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ABSTRACT
We present an approach for recognizing objects present in a scene and estimating their full pose by
means of an accurate 3D instance-aware semantic reconstruction. Our framework couples convolu-
tional neural networks (CNNs) and a state-of-the-art dense Simultaneous Localisation and Mapping
(SLAM) system, ElasticFusion [1], to achieve both high-quality semantic reconstruction as well as
robust 6D pose estimation for relevant objects. We leverage the pipeline of ElasticFusion as a back-
bone, and propose a joint geometric and photometric error function with per-pixel adaptive weights.
While the main trend in CNN-based 6D pose estimation has been to infer object’s position and orienta-
tion from single views of the scene, our approach explores performing pose estimation from multiple
viewpoints, under the conjecture that combining multiple predictions can improve the robustness of
an object detection system. The resulting system is capable of producing high-quality instance-aware
semantic reconstructions of room-sized environments, as well as accurately detecting objects and
their 6D poses. The developed method has been verified through extensive experiments on different
datasets. Experimental results confirmed that the proposed system achieves improvements over state-
of-the-art methods in terms of surface reconstruction and object pose prediction. Our code and video
are available at https://sites.google.com/view/object-rpe.

1. Introduction
Simultaneous localization andmapping (SLAM) is a cru-

cial enabling technology for autonomous robots. With the
increasing availability of RGB-D sensors, research on vi-
sual SLAM has made giant strides in development [1, 2, 3].
These approaches achieve dense surface reconstruction of
complex and arbitrary indoor scenes while maintaining real-
time performance through implementations on highly par-
allelized hardware. However, the purely geometric map of
the environment produced by classical SLAM systems is not
sufficient to enable robots to reason about and manipulate
their surroundings. Thus, the inclusion of rich semantic in-
formation and 6D poses of object instances within a dense
map is useful for robots to effectively operate and interact
with objects.

Beyond classical SLAM systems that solely provide a
purely geometric map, the idea of a system that generates
a dense map in which object instances are semantically an-
notated has attracted substantial interest in the research com-
munity [4, 5, 6]. Semantic 3Dmaps are important for robotic
scene understanding, planning and interaction. In the case
of robotic manipulation, providing accurate object poses to-
gether with semantic information are crucial for robots that
have to manipulate the objects around them in diverse ways.

To obtain the 6D pose of objects, many approaches were
introduced in the past [7, 8, 9]. However, because of the
complexity of object shapes, measurement noise and pres-
ence of occlusions, these approaches are not robust enough
in real applications. Recent work has attempted to lever-
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age the power of deep CNNs to solve this nontrivial prob-
lem [10, 11, 12]. These techniques demonstrate a significant
improvement of the accuracy of 6D object pose estimation
on some popular datasets such as YCB-Video or LineMOD.
Even so, due to the limitation of single-view-based pose esti-
mation, the existing solutions generally do not perform well
in cluttered environments and under large occlusions.

This paper extends our previous work [13], in which we
developed a system for 6D object pose estimation that ben-
efits from the use of an instance-aware semantic mapping
system and from combining multiple predictions. Our prior
work relies on a robust camera tracking method that com-
bines adaptively weighted photometric, geometric and se-
mantic cost terms in a single objective function. In [13] these
adaptive weights are chosen on a per-image basis, while ide-
ally they should be different for each pixel, as certain re-
gions in the image can contain varying amounts of structure
and color. Therefore, in order to improve the performance
of camera tracking, in this paper we propose a registration
cost function with per-pixel adaptive weights. We also pro-
vide validation of the proposed algorithms on more diverse
datasets. Regarding object pose estimation, intuitively by
combining pose predictions frommultiple camera views, the
accuracy of the estimated 3D object pose can be improved.
Based on this, our framework deploys simultaneously a 3D
mapping algorithm to reconstruct a semantic model of the
environment, and an incremental 6D object pose recovery al-
gorithm that carries out predictions using the reconstructed
model. We demonstrate that we can exploit multiple view-
points around the same object to achieve robust and stable
6D pose estimation in the presence of heavy clutter and oc-
clusion.

In summary, this paper contributes with:
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• An instance-aware semantic mapping system that is
capable of producing accurate semanticmaps of room-
sized environments. We improve segmentation accu-
racy by correctingmisclassified regions using two pro-
posed criteria which rely on location information and
pixel-wise probability of the class.

• A registration cost function combining geometric and
appearance cues weighted adaptively. We achieve re-
liable camera tracking and state-of-the-art surface re-
construction.

• A method that can be used to accurately predict the
pose of objects under partial occlusion. We demon-
strate that by integrating deep learning-based pose pre-
diction into our semantic mapping system we are able
to address the challenges posed by missing informa-
tion due to clutter, self-occlusions, and bad reflections.

2. RELATEDWORK
2.1. Dense RGB-D Reconstruction

During the last years, many different mapping systems
were developed in order to get high-quality reconstructions
in real-time using an RGB-D camera [1, 2, 14, 15, 16, 17].
Most of these approaches have a very similar processing pipeline.
In the first stage, noise reduction and outlier removal are ap-
plied to the raw depth measurements and then vertex maps
are generated. Additional information such as normals also
might be extracted from the depth image. In the next step,
the sensor pose is estimated in a frame-to-frame or frame-
to-model fashion by minimizing a cost function. Finally, the
surface measurements are integrated into the global scene
model based on the camera pose determined in the previ-
ous stage. ElasticFusion [1] and BundleFusion [17] demon-
strated that they can achieve fast and robust mapping and
tracking in large environments. In this paper, we leverage
the pipeline of ElasticFusion as a backbone (BundleFusion
is an alternative to ElasticFusion). We propose a joint geo-
metric and photometric error function with per-pixel adap-
tive weights. The weights are estimated based on textureness
assessment.
2.2. Dense Semantic Reconstruction

Several recent works [18, 19, 20, 21] have utilized se-
mantic segmentation CNN architctures to obtain semanti-
cally labeleld dense scene reconstruction. SemanticFusion
[20] employs the real-time dense visual SLAM system Elas-
ticFusion to provide a reliable camera pose tracking and a
globally consistent map of fused surfels. In addition, the
method utilizes a Bayesian update scheme to keep track of
the semantic class probability distribution for each surfel and
to update those probabilities based on the CNN’s predic-
tions. Similar work in [21] developed an efficient and scal-
able method for incrementally building a dense, semanti-
cally annotated 3D map in real-time. The authors addition-
ally propose an efficient CNN-based semantic segmentation
by refining the geometric edges on frame-wise segmenta-
tion. Both works in [20, 21] illustrated that their systems

do not only produce a useful semantic 3D map, but also re-
sult in an improvement in the 2D semantic labeling. How-
ever, since the above systems only consider class labels, they
are unaware of object instances. To build a more meaning-
ful map, instance-aware semantic mapping was introduced
in [5, 22, 23, 24]. The methods integrate deep learning-
based instance segmentation and classification into a SLAM
system. The resulting systems are capable of producing ac-
curate semantic maps of room-sized environments, as well
as reconstructing highly detailed object-level models. Most
related to ours is the work of Runz et al. MaskFusion [6],
which is able to recognize, segment, and assign semantic
class labels to different objects in the scene, while tracking
and reconstructing them. The 3D geometry of each object
is represented as a set of surfels. MaskFusion takes advan-
tage of combining the outputs of Mask R-CNN [25] and a
geometry-based segmentation algorithm, to increase the ac-
curacy of the object boundaries in the object masks. The
authors showed that MaskFusion can be used to implement
novel augmented reality applications or perform common
robotics tasks.

Taking advantage of instance-aware semantic mapping,
in this work we demonstrate that our proposed object pose
estimator can benefit from the use of accurate masks gen-
erated by the mapping system. Our work differs from the
above methods as the developed system is able to provide
an instance-aware semantic map along with 6D poses of ob-
jects. The proposed approach increases the robustness of
sensor tracking through an objective function with per-pixel
adaptive weights. Instead of updating probabilities for all el-
ements in the 3D map, we reduce the space complexity by a
more efficient strategy based on instance labels. In addition
to the highly accurate semantic scene reconstruction, we cor-
rect misclassified regions using two proposed criteria which
rely on location information and the pixel-wise probability
of the class.
2.3. Object Pose Estimation

In recent years, CNN architectures have been extended
to the object pose estimation task [10, 11, 12]. SingleShot-
Pose [11] simultaneously detects an object in an RGB image
and predicts its 6D pose without requiring multiple stages
or having to examine multiple hypotheses. It is end-to-end
trainable and only needs the 3D bounding box of the object
shape for training. This method is able to deal with texture-
less objects, however, it fails to estimate object poses under
large occlusions. To handle occlusions better, the PoseCNN
architecture [10] employs semantic labeling which provides
richer information about the objects. PoseCNN recovers the
3D translation of an object by localizing its center in the im-
age and estimating the 3D center distance from the camera.
The 3D rotation of the object is estimated by regressing con-
volutional features to a quaternion representation. In addi-
tion, in order to handle symmetric objects, the authors in-
troduce ShapeMatch-Loss, a new loss function that focuses
on matching the 3D shape of an object. The results show
that this loss function produces superior estimation for ob-
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jects with shape symmetries. However, this approach re-
quires Iterative Closest Point (ICP) for refinement which is
prohibitively slow for real-time applications. To solve this
problem, Wang et al. proposed DenseFusion [12] which is
approximately 200x faster than PoseCNN-ICP and outper-
forms previous approaches on two datasets, YCB-Video and
LineMOD. The key technique of DenseFusion is that it ex-
tracts features from the color and depth images and fuses
RGB values and point clouds at the per-pixel level. This per-
pixel fusion scheme enables the model to explicitly reason
about the local appearance and geometry information, which
is essential to handle occlusions between objects. In addi-
tion, an end-to-end iterative pose refinement procedure is
proposed to further improve pose estimation while achieving
near real-time inference. AlthoughDenseFusion has achieved
impressive results, like other single-view-based methods it
suffers significantly from the ambiguity of object appearance
and occlusions in cluttered scenes, which are very common
in practice. In addition, since DenseFusion relies on seg-
mentation results for pose prediction, its accuracy highly de-
pends on the performance of the segmentation framework
used. As in pose estimation networks, if the input to a seg-
mentation network contains an occluder, the occlusion sig-
nificantly influences the network output. In this paper, while
exploiting the advantages of the DenseFusion framework,
we replace its segmentation network by our semantic map-
ping system that provides a high-quality segmentation mask
for each instance. We address the problem of the ambigu-
ity of object appearance and occlusion by combining pre-
dictions using RGB-D images from multiple viewpoints.

3. METHODOLOGY
Our pipeline is illustrated in Fig. 1. Firstly, input data

is utilized for camera pose tracking. In a separate thread,
RGB keyframes are processed by an instance segmentation
framework (Mask R-CNN) and the detections are filtered
and matched to the existing instances in the 3D map. When
no match occurs, new object instances are created. Then
using the estimated camera pose and instance masks, the
dense 3D geometry of the map or model is updated by fus-
ing the points labeled in the fusion stage. The last compo-
nent is a 6D object pose estimator that output the pose of ob-
jects by combining predictions from single-view-based pre-
dictions. In the following, we summarise the key elements
of our method.

Instance Segmentation: The network takes in RGB im-
ages and extracts instance masks labeled with object class,
which serve as input to the subsequent registration and fu-
sion stages.

Camera Pose Tracking: Estimate camera poses within
the ElasticFusion pipeline using a joint cost function that
combines the cost functions of geometric and photometric
estimates in an adaptively weighted sum.

Data Fusion: Our 3Dmap representation is an unordered
list of surfels similar to [1]. The surfel map is updated by
merging the newly available RGB-D frame into the existing

Figure 1: Overview of the proposed system. In the main
thread, input data is utilized for camera pose tracking. In
a separate thread, RGB keyframes are processed by an in-
stance segmentation framework (Mask R-CNN [25]). Then
depth, color and semantic information are fused into the 3D
map based on the transformation matrix estimated from the
camera tracking stage. The last component is a 6D object
pose estimator that output the pose of objects from multiple
viewpoints.

models. In addition, segmentation information is fused into
the map using our instance-based semantic fusion scheme.
To improve segmentation accuracy, misclassified regions are
corrected by two criteria which rely on a sequence of CNN
predictions.

Object Pose Estimation: First, we employDenseFusion
that operates on object instances from single views to pre-
dict object poses. Instead of using depth and color frames
captured by the camera, we use the surfel-splatted predicted
depth map and the color image of the model from the pre-
vious pose estimate for DenseFusion. The predicted poses
are then used as a measurement update in a Kalman filter to
estimate optimal 6D pose of objects.
3.1. Instance Segmentation

We employ an end-to-end CNN framework, Mask R-
CNN [25] for generating a high-quality segmentation mask
for each instance. Mask R-CNN has three outputs for each
candidate object, a class label, a bounding box offset, and
a mask. Its procedure consists of two stages. In the first
stage, candidate object bounding boxes are proposed by a
Region Proposal Network (RPN). In the second stage, clas-
sification, bounding-box regression, andmask prediction are
performed in parallel on each small feature map. To speed
up inference and improve accuracy, the mask branch is ap-
plied to the highest scoring 100 detection boxes after run-
ning the box prediction. The mask branch predicts a binary
mask from each RoI using an FCN architecture [26]. The
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binary mask is a single m × m output regardless of class,
which is generated by binarizing the floating-number mask
or soft mask at a threshold of 0.5. Output of Mask-RCNN
including class probabilities and masks are then used in data
fusion stage. In our previous work [13], we extended Mask
R-CNN to also regress an RGB image confidence weight
for use in the registration step. However, producing confi-
dence weights from every frame using the additional branch
inMask-RCNN is computationally intense, limiting the suit-
ability of the overall system in real-time applications. In ad-
dition, the confidence weights are chosen on a per-image ba-
sis, while ideally they should be different for each pixel, as
certain regions in the image can contain varying amounts of
structure and color. To address the limitations of the prior
work, in this paper we remove the registration weight pre-
diction branch and propose a registration cost function with
per-pixel adaptive weights as described in section 3.2
3.2. Camera Pose Tracking

To perform camera tracking, our mapping system main-
tains a fused surfel-based model of the environment (similar
to the model used by ElasticFusion [1]). Here we borrow
and extend the notation proposed in the original ElasticFu-
sion paper. The model is represented by a cloud of surfels
s, where each surfel consists of a position p ∈ ℝ3 , normal
n ∈ ℝ3, color c ∈ ℕ3, initialization timestamp t0 and last
updated timestamp t. In addition Object-RPE maps each el-
ement of the 3Dmap (surfel) to a pair (ls, os) ∈ ×ℕ, where
ls represents the semantic class of surfel s and os representsits object instance id.  is a predetermined set of L semantic
classes encoded by  ∶= {0, ..., L − 1}.

The image space domain is defined as Ω ⊂ ℕ2 , where
an RGB-D frame is composed of a color map and a depth
map D of depth pixels d ∶ Ω → ℝ. We define the 3D back
projection of a point u ∈ Ω given a depthmapD as p(u,D) =
K−1ũd(u) , where K is the camera intrinsics matrix and ũ is
the homogeneous form of u. The perspective projection of
a 3D point p = [x, y, z]⊤ is defined as u = �(Kp), where
�(p) = (x∕z, y∕z). Given a color image C with color c(u) =
[c1, c2, c3]⊤, the intensity value of a pixel u ∈ Ω is defined
as I(u, C) = (c1 + c2 + c3)∕3.We estimate an incremental transformation �̂ between a
newly captured RGB-D image at time t and the previous sen-
sor pose at time t − 1 by minimizing a joint optimization
objective:

Ecombined = Eicp + Ergb (1)
where Eicp and Ergb are the geometric and photometric er-
ror terms respectively. The main difference between our ap-
proach and ElasticFusion is that instead of using fixedweights,
we estimate per-pixel adaptive weights based on textureness
assessment. To define the textureness of each depth image
pixel, we assume that untextured regions are often piecewise
flat and thus the amount of characteristic features is low. Un-
der these assumptions, the idea behind our proposed cost
function is to favor highly textured regions of the image.

(a) (b)

(c) (d)
Figure 2: Visualization of per-pixel weights computed on depth
and color images: (a) color image; (b) weights on color image;
(c) depth image; (d) weights on depth image.

In the term of the geometric energy Eicp, between the
current depth map Dt and the predicted model depth map
from the last frame D̂a

t−1 we aim to minimize the cost of the
point-to-plane ICP registration error:

Eicp =
∑

u∈Ω
�icp(u)((vk(u) − exp(�̂)T vkt (u))n

k)2 (2)

where vkt is the back-projection of the k-th vertex in the cur-rent depth frameDt; and vk and nk are respectively the back-projection of the corresponding vertex in the predicted depth
frame of the 3D map from the previous frame t − 1 and
its normal. T is the current estimate of the transformation
from the previous camera pose to the current one. �icp is
the weight computed from equation (3). The energy is adap-
tively weighted based on the local variance at u, we define it
as in [27]:

�(u) =
�2u

�2u + �
(3)

where �u denotes the local variance of the 5x5 patch aroundpixel u in the current depth imageDt, and � is an empirically
set constant. The higher the variance, the closer the weight
is to 1. Fig. 2 shows an example of per-pixel weights for a
RGB-D image.

In term of photometric energy Ergb, between the live
color image C lt and the predicted model color from the last
frame Ĉat−1 we minimize differences in brightness:

Ergb =
∑

u∈Ω
�rgb(u)(I(u, C lt ) − I(Ψ(�̂, u), Ĉ

a
t−1))

2 (4)

where the weight �rgb is computed from equation 3 with the
varaince �u taken as the variance of a local 5x5 patch of pix-els from the intensity image I(u, C). The vector Ψ(�̂, u) is
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the warped pixel and defined according to the incremental
transformation �̂:

Ψ(�̂, u) = �(K exp(�̂)T p(u,Dt)) (5)
Finally, we find the transformation byminimizing the ob-

jective (1) through theGauss-Newton non-linear least-square
method with a three-level coarse-to-fine pyramid scheme.
3.3. Data Association and Segmentation

Refinement
Data association: Given an RGB-D frame at time step

t, each maskM from Mask R-CNN must be associated with
an instance in the 3D map. Otherwise, it will be assigned as
a new instance. To find the corresponding instance, we use
the tracked camera pose and existing instances in the map
built at time step t − 1 to predict binary masks via splat-
ted rendering. The overlap percentage between the maskM
and a predicted mask M̂ for object instance o is computed as
U(M,M̂) = M ∩ M̂

M̂
. Then the maskM is mapped to ob-

ject instance o which has the predicted mask M̂ with largest
overlap, where U(M,M̂) > 0.3.

To efficiently store class probabilities, we propose to as-
sign an object instance label o to each surfel and then this la-
bel is associated with a discrete probability distribution over
potential class labels, P (Lo = li) over the set of class labels,
li ∈ L. In consequence, we need only one probability vec-
tor for all surfels belonging to the same object entity. This
makes a big difference when the number of surfels is much
larger than the number of classes. To update the class prob-
ability distribution, recursive Bayesian update is used as in
[28]. However, this scheme often results in an overly con-
fident class probability distribution that contains scores un-
suitable for ranking in object detection [5]. In order to make
the distribution more even, we update the class probability
by simple averaging:

P (li|I1,..,t) =
1
t

t
∑

j=1
(pj|It) (6)

Besides fusing main class probabilites, we enrich seg-
mentation information on each surfel by adding the proba-
bility to account for background/object predictions from the
binary mask branch of Mask R-CNN. To that end, each sur-
fel in our 3D map has a non-background (object) probability
attribute po. As presented in [25] the binary mask branch
first generates an m×m floating-number mask which is then
resized to the RoI size, and binarized at a threshold of 0.5.
Therefore, we are able to extract a per-pixel non-background
probability map with the same image size 480 × 640. Given
the RGB-D frame at time step t, a non-background proba-
bility po(It) is assigned to each pixel. Camera tracking and
the 3D back projection introduced in section 3.2 enables us
to update all the surfels with the corresponding probability
as following:

po =
1
t

t
∑

j=1
pj(It) (7)

Segmentation Improvement: Despite the power and
flexibility of Mask R-CNN, it frequently misclassifies ob-
ject boundary regions as background. In other words, the
detailed structures of an object are often lost or smoothed.
Thus, there is still much room for improvement in segmen-
tation. We observe that many of the pixels in the misclas-
sified regions have non-background probability just slightly
smaller than 0.5, while the soft probabilities mask for real
background pixel is often far below the threshold. Based
on this observation, we expect to achieve a more accurate
object-aware semantic scene reconstruction by considering
the non-background probability of surfels within a n frame
sequence. With this goal, each possible surfel s (0.4 < po <
0.5) is associated with a confidence #(s). If a surfel is identi-
fied for the first time, its associated confidence is initialized
to zero. Then, when a new frame arrives, we increment the
confidence #(s)← #(s)+1 only if the corresponding pixel of
that surfel satisfies 2 criteria: (i) its non-background proba-
bility is greater than 0.4; (ii) there is at least one object pixel
inside its 8-neighborhood. After n frames, if the confidence
#(s) exceeds the threshold �object, we assign surfel s to the
closest instance. Otherwise, #(s) is reset to zero.
3.4. Multi-view Object Pose Estimation

Given an RGB-D frame sequence, the task of 6D object
pose estimation is to estimate the rigid transformation from
the object coordinate system to a global coordinate system
. We assume that the 3D model of the object is available
and the object coordinate system is defined in the 3D space
of the model. The rigid transformation consists of a 3D rota-
tion R(!,',  ) and a 3D translation T (X, Y ,Z). The trans-
lation T is the coordinate of the origin of  in the global co-
ordinate frame , and R specifies the rotation angles around
the X-axis, Y-axis, and Z-axis of the object coordinate sys-
tem .

Our approach outputs the object poses with respect to the
global coordinate system by combining predictions from dif-
ferent viewpoints. For each frame at time t, we apply Dense-
Fusion to masks back-projected from the current 3D map.
The estimated object poses are then transferred to the global
coordinate system  and serve as measurement inputs for an
extended Kalman filter (EKF) based pose update stage.

Single-view based prediction: In order to estimate the
pose of each object in the scene from single views with re-
spect to the local camera coordinate system, we applyDense-
Fusion to masks back-projected from the current 3D map.
The network architecture and hyperparameters are similar
as introduced in the original paper [12]. The image embed-
ding network consists of a ResNet-18 encoder followed by
4 up-sampling layers as a decoder. The PointNet-like ar-
chitecture is a multi-layer perceptron (MLP) followed by an
average-pooling reduction function. The iterative pose re-
finement module consists of 4 fully connected layers that di-
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(a) frame 66 (b) Ground truth (c) Mask R-CNN (d) Object-RPE

(e) frame 1916 (f) Ground truth (g) Mask R-CNN (h) Object-RPE
Figure 3: Examples of masks generated by Mask R-CNN and produced by reprojecting the current scene model.

rectly output the pose residual from the global dense feature.
For each object instance mask, a 3D point cloud is computed
from the predicted model depth pixels and an RGB image
region is cropped by the bounding box of the mask from
the predicted model color image. First, the image crop is
fed into a fully convolutional network and then each pixel is
mapped to a color feature embedding. For the point cloud,
a PointNet-like architecture is utilized to extract geometric
features. Having generated features, the next step combines
both embeddings and outputs the estimation of the 6D pose
of the object using a pixel-wise fusion network. Finally, the
pose estimation results are improved by a neural network-
based iterative refinement module. A key distinction be-
tween our approach and DenseFusion is that instead of di-
rectly operating on masks from the segmentation network,
we use predicted 2D masks that are obtained by reproject-
ing the current scene model. As illustrated in Fig. 3 our se-
mantic mapping system leads to an improvement in the 2D
instance labeling over the baseline single frame predictions
generated by Mask R-CNN. As a result, our object pose es-
timation method benefits from the use of more accurate seg-
mentation results.

Object pose update: For each frame at time t, the es-
timates obtained by DenseFusion and camera motions from
the registration stage are used to compute the pose of each
object instance with respect to the global coordinate sys-
tem . The pose is then used as a measurement update in
a Kalman filter to estimate an optimal 6D pose of the ob-
ject. Since we assume that the measured scene is static over
the reconstruction period, the object’s motion model is con-
stant. The state vector of the EKF combines the estimates of
translation and rotation:

x = [X Y Z � '  ]⊤ (8)
Let xt be the state at time t, x̂−t denote the predicted state

estimate and P−t denote predicted error covariance at time t
given the knowledge of the process and measurement at the
end of step t − 1, and let x̂t be the updated state estimate at
time t given the pose estimated by DenseFusion zt. The EKF

consists of two stages: prediction and measurement update
(correction) as follows.

Prediction:
x̂−t = x̂t−1 (9)
P−t = Pt−1 (10)

Measurement update:
x̂t = x̂−t ⊕Kt(zt ⊖ x̂−t ) (11)
Kt = P−t (P

m
t + P

−
t )

−1 (12)
Pt = (I6×6 −Kt)P−t (13)

Here,⊖ and⊕ are the pose composition operators. Kt istheKalman gain update. The 6×6matrixPmt is measurement
noise covariance, computed as:

Pmt = �I6×6 (14)
where � is the mean distance frommeasured object points to
its 3D model transformed according to the estimated pose.
The measured object points are computed from depth and
mask back-projected from the current 3D map.

4. EXPERIMENTS
In this section, we evaluate the proposed system through

extensive experiments on four datasets: TUMRGB-Ddataset
[29], YCB-Video dataset [10], SceneNN [30] and a newly
collectedwarehouse object dataset. The TUMRGB-Ddataset
was used for evaluation of the tracking and mapping compo-
nent of our framework, while the remaining three datasets
were used for evaluation of the semantic mapping and pose
retrieval components. Note that due to the disjoint object
categories present in the three data sets, both Mask-RCNN
and DenseFusion were trained independently for each data
set. For evaluation on the SceneNNdataset we used 75 scenes
for training and 20 scenes for testing. TheYCB-Video dataset
was split into 80 videos for training and the remaining 12
videos for testing. For the warehouse object dataset, the
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Table 1
Comparison of absolute trajectory error RMS [m] / relative orientation error RMS [deg]
as indicated in [29] on the warehouse dataset and TUM RGB-D dataset. ElasticFusion
(EF); MaskFusion (MF); Ours (fixed �icp): our proposed registration using a fixed weight
for geometric energy and per-pixel adaptive weights for photometric energy; Ours (fixed
�rgb): our proposed registration using a fixed weight for photometric energy and per-pixel
adaptive weights for geometric energy; Object-RPE: our proposed registration using per-
pixel adaptive weights for both geometric energy and photometric energy.

EF MF Ours (fixed �icp) Ours (fixed �rgb) Object-RPE
freiburg1_desk 0.020/1.625 0.034/2.487 0.019/1.393 0.018/1.245 0.017/0.996
freiburg1_room 0.068/2.045 0.153/2.342 0.065/1.542 0.066/1.623 0.065/1.325
freiburg1_teddy 0.083/1.743 0.129/1.897 0.080/1.540 0.080/1.365 0.079/1.206
freiburg2_desk 0.071/0.918 0.108/1.549 0.071/0.883 0.070/0.887 0.070/0.885
freiburg2_xyz 0.011/0.477 0.041/0.977 0.009/0.406 0.010/0.412 0.009/0.399

freiburg3_large_cabinet 0.099/2.138 0.133/2.455 0.060/1.351 0.065/1.486 0.052/1.210
warehouse_01 0.025/1.529 0.026/1.982 0.023/1.332 0.021/1.210 0.021/1.101
warehouse_02 0.031/1.870 0.040/2.654 0.028/1.657 0.029/1.669 0.027/1.554
warehouse_03 0.036/2.331 0.043/2.765 0.034/1.877 0.030/1.743 0.029/1.521
warehouse_04 0.022/1.644 0.031/2.382 0.021/1.660 0.018/1.563 0.016/1.316
warehouse_05 0.045/1.954 0.055/2.378 0.037/1.651 0.033/1.546 0.032/1.442
warehouse_06 0.028/1.980 0.033/2.121 0.026/1.971 0.025/1.667 0.025/1.550

(a) Waffle (b) Jacky (c) Skansk (d) Sotstark

(e) Onos (f) Risi Frutti (g) Pauluns (h) Tomatpure

(i) Small Jacky (j) Pallet (k) Half Pallet
Figure 4: The set of 11 objects in the warehouse object
dataset.

system was trained on 15 videos and tested on the other 5
videos. Our experiments are aimed at evaluating trajectory
estimation, surface reconstruction and 6D object pose esti-
mation accuracy. A comparison against the most closely re-
lated works is also performed here.

For all tests, we ran our system on a desktop PC run-
ning 64-bit Ubuntu 16.04 Linux with an Intel(R) Xeon(R)
E-2176G CPU 3.70GHz and an Nvidia GeForce RTX 2080
Ti 10GB GPU. Our pipeline is implemented in C++ with
CUDA for RGB-D image registration. The Mask R-CNN
and DenseFusion codes are based on the publicly available

(a) (b) (c)
Figure 5: We collected a dataset for the evaluation of recon-
struction and pose estimation systems in a typical warehouse
using (a) a hand-held ASUS Xtion PRO LIVE sensor. Calibra-
tion parameters were found by using (b) a chessboard and (c)
reflective markers detected by the motion capture system.

implementations by Matterport1 and Wang2. In all of the
presented experimental setups, results are generated from
RGB-D videowith a resolution of 640x480 pixels. TheDense-
Fusion networks were trained for 200 epochs with a batch
size of 8. Adam [31] was used as the optimizer with a learn-
ing rate set to 0.0001.
4.1. The Warehouse Object Dataset

Unlike scenes recorded in theYCB-Video dataset or other
publicly available datasets, warehouse environments posemore
complex problems, including low illumination inside shelves,
low-texture and symmetric objects, clutter, and occlusions.
To advance applications of robotics as well as to thoroughly
evaluate our method, we collected an RGB-D video dataset
of 11 objects as shown in Fig. 4, which is focused on the chal-
lenges in detecting warehouse object poses using an RGB-
D sensor. The dataset consists of over 20,000 RGB-D im-
ages extracted from 20 videos captured by an ASUS Xtion

1https://github.com/matterport/Mask_RCNN
2https://github.com/j96w/DenseFusion
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(a) (b) (c)

(d) (e) (f)
Figure 6: The result trajectories estimated by ElasticFusion and Object-RPE compared to the ground truth of two videos in the
warehouse dataset. Ground truth and camera trajectories projected to 2D: (a-c) video 1, (d-f) video 2.

PRO Live sensor, the 6D poses of the objects and ground
truth instance segmentation masks manually generated us-
ing the LabelFusion framework [32], as well as camera tra-
jectories from a motion capture system developed by Qual-
isys3. Calibration is required for both the RGB-D sensor
and motion capture system shown in Fig. 5. We calibrated
the motion capture system using the Qualisys Track Man-
ager (QTM) software. For RGB-D camera calibration, the
intrinsic camera parameters were estimated using the clas-
sical black-white chessboard and the OpenCV library. For
extrinsic calibration, four markers were placed on the outer
corners of the checkerboard as in [29]. We also attached
four spherical markers on the sensor. Similar to [29], we
were able to estimate the transformation between the pose
from the motion capture system and the optical frame of the
RGB-D camera.
4.2. Trajectory Estimation

We compare the trajectory estimation performance of
our Object-RPE to the state-of-the-art mapping system Elas-
ticFusion and themost relatedworkMaskFusion on theware-
house dataset and thewidely used TUMRGB-Ddataset [29].
This benchmark [29] is one of the most popular datasets for
the evaluation of RGB-D SLAM systems. The dataset cov-
ers a large variety of scenes and camera motions and pro-
vides sequences for debugging with slow motions as well

3https://www.qualisys.com

as longer trajectories with and without loop closures. Each
sequence contains the color and depth images, as well as
the ground-truth trajectory from the motion capture system.
The benchmark does not contain ground-truth data for in-
stance segmentation and object pose estimation. The set of
objects in the scene is also not known. Thus, we did not
train Mask R-CNN and DenseFusion on this dataset. Sim-
ilar to [6], we used pre-trained weights for the MS COCO
dataset to run Mask R-CNN for MaskFusion. To evaluate
the error in the estimated trajectory by comparing it with the
ground-truth, we adopt the absolute trajectory error (ATE)
root-mean-square error metric (RMSE) as proposed in [29].

Table 1 shows the results. The best quantities are marked
in bold. We performed an ablation study and computed the
trajectory errors for our approach where we kept either the
photometric or geometric error terms fixed. We note that
the full version of our approach relying on adaptive weights
(last column of Table 1) consistently results in the lowest ob-
served trajectory errors across all datasets. A visualization
of trajectories by running ElasticFusion and Object-RPE on
two videos in the warehouse dataset is shown in Fig. 6.
4.3. Reconstruction Results

In order to evaluate surface reconstruction quality, we
compare the reconstructedmodel of each object to its ground
truth 3D model. For every object present in the scene, we
first register the reconstructed model M to the ground truth
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Table 2
Comparison of surface reconstruction error and pose estimation accuracy results on the
YCB objects. ElasticFusion (EF), DenseFusion (DF).

Reconstruction (mm) 6D Pose Estimation
EF Object-RPE DF DF-PM DF-PM-PD DF-PM-PD-PC Object-RPE

002_master_chef_can 5.7 4.5 96.4 96.8 96.5 97.0 97.6
003_cracker_box 5.2 4.8 95.5 96.2 96.2 96.9 97.3
004_sugar_box 7.2 5.3 97.5 97.4 97.0 97.2 98.1
005_tomato_soup_can 6.4 5.7 94.6 94.7 95.2 95.6 96.8
006_mustard_bottle 5.2 5.0 97.2 97.9 98.0 98.0 98.5
007_tuna_fish_can 6.8 5.4 96.6 97.1 97.4 98.1 98.5
008_pudding_box 5.6 4.3 96.5 97.3 97.1 97.6 98.4
009_gelatin_box 5.5 4.9 98.1 98.0 98.2 98.4 99.0
010_potted_meat_can 7.4 6.3 91.3 92.2 92.5 92.9 94.7
011_banana 6.2 5.8 96.6 97.2 97.2 97.4 97.9
019_pitcher_base 5.8 4.9 97.1 97.5 97.9 98.2 99.3
021_bleach_cleanser 5.4 4.2 95.8 96.5 95.9 96.3 97.6
024_bowl 8.8 7.4 88.2 89.5 90.3 90.8 93.7
025_mug 5.2 5.4 97.1 96.8 97.3 97.5 99.1
035_power_drill 5.8 5.1 96.0 96.6 96.8 96.8 98.1
036_wood_block 7.4 6.7 89.7 90.3 90.6 91.2 95.7
037_scissors 5.5 5.1 95.2 96.2 96.2 96.2 97.9
040_large_marker 6.1 3.4 97.5 98.1 97.9 97.6 98.5
051_large_clamp 4.6 3.9 72.9 76.3 77.1 77.8 82.5
052_extra_large_clamp 6.2 4.6 69.8 71.2 72.5 73.6 78.9
061_foam_brick 6.2 5.7 92.5 93.7 91.5 91.6 95.9
MEAN 6.1 5.2 93.0 93.7 93.8 94.1 96.0

Table 3
Comparison of surface reconstruction error and pose estimation accuracy results on the
warehouse objects. ElasticFusion (EF), DenseFusion (DF).

Reconstruction (mm) 6D Pose Estimation
EF Object-RPE DF DF-PM DF-PM-PD DF-PM-PD-PC Object-RPE

001_frasvaf_box 8.3 6.0 60.5 63.5 64.6 65.9 68.9
002_small_jacky box 7.4 6.5 61.3 66.8 66.9 67.1 70.8
003_jacky_box 6.6 5.7 59.4 65.5 68.8 68.9 73.5
004_skansk_can 7.9 7.5 63.4 66.8 68.2 68.8 68.7
005_sotstark_can 7.3 5.5 58.6 62.5 65.5 66.3 69.7
006_onos_can 8.1 6.6 60.1 63.6 65.7 66.5 70.6
007_risi_frutti_box 5.3 4.2 59.7 64.5 65.2 66.1 69.3
008_pauluns_box 5.8 5.3 58.6 62.5 65.9 66.7 70.5
009_tomatpure 7.4 6.1 63.1 65.8 66.5 67.7 73.2
010_pallet 11.7 10.0 62.3 64.9 65.3 66.6 67.8
011_half_pallet 12.5 10.4 58.9 64.4 64.8 64.8 69.4
MEAN 8.0 6.7 60.5 64.6 66.1 66.9 69.9

model G by a user interface that utilizes human input to assist
traditional registration techniques [32]. Next, we project ev-
ery vertex fromM onto G and compute the distance between
the original vertex and its projection. Finally, we calculate
and report the mean distance �d over all model points and
all objects.

The results of this evaluation on the reconstruction datasets
are summarised in Table 2, 3 and 4. Qualitative results are
shown in Fig. 7. We can see that our reconstruction system

significantly outperforms the baseline (ElasticFusion). Our
approach achieves the best performance on all objects. The
results show that our reconstruction method has a clear ad-
vantage of using the proposed registration cost function. In
addition, we are able to keep all surfels on object instances
always active, while ElasticFusion has to segment these sur-
fels into inactive areas if they have not been observed for a
period of time )t. This means that the object surfels are up-
dated all the time. As a result, the developed system is able
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Table 4
Comparison of surface reconstruction error and pose estimation accuracy results on the
SceneNN objects. ElasticFusion (EF), DenseFusion (DF).

Reconstruction (mm) 6D Pose Estimation
EF Object-RPE DF DF-PM DF-PM-PD DF-PM-PD-PC Object-RPE

Cabinet 9.7 8.1 66.7 67.1 67.5 67.5 70.8
Bed 10.8 9.9 65.2 67.4 68.2 68.3 72.9
Chair 8.6 6.8 70.5 75.2 76.3 76.5 78.8
Sofa 9.9 7.2 73.7 76.5 77.1 77.4 78.9
Table 7.8 6.5 68.4 72.2 73.3 73.3 80.2
Desk 11.1 9.2 70.1 73.4 75.7 76.6 80.4
Pillow 8.3 7.2 68.2 69.5 70.5 71.1 77.9
Television 8.4 7.1 63.8 64.9 65.1 65.5 74.2
Lamp 12.5 10.6 66.4 69.6 70.3 70.5 73.1
Monitor 11.3 10.3 72.5 77.2 78.6 78.9 82.1
MEAN 9.84 8.3 68.6 71.3 72.3 72.6 77.0

(a) (b)

(c) (d)

(e) (f)
Figure 7: Examples of 3D object-aware semantic maps from
the YCB-Video dataset (a-b), the warehouse object dataset
(c-d) and SceneNN dataset (e-f).

to produce a highly accurate instance-aware semantic map.
4.4. Pose Estimation Results

Weused the average closest point distance (ADD-S)met-
ric [10, 12] for evaluation. We report the area under the
ADD-S curve (AUC) following PoseCNN [10] and Dense-

Fusion [12]. The maximum threshold was set to 10 cm as
in [10] an [12]. The object pose predicted from our system
at time t is a rigid transformation from the object coordinate
system  to the global coordinate system . To compare
with the performance of DenseFusion, we transform the ob-
ject pose to the camera coordinate system using the trans-
formation matrix estimated from the camera tracking stage.
Table 2, 3 and 4 present a detailed evaluation for all the 21
objects in the YCB-Video dataset, 11 objects in the ware-
house dataset and 10 selected objects in SceneNN. Object-
RPE with the full use of projected mask, depth and color
images from the semantic 3D map achieves superior perfor-
mance compared to the baseline single frame predictions.
We observed that in all cases combining information from
multiple views improved the accuracy of the pose estima-
tion over the original DenseFusion. We saw an improvement
of 3.0% over the baseline single frame method with Object-
RPE, from 93.0% to 96.0% for the YCB-Video dataset. We
also observed a marked improvement, from 60.5% for a sin-
gle frame to 69.9% with Object-RPE on the warehouse ob-
ject dataset. Similarly, Object-RPE saw +8.4% improve-
ment on the selected objects in SceneNN. Furthermore, we
ran a number of ablations to analyze Object-RPE including
(i) DenseFusion using projected masks (DF-PM) (ii) Dense-
Fusion using projected masks and projected depth (DF-PM-
PD) (iii) DenseFusion using projectedmasks, projected depth,
and projected RGB image (DF-PM-PD-PC). DF-PM per-
formed better than DenseFusion on the 3 datasets (+0.8%,
+4.1% and +2.7%). The performance benefit of DF-PM-
PD was less clear as it resulted in a very small improvement
of +0.1%, +1.5% and +1.0% over DF-PM. For DF-PM-PD-
PC, performance improved additionally with +0.4% on the
YCB-Video dataset, +0.8% on the warehouse object dataset,
and +0.3% on SceneNN objects. The remaining improve-
ment is due to the fusion of estimates in the EKF.

Lastly, the running times of the individual components
of Object-RPE, averaged over all evaluated sequences, are
shown in Table 5. Our pipeline does not explicitly depend
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Table 5
Average run-time analysis of system components (ms per
frame). Note that the components with ∗ process keyframes.

Component Object-RPE
Instance Segmentation ∗ 350

Registration 25
Data Fusion 15

Object Pose Estimation 40

on Mask-RCNN, and can be configured to use a different
instance segmentation backbone. The current system does
not run Mask-RCNN for every frame because of heavy com-
putation, with an average computational cost of 350 ms per
frame. We instead only run instance segmentation for keyframes
(1 keyframe per 10 frames). The numbers indicate that the
system is capable of running at approximately 8Hz on 640x480
input.

5. CONCLUSIONS
We have presented and validated a mapping system that

yields high quality instance-aware semantic reconstruction
while simultaneously recovering 6D poses of object instances.
The main contributions of this paper is to show that (i) by
combining geometric and appearance cues in an adaptively
weighted sum we are able to obtain reliable camera track-
ing and state-of-the-art surface reconstruction and (ii) taking
advantage of deep learning-based techniques and our seman-
tic mapping system we are able to improve the performance
of object pose estimation as compared to single view-based
methods. We have provided an extensive evaluation on com-
mon benchmarks and our own dataset. The results confirm
that Object-RPE is able to produce a high quality dense map
with robust tracking. We also demonstrated that the pro-
posed object pose estimator benefits from the use of accurate
masks generated by the semantic mapping system and from
combining multiple predictions based on the Kalman filter.

We believe that the instance-aware semantic mapping
and object pose estimation from multi-views will open the
way to new applications of intelligent autonomous robotics.
As future work, to achieve real-time capabilities, we plan on
investigating the optimal way to reduce the runtime require-
ments of the proposed system. More experiments also will
be done to see how the semantic reconstruction performs
in comparison with other state-of-the-art semantic mapping
methods.
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