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Identifying student strategies is an important endeavor in mathematics 

education research. Eye tracking (ET) has proven to be valuable for this 

purpose: E.g., analysis of ET videos allows for identification of student 

strategies, particularly in quantity recognition activities. Yet, “manual”, 

qualitative analysis of student strategies from ET videos is laborious—which 

calls for more efficient methods of analysis. Our methodological paper 

investigates opportunities and challenges of using unsupervised machine 

learning (USL) in combination with ET data: Based on empirical ET data of N 

= 164 students and heat maps of their gaze distributions on the task, we used a 

clustering algorithm to identify student strategies from ET data and investigate 

whether the clusters are consistent regarding student strategies. 

INTRODUCTION 

For researchers and practitioners (e.g., teachers) in mathematics education, it is 

important to not only evaluate student achievements, their results and products, 

but also to analyze students’ thought processes and individual strategies leading 

to such products. In recent years, eye tracking (ET)—the recording of eye 

movements—has gained increasing importance in mathematics education 

research (Lilienthal & Schindler, 2019). Among others, it has proven to be 

valuable to analyze student strategies in different mathematical areas (e.g., 

Bruckmeier et al., 2019; Obersteiner & Tumpek, 2016), including quantity 

recognition in whole number representations (Lindmeier & Heinze, 2016; 

Schindler & Lilienthal, 2018). For example, Schindler et al. (2019a) analyzed 

student strategies in determining quantities in the 100-dot field and 100-abacus 

based on ET data: They used gaze-overlaid videos (videos of the scene with the 

eye gaze visualized as dot wandering around) to infer student strategies. 

However, such qualitative analysis of ET data is laborious: Analyzing ET data, 

which are rich by nature, is time-consuming and demanding (Klein & Ettinger, 

2019). This calls for more efficient methods of analysis when bigger numbers of 

students are studied, and student strategies are to be inferred (Klein & Ettinger, 

2019). 

Our methodological paper explores the possibility to identify student strategies 

in whole number representations using ET data combined with unsupervised 
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machine learning (USL). Based on data from N = 164 fifth grade students, we 

use a clustering algorithm (a specific instance of USL), to investigate the 

possibility to identify student quantity recognition strategies from so-called gaze 

heat maps (see Fig. 2). Broadly, we investigate what opportunities and 

challenges USL offers for identifying quantity recognition strategies. In 

particular, we ask the question: Does the USL provide consistent clusters with 

respect to student strategies?  

Our paper illustrates with examples how a clustering algorithm, applied to heat 

maps, can be used to identify student strategies (“proof of concept”). We 

investigate the consistency of the clusters provided by the USL through 

qualitative interpretation using qualitative previous findings and elaborate on 

opportunities and challenges of USL. 

EYE TRACKING IN MATHEMATICS EDUCATION RESEARCH  

Eye tracking allows for a recording of spatio-temporal sequences of gaze points 

that indicate visual attention. The connection between gaze and visual attention 

exists due to an economic feature of the human eye, which concentrates a 

substantial fraction of the receptors on the retina in the small area of the fovea. 

Thus, in order to pay attention in detail, humans need to move their eyes 

constantly so that the area of interest is in line with the fovea, a process that can 

be tracked with ET devices unobtrusively by visually observing the pupils. ET 

is of interest for mathematics education research since the recorded sequences 

of gaze points do allow inferences about mental processes, though interpretation 

of gaze movements is not straightforward and bijective (Schindler & Lilienthal, 

2019). ET is of growing interest since ET devices became increasingly 

affordable, advanced, and accurate (Lilienthal & Schindler, 2019); due to 

theoretical advances in interpretation (Schindler & Lilienthal, 2019); and since 

the required computational resources for partially automated analysis are 

available at low cost, which makes ET applications using (partially) automated 

analysis available for research and, in the future, also for mathematics education 

practitioners (e.g., teachers). 

MACHINE LEARNING  

The term Machine Learning (ML) refers to a set of methods for automated 

analysis of data, specifically “methods that can automatically detect patterns in 

data, and then use the uncovered patterns to predict future data, or to perform 

other kinds of decision making under uncertainty” (Murphy, 2012, p. 1). There 

are two major types of ML: Supervised learning (SL) algorithms learn a 

mapping between training samples and respective output. This means that each 

sample in the training set must be labelled. The learned mapping can then be 

used to make categorical or nominal predictions (Murphy, 2012). SL is thus also 

called predictive learning. SL is used, for example, in Schindler et al.’s (2019b) 

study, where the training samples are (as in this paper) ET sequences 
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represented in the form of heat maps, with labels that specify each heat map to 

belong to a student with or without mathematical difficulties. After training, the 

SL algorithm can be used to classify previously unseen heat maps and predict 

whether the corresponding student has mathematical difficulties or not. 

The second major type of ML is unsupervised learning (USL) where only 

training samples but no labels are given. The computer is then tasked to “find 

‘interesting patterns’ in the data” (Murphy, 2012, p. 2). This is also called 

knowledge discovery. As Murphy (2012) notes, USL is a much less well-

defined problem than SL. In this paper, we use clustering, a form of USL in 

which the set of samples (here: gaze heat maps) is divided (“clustered”) into a 

number of groups. A clustering algorithm tries to find a meaningful division of 

the input data, but how a good division may look like and the “correct” number 

of clusters is not known a priori. To the best of our knowledge, USL has not 

been used on ET data in mathematics education research so far. 

QUANTITY RECOGNITION IN WHOLE NUMBER 

REPRESENTATIONS 

Whole number representations such as the 100 dot field or the 100 abacus (also 

called “100-frame”), which visualize substructures of 100 (50, 10s, 5s), are 

often used for students to learn the number range up to 100 (Gaidoschik, 2015). 

Previous research has shown that students, when perceiving quantities in such 

representations, make use of structures such as 10s (rows) and 5s (Obersteiner 

et al., 2014). While the analysis of student strategies in such representations is 

challenging (Obersteiner et al., 2014), recent studies have indicated that ET is a 

useful tool to identify strategies, e.g., from ET videos (Schindler & Lilienthal, 

2018) or scan-paths, which indicate where the students looked at (Lindmeier & 

Heinze, 2016). Whereas such studies using ET to identify strategies are 

promising, the qualitative analysis of gaze patterns is demanding and time-

consuming—especially for empirical studies with larger numbers of 

participants. Therefore, we investigate the opportunities that USL may offer to 

help identify student strategies based on their spatial gaze distributions on the 

task. 

THIS STUDY 

Participants. We use data from a study with 164 fifth-grade students (92 boys, 

72 girls) in a German comprehensive school. The mean age was 10;9 (SD = 

0;7). The study took place in the first weeks of fifth grade. Using a standardized 

arithmetic paper-pencil test, we identified 59 children as typically developing in 

mathematics, 69 children to encounter mathematical difficulties, and 36 to be 

“at risk” to have mathematical difficulties (see Schindler et al., 2019a;b for a 

detailed description of the test). 

Tasks, procedure, and eye tracker. We used a digital version of the 100-dot 

field. We used the same numbers as in Schindler et al. (2019a), where student 
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strategies were inferred from ET videos qualitatively (7, 15, 20, 31, 43, 54, 68, 

76, 89, 92, and 100; in randomized order). The students were tested 

individually. We used Tobii x3-120, a remote eye tracker at a sampling rate of 

120 Hz, which was mounted at the bottom edge of the 24’’ full HD computer 

monitor. It was calibrated through a nine-point calibration. Before the students 

worked on the tasks, they saw a picture of the dot field and were to describe it. 

The students got two practice tasks (with numbers not used in further tasks). 

They were instructed to always name the number of dots as fast and correctly as 

possible. Before each task, the students were asked to fixate a star in the middle 

of the screen. The students did not receive a response on the correctness of their 

answers. We made audio recordings of verbal answers.  

Heat maps. ET provides rich information and a large amount of data, reflecting 

that gaze patterns can differ in multiple ways. To find groups of strategies 

(“clusters”), we chose a representation of the recorded gazes to facilitate the 

subsequent analysis. This representation needed to reduce the amount of data 

the clustering algorithm has to handle while preserving the relevant features of 

the gaze patterns. Based on previous research that indicated a variety of student 

gaze distributions on the task sheets in quantity recognition tasks (Schindler et 

al., 2019a), we decided to use heat maps that show the spatial distribution of 

gazes over the presented digital task sheets integrated over the whole duration 

of a task. We used the Tobii Pro Lab Software to produce individual student 

heat maps. For clustering, we included only heat maps of correctly or inversely 

solved (common mistake in German, e.g., for 89: “ninety-eight”) tasks to assure 

that the students actually perceived the given information rather than guessed. 

In case of 89 on the dot field (focus of the Results Section), 90 heat maps were 

included. 

Clustering. To automatically determine groups of similar heat maps, a definition 

for the (dis-)similarity between two heat maps is required. We use the Euclidean 

distance between the images: The sum of the squared pixel differences between 

two heat maps measures dissimilarity (Goshtasby, 2012). Calculating the 

Euclidean distance is a standard approach to determine similarity between 

images in digital image processing.  

A second important choice concerns the clustering algorithm that assigns 

groups based on the similarity of heat maps. We use self-organizing maps 

(SOMs) (Kohonen, 2001), which are suited for explorative data analysis (Kaski, 

1997). SOMs do not automatically determine the number of groups present in 

the data (which is a very hard problem) but require the number as input 

parameter. Since previous empirical work hinted at a set of five different kinds 

of strategies for quantity recognition in whole number representations 

(Schindler et al., 2019a), we use a structure with nine clusters, arranged in a 3x3 

grid. Using nine clusters allows for the possibility that the algorithm would 

identify more strategies than previously found—or to differentiate them further. 
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SOMs have the rather unusual feature that they assume an a priori topology 

over the relationship between the different groups. While this does not 

necessarily guarantee for optimal clustering results, the topology, usually a 2D 

grid (Fig. 1), provides an additional tool to interpret the clustering results: 

neighborhood indicates similarity. This study utilizes the SOM algorithm 

implemented in the Matlab Deep Learning Toolbox with a hexagonally 

connected 3x3 grid and default parameters. In the clustering process, each of the 

student heat maps is assigned to one of the nine clusters. These assignments are 

iteratively optimized until all similar heat maps are assigned to the same cluster, 

while highly dissimilar heat maps are assigned to different clusters on opposite 

ends of the 3x3 grid. As a result, each heat map is assigned to a group that 

contains its most similar peers. The implicit assumption here is that due to the 

similarity of the heatmaps in each group these groups represent particular 

quantity recognition strategies. For each cluster, we calculate a cluster prototype 

as the average of all heat maps assigned to that cluster (Fig. 1). These average 

heat maps help to draw conclusions about the quantity recognition strategy that 

every cluster may represent. 

Analyzing the clusters. To answer the question if USL provides consistent 

clusters with respect to student strategies, for every task we regard each cluster 

of the SOM and qualitatively assign a tentative strategy based on the average 

heat map. We then analyze all single heat maps in each cluster: In particular, we 

qualitatively assign a strategy to each heat map, based on the set of strategies 

found through qualitative analyses by Schindler et al. (2019a): (1) counting all, 

where the students counted all dots shown, (2) counting fives, where the 

students counted groups of fives, (3) counting rows, where students counted all 

rows displayed, (4) using 50 as unit, e.g., when determining 76, they perceived 

50 in one glance and counted only the further rows, and (5) subtraction/last 

row, where the students, e.g., in 89 looked at the missing 90st dot, or only on 

the last row of displayed dots. Note that in Schindler et al.’s (2019a) study, the 

design was alike to ours: This applies to the (identical) tasks, the procedure, ET, 

etc. The participants were at the same age and also at the beginning of fifth 

grade. The main difference is that Schindler et al. investigated only 20 students 

(whereof 10 were found to have MD). Because of the larger number of 164 

students in our study, we assume that our data set may include all strategies 

found by Schindler et al. (2019a). 

RESULTS 

In the following, we will pursue the question: Does the USL provide consistent 

clusters with respect to student strategies? We do so by using one task as an 

example: 89 on the dot field. We use this particular task, since it affords a 

variety of strategies (Schindler et al., 2019a) and, thus, is an interesting case for 

the clustering. 
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For the task 89, the USL found four substantial clusters (Fig. 1), whereas five 

clusters remained effectively empty with only one member heat map that can be 

considered an outlier. Regarding the average heat maps of the clusters (Fig. 1, 

right), we tentatively assigned strategies to these four clusters: (7) Counting 

Rows on the Right, (9) Counting Rows in the Middle, (1) Last Row/Subtraction, 

and (3) Counting Rows on the Left.  

 

Figure 1: SOM for task 89 dot field (left) and all substantial clusters (with n>1)  

visualized through their average heat map prototype (right). 

Cluster 7: “Counting Rows on the Right” (n=21). Of the 21 heat maps in this 

cluster, we identified 19 heat maps to indicate the strategy counting rows, which 

is consistent with the impression from the average heat map: The gazes are in 

every row, and the pattern indicates a counting process (Fig. 2). The heat maps 

indicate that these 19 students counted at the right edge of the rows. The 

remaining two heat maps in this cluster correspond to the strategy using 50: 

Here, there are no/few gazes on the upper half of the dot field, and the gaze 

patterns indicate that the students counted rows 6 to 9 at the right edge of the 

respective rows (Fig. 2). The similarity in appearance with a concentration at 

the right edge of the rows in the lower half of the dot field is likely the 

explanation why the USL put the two using 50-heat maps together with the 19 

heat maps that indicate counting (all) rows. The clustering result is reasonable 

since in any instance there was presumably (at least some) counting of rows on 

the right side. 
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Figure 2: Examples of individual heat maps 

Cluster 9: “Counting Rows in the Middle” (n=12). Of the 12 heat maps in 

this cluster, we found 7 heat maps to reflect the strategy counting rows, 

consistent with the assignment to the cluster prototype. The counting pattern is 

situated in the middle of the dot field, indicating that the students counted rows 

in the middle (Fig. 2). For the other 5 heat maps in this cluster, we are unable to 

identify a clear strategy. They were marked as “unclear” (Fig. 2): The gazes are 

spread over the task sheet, possibly reflecting a multitude of strategies. An 

indication that this cluster may contain a variety of different strategies is the 

rather noisy appearance of the cluster prototype.  

Cluster 3: “Counting Rows on the Left” (n=13). 8 heat maps in this cluster 

indicate the strategy counting rows, with the gazes at the left edge of the rows 

(see Fig. 2). The other 5 heat maps indicate use of 50, since there are hardly any 

gazes on the upper 50 dots, but gazes that indicate that the students counted the 

rows from the 6th row onwards at the left edge. Similar to Cluster 7, this 

explains why these two kinds of heat maps were both included in the same 

cluster: The patterns were similar in a way that the gaze density at the left edge 

is high. 

Cluster 1: “Last Row/Subtraction” (n=34). For this cluster, we found three 

different kinds of strategies: 7 of the heat maps indicated that the students 

counted rows (see Fig. 2). In 11 cases, we identified using 50: The students’ 

gazes indicated that the students counted rows 6 to 9 (Fig. 2). Finally, 15 heat 

maps indicated that the students focused only on the last row displayed (Fig. 2) 

or that they focused only on the missing 90st point, indicating a subtraction 

strategy. We assume that this relates to the distance metric used, which regards 

the intensity of the gaze distribution: Since the areas of the dot field that are 

different between these strategies have a relatively low intensity (light green), 

but all heat maps in this cluster have a common feature, the “blob” in the right 
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corner of the last row, which is intense (warm colors), this “blob” may be 

decisive here. 

Answering the research question if the USL provides consistent clusters with 

respect to student strategies, we can say that the clusters found were—in the 

used example of 89 on the dot field—consistent in a certain way, but different 

from our previous qualitative analyses. For example, for the USL, heat maps 

reflecting counting rows on the right and using 50 are similar and belong to one 

cluster if students when using 50 count the rows 6 to 9 on the right side. On the 

other hand, counting rows on the right and counting rows on the left belong to 

two different clusters. The clustering algorithm operates on visual similarity of 

heatmaps and inherently cannot cluster strategies together that manifest 

themselves very differently in the gaze distribution. A second important 

observation is that in cases where a student strategy involves different processes 

(e.g., grasping 50 in a glance and counting rows 6 to 9), clustering cannot 

evaluate what process is decisive for the strategy—as it was done in our 

previous study (Schindler et al., 2019a). Yet, given that the clusters found in our 

approach seldom involved more than two strategies, we find that they are—to a 

certain extent—consistent with respect to student strategies. So, if a student heat 

map belongs to one cluster, one can say that the student most likely had one or 

another strategy. 

DISCUSSION 

In this paper, we explore the possibility to identify student strategies in whole 

number representations using ET combined with USL. Based on ET data from 

N = 164 fifth grade students, we use the SOM algorithm for clustering and ask 

whether this automated analysis provides consistent clusters with respect to 

student strategies. Our question relates to a fundamental issue of USL: 

Compared to SL, where it is possible to quantify the performance of the trained 

algorithm for classification, there is no obvious error metric for USL (Murphy, 

2012). As error metric from the application domain of mathematics education, 

we tested whether clustering identifies consistent groups regarding the strategies 

they represent. We found that this is true only to some extent. This is 

understandable: Our clustering of heat maps compares solely the visual 

appearance of the quantity recognition process as a whole and thus inherently 

cannot decompose strategies or give higher weight to certain features (e.g., the 

absence of gazes on the upper half). One would rather expect to find more 

clusters than possible strategies, since different combinations of strategies could 

result in additional, likely more consistent clusters. We did not observe such an 

“over-clustering” tendency and it will be subject of future work to evaluate 

whether other clustering algorithms and the use of other distance metrics result 

in a higher number and more consistent clusters.  
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We would like to stress that this paper gives an example of an empirical study 

in which Artificial Intelligence (AI) is used to support human researchers. Here, 

essentially, the AI component provides an independent view on a data set and 

makes suggestions about meaningful partitioning of the data. Human 

researchers interpret and verify these suggestions based on pre-studies with 

smaller numbers of participants and a principle understanding of the applied 

ML algorithms. Indeed, the clusters identified in this paper have predominantly 

a clear interpretation, which may be meaningful in some contexts and clearly 

provided an independent view from a different angle. 
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