is higher, since the
distribution mass has to be moved several meters.

The three time stamps in Figure 7.19 depict the trajectories of the five
robots. The trajectories cover only the time window until the previous time
stamp (i.e. in (a) 0 —635s, in (b) 65 —150s and in (c¢) 150 —300s). It can be seen
that the robots first move to the lower left region and explore the upper right
region at last. This behavior is reasonable considering that the wind direction
is from upper right to lower left (indicated by the black arrow). The down-
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Figure 7.19: The three plots show the estimated source distribution after 63s,
150s and 300s. In addition the robots and their trajectories in the respective

time segment are plotted.
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Figure 7.20: The figure illustrates the temporal course of the Hardware-in-the-
Loop experiment. The upper part plots the EMD between the estimated source
distribution and the ground truth source distribution. The lower part shows the
time stamps when the robots took their measurements and the time windows
during which the robots were moving.

wind region (lower left) is more informative compared to the up wind region.
Consequently and reasonably, the robots start their exploration there.

Again this Hardware-in-the-Loop experiment allows us to investigate real-
world constraints. Namely, we are interested how the collision avoidance mech-
anism and dynamic constraints of the robots affect the exploration. This can be
studied by means of the time-line plot in Figure 7.20. The way points are gener-
ated by the DARES approach with a fixed update frequency of 10s. This update
frequency is still high compared to the times when measurements are taken by
the robots. The measurements are taken quite irregularly depending on the time
the robot needs to move from one measurement location to the next. Further,
the time line in Figure 7.20 indicates when robots are not moving. During these
time windows the robots are blocked and are waiting for robots with higher
priority to clear the way according to the collision avoidance mechanism de-
scribed in Section 6.3.2. This collision avoidance mechanism has definitely a
strong impact on the exploration performance. For example robot 1 is not able
to take a measurement for the first 100s. Since the robot has the lowest pri-
ority, it has to stop for other robots and is therefore blocked for a long time.
Even though the coordination may be suboptimal, the robots are able to find
the sources in quite a short time (Smin).
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7.3.2 Air Flow Model

In the previous section we evaluated the proposed DARES strategy in
Hardware-in-the-Loop experiments. Before, we move on to the real-world ex-
periments in the next section, this section is going to evaluate the air flow
model proposed in Section 4.4 experimentally. This evaluation includes the
parametrization of the air flow model, which will be used in the real-world
experiments. Again, two different scenarios are considered. The first scenario is
a controlled indoor environment in a laboratory with an artificial air flow field.
The second scenario is an open field outdoor environment on a windy day.

Indoor Scenario

The indoor experiments are carried
out in the same laboratory environ-
ment as the Hardware-in-the-Loop <«— fan array
experiments in Section 7.3.1 (see also =

F‘_‘: P
-§

Figure 7.14). The considered envi-
ronment is 3.0m times 5.0m large
and discretized by 30 times 50 cells
(edge length 0.1m) for the numeri-
cal approximation of the PDE, which
makes use of the air flow model later
on. The air flow is generated artifi-
cially by five small fans powered with

7.5V as shown in Figure 7.21. The ]
fan array is located at x; = 1.5m Figure 7.21: The picture shows five fans

and x, = 0.0m. The air flow field 8enerating an artificial wind field. The
field is sampled by four anemometers
placed upside-down.

LE

was sampled by multiple anemome-
ters (see Section 7.2.1) in order to ob-
tain the required input data for the
air flow model described in Section 4.4. We used 4 anemometers simultane-
ously to sample the air flow at uniform random locations in the environment.
These sampled locations are marked by stars in Figure 7.22. As depicted in
Figure 7.21, the anemometers are placed upside down to acquire data as close
to the ground as possible. Figure 7.22a shows the air flow map resulting from
one example data set. To be more precise: The air flow model predicts a mean
of the x| and x; air flow velocity component at each cell in the environment
according to equations 4.13. These two components are represented by the
quiver plot in Figure 7.22a. Further, as an overlay, the predicted absolute air
flow speed is shown. Please note that the model delivers not only the mean
but also the variance for the two air flow velocity components, which are not
shown here.
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Figure 7.22: The figure shows in (a) the predicted air flow field. The white stars
indicate the locations, where the air flow was sampled. In (b) the error of the
prediction is plotted based on a leave-one-out cross validation. The green start
indicates the location where the prediction is best and the red start were the
prediction is worst.

Unfortunately, we lack of ground truth data to which we can compare our
model predictions for evaluation purposes. Therefore, we make use of leave-
one-out cross validation. As an example, let us consider the sampled location
marked by the green star in Figure 7.22a. In Figure 7.23 the histograms of
the measured air flow velocity components at the location indicated by the
green star for x; and x, directions are plotted. Note that these components
are actually calculated based on the wind speed and wind direction which are
the outputs of the anemometers. To the measurements we fitted a Gaussian
curve. In addition, Figure 7.23 depicts the predicted Gaussian PDF by the air
flow model. For calculating this predicted Gaussian the measurements at the
location marked by the green star were not considered. As can be seen, the two
Gaussian curves coincide very well and the predicted PDF is similar to the data
histogram.

Figure 7.22b maps the absolute error between the predicted mean and the
actual mean of the air flow speed at the sampled locations. To generate this
error map, for each sampled location a leave-one-out cross validation was ap-
plied. For a better visualization the errors are interpolated in between the sam-
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Figure 7.23: The figure compares the predicted air flow (blue curves) to the
actual measurements (green histogram) at the location indicated by a green star
in Figure 7.22. Further, a Gaussian curve is fitted to the histogram (dotted, red
curve). In (a) the comparisons is shown for the x; component of the air speed
and in (b) for the x, component.

pled locations (nearest neighbor interpolation). As can be seen, especially close
to the fans the error is quite high and the prediction is not everywhere as good
as at the green star location. If we look at the location marked by the red star in
Figure 7.22a, the prediction is quite different from the actual measured data as
indicated by the plots in Figure 7.24. Actually, this is the worst location in our
example. In general, it can be observed that for regions with stronger gradients
in the air flow speed the prediction is weaker.

Finally, let us remark on the used parametrization of the air flow model.
Essentially, the model is fully defined by the two kernel widths ks and k¢ ac-
cording to the model in Section 4.4. In our experiments we have seen that the
air flow speed is very stable with respect to time, because of the controlled
indoor environment. Therefore, we let k¢ go to infinity. In this way, we ne-
glect time dependencies of measurements in the air flow model and treat the
air flow as a static process. In practice, ky — oo cancels out the second factor
e R (M gy weighting function (4.15). The choice of ks is a little more in-
volved. Again we compare the predicted Gaussian PDF and the Gaussian fitted
to the measurement data by a leave-one-out cross validation as shown in Fig-
ure 7.23 and 7.24. For each sampled location the Kullback-Leibler divergence
from the fitted Gaussian to the predicted Gaussian is calculated. In fact it is
calculated two times: once for the x; air flow component and once for the x;
component. All Kullback-Leibler divergences are summed up, i.e. for the two
components at all locations. This sum indicates how well our model describes
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Figure 7.24: The figure compares the predicted air flow to the actual measure-
ments at the location indicated by a red star in Figure 7.22.

the data. The model parameter kg is chosen so that the sum of Kullback-Leibler
divergences is minimal. In our example, the optimal ks is 0.11m?2. In other
words, the spatial kernel width of the weighting function (4.15) is approxi-
mately 0.33m.

Outdoor Scenario

The experiments evaluating the air flow model outdoors took place on an open
football field. The natural wind was measured by three robots equipped with
anemometers (see also Section 7.2.1) and no artificial air flow was generated.
The robots drove to random locations in the target area (30m x 30m) and
waited at each location for 10 seconds. In the middle of this time window,
wind measurements were collected for 8 seconds, while the robot was standing
still. The robots were not synchronized, so most of the times while a robot was
measuring the others were driving. In the following one experiment is shown
and discussed as an example.

In Figure 7.25 the collected measurements are depicted for 25 minutes
(black curves). More precisely, for every measured location the wind speed and
wind direction averaged over the 8 seconds is shown. As can be seen by the
strong variations in the wind speed, during the experiment the wind was not
too strong, but “choppy” (i.e. recurrent increasing and decreasing wind speed).
Therefore, predicting the air flow field is much more challenging than in the
indoor environment.

In order to evaluate the air flow model we make use of a leave-one-out
cross validation like for the indoor environment. For every sampled location
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we use the model to predict the air flow at this location and compare the pre-
diction to the actual measurements. The prediction at a certain location does
not incorporate the measurements taken at this particular location nor does it
incorporate future measurements. Thus, the prediction can be calculated online
and in real-time. Essentially, the air flow model predicts a Gaussian PDF — or
rather its mean and variance — of the x; and x; air flow velocity component
at each location in the environment according to equations (4.13) and (4.16).
Calculated based on the mean x; and x; velocity component, Figure 7.25 plots
the absolute error of the predicted wind speed and wind direction over time.

T
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Figure 7.25: The figure shows the measured wind speed in (a) and wind direc-
tion (b) in an outdoor experiment over approximately 25 minutes. Further, the
error in the model prediction is plotted (blue curves). The time stamps where
the prediction is best and worst are marked by vertical lines.

In Figure 7.25 the worst case and the best case are marked by a red and
green vertical line. Here “worst” and “best” is calculated according to the
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Figure 7.26: The plots on the left (c) and (e) compare the model prediction in the
outdoor scenario with the actual measured wind data at the location indicated
by a green star in (a), i.e. the best case. On the left (d) and (f) the same is
shown for the location marked by a red star in (b), i.e. the worst case. Further,
in (a) and (b) the whole predicted wind field is shown for the time stamps
marked in Figure 7.25 ((a) green, (b) red). The circles in (a) and (b) indicate all
measurement locations, and their color visualize their influence (weight) on the
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Kullback-Leibler divergences between the predicted Gaussian PDF and a fitted
Gaussian to the actual measured data. These Gaussians are depicted in Fig-
ure 7.26 along with the histogram of the measured data (on the left: best case;
on the right: worst case). Further, Figure 7.26a and 7.26b show the predicted
instantaneous air flow field for the two cases. The stars indicate the best and
worst evaluated location. In addition, the circles indicate all measured locations
while their colors represent their weights, i.e. their influences on the prediction.
Figure 7.25b makes it obvious that the worst case corresponds to a time when
suddenly the wind direction changed. In case of such sudden changes, the model
is not able to predict the air flow field accurately and needs some time and ad-
ditional measurements to adapt.

Even though the wind conditions are difficult to predict, the model is able to
estimate the wind speed with an average error of 0.5m/s and the wind direction
with an error of less than 30deg.

Let us finally remark on the parametrization of the air flow model for the
outdoor scenario. In contrast to the indoor experiments in Section 7.3.2, the
air flow field is not static in the outdoor experiments. Therefore, this time we
have to optimize both kernel widths ks and k; according to Section 4.4. The
two parameters are chosen so that the total Kullback-Leibler divergence from
the fitted Gaussian to the predicted Gaussian is minimal. More precisely, all
Kullback-Leibler divergences are summed up, i.e. for the two components of
the air flow velocity and for all locations. This sum is minimized. For this opti-
mization only the first half of the data set (approximately 12min) is used, where
the second half is used to terminate the optimization to avoid over-fitting. In
our example the optimal parameters are k; = 345m? and k; = 473s2, which
corresponds to a spatial kernel width of approximately 19m and a temporal
kernel width of 22s.

7.3.3 Real-World Experiments

In this section the gas source localization strategy proposed in this thesis will
be evaluated in experiments with “toy” gas.

The experiments were carried out in the same laboratory environment as
the Hardware-in-the-Loop experiments in Section 7.3.1 and the indoor air flow
mapping in Section 7.3.2 (see also Figure 7.14). The size of the considered en-
vironment is 3m times 6m. The DARES approach uses FEM as a numerical
approximation of gas dispersion (see Section 3.3.2) and the implementation as
described in Section 5.2. Therefore, the environment is discretized by 16 times
31 nodes arranged in a grid. In the experiments, we consider the gas distri-
bution as a static process, i.e. we consider the dispersion process in a steady
state (at least within the time window the exploration takes place). Dirichlet
boundary conditions are applied at the borders of the environment due to a
lack of actual knowledge about the conditions. It is important to note that this
assumption might be wrong and might entail an additional mismatch between
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Figure 7.27: The schematic in (a) shows the setup of the real-world experiment.
A culture dish containing ethanol as shown in (b) is hanging from the ceiling
so that the robots do not collide with it. Above the dish a fan is mounted to
support evaporation of the ethanol.

the reality and the used model. However, the proposed approach is designed to
cope with such mismatch effects.

As a source, we used ethanol evaporating from a culture dish (8 cm diame-
ter) filled with approximately 5g of 94% ethanol assay. Above the culture dish
we mounted a small fan running at 5V (see Figure 7.27). The airflow caused by
this fan avoids saturation of ethanol concentration in the layer above the liquid.
Thus, it accelerates the evaporation. Moreover, the air flow facilitates a radial
dispersion of the ethanol vapor. The whole structure hangs down from the ceil-
ing, so that the robots are able to drive below the source without any collision
with the dish containing the alcohol. It is also important that the culture dish
is relatively small compared to the discretization of the environment (20 cm
distance between nodes). In this way we make sure that no cell is completely
below the dish and not totally covered by it, and that the highest concentration
is still below the source.

In the following experiments three small robots as presented in Section 7.2.2
were employed. They make use of the DARES strategy of Section 6.2 and are
coordinated according to the collision avoidance mechanism described in Sec-
tion 6.3.1. Different experiments were performed, where the robots either carry
MOX sensors (see Section 7.2.1) or PID sensors (see Section 7.2.1). All sen-
sors were zeroed shortly before the experiments to account for offsets in the
ADCs or background gas concentration in the room. In other words, sensors
were placed far away from gas sources (approximately 4m) and were consid-
ered to be exposed to clean air. Then, the sensor parameters (see Section 7.2.1
and 7.2.1) were adjusted so that the sensors concentration measurements equal
zero.
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Figure 7.28: Real-world experiment 1: The figure shows the results of an ex-
periment with a single source placed at x; = Om and x, = Om. The DARES
approach was parametrized as follows: 3 robots, k = 1.5, T, = 102, T,, = 103,
In (a) the estimated gas concentration distribution is shown, while (b) depicts
the estimated source distribution. In (c) the gas concentration distribution is
shown which has been sampled by three robots following meander trajectories.
The stars indicate measurement locations.

In the following, four representative experiments are presented and dis-
cussed. It is important to note that conducting real-world experiments is quite
time consuming. Thus, the results presented here do not provide studies of pa-
rameters or effects with statistical significance as the simulations in Section 7.1
did. Instead, the purpose of the following experiments is to demonstrate that
the source localization strategy works in real-world scenarios under controlled
conditions as well as to shown possible limitations of the proposed scheme.

In the first experiments the robots were equipped with MOX sensors. At
each measurement location the sensor readings were averaged over 5 seconds.
A single source was placed in the middle of the exploration environment at
x1 = Om and x; = Om and no artificial air flow was introduced. Figure 7.28a
and Figure 7.28b show the estimated gas concentration distribution and the
estimated source distribution after approximately 360 seconds. Unfortunately,
real-world experiments lack of ground truth data to accurately evaluate the per-
formance of the source localization strategy. We only know the ground truth
position of the source but not its strength. Therefore, we normalized the es-
timated gas source distribution by its maximum and compared it to a ground
truth gas distribution with a single peak at x; = O0m and x, = Om with strength
1. In this way we computed the EMD between the ground truth and the esti-
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Figure 7.29: The figure shows the performance of the experiments correspond-
ing to Figure 7.28 (one source) and to Figure 7.30 (two sources). The perfor-
mance in measured by means of the EMD of the estimated source distribution
in (a) and by means of the NMSE of the estimated gas concentration.

mated source distribution for each time stamp. The EMD for this first experi-
ment is shown in Figure 7.29a. Also, a subjective impression obtained from the
plotted source distribution in Figure 7.28b shows that the source is correctly
localized. However, there are small imperfections. For example the estimated
source distribution is not a single peak, but actually two peaks close to each
other, located at x; = —0.1m,x, = Om and x; = —0.3m, x> = Om. Further
note: As can be seen in Figure 7.29a, the EMD drops approximately after 280
seconds, this time stamp may be considered as the time when the source distri-
bution is successfully identified.

Due to the lack of ground truth gas concentration data, it is hard to evaluate
the estimated gas concentration distribution that is shown in Figure 7.28a. Nev-
ertheless, to generate a kind of ground truth, the gas distribution was uniformly
sampled by meander trajectories as shown in Figure 7.28c. We compare the es-
timated gas concentration in Figure 7.28a to these samples. More precisely, we
calculate the NMSE between the estimate f and the gas measurements sampled
by meander trajectories. (Note that the samples and the  are first normalized
by their L, norm.) The resulting error curve is shown in Figure 7.29b. The dis-
crepancy is quite high and also a visual comparison between Figure 7.28a and
Figure 7.28c shows that the two distributions do not match very well. This in-
dicates a certain mismatch between the model and reality. The mismatch is not
unexpected, since the model is a simplification and approximation of the true
dispersion process. Motivated by this fact, the trust in our model was lowered
in the experiments by reducing the precision ts compared to the simulations. It
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Figure 7.30: Real-world experiment 2: The figure shows the results of an exper-
iment with two sources. The DARES approach was parametrized as follows: 3
robots, k = 1.5, T, = 102, T, = 10>. In (a) the estimated gas concentra-
tion distribution is shown, while (b) depicts the estimated source distribution.
In (c) the gas concentration distribution is shown which has been sampled by
three robots following meander trajectories. The stars indicate measurement
locations.

is remarkable that, despite the mismatch of the predicted gas distribution, the
source distribution is nearly perfectly estimated.

At this point let us remark that the MOX sensors performed very well in
these kinds of experiments. However, they are not very convenient, since they
had to be re-calibrated regularly (nearly every day). Thus, in the following ex-
periments PID sensors were mounted to the robots. The PIDs are much more
long-term stable. Thus, apart from zeroing before the experiment, they required
no recalibration at all during the period in which the experimental studies were
carried out (approximately two years).

The second experiment presented here is similar to the first one but with
two sources, located at x; = 0m, x, = Om and x; = 0.5m, x; = —2.4m. Again
the dispersion was not affected by air flow. Figure 7.30a and Figure 7.30b show
the estimated gas concentration distribution and the estimated source distribu-
tion after approximately 500 seconds. Again the performance of the strategy
and source estimation are depicted in Figure 7.29. The EMD and NMSE are
calculated in the same way as explained of the first experiment above. For
the ground truth source distribution it is assumed that the two sources have
the same strength. This time the EMD drops significantly two times: once at
approximately 150 seconds and once at 200 seconds. These times can be con-
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Figure 7.31: Real-world experiment 3: The figure shows the estimated gas con-
centration in (a) and the estimated source distribution in (b) of an experiment
with two sources and an artificial air flow field as depicted in (c). The DARES
approach was parametrized as follows: 3 robots k = 1.5, T = 10%, T, = 103.
The stars indicate measurement locations.
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Figure 7.32: Real-world experiment 4: The figure shows the estimated gas con-
centration in (a) and the estimated source distribution in (b) of an experiment
with two sources and an artificial air flow field as depicted in (c). The DARES
approach was parametrized as follows: 3 robots k = 0.5, T, = 10%, T, = 103,
The stars indicate measurement locations. In this experiment apart from the
two sources at x; = 0m, x, = Om and x; = 0.5m, x, = —2.4m a third source
is localized erroneously at x; = 1.1m, x; = —1.2m.
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sidered as the times when the two sources are successfully localized. Also, the
visual impression in Figure 7.30b indicates that the source distribution is esti-
mated quite well.

For the third and fourth experiment an artificial air flow was generated by
five fans as described in Section 7.3.2. DARES incorporates the probabilistic
air flow map that was developed in Section 4.4 and parametrized as discussed
in Section 7.3.2. This air flow map is also depicted in Figure 7.31c and Fig-
ure 7.32c. Apart from the air flow map the experimental setup was the same
as for the second experiment. Two sources were placed in the laboratory (at
x1 = 0m, x = Om and x; = 0.5m, x, = —2.4m). The performance measured
by means of the EMD is plotted in Figure 7.33.

Let us have a closer look at the results: As shown in Figure 7.31, in the
third experiment the estimated source distribution correctly contains two peaks
corresponding to the two sources. However, the source placed at x; = 0m, x; =
Om is estimated at location x; = —0.5m, x, = Om, which is 0.5m downstream
of the true position.

In the fourth experiment again
the two sources are correctly es-
timated indicated by the two cor- 12
responding peaks in the estimated
source distribution in Figure 7.32. In

experiment 3
experiment 4

addition, the estimated source distri- 2 81
bution contains a third peak atx; = ¢ |
1.1m, xo = —1.2m thatis wrong and “

does not correspond to any source. 4

The reason for this wrong estimate is
most likely a wrong boundary condi-
tion. The boundary condition claims
that the gas concentration at the bor-
der is zero. Unfortunately, in this ex-
periment the background gas concen-
tration in the room was not zero but
higher, as can be seen by the gas
distribution depicted in Figure 7.32a
(especially close to the x; = 1.1m,
x; = —1.2m). A sudden change in
the gas concentration towards zero at
the border can only be explained by the gas dispersion model if there would be
a source. Thus, the model placed erroneously a third source in this region.

To sum up, the proposed DARES strategy could also be demonstrated to
work in real-world experiments with and without airflow. The mismatch be-
tween model assumptions and the real gas dispersion deteriorates the perfor-
mance compared to the simulation studies a little bit. Nevertheless, qualita-

0 200 400 600
time [s]

Figure 7.33: The plot shows the perfor-
mance of the experiments correspond-
ing to Figure 7.31 and to Figure 7.32.
The performance in measured by means
of the EMD of the estimated source dis-
tribution.
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tively speaking, the peaks in the estimated source distribution are very close to
the true source positions.



Chapter 8
Conclusion

This final chapter will summarize the thesis and its contributions, and relate
them to the big picture. We will also discuss advantages and limitations of the
presented work as well as open questions and possible future research topics
resulting from this thesis.

8.1 Summary and Contributions

To sum up the contribution of the whole thesis in a single statement: The thesis
shows how to support robotic exploration tasks by a-priori available domain
knowledge and reveals the advantages of doing so. In particular, it is shown
by means of gas source localization. As a solution, we propose the Domain-
knowledge Assisted Robotic Exploration and Source-localization (DARES) ap-
proach. There, we encode domain knowledge about the physical phenomenon
of gas dispersion in a mathematical model that supports a multi-robot system
to find several gas sources.

As a suitable mathematical model, we identify the advection-diffusion PDE
in Chapter 3. The PDE approximates the gas dispersion process accurately
enough, while the numerical complexity of the PDE is still tractable in real-
time robotic applications. In the end as a result of Chapter 3, our gas disper-
sion model becomes a system of algebraic equations. With the use of this model
two main advantages appear. First the model allows us to infer the source dis-
tribution based on gas concentration measurements taken by robots; this is an
estimation problem. Second the model enables us to quantify the uncertainty
of this estimated source distribution. The uncertainty is used later on in Chap-
ter 6 to design an exploration strategy that is guiding the robots to informative
measurement locations.

The thesis proposes to embed the gas dispersion model into a probabilistic
Bayesian framework as done in Chapter 4. The probabilistic framework not
only facilitates the uncertainty quantification, but also allows to relax model
assumptions. To be precise, we do not consider the residuals of the algebraic
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equation system to be exactly equal zero. Instead, we model residuals as a
stochastic process that is Gaussian distributed with mean zero. The variance
of the Gaussian distribution is used to parametrize our trust into our model. To
facilitate this possibility is one of the main contributions of the thesis.

Moreover, in the Bayesian approach we can naturally incorporate additional
a-priori domain knowledge by means of appropriate prior distributions. This is
very useful, since in the thesis we consider the number of sources as unknown
but sparsely distributed in the environment. By means of SBL techniques, Chap-
ter 4 shows how to design a prior PDF to model the assumption that the sources
are sparsely distributed. This turned out to be another important contribution
of the thesis. The sparsity inducing prior first of all acts as regularization mech-
anism for the source estimation problem. Therefore, it is possible to estimate or
approximate a source distribution even from only few gas concentration mea-
surements. Without the sparsity inducing prior the estimation problem would
be underdetermined and not solvable in the early phase of the exploration,
when only an insufficient number of measurements is available. Second, simu-
lations and experiments have shown that the sparsity inducing prior is actually
responsible for guiding the robots to the informative location close to sources.

Based on the probabilistic model, the design of our DARES strategy in
Chapter 6 is straightforward. The probabilistic model provides a marginal
PDFs for the estimated gas concentration for individual regions in the envi-
ronment. According to information theory a high variance of the PDF corre-
sponds to high entropy which can be considered as a high uncertainty in the
estimated gas distribution. The DARES strategy therefore sends the robots to
locations where the variance in the estimated gas concentration is high. To this
end Chapter 6 also proposes mechanisms to coordinate the multi-robot system
and to decide which robot is going where.

The presented DARES strategy is designed for a multi-robot system. Multi-
ple robots are not only able to take measurements at the same time at different
locations, which is important to observe a dynamic process; they can also make
use of synergies and share computational costs. In this respect, Chapter 5 con-
tributes a novel approach to carry out necessary calculations required by the
DARES strategy in a distributed fashion on on-board computers of the robots.
This approach is based on a factor graph representation of the probabilistic
model and message passing.

All individual contributions are combined and evaluated in Chapter 7 by
means of simulations, Hardware-in-the-Loop experiments and experiments
with ethanol.
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The thesis was guided by four research questions which have been intro-
duced in Section 1.3. In the following we provide comprehensive answers to
these questions that are also summarizing the contribution of the thesis again.

@ How to incorporate domain knowledge from physics into
an exploration strategy for gas source localization?

PDEs encode physical knowledge about dynamic processes
in a mathematical model. Such a model can be used to de-
@ sign an uncertainty-driven exploration strategy. The strat-

egy guides robots to informative measurement locations
that facilitate estimating the gas sources based on concen-
tration measurements.

How can we quantify the trust into our model and take it
into account in the exploration strategy?

By translating the model used by the exploration strategy
into a probabilistic framework, we can allow residuals of
the model to deviate from zero according to a probability
distribution. By the precision (or variance) of the distribu-
tion we can parametrize the trust into our model.

How can we avoid assumptions regarding the number of
sources?

In our Bayesian approach we can design a sparsity inducing
prior for the spatial source distribution which we are look-
ing for. In this way the estimated source distribution con-
tains only a few sources without knowing the exact number
of sources a-priori.

How to take advantage of the multi-robot system in the im-
plementation?

Marginal PDFs required by the exploration strategy can be
calculated by a message passing algorithm. Such an algo-
rithm can be implemented in a distributed fashion so that
the robots split the computational cost among themselves.

QI B
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8.2 Discussion and Limitations

At this point let us first consider from a general point of view the idea of assist-
ing a robotic system by available domain knowledge. While in general it seems
reasonable, nowadays there is a tendency to make use of artificial intelligent
methods where robotic systems learn to understand their environment on their
own based on data or thousands of experiments of trial and error. However,
why should a robot learn something the hard way that scientists and engineers
already know? The answer lies in the fact that it is often difficult to provide
human knowledge to a robotic system. In this thesis we found a way to en-
code available knowledge about gas dispersion from physics in a mathematical
model based on a PDE. This mathematical model is suitable for an implemen-
tation in a robotic system. However, in general to find such a model for the
process of interest includes a lot of work or might be too complex for some
physical phenomenons.

As we would expect, the additional information on the physical phe-
nomenon of gas dispersion helps the robots to localize the sources. The robots
start to sample the gas concentration in downwind regions which also a hu-
man expert would confirm as most informative. Further, as soon as a high gas
concentration is measured indicating the present of a source, the robots con-
centrate their measurements around this location. Of course this behavior is
very beneficial to localize the sources accurately and with as few measurements
as possible. However, it is difficult to understand where in the mathematical
formalism this behavior is coming from. Here we would like to offer an at-
tempt at an intuitive explanation: As we have seen in Section 7.1.2, the behav-
ior arises from the DARES strategy in combination with the sparsity inducing
prior PDF. The prior PDF encodes the assumption that the sources are sparsely
distributed in the environment. In other words, the prior assumes that for most
regions (cells or nodes) the source strength is zero. Under this assumption, evi-
dence for a source with non-zero posterior mean effectively “contradicts” this
prior assumption; as such the uncertainties in the corresponding regions grow.
The increased uncertainty attracts the robots that are guided by DARES and
thus the robots concentrate their measurements on informative regions around
the sources. This effect also has a downside. Favoring the regions around the
sources, may cause single robots to get stuck in the neighborhood of a source.
This may prevent — under certain conditions and an insufficient number of
robots — to discover all sources. Multiple robots, however, are able to effec-
tively reduce the uncertainty around the sources by multiple simultaneous mea-
surements. Thus, individual robots can “escape” from the attraction of a source
location and can explore other regions. This fact also shows the advantage of
employing multiple robots for gas source localization.

In the thesis the source localization problem is formulated as the problem of
estimating a spatial source distribution. The source distribution can represent
any number of sources only limited by the spatial discretization. In this way the
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approach does not require knowing the exact number of sources beforehand.
However, representing the sources by a distribution has also disadvantages.
While a single source may be described by a 2D vector containing its spatial
coordinates, the source distribution used in this thesis is represented by a high
dimensional vector containing the source strength at all discrete cells. Estimat-
ing the high dimensional representation of the source distribution is difficult
even when supported by the sparsity inducing prior. Especially in larger real-
world scenarios, more complex than the laboratory environment considered
here, the estimated source distribution based on few noisy gas measurements
may be of poor quality. Many measurements would be required to estimate
the whole distribution accurately. In contrast by a different approach a sin-
gle source might be estimated with much fewer measurements. So, the here
presented approach should not be applied if the number of sources is a-priori
known.

A further limitation of the presented approach in complex real-world ap-
plications may be that accurate gas concentration measurements are required.
Measuring absolute gas concentrations accurately is complicated by com-
mon sensor characteristic as noise, slow response and recovery times, cross-
sensitivity and interference by other environmental parameters, e.g. humidity.
In addition, a patchy and turbulent structure of the gas distribution makes
meaningful measurements difficult and would require averaging measurements
over long times. On the other side, long and complicated measurement proce-
dures also motivate using the proposed approach. If measurements are com-
plicated or expensive (e.g. with respect to time), it is important to localize the
sources with as few measurements as possible.

8.3 Future Topics

The work of the thesis also leads to a number of new questions that may be
addressed in the future. Here we summarize the most important ones.

First, while for the linear dispersion model the thesis proposes a message
passing algorithm to calculate the posterior PDF in a distributed fashion (Sec-
tion 5.1), for the non-linear model only a centralized implementation is given in
Section 5.2. The modification of this algorithm to be suitable for a distributed
implementation on a multi-robot system is part of future work. In fact, the
mean field approximation used in Section 5.2 could be applied more exten-
sively to have an even stronger factorized form in equation (5.33) (namely to
have a factorized version of qo(8)). Then the algorithm would require updating
many individual factors which can be done in parallel by the robots. (Note that
even now the update of g, (yi) can be done in parallel.)

Second, the assignment of way points to robots and coordinating the robots
in Chapter 6 was designed more with respect to robustness rather than op-
timality. Here, future research efforts may lead to more efficient approaches.
It is important to note that the coordination of robots is very crucial for the
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overall performance. Informative way points proposed by DARES are useless,
if the robots cannot reach them because their way is blocked by others. In this
respect also Artificial Intelligence methods are considerable in the future. For
example, a Reinforcement Learning approach for information gathering simi-
lar to [184], may be applied for gas source localization. The robots can learn
an optimal movement strategy by rewarding them for reducing the uncertainty
comparable to the proposed DARES strategy.

Since assisting the exploration by domain knowledge has shown great po-
tential, it would be interesting to see a similar approach for air flow modeling.
While in the thesis the air flow model was obtained purely data driven, its es-
timation can also incorporate knowledge from physics. In fact, similar to the
gas dispersion model of this thesis based on the advection-diffusion PDE, an
air flow model might be estimated based on domain knowledge encoded by the
Navier-Stokes PDEs (or simplified cases of them). In general, it is worth look-
ing at the air flow model, and elaborating and improving it, since wind is the
dominating mechanism of gas dispersion.

Also, the probabilistic Bayesian framework may offer a playground for fur-
ther research. For example, additional or other prior PDFs may be developed
to incorporate additional assumptions. For instance, a possible prior may re-
strict source strengths and gas concentrations to positive values only. So far
negative sources and negative gas concentrations could occur in the estimates
from the mathematical point of view. While a negative source strength might be
considered as a kind of sink, a negative concentration has no physical meaning.

Even though, the thesis studied a lot of different effects like the sparsity
inducing prior, model mismatch effects etc, further evaluations in the future
are possible. For example, how does the proposed DARES strategy perform in
case of many sources that are no longer sparsely distributed. Another interest-
ing question would be how the diffusion parameter k influence the exploration
performance. In the thesis this diffusion parameter k was chosen imperially. In
the future the presented approach might be extended so that the diffusion pa-
rameter is also estimated based on collected measurements. Further, in a next
step the proposed approach should be tested in more realistic and more com-
plex outdoor scenarios.

Last but not least, a future research direction might extend the proposed
framework presented in the thesis to remote sensing and gas tomography. In
this respect, the main challenge would be to adapt the sensor model to integral
gas concentration measurements as provided by open path TDLAS sensors.
Further, for efficient source localization the sampling strategy would be more
involved. The robots need to be positioned and orientated optimally (similar
to [20]) such that the measurement beams are most informative, i.e. the uncer-
tainty is reduced most.



Appendix A
Derivation of Advection Term

The following provides a detailed derivation of the advection term in the nu-
merical approximation of the PDE based on FEM in Section 3.3.2. In the thesis
this derivation is summarized in equation (3.31). We consider the following
approximation:

J (X, t)¥(X, t) T VF(X, t)dX ~ (A.1)

o]

~ JQ (Z[&j(t)wi(%)) <Zwﬂk(t)¢k x) (Z GAE ) dx+
k i

+ JQ (Z ) %) (Z by z) (Z[ﬂi(t)wwi(%nz) dx.

i

Since the following derivation is the same for both addends in equation (A.1)
(first addend = second line, second addend = third line), we show the derivation
only for the first addend. Let’s rearrange the elements in the integral:

JQ (Z@h(t)wj (%)) (Zwl}k(tJM(%)) (Zmi(t)[vwi(%)h) dx =

k i
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Since the basis functions ;(X) are Lagrange elements of order one (i.e. linear
on the element j) and Py (X) are Lagrange elements of order zero (i.e. constant
1 on the element k), we can assume:

P (R (®) = ;) if j=k (A.3)
W5 () bi(x) =0 if j#k.

This results in:

JQ (Z@h(t)wlh(t)wi(z) <Z[ﬂi(t)[vwi(z)h> dx = (A.4)
j i
Jﬂzz[é}jmm(t) by (R (6 [V ()] 4%
j i

In matrix form this can be written as:

N———

1)V (1) o Gif(t), (A.5)

with use of the Hadamard product o and with

(Gly = j b (%) [V ()], d. (A.6)
Q
Proof:
1)V (t) o Gif(t) =
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b(t)"b; with  [B]; = ) [Alj[fli()] = ) _#1];(1)[Galj i (t)

with equation (A.6) we finally get:
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Appendix B
Collision Avoidance

Figure B.1 depicts the flow chart of the collision avoidance mechanism intro-
duced in Section 6.3.2. The flow chart shows a state machine with five states:
driving, collision impending, waiting, re-planning, carefully driving. The blocks
implement the following functionality:

check for collision: add all robots with a fewer distance than the safety
distance to the collision list; returns true, if a new one occurred, other-
wise false. Robots with a higher distance than the safety distance plus a
hysteresis are removed from the list

check for someone with higher priority: returns true, if any robot in the
collision list has higher priority than oneself; otherwise false

waited for x sec: checks, if the current state (i.e. driving, collision impend-
ing, waiting, re-planning or carefully driving) was entered more than x
seconds ago

nobody with higher prior is moving: returns true, if nobody in the colli-
sion list with higher priority is moving

cancel current goal (and store it): sends a cancel command to the path
planner; thus the robot stops; current goal is buffered in a local variable

publish stored goal: sends the buffered goal to path planner; thus the
robot starts to move.
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¥

driving: NO
S check for collision
l YES
collision impending:
cancel current goal
(and store it)
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higher priority
YES | NO
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v \2
waiting: re-planing:
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" Yo ] o
check for someone with NO
higher priority waited for 1 sec
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- \l/ YES
| NO waited for
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publish stored goal
o J ves
nobody with higher prior
is moving
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publish stored goal

carfully driving:
YES
check for collision
J no
NO
check for someone with
higher priority
J ves
NO nobody with higher prior YES
is moving

Figure B.1: The Figure depicts a detailed flow chart of the collision avoidance
mechanism introduced in Section 6.3.2.



Appendix C
Error Metrics

C.1 Earth Mover’s Distance (EMD)

The Earth Mover’s Distance (EMD) measures the amount of work to turn one
distribution into another distribution [151]. Vividly speaking, the EMD consid-
ers both distributions as piles of mud (earth). It measures the minimum effort
to move the mass of the first distribution into the second distribution, where
the effort is the amount of mass times the distance by which the mass has to be
moved. In general, it is applied to discretized PDFs (histograms). In this case the
EMD is a true measure of distance, since both distributions are normalize (have
the same integral). A lower EMD indicates a higher similarity between the dis-
tributions. It can be considered as the discrete equivalent of the first Wasserstein
metric. In order to calculate the EMD, the movement of mass can be consid-
ered as a transportation problem from linear optimization [151], where the first
distribution plays the role of suppliers and the second distribution the role of
consumers.

In this thesis the EMD is used to measure the distance between sparse source
distributions, namely the estimated source distribution and its ground truth.
Before applying the EMD, the source distributions are also normalized so that
both contain the same amount of mass. The EMD is very suitable to measure
the distance between sparse distributions as in our case. For example in case the
source distribution contains a single peak that is estimated correctly but shifted
by a grid cell, the EMD accounts for the distance of the shift. In contrast, the
NMSE would not account for this effect and the error would be the same if the
peak is shifted by a single cell or multiple cells. Unfortunately, the actual value
of the EMD is not very intuitive. Therefore, Figure C.1 and C.2 show some
examples of distributions and their EMD compared to a ground truth distri-
bution depicted in Figure C.1a and Figure C.2a. Figure C.1 can be considered
as the case of a single source at x; = 5,x; = 5 and Figure C.2 as two sources
located at x; = 3,x; = 5 and x; = 7,x, = 5 (marked by starts).
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Figure C.1: This figure shows spatial distributions in the x;-x, plane. The dis-
tribution in (a) is considers as the ground truth. All other distributions are
compared to the ground truth by means of the EMDs.
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Figure C.2: This figure shows spatial distributions in the x;-x, plane. The dis-
tribution in (a) is considers as the ground truth. All other distributions are
compared to the ground truth by means of the EMDs.

C.2 Normalized Mean Square Error (NMSE)

During the thesis the NMSE is used to measure how well the gas concentration
distribution is estimated. It compares the estimated concentration represented
by festm] to a ground truth gas concentration fg¢ [n] according to the following
equation:

—

= 2
Fauln] = fegt Il

NMSE = (C.1)
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