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Abstract

Andrey Rudenko (2021): Context-aware Human Motion Prediction for Robots
in Complex Dynamic Environments. Orebro Studies in Technology 91.

Understanding human behavior is a key skill for intelligent systems that share
physical and emotional spaces with humans. One of the main challenges to
this end is the ability of such systems to make accurate predictions of human
motion. This is a difficult task as human motion is influenced by a large variety
of internal and external stimuli, such as own actions, the presence and actions
of surrounding agents, social relations, rules and norms between them, or the
environment with its topology, geometry, semantics and affordances.

This thesis systematically addresses human motion prediction for auto-
nomous systems by surveying the field, the different requirements to the pre-
diction task, problem formulations and solution classes, and its application
domains. Overviewing three decades of prior research from different commu-
nities, this thesis proposes a unifying taxonomy for motion prediction methods
based on the modeling approach and level of contextual information used, and
provides a review of the existing datasets and performance metrics. Further-
more, it discusses limitations of the state of the art and outlines directions for
further research.

Predicting human motion in complex dynamic and cluttered environments
is particularly challenging due to the high level of required contextual aware-
ness. To acquire, represent and incorporate a large variety of contextual cues is
still an open challenge which is why in this thesis, we also make several method-
ological contributions. We present a planning-based approach that accounts for
maps of obstacles and local interactions with social grouping constraints. This
method accommodates many desired properties, such as predicting for an ar-
bitrary number of observed people, estimating multi-modal probability distri-
butions, reasoning over intentions, and supporting semantic map input. Apart
from reaching state-of-the-art performance, this single method bridges the gap
between short-term motion prediction, where social interaction is the most in-
formative cue, and long-term prediction, where goal-orientation and obstacle
geometry typically determine people’s motion trajectories.

Along the same line, and in addition to contextual cues of the dynamic envi-
ronment and the topometric map, semantic information about the environment
is a highly informative cue for motion prediction. We address the less explored
problem of predicting collision risks by inferring occupancy priors of human
motion using only semantic maps as input. The proposed method, based on
Convolutional Neural Networks, shows superior performance over the state
of the art and demonstrates a novel way to use and apply semantics for the
prediction task.

Datasets that contain relevant qualities and quantities of difficulty are crit-
ical for benchmarking autonomous systems in general and for motion predic-
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tion in particular. Surprisingly, the commonly used datasets are rather limited in
that they typically consider simple to almost trivial scenarios, contain little con-
textual cues and partly suffer from annotation issues. To address these issues,
this thesis proposes a weakly-scripted data collection protocol for recording
diverse and accurate trajectories of people and robots in interactive scenar-
ios. The protocol includes social roles with simple instructions for the partici-
pants, dynamically-allocated goals, group motion and varied obstacle position-
ing. The data, recorded according to the introduced collection protocol, is used
in a motion prediction benchmark, designed for thorough performance evalu-
ation in a variety of experiments: accuracy conditioned on several key factors
(e.g. prediction horizon, observation length), evaluation of knowledge transfer
to a new environment, testing robustness against perception noise.

The results presented in this thesis are relevant for a broad range of pre-
diction problems with applications in robotics, autonomous driving or video
surveillance. With the first systematic taxonomy of prediction approaches, new
experiments for benchmarking and novel methods that account for particularly
rich contextual cues, we contribute to the field by fostering cross-domain ex-
change and comparison, and by laying the foundations for various directions
of future research.

Keywords: robotics, human motion prediction, activity forecasting

Andrey Rudenko, School of Science and Technology
Orebro University, SE-701 82 Orebro, Sweden, andrey.rudenko@oru.se
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Chapter 1
Introduction

Eppur si muove!

GALILEO GALILEI

The research in robotics, automation and artificial intelligence has greatly
accelerated in the 21°% century, taking a well-established shape in the higher
education programs, university laboratories and industrial R&D departments
alike. Several key directions include perception, localization and mapping, con-
trol and motion planning, grasping and manipulation, human-robot interac-
tion. Overarching the entirety of robotics research is the figure of the human
— the customer, the operator, the teammate and the central object of service
robotics.

The role of humans, and consequently human-oriented robotics research, is
steadily increasing. It is hardly surprising, as the more advanced robotic tech-
nology gets, the more enabled and economically justified practical application
of service robots becomes. When robots become products and service providers,
they leave the structured and protected laboratories, and their behavior is no
longer overwatched by expert engineers. Autonomous operation in social en-
vironments puts enormous expectations on the performance of the robots in
terms of their safety and efficiency.

Understanding human behavior is a key skill for intelligent systems to co-
exist and interact with humans. It involves aspects in representation, percep-
tion and motion analysis. Prediction plays an important part in human motion
analysis: foreseeing how a scene involving multiple agents will unfold over time
allows to incorporate this knowledge in a pro-active manner, i.e. allowing for
enhanced ways of active perception, predictive planning, model predictive con-
trol, or human-robot interaction.

Human motion in robotics comes in many forms: articulated full-body mo-
tion, gestures and facial expressions, movement through space by walking, us-
ing a mobility device or driving a vehicle. Working with these forms of human



motion reveals many similarities, as they require to define, abstract, model, val-
idate and integrate spatial and temporal aspects of human motion in a complex
dynamic world. As such, this domain can be roughly enveloped under the term
human motion prediction.

Still a young branch of robotics research, prediction of human motion is
actively shaping today. It is placed in the hot spot between perception and
planning, between autonomous vehicles and crowd-navigating robots, between
social proxemics theories, biomechanical understanding of motion and ma-
chine learning of motion patterns. Driven by the remarkable success of the deep
learning methods in perception, advances in automated driving technology and
growing interest to manufacturing automation, robotic systems are becoming
more reliable to be deployed in human environments. The focus shifts from
purely technical aspects of robot operation to how they should interact and
behave in complex human environments. This is where motion prediction and
behavior understanding become critical components of an autonomous system.

The challenge of making accurate predictions of human motion arises from
the complexity of human behavior and the variety of its internal and external
stimuli. Motion behavior may be driven by the target agent’s own goal intent,
the presence and actions of surrounding agents, social relations between agents,
social rules and norms, or the environment with its topology, geometry, affor-
dances and semantics. Most factors are not directly observable and need to be
inferred from noisy perceptual cues or modeled from context information. Fur-
thermore, to be effective in practice, motion prediction should be robust and
operate in real-time.

This thesis makes a broad attempt to unify and offer a holistic view on sev-
eral key aspects of motion prediction in robotics. It explores the fundamentals
of human motion prediction for autonomous systems, ranging from surveying
the complete methodology, tasks and application scenarios, aspects in data col-
lection and method development, to evaluation, benchmarking and integration.
Building a frame of reference in the motion prediction domains, it studies the
state of the art against several research questions, and outlines the trends and
open research questions. Furthermore, it presents several contributions to these
open questions in methodology, data collection, benchmarking and semantic
awareness of the intelligent systems. Eventually, this work lays foundations for
the spanning tree of future research directions.

In the remainder of this chapter we define and discuss the problem in more
detail, present the application areas, define the research question and outline
the contributions.

1.1 Problem Statement and Terminology

In the most general form, the problem of motion prediction can be formulated
as follows:

2 ‘ Andrey Rudenko 1.1. Problem Statement and Terminology



Given the current state of the target agent and its environ-
o ment, motion prediction makes a hypothesis about the
future state of the agent.

On the highest level of abstraction, the motion prediction problem contains
the following three elements (Fig. 1.1):

e Stimuli: Internal and external stimuli that determine motion behavior in-
clude the agents’ motion intent and other directly or indirectly observable
influences. Most prediction methods rely on observed partial trajectories,
or generally, sequences of agent state observations such as positions, ve-
locities, body joint angles or attributes. Often, this is provided by a target
tracking system and it is common to assume correct track identity over
the observation period. Other forms of inputs include contextual cues
from the environment such as scene geometry, semantics, or cues that re-
late to other moving entities in the surrounding. End-to-end approaches
rely on sequences of raw sensor data.

® Modeling approach: Approaches to human motion prediction differ in
the way they represent, parametrize, learn and solve the task. This thesis
in part focuses on finding and analyzing useful categories, hidden similar-
ities, common assumptions and best evaluation practices in the growing
body of literature.

¢ Prediction: Different methods produce various parametric, non-parametric
or structured forms of predictions, such as Gaussians over agent states,
probability distributions over grids, singular or multiple trajectory sam-
ples or motion patterns using graphical models.

Throughout this thesis, various aspects of motion prediction are discussed.
We use the term agent to denote dynamic objects of interest such as robots,
pedestrians, cyclists, cars or other human-driven vehicles. The target agent is
the dynamic object for which we make the actual motion prediction. We as-
sume the agent behavior to be non-erratic and goal-directed with regard to an
optimal or near-optimal expected outcome. This assumption is typical as the
motion prediction problem were much harder or even ill-posed otherwise. We
call the underlying hidden motivation of the agent a goal, intent or intention,
and use the same term to describe the terminal state of the trajectory, or the
target region in space.

By prediction or forecast we understand any hypothesis about the future
state/location/configuration of the agent and/or their intent. Prediction horizon
is the future point in time until which predictions are made starting from the
current time instance. Based on the length of the prediction horizon, we infor-
mally distinguish short-term (up to 1-2 seconds ahead) and long-term (up to 20
seconds ahead) predictions. Observed trajectory, track or tracklet of the agent

Chapter 1. Introduction Andrey Rudenko ‘ 3
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Figure 1.1: Typical elements of a motion prediction system: internal and external stimuli
that influence motion behavior, the method itself and the different parametric, non-
parametric or structured forms of predictions.

is the sequence of states and/or actions which the agent performed until the
current time instance. The term joint predictions is used when motion of the
target agent is assumed to be cross-influenced by other agents nearby.

We define a path to be a sequence of positions, often two-dimensional over
the ground plane, and a #rajectory to be a path combined with a timing law or
a velocity profile. Formally, we denote s; as the state of an agent at time t, u,
as the action that the agent takes at time t, oy € O as the observations of the
agent’s state at time t, and use { to denote trajectories. We refer to a history

of several states, actions or observations from time t to time T using subscripts
t:T.

1.2 Motivation

The formulation of the motion prediction problem, presented in Sec. 1.1, is
general enough to apply to many relevant forms of motion and types of agents
in various domains, for instance:

® a social robot, predicting the future trajectories of surrounding people to
avoid collisions,

® an automated surveillance system, predicting future positions to re-identify
tracked objects between the fields of view of the sensors,

4 ‘ Andrey Rudenko 1.2. Motivation



e a stationary manufacturing robot, predicting the presence of human co-
workers from distributed sensors to safely control and limit the maximum
permitted velocity,

* an autonomous vehicle, predicting the intentions, maneuvers and posi-
tions of other driving vehicles,

e a virtual reality helmet, predicting the head motions and preemptively
processing the virtual image.

Some of these applications benefit greatly from motion prediction, while oth-
ers are unimaginable without it. For example, next state prediction has long
been an integral part of the people tracking systems to assign new observations
to the existing tracks. Similarly, a fully autonomous vehicle, such as the one
depicted in Fig. 1.2 (top left), won’t be able to progress without some form
of reasoning on whether the pedestrian is intending to cross the road. Mobile
robots, on the other hand, often treat the motion of people as unmodeled un-
certainty, projected onto the dynamic occupancy map, and execute a trajectory
replanning cycle once the updated positions of the people are available. This
approach, apart from discarding any possibility of pre-planned social behav-
ior on the robot’s part, is limited in two key problems: “freezing” and “danc-
ing” behaviors of the robot [313]. Switching between the often homotopically
distinct optimal trajectories through the crowd (so-called “dancing”), the ap-
proach eventually fails to plan a safe path once the crowd density exceeds a
certain threshold (thus “freezing” in place).

Designing a motion predictor for any of the tasks listed above raises similar
problems: how to formulate the state of the target agent? What is the avail-
able range of actions, what are the mechanical and biological constraints of
that agent? What is the static and dynamic environment in which the agent
operates? What is the likely goal of the observed motion? What aspects of the
motion model can be learned from observations? How to validate and compare
different prediction methods? How to integrate the motion prediction into the
decision making and control pipeline? Typically, the assumptions, approaches
and validation methods can be transferred and adapted between these tasks.

This thesis includes an analysis and discussion for the range of problems in
motion prediction, described above, and many of the findings are relevant for
a broad scope of tasks and application areas. For instance, Chapter 5 presents
a procedure design to collect accurate and diverse data to study human-robot
interaction in intralogistics settings. This procedure can be easily adapted for
other scenarios, with both a stationary or a moving robot. The categorizing
taxonomy for the motion modeling and prediction approaches, presented in
Chapter 2, is relevant for both service robots and autonomous vehicles. And
the semantically-informed method for learning occupancy priors in urban envi-
ronments from Chapter 4 is useful for mobile robots, vehicles and autonomous
surveillance systems alike.
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Figure 1.2: Application domains of human motion prediction. Top left: Will the pedes-
trian cross? Self-driving vehicles have to quickly reason about intentions and future
locations of other traffic participants, such as pedestrians (Illustration from [157]). Top
right: Advanced traffic surveillance systems can provide real-time alerts of pending colli-
sions using communication technology. Bottom left: Advanced surveillance systems an-
alyze human motion in public spaces for suspicious activity detection or crowd control
(Hlustration from [367]). Bottom right: Robot navigation in densely populated spaces
requires accurate motion prediction of surrounding people to safely and efficiently move
through crowds (Illustration featuring SPENCER robot [316]).

Following this motivation, in the next section we take a deeper look into
the problem of motion prediction and specific requirements to the methods in
several key application domains.

1.3 Application Domains

Motion prediction is a key task for service robots, self-driving vehicles, and
advanced surveillance systems (see Fig. 1.2).

1.3.1 Service Robots

Mobile service robots increasingly operate in open-ended domestic, industrial
and urban environments shared with humans. Anticipating motion of surround-
ing agents is an important prerequisite for safe and efficient motion planning
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and human-robot interaction. Limited on-board resources for computation and
first-person sensing make this a challenging task.

For example, consider SPENCER - an airport passenger guide robot, de-
veloped in the EU-funded FP7 robotics research project [316] for the Schiphol
airport, see Fig. 1.2 (bottom right) and 1.3. The task of Spencer is to guide
groups of people towards their destinations, e.g. the departure gates or pas-
senger control points. The airport environment poses a serious challenge for
robot navigation due to its scope, complex topology, dynamics and high-density
crowds. In absence of prediction, the robot may fail to move through the crowd
due to the safety constraints and uncertainty in the motion of people.

Another application example from the industry perspective is ILIAD - the
EU-funded research project, aiming to explore warehouse automation with
scalable fleets of intralogistic systems for environments shared with humans
(see Fig 1.4). In particular, the project develops integration and operation solu-
tions for automated industrial vehicles of various sizes, from the relatively small
pallet trucks to the massive bulk loaders. This warehouse navigation scenario
includes varied presence of people, complex obstacle layouts and semantically
meaningful areas of the environment, such as the picking and walking areas
drop-off zones, etc. The size and mass of the industrial robots introduce ex-
ceptional safety concerns, therefore perception and prediction of human move-
ments and activity are critical.

1.3.2 Self-driving Vehicles

The ability to anticipate motion of other road users is essential for automated
driving. Similar challenges apply as in the service robot domain, although they
are more pronounced given the higher masses and velocities of vehicles and
the resulting larger harm that can potentially be inflicted, especially towards
vulnerable road users (i.e. pedestrians and cyclists). Furthermore, vehicles need
to operate in rapidly changing, semantically rich outdoor traffic settings with
complex iterations of heterogeneous agents. Finally, they need to comply with
the hard real-time operating constraints. Knowledge of the traffic infrastructure
(location of lanes, curbside, traffic signs, traffic lights, other road markings such
as zebras), the traffic rules and specific dynamical properties of vehicles can help
in the motion prediction.

1.3.3 Surveillance

Visual surveillance of vehicular traffic or human crowds relies on the ability to
accurately track a large number of targets across distributed networks of sta-
tionary cameras. Long-term motion prediction can support a variety of surveil-
lance tasks such as person retrieval, perimeter protection, traffic monitoring,
crowd management or retail analytics by further reducing the number of false-
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Figure 1.3: A mobile robot concept, developed in the EU-funded FP7 project SPENCER.
This image shows the application of motion prediction in the airport settings for the
SPENCER passenger guide robot. Moving through the crowd requires tracking and
prediction of people movement for safe and efficient motion planning.

positive tracks and track identifier switches, particularly in dense crowds or
across non-overlapping fields of views.

1.4 Research Question and Contributions

In the settings of service robotics and intelligent autonomous systems, described
above, the research question on this thesis is formulated as follows:

tories of people in dynamic, unstructured social environ-

9 How to design and validate a system to predict trajec-
ments?

Sec. 1.2 outlined a whole range of problems, which stem from this research
question, on which we elaborate in this thesis.

We start our discussion with the central problem of motion prediction: how
to model motion? The existing works feature a large selection of methods to
this end. The choice of the model depends on many factors: the task and ap-
plication scenario, required prediction horizon, relevant contextual cues, avail-
able training data and expert knowledge. The cross-disciplinary organization
and detailed discussion of the existing models from the applications-centered
perspective is the first contribution of this thesis.

Contribution 1: A thorough survey of motion prediction methods in which we
review in detail and organize three decades of research in a taxonomy
along two characteristic axes: the approach for motion modeling and the
level of contextual cues awareness.
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Figure 1.4: ILIAD project application scenario for motion prediction in intralogis-
tics settings. Warehouse facilities introduce a rich contextual layout with semantically-
significant areas, temporally distributed events and recurring dynamical patterns.

Our taxonomy includes three classes of motion modeling approaches: physics-
based, pattern-based and planning-based. In the physics-based models, motion
is represented with a set of explicitly defined dynamics equations that follow
a physics-inspired model. Forward simulating these models yields prediction.
Pattern-based approaches approximate an arbitrary dynamics function from
training data. These approaches are able to discover statistical behavioral pat-
terns in the observed motion trajectories. Planning-based approaches explicitly
reason about the agent’s long-term motion goals and compute policies or path
hypotheses that enable an agent to reach those goals. All three classes can be
informed with various cues from the target agent, static and dynamic environ-
ment. The level of context awareness makes up the second classification criteria
in our taxonomy.

Having discussed the motion modeling approaches, we move on to a prac-
tical case of designing a highly context-aware long-term prediction method for
a mobile robot.

Contribution 2: A planning-based interaction-aware approach to predict mo-
tion that combines the benefits of the two major modeling classes from
our taxonomy. The proposed approach is based on Markov Decision
Processes to predict global map-aware motion paths in arbitrary envi-
ronments. To account for social contextual cues, our approach biases the
obtained global motion policies using Group Social Forces.

As a mobile robot is expected to perform in previously unseen environments,
which may be crowded and filled with obstacles, we build our approach ac-
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cording to these requirements. Our method has high generalizability to new
environments with obstacles, walking and interacting people. Optionally, our
method takes a small amount of training data for hyperparameter tuning. It has
a high level of context-awareness, supporting semantic maps and social group-
ing cues. Finally, the method actively reasons about the navigation goals of the
observed people, producing multi-modal and uncertainty-aware predictions of
the possible paths towards the goals. Without strong dependence on specific
training data, our method offers reliable and certifiable performance.

Among the contextual cues, relevant for motion prediction, semantics plays
an important role, especially in urban environments. Prediction there is not
possible without properly understanding the different walkable surfaces, such
as sidewalks, roads, crosswalks, unpaved areas and greenspaces. Not only the
surface properties, but also their layout, relative to each other, should be con-
sidered when making hypotheses on walking preferences of the people. Building
on this insight, the next contribution of this thesis is:

Contribution 3: A method to learn occupancy priors from semantic maps which
brings an increased level of semantics-awareness to an autonomous sys-
tem in urban settings. Our method uses a Convolutional Neural Net-
work to learn preferences of walking people, taking the global context
and topological connectivity of the environment into account.

The role of semantics in urban movement understanding is underappreciated,
as we show in the first contribution. Semantic maps in the advent of automated
driving are recognized increasingly often as a relevant cue for motion predic-
tion, but methods to utilize such input are still few and far between. We take the
next step in this development, from using semantic maps for trajectory predic-
tion to creating an independent relation between semantics and human motion.
This relation allows assessing the semantically-rich environment regardless of
the specific observed and tracked pedestrians. It enables an autonomous sys-
tem to anticipate the dynamics in a specific area. For example, a cleaning robot
could infer more heavily used areas, or a service robot could better find people
to assist. One particularly interesting application example for this method, ex-
plored in our experiments, is finding “illegal crosswalks” — such places, where
the possibility of crossing the road is high due to the topology of the environ-
ment.

Benchmarking and evaluation are fundamental to any method research. The
data, experiments and metrics used for evaluation have the potential to provide
insight on the methods’ benefits and drawbacks under a variety of conditions,
expose the structural limitations, and guide the directions of future research.
The following two contributions are related to benchmarking the motion pre-
diction methods.

One question, critical to all prediction methods, is the one of data. Data
is useful for training, calibration and, in some cases, for pattern extraction.
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There are many factors to consider in a dataset: what is the recording location,
how accurate are the annotations, what are the available cues, how diverse are
the interactions between people. Existing datasets are often limited in terms of
information content, annotation quality or variability of human behavior. With
this motivation, the next contribution of this thesis is:

Contribution 4: A procedure design to collect diverse and accurate motion
data in the interactive, weakly scripted setup in a controlled environment,
which includes obstacles, goals, dynamically allocated tasks and various
social roles of the participating people. We instantiate this procedure in a
new dataset of motion trajectories, called THOR.

THOR contains over 60 minutes of human motion in 395k frames, recorded at
100 Hz, 2531k people detections and over 600 individual and group trajecto-
ries between multiple resting points. In addition to the video stream from one
of the eye tracking headsets, the data includes 3D LiDAR scans and a video
recording from stationary sensors. On top of the recording design, we propose
a set of quantitative metrics to analyze the trajectory datasets, such as tracking
duration, perception noise, curvature and speed variation of the trajectories.

Proper development of prediction methodology is not possible without
benchmarking. With a multitude of new methods proposed by different com-
munities, the lack of standardized benchmarking and objective comparison be-
tween them has been a major limitation for assessing the capabilities of the
state-of-the-art systems. The few existing benchmarks do not cover the full
spectrum of important experiments and do not include necessary contextual
cues, excluding a large portion of prediction models from evaluation. To ad-
vance the state of benchmarking, this thesis presents:

Contribution 5: A benchmark design for motion prediction methods built for
thorough evaluation and comparison in automated repeatable experi-
ments with a systematic variation of the several key prediction param-
eters. The benchmark offers tools, such as metrics, data preparation and
filtering, calibration and visualization, and includes a large variety of het-
erogeneous datasets, representing usual human motion behaviors in dif-
ferent places and cultures.

The benchmark currently includes three experiments. In the accuracy experi-
ment, the metric values are conditioned on the prediction horizon and obser-
vation length, allowing to gain insight into the effective range of operation and
sensitivity to the input length. In the transfer experiment we study the per-
formance decrease which occurs when a method is applied outside the train-
ing/validation dataset. Finally, the robustness experiment tests the method per-
formance in presence of perception noise. Using this benchmark, we evaluate
several local interaction models with theoretically better performance than the
one used in our MDP-based predictor.
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1.5 Publications

Most of the work presented in this thesis has been published in peer-reviewed
conferences and journals.

* A. Rudenko, L. Palmieri, and K. O. Arras. Predictive planning for a mo-
bile robot in human environments. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), Workshop on Al Planning and Robotics,
2017

Part of Chapter 3 ‘

* A. Rudenko, L. Palmieri, and K. O. Arras. Joint prediction of human
motion using a planning-based social force approach. In Proc. of the
IEEE Int. Conf. on Robotics and Automation (ICRA), pages 1-7, 2018

’ Part of Chapter 3 ‘

* A. Rudenko, L. Palmieri, A. J. Lilienthal, and K. O. Arras. Human mo-
tion prediction under social grouping constraints. In Proc. of the IEEE
Int. Conf. on Intell. Robots and Syst. (IROS), 2018

’ Main part of Chapter 3 ‘

¢ A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and
K. O. Arras. Human motion trajectory prediction: A survey. Int. ]. of
Robotics Research, 39(8):895-935, 2020

Main part of Chapter 2 ‘

¢ A. Rudenko, T. P. Kucner, C. S. Swaminathan, R. T. Chadalavada, K. O.
Arras, and A. J. Lilienthal. THOR: Human-robot navigation data col-
lection and accurate motion trajectories dataset. IEEE Robotics and Au-
tomation Letters, 5(2):676-682, 2020

’ Main part of Chapter § ‘

¢ A. Rudenko, T. Kucner, C. Swaminathan, R. Chadalavada, K. O. Arras,
and A. J. Lilienthal. Benchmarking human motion prediction methods. In
Proc. of the ACM/IEEE Int. Conf. on Human-Robot Interaction (HRI),
Workshop on Test Methods and Metrics for Effective HRI in Real World
Human-Robot Teams, 2020

’ Part of Chapter 6 ‘

* Nominated for the Best Paper Award in Safety, Security and Rescue Robotics at IROS 2018
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¢ A. Rudenko, L. Palmieri, J. Doellinger, A. J. Lilienthal, and K. O. Ar-
ras. Learning occupancy priors of human motion from semantic maps
of urban environments. IEEE Robotics and Automation Letters, 6(2):
3248-3255, 2021

Main part of Chapter 4

In each of these papers I have contributed to idea development, method design,
software implementation, validation and results analysis. In addition, Chap-
ter 6 includes material developed together with my M.Sc. student Wanting
Huang during the work on her thesis. To my inputs here belong the design
of the benchmark and the experiments, as well as the proposed methods in the
comparison, while Wanting carried out the implementation and result analysis.

1.6 Dissemination

One key concept, which threads throughout this thesis, is the one of creating
interdisciplinary connections. As the task of motion modeling and prediction
has been the subject of research in many diverse applications, innovative so-
lutions and insights are dispersed in time and among communities. Such area
of research benefits greatly from a common discussion platform, which fosters
inspiration, knowledge exchange and leads to better method development. As
part of the effort to reach out to and consolidate the prediction world, I was
actively engaged in multiple workshops organization and editorial work. With
a careful selection of invited speakers from academic and industry background,
balancing topics in human perception, prediction, human-aware planning, full-
body motion and human-robot interaction, and an expert team of Program
Committee members and guest reviewers, our dissemination efforts have estab-
lished a new standard of communication in the motion prediction domain.

* A. Rudenko, L. Palmieri, A. Alahi, J. Mainprice, and K. O. Arras. 2nd
Workshop on Long-term Human Motion Prediciton (LHMP 2020). In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), 2020.
URL https://motionpredictionicra2020.github.io

e L. Palmieri, A. Rudenko, J. Mainprice, and K. O. Arras. Special Issue on
Long-term Human Motion Prediction. In IEEE Robotics and Automa-
tion Letters, 2020

e A. Alahi, L. Ballan, P. Coscia, L. Palmieri, and A. Rudenko. Workshop on
Benchmarking Trajectory Forecasting Models (BTFM 2020). In Proc. of
the Europ. Conf. on Comp. Vision (ECCV),2020. URL https://sites.
google.com/view/btfm2020

¢ A.Rudenko, L. Palmieri, K. O. Arras, A. Bajcsy, A. Alahi, and A. J. Lilien-
thal. 3rd Workshop on Long-term Human Motion Prediciton (LHMP
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2021). In Proc. of the IEEE Int. Conf. on Robotics and Automation
(ICRA), 2021. URL https://motionpredictionicra2021.github.io

1.7 Outline

The rest of this thesis is structured as follows:

Chapter 2 presents a large-scale review of the motion prediction methodology,
covering three decades of research. The ambitious aim of this chapter is
to introduce, bring together and organize a larger world of motion pre-
diction methods, which is historically very fragmented: insightful ideas
are spread sparsely over time, across communities and domains. In this
chapter we review methods, datasets, metrics and application areas, for-
mulate current trends and open challenges, and lay the foundations for
the contributions of the following chapters.

Chapter 3 introduces the novel combination of the two major classes of ap-
proaches in one powerful method to predict human motion in environ-
ments both crowded and cluttered. We present an MDP-based predic-
tor, which is obstacle- and uncertainty-aware, integrates reasoning on the
goals of the observed people and dynamically adapts the prediction to the
perceived velocity of the person. An interaction component, based on the
social forces, adds active collision avoidance and group-awareness to the
predicted trajectories.

Chapter 4 explores beyond the prediction horizon, introducing a method to
learn occupancy patterns in semantic maps of urban environments. Our
solution uses a Convolutional Neural Network to infer the probability to
find a person in any state in the environment, taking the topology and
semantic context into account.

Chapter 5 explores in detail the data collection for training and validation of
the human-aware autonomous systems. In this regard, we present a gen-
eral experiment design and methodology to collect diverse and accurate
data of human motion, which is rich in relevant motion cues. Our col-
lected dataset THOR includes one hour of interactive human motion with
accurate ground truth for position, head orientation, gaze direction, so-
cial grouping, obstacles map and goal coordinates.

Chapter 6 presents an automated benchmark for a thorough evaluation of the
motion prediction methods. Using this benchmark, we revisit our choice
for the local collision avoidance method used in Chapter 3, and evaluate
a predictive social force method as a prospective alternative to it.

Chapter 7 concludes the thesis with a summary of the contributions, a review
of the open challenges and an outlook on the ongoing work: an integrated
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hierarchical motion planner with multiple levels of prediction, and further
formalization of benchmarking with more powerful experiments.

1.8 Ethical Considerations

The work on this thesis has been concluded in 2020, the year when the global
pandemic of the SARS-CoV-19 virus stroke our lives. A deeply traumatic ex-
perience for all people on the planet, it has shown the tremendous capabilities
of science and technology to provide medical research of astonishing scale and
velocity, ease the forced social isolation, retain productivity in home offices and
minimize the necessary lockdown measures. Among other things, we have seen
the importance of mobility tracking for cutting the chains of infections, as well
as crowd density control (e.g. in shops and supermarkets) to enable safe social
distancing of the customers.

Human motion understanding, modeling and prediction can help us better
understand these mobility patterns, and design social and urban spaces in a
way that would minimize the spread of airborne viruses. This technology is not
harmful by itself, but it can be exploited for people tracking and privacy vio-
lation. It is our duty as scientists to understand and acknowledge the potential
threats and provide timely warnings, educating the general public and helping
the policymakers to prevent malevolent exploits.
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Chapter 2
Motion Prediction Review

If you can look into the seeds of
time, and say which grain will
grow and which will not, speak
then to me.

Macbeth
WILLIAM SHAKESPEARE

With growing numbers of intelligent autonomous systems in human environ-
ments, the ability of such systems to perceive, understand and anticipate hu-
man behavior becomes increasingly important. Specifically, predicting future
positions of dynamic agents and planning considering such predictions are key
tasks for self-driving vehicles, service robots and advanced surveillance systems.
This chapter provides a survey of human motion trajectory prediction. We
review, analyze and structure a large selection of work from different commu-
nities and propose a taxonomy that categorizes existing methods based on the
motion modeling approach and level of contextual information used. We pro-
vide an overview of the existing datasets and performance metrics. We discuss
limitations of the state of the art and outline directions for further research.

2.1 Introduction

In the previous chapter we have detailed and motivated the interest for accurate
prediction of future trajectories, arising in many tasks and application domains.
These include self-driving vehicles, service robots, and advanced surveillance
systems, as shown in Fig. 1.2, but also many others, such as Al in gaming, build-
ing design, evacuation and panic modeling, urban spaces planning. Indeed, this
broad motivation has stimulated research in the robotics, automation and sim-
ulation communities already three decades ago. The recent burst of attention
to the surrounding dynamics of people and vehicles from the service robots
and automated vehicles has sparked the publication rates in motion prediction,
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as we show in Fig. 2.2. A rapidly developing field benefits greatly from intrin-
sic organization and common frame of discussion, which we propose in this
chapter.

The scope of the survey in this chapter is human motion trajectory predic-
tion. Specifically, we focus on ground-level 2D trajectory prediction for pedes-
trians and also consider the literature on cyclists and vehicles. Prediction of
video frames, articulated motion, or human actions or activities is out of scope
although many of those tasks rely on the same motion modeling principles and
trajectory prediction methodology considered here. Within this scope, we sur-
vey a large selection of works from different communities and propose a novel
taxonomy based on the motion modeling approaches and the contextual cues.
We categorize the state of the art and discuss typical properties, advantages
and drawbacks of the categories as well as outline open challenges for future
research. Finally, we raise three questions:

Q1: are the evaluation techniques to measure prediction performance good
enough and follow best practices?

Q2: have all prediction methods arrived on the same performance level and the
choice of the modeling approach does not matter anymore?

Q3: is motion prediction solved?

The chapter is structured as follows: we present the taxonomy in Sec. 2.3,
review and analyze the literature on human motion prediction first by the mod-
eling approaches in Sec. 2.4 — Sec. 2.6, and then by the contextual cues in
Sec. 2.7. In Sec. 2.8 we review the benchmarking of motion prediction tech-
niques in terms of commonly used performance metrics and datasets. In Sec. 2.9
we discuss the state of the art with respect to the above three questions and out-
line open research challenges. Finally, Sec. 2.10 concludes the chapter.

This chapter includes a review and categorization of over 200 methods, cov-
ering three decades of research. The methods come from a variety of commu-
nities, their assumptions and approaches to motion prediction sometimes vary
greatly from something as simple as a Kalman filter to elaborate imitation learn-
ing and game-theoretic frameworks, featuring complexly designed competing
agents. Clearly, a review of this sort may be overwhelming to an unprepared
reader. With that in mind, this chapter is designed in a modular structure to
allow for both quick overview and deep dive into the details. In particular, we
recommend Sec. 2.2, 2.3, Fig. 2.6-2.8 and Sec. 2.9 as a coarse overview of the
motion prediction methodology for a general reader. A practitioner may find
value in the review of the datasets and metrics in Sec. 2.8. Finally, the thorough
analysis of the literature in Sec. 2.4-2.7 is recommended for expert readers.
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Figure 2.1: Overview of the categories in our taxonomy

2.2 Related Reviews

In this section, we detail related surveys from different scientific communities,
i.e. robotics [59, 164, 174], intelligent vehicles [44, 180, 260], and computer
vision [113, 215, 220].

Kruse et al. [164] provide a survey of approaches for wheeled mobile robots
and categorize human-aware motion based on comfort, naturalness and so-
ciability features. Motion prediction is seen as part of a human-aware nav-
igation framework and categorized into reasoning-based and learning-based
approaches. In reasoning-based methods, predictions are based on simple ge-
ometric reasoning or dynamic models of the target agent. Learning-based ap-
proaches make predictions via motion patterns that are learned from observed
agent trajectories.

A short survey on frameworks for socially-aware robot navigation is pro-
vided by Chik et al. [59]. The authors discuss key components of such frame-
works including several planners and human motion prediction techniques.

Lasota et al. [174] survey the literature on safe human-robot interaction
along the four themes of safety through control, motion planning, prediction
and psychological factors. In addition to wheeled robots, they also include re-
lated works on manipulator arms, drones or self-driving vehicles. The literature
on human motion prediction is divided into methods based on goal intent or
motion characteristics. Goal intent techniques infer an agent’s goal and predict
a trajectory that the agent is likely to take to reach that goal. The latter group
of approaches does not rely explicitly on goals and makes use of observations
about how humans move and plan natural paths.

Lefevre et al. [180] survey vehicular motion prediction and risk assessment
in an automated driving context. The authors discuss the literature based on
the semantics used to define motion and risk and distinguish physics-based,
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Figure 2.2: Publications trends in the literature reviewed in this chapter, color-coded by
modeling approach.

maneuver-based and interaction-aware models for prediction. Physics-based
methods predict future trajectories via forward simulation of a vehicle model,
typically under kinodynamic constraints and uncertainties in initial states and
controls. Maneuver-based methods assume that vehicle motion is a series of
typical motion patterns (maneuvers) that have been acquired a priori and can
be recognized from observed partial agent trajectories. Intention-aware meth-
ods make joint predictions that account for inter-vehicle interactions, also con-
sidering that such interactions are regulated by traffic rules.

Brouwer et al. [44] review and compare pedestrian motion models for ve-
hicle safety systems. According to the cues from the environment used as input
for motion prediction, authors distinguish four classes of methods: dynamics-
based models which only use the target agent’s motion state, methods which use
psychological knowledge of human bebavior in urban environments (e.g. prob-
abilities of acceleration, deceleration, switch of the dynamical model), methods
which use head orientation and semantic map of the environment. This catego-
rization is extended by Ridel et al. [260] to review pedestrian crossing intention
inference techniques.

Morris and Trivedi [215] survey methods for trajectory learning and analy-
sis for visual surveillance. They discuss similarity metrics, techniques and mod-
els for learning prototypical motion patterns (called activity paths) and briefly
consider trajectory prediction as a case of online activity analysis. Murino et al.
[220] discuss group and crowd motion analysis as a multidisciplinary problem
that combines insights from the social sciences with concepts from computer
vision and pattern recognition. The authors review several recent methods for
tracking and prediction of human motion in crowds. Hirakawa et al. [113] sur-

20 ‘ Andrey Rudenko 2.2. Related Reviews



vey video-based methods for semantic feature extraction and human trajectory
prediction. The literature is divided based on the motion modeling approach
into Bayesian models, energy minimization methods, deep learning methods,
inverse reinforcement learning methods and other approaches.

Related to our discussion of the benchmarking practices, several works sur-
vey the datasets of motion trajectories [113, 244, 260] and metrics for predic-
tion evaluation [249]. Poiesi and Cavallaro [244] and Hirakawa et al. [113]
describe several datasets of human trajectories in crowded scenarios, used to
study social interactions and evaluate path prediction algorithms. Ridel et al.
[260] discuss available datasets of pedestrian motion in urban settings. Quehl
et al. [249] review several trajectory similarity metrics, applicable in the motion
prediction context.

Unlike these surveys, this chapter reviews and analyze the literature across
multiple application domains and agent types. The presented taxonomy offers
a novel way to structure the growing body of literature, containing the cate-
gories proposed by Kruse et al. [164], Lasota et al. [174] and Lefévre et al.
[180] and extending them with a systematic categorization of contextual cues.
In particular, we argue that the modeling approach and the contextual cues are
two fundamentally different aspects underlying the motion prediction problem
and should be considered separate dimensions for the categorization of meth-
ods. This allows, for example, the distinction of physics-based methods that
are unaware of any external stimuli from methods in the same category that
are highly situational aware accounting for road geometry, semantics and the
presence of other agents. This is unlike previous surveys whose categorizations
are along a single dimension based on both different modeling approaches and
increasing levels of contextual awareness.

This chapter extends the existing reviews of the benchmarking and evalua-
tion efforts for motion prediction [113, 244, 249, 260] with additional datasets,
probabilistic and robustness metrics, and a principled analysis of existing bench-
marking practices. Furthermore, we give an up-to-date discussion of the current
state of the art and conclude with recommendations for promising directions
of future research.

2.3 Taxonomy

In this section we describe our taxonomy to decompose the motion prediction
problem based on the modeling approach and the type of contextual cues, see
Fig. 2.1 for an overview. In Sec. 2.3.1 and 2.3.2 we detail the categories and
give representative papers as examples of each category, and in Sec. 2.3.3 we
describe the rules for classifying the methods.
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Figure 2.3: Illustration of the basic working principle of the modeling approaches: (a)
physics-based methods project the motion state of the agent using explicit dynamical
models based on Newton’s law of motion. (b) pattern-based methods learn prototypical
trajectories from observed agent behavior to predict future motion. (c) planning-based
methods include some form of reasoning about the likely goals and compute possible
paths to reach those goals. In order to incorporate internal and external stimuli that in-
fluence motion behavior, approaches can be extended to account for different contextual
cues.

2.3.1 Modeling Approach

The motion modeling category subdivides the prediction approaches based on
how they represent human motion and formulate the causes thereof. Physics-
based methods define an explicit dynamical model based on Newton’s law of
motion. Pattern-based methods learn motion patterns from data of observed
agent trajectories. Planning-based methods reason on motion intent of rational
agents (see Fig. 2.3). The categorization can be seen to differ also in the level
of cognition typically involved in the prediction process: physics-based meth-
ods follow a reactive sense-predict scheme, pattern-based methods follow a
sense-learn-predict scheme, and planning-based methods follow a sense-reason-
predict scheme in which agents reason about intentions and possible ways to
the goal.

1. Physics-based methods (Sense — Predict): motion is predicted by forward
simulating a set of explicitly defined dynamics equations that follow a
physics-inspired model. Based on the complexity of the model, we recog-
nize the following subclasses:

1.1. Single-model methods define a single dynamical motion model, e.g.
[15, 66, 82,198, 236, 239, 347, 358]

1.2. Multi-model methods include a fixed or on-line adaptive set of mul-
tiple dynamics models and a mechanism to fuse or select the indi-

vidual models, e.g. [3, 8, 98, 135, 157, 246]
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2. Pattern-based methods (Sense — Learn — Predict) approximate an arbi-
trary dynamics function from training data. These approaches are able to
discover statistical behavioral patterns in the observed motion trajectories
and are separated into two categories:

2.1. Sequential methods learn conditional models over time and recur-
sively apply learned transition functions for inference, e.g. [4, 14,
99, 143, 163, 166, 190, 327]

2.2. Non-sequential methods directly model the distribution over full tra-
jectories without temporal factorization of the dynamics, e.g. [30,
136, 143, 200, 309, 313, 339]

3. Planning-based methods (Sense — Reason — Predict) explicitly reason about
the agent’s long-term motion goals and compute policies or path hypothe-
ses that enable an agent to reach those goals. We classify the planning-
based approaches into two categories:

3.1. Forward planning methods make an explicit assumption regarding
the optimality criteria of an agent’s motion, using a pre-defined re-
ward function, e.g. [35, 46, 95, 142, 264, 266, 324, 340, 353]

3.2. Inverse planning methods estimate the reward function or action
model from observed trajectories using statistical learning techniques,
e.g. [63,119, 153,167,179, 241, 255,292, 331, 370]

Figure 2.2 shows the publications trends over the last years, color-coded by
modeling approach. The number of related works is strongly increasing during
the last two years in particular for the pattern-based methods.

2.3.2 Contextual Cues

We define contextual cues to be all relevant internal and external stimuli that
influence motion behavior and categorize them based on their relation to the
target agent, other agents in the scene and properties of the static environment,
see Fig. 2.4 and Fig. 2.5.

1. Cues of the target agent include

1.1. Motion state (position and possibly velocity), e.g. [30, 31, 80, 91,
142, 153, 157, 166, 167, 236, 313, 370]

1.2. Articulated pose such as head orientation [109, 156, 157, 265, 317]
or full-body pose [212, 250]

1.3. Semantic attributes such as the age and gender [202], personality
[32], and awareness of the robot’s presence [157, 226]

2. With respect to the dynamic environment we distinguish
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Figure 2.4: Dynamic environment cues: (a) unaware, (b) individual-aware, (c) group-
aware (accounting for social grouping cues, in green).

2.1. Unaware methods, which compute motion predictions for the target
agent not considering the presence of other agents, e.g. [30, 30, 82,
83, 149, 149, 165, 165, 311, 311, 334, 334, 368]

2.2. Individual-aware methods, which account for the presence of other
agents, e.g. [4, 80, 91, 157, 167, 198, 313, 327]

2.3. Group-aware methods, which account for the presence of other
agents as well as social grouping information. This allows to con-
sider agents in groups, formations or convoys that move differently
than independent agents, e.g. [140, 237, 248, 262, 288, 295, 347]

3. With respect to the static environment we distinguish

3.1. Unaware methods, which assume an open-space environment, e.g.
[29, 81, 88, 94, 129, 163, 200, 283, 317, 325]

3.2. Obstacle-aware methods, which account for the presence of individ-
ual static obstacles, e.g. [4, 9, 31, 80, 91, 254, 313, 327]

3.3. Map-aware methods, which account for environment geometry and
topology, e.g. [56, 62, 63, 100, 111, 124, 157, 190, 241, 246, 264,
266, 268, 324, 352, 370]

3.4. Semantics-aware methods, which additionally account for environ-
ment semantics or affordances such as no-go-zones, crosswalks, side-
walks, or traffic lights, e.g. [20, 66, 142, 153, 170, 179, 202, 255,
363]

In the following Sections 2.4, 2.5 and 2.6 we survey the different classes
of the motion model category. We detail contextual cues categories in Section
2.7. In each section we review methods in the order of increasing complexity,
considering inheritance of ideas and grouped by the similarity of the motion
modeling techniques. A discussion of the strengths and limitations of the mod-
eling approaches follows in Sec. 2.9.

2.3.3 Classification Rules

Some of the surveyed papers may not fall univocally into a single class of our
taxonomy, especially those using a mixture of different approaches, e.g. the
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Figure 2.5: Static environment cues: (a) unaware (ignoring any static objects, dashed
line), (b) obstacle-aware (accounting for unmodeled obstacles, dotted line), (c) map-
aware (accounting for a topometric environment model avoiding local minima, solid
line), (d) semantics-aware (solid line).

work by Bennewitz et al. [30] which combines a non-sequential clustering ap-
proach with sequential HMM inference. For those borderline cases, we adopt
the following rules:

i) We classify methods primarily in the category that best describes the mod-
elling approach over the inference method, e.g. for [30] we give more
weight to the clustering technique used for modelling the prototypical
human motion behavior.

1) Some approaches add sub-components from other categories in their main
modeling approach, e.g. planning-based approaches using physics-based
transition functions [267, 319], physics-based methods tuned with learned
parameters [91], planning-based approaches using inverse reinforcement
learning to recover the hidden reward function of human behaviors [153,
370]. We classify such approaches based on their main modeling method.

i1) Methods that use behavior cloning (imitation of human behaviors with
supervised learning techniques), i.e. learn/recover the motion model di-
rectly from data, are classified as pattern-based approaches [281, 363].
In contrast to that, imitation learning techniques that reason on policies
(e.g. using generative adversarial imitation learning [188]) are classified
as planning-based methods.

Furthermore, a single work is categorized into all three classes of contextual
awareness with respect to its perception of the target agent, static and dynamic
contextual cues.
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2.4 Physics-based Approaches

Physics-based models generate future human motion considering a hand-
crafted, explicit dynamical model f based on Newton’s laws of motion. A com-
mon form for fis §; = f(s¢, uy, t) +w, where uy is the (unknown) control input
and wy the process noise. In fact, motion prediction can be seen as inferring s;
and u; from various estimated or observed cues.

A large variety of physics-based models have been developed in the target
tracking and automatic control communities to describe motion of dynamic ob-
jects in ground, marine, airborne or space applications, typically used as build-
ing blocks of a recursive Bayesian filter or multiple-model algorithm. These
models differ in the type of motion they describe such as maneuvering or non-
maneuvering motion in 2D or 3D, and in the complexity of the target’s kine-
matic or dynamic model and the complexity of the noise model. See [185, 187]
for a survey on physics-based motion models for target tracking.

We subdivide physics-based models into (1) single-model approaches that
rely on a single dynamical model f and (2) multi-model approaches that involve
several modes of dynamics (see Fig. 2.6).

2.4.1 Single-model Approaches
Early works and basic models

Many approaches to human motion prediction represent the motion state of
target agents as position, velocity and acceleration and use different physics-
based models for prediction. Among the simplest ones are kinematic models
without considering forces that govern the motion. Popular examples include
the constant velocity model (CV) that assumes piecewise constant velocity with
white noise acceleration, the constant acceleration model (CA) that assumes
piecewise constant acceleration with white noise jerk, the coordinated turn
model (CT) that assumes constant turn rate and speed with white noise lin-
ear and white noise turn acceleration or the more general curvilinear motion
model by Best and Norton [36]. The bicycle model is an often used as an ap-
proximation to model the vehicle dynamics (see e.g. [286]).

A large number of works across all application domains rely on kinematic
models for their simplicity and acceptable performance under mild conditions
such as tracking with little motion uncertainty and short prediction horizons.
Examples include [213] for hazard inference from linear motion predictions of
pedestrians or [82] for Kalman filter-based (KF) prediction of dynamic obstacles
using a constant acceleration model. Barth and Franke [24] use the coordinated
turn model for one-step ahead prediction in an Extended Kalman Filter (EKF)
to track oncoming vehicles from point clouds generated by an in-car stereo
camera. Batz et al. [27] use a variant of the coordinated turn model for one-
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Figure 2.6: Examples of the physics-based approaches: (a) a method with a single dy-
namical model, (b) a reachability-based method, which accounts for all possible transi-
tions from the given motion state, (¢) an attraction-repulsion approach, which accounts
for dynamic environment cues, (d) a multi-model method with several modes of dynam-
ics and the DBN switching mechanism.

step motion prediction of vehicles within an Unscented KF to detect dangerous
situations based on predicted mutual distances between vehicles.

Dynamic models account for forces which, following Newton’s laws, are the
key descriptor of motion. Such models can become complex when they describe
the physics of wheels, gearboxes, engines, or friction effects. In addition to
their complexity, forces that govern the motion of other agents are not directly
observable from sensory data. This makes dynamic models more challenging
for motion prediction. Zernetsch et al. [358] use a dynamic model for trajectory
prediction of cyclists that contains the driving force and the resistance forces
from acceleration, inclination, rolling and air. The authors show experimentally
that long-term predictions up to 2.5 sec ahead are geometrically more accurate
when compared to a standard CV model.

Autoregressive models (ARM) that, unlike first-order Markov models, ac-
count for the history of states have also been used for motion prediction. El-
nagar and Gupta [83] employ a third-order ARM to predict the next position
and orientation of moving obstacles using maximum-likelihood estimation of
the ARM parameters. Cai et al. [50] use a second-order ARM for single step
motion prediction within a particle filter for visual target tracking of hockey
players. The early work by Zhu [368] uses an autoregressive moving average
model as transition function of a Hidden Markov Model (HMM) to predict
occupancy probabilities of moving obstacles over multiple time steps with ap-
plications to predictive planning.
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Physics-based models are used for motion prediction by recursively apply-
ing the dynamics model f to the current state of the target agent. So far, with
the exception of [368], the works described above make only one-step ahead
predictions and ignore contextual cues from the environment. To account for
context, the dynamics model f can be extended by additional forces, model
parameters or state constraints as discussed hereafter.

Models with map-based contextual cues

A number of approaches extend physics-based models to account for infor-
mation from a map, particularly for the task of tracking ground vehicles on
roads. The methods developed to this end differ in how road constraints are
derived and incorporated into the state estimation problem, see the survey by
Simon [294]. Yang and Blasch [350], for example, use a regular KF and project
the unconstrainted state estimate onto the constrained surface for tracking on-
road ground vehicles with a surveillance radar. Yang et al. [351] use the tech-
nique to reduce the system model parametrization to the constrained surface.
They reduce vehicle motion to a 1D curvilinear road representation for filter-
ing. Batkovic et al. [26] predict pedestrian motion along a graph with straight
line edges centered on side- and crosswalks. Using a unicycle model and a con-
trol approach to keep the predictions along the edges, they evaluate long-term
predictions up to 10 sec ahead. When there are several possible turns at a node,
i.e. at bifurcations, predictions are propagated along all outgoing edges. An-
other class of techniques uses the road information as pseudo measurements,
pursued e.g. by Petrich et al. [239] who use a kinematic bicycle model for f and
pseudo measurements from the centerlines of lanes to predict future vehicle tra-
jectories several seconds ahead. When there are several possible turns, e.g. at
intersections, the approach generates new motion hypothesis for each relevant
lane by using an EKE

When agents move freely, e.g. do not comply with road constraints, we need
different ways to represent free space and account for map information. To this
end, several authors propose grid-based [66, 199, 254] and more general graph-
based space discretizations [15, 159]. Luber et al. [199] use 2D laser data to
track people from a mobile robot and learn a so called spatial affordance map,
a grid-based spatial Poisson process from which a walkable area map of the
environment can be derived. They predict future trajectories of people during
lengthy occlusion events using an auxiliary PF with look-ahead particles ob-
tained by forward-simulation of the curvilinear motion model proposed by Best
and Norton [36]. This way, long-term predictions (up to 50 steps ahead) stay
focused on high-probability regions with the result of improved tracking per-
formance. Rehder and Kloden [254] also choose a regular grid to represent the
belief about pedestrian locations in a linear road scenario. They propose a vari-
ant of a Bayesian histogram filter to achieve map-aware predictions 3 seconds
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ahead by combining forward propagation of an unicycle pedestrian model from
the start and in backward direction from the goal with prior place-dependent
knowledge of motion learned from previously observed trajectories. Similarly,
Coscia et al. [66] use polars grids, centered at the currently predicted agent
position to represent four different local influences: a CV motion model, prior
motion knowledge learned from data, semantic map annotations like “road”
or “grass” and direction to goal. The next velocity is then obtained from the
normalized product of the four polar distributions and forward propagated for
long-term prediction of pedestrians and cyclists in urban scenarios. Like [254],
no planning is involved and the learned prior knowledge is place-dependent.
Koschi et al. [159] exploit information on road segments connectivity and se-
mantic regions to compute reachability-based predictions of pedestrians, sim-
ilarly to [254]. The authors formalize several relevant traffic rules, e.g. pedes-
trian crossing permission on the green light, as additional motion constraints.
Aoude et al. [15] grow a tree of future trajectories for each target agent using a
closed-loop RRT algorithm that samples the controls of a bicycle motion model
[172] avoiding obstacles in the map. Based on agent’s recognized intentions us-
ing an SVM classifier and features from observed trajectories, they bias the tree
growth towards areas that are more likely for the agent to enter and determine
the best evasive maneuver for the ego-vehicle to minimize threat at intersection
scenarios. A reachibility-based model, such as [15, 159, 254], is illustrated in
Fig. 2.6 (b).

So far, we discussed extensions to physics-based motion models that embed
different types of map information. All those works, however, consider only a
single target agent and neglect local interactions between multiple agents. Here-
after, we will discuss methods that add social situation awareness, predicting
several target agents jointly.

Models with dynamic environment cues

There are several ways to incorporate local agent interaction models into physics-
based approaches for prediction, one popular example being the social force
(SF) model by Helbing and Molnar [110], see Fig. 2.6 (c). Developed for the
purpose of crowd analysis and egress research, the model superimposes attrac-
tive forces from a goal with repulsive forces from other agents and obstacles.
Several works extend the dynamics model f to include social forces e.g. for im-
proved short-term prediction for pedestrian tracking in 2D laser data [198] or
image data [236].

Elfring et al. [80] combine the HMM-based goal estimation method intro-
duced by Vasquez et al. [325] with the basic SF-based human motion prediction
by Luber et al. [198]. For intention estimation, the observed people trajectories
are summarized in a sparse topological map of the environment. Each node
of the map encodes a state-destination pair, and the goal inference using the
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observed trajectory is carried out in a maximum-likelihood manner. Ferrer and
Sanfeliu [91] estimate the interaction parameters of the SF for each two peo-
ple in the scene individually. For this purpose several bebaviors (i.e. sets of SF
parameters) are learned offline, and the observed interaction between any two
people is associated to the closest “behavior”. The approach by Oli et al. [226]
defines the robot operating in social spaces as an interacting agent, affected
by the social forces. Each human is flagged as either aware or unaware of the
robot, which defines the repulsive force the robot exerts on that person. Such
awareness is inferred using visual cues (gaze direction and past trajectory).

In order to achieve more realistic behaviors, several extensions to the social
force model are proposed. Yan et al. [348] present a model that embeds social
relationships in the linear combination of predefined basic social effects (attrac-
tion, repulsion and non-interaction). The motion predictor maintains several
hypothesis over the social modes, in which the pedestrians are involved. Predic-
tive collision avoidance behavior of the SF agents is introduced by Karamouzas
et al. [141] and Zanlungo et al. [356]. In particular, Karamouzas et al. [141]
models each agent to adapt their route as early as possible, trying to minimize
the amount of interactions with others and the energy required to solve these
interactions. To this end an evasion force, that depends on the predicted point
of collision and the distance to it, is applied to each agent. Updates to the SF
model to consider also group motion are proposed by Moussaid et al. [216]
and Farina et al. [86].

Other agent interaction models, not based on the social forces, for example
for road vehicles, have also been used. An interactive kinematic motion model
for vehicles on a single lane has been proposed by Treiber et al. [315] to predict
the longitudinal motion of a target vehicle in the presence of preceding vehicles.
The model, called Intelligent Driver Model (IDM), was used e.g. by Liebner
et al. [191] for driver intent inference at urban intersections. Hoermann et al.
[115] learn the driving style of preceding vehicles by on-line estimating the IDM
parameters using particle filtering and near- and far-range radar observations.
Prediction of longitudinal motion of preceding vehicles, in the experiments up
to 10 seconds ahead, is then obtained by forward propagation of the model.

Several approaches exploit the reciprocal velocity obstacles (RVO) model
[318] for jointly predicting human motions. Kim et al. [150] use the Ensemble
Kalman filtering technique together with the Expectation-Maximization algo-
rithm to estimate and improve the human motion model (i.e. RVO parameters).
Bera et al. [31] propose a method that dynamically estimates parameters of the
RVO function for each pedestrian, moving in a crowd, namely current and
preferred velocities per agent and global motion characteristics such as entry
points and movement features. A follow-up work [32] also introduces online
estimation of personality traits. Each pedestrian’s behavior is characterized as a
weighted combination of six personality traits (aggressive, assertive, shy, active,
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tense and impulsive) based on the observations, thus defining parameters of the
RVO model for this person.

Other approaches instead compute joint motion predictions based on the
time of possible collision between pairs of agents. Paris et al. [233] propose
a method for modeling predictive collision avoidance behavior in simulated
scenarios. For each pedestrian current velocities of their neighbors are extrap-
olated in the 3D (x,y,t) space, and all actions that result in collision with
dynamic and static obstacles are excluded. A similar problem is addressed by
Pettré et al. [240], who evaluate real people trajectories in an interactive exper-
iment and design a predictive collision avoidance approach, capable of repro-
ducing realistic joint maneuvers, such as giving way and passing first.

Other methods propose to compute joint motion prediction based on the
expected point of closest approach between pedestrians. Pellegrini et al. [236]
is the first to propose such approach called Linear Trajectory Avoidance (LTA):
the method firstly computes the expected point of closest approach between dif-
ferent agents, and then uses it as driving force to perform avoidance between the
agents. Based on the LTA, Yamaguchi et al. [347] formulate a human motion
prediction approach as an energy minimization problem. The energy function
considers different properties of people motion: damping, speed, direction, at-
traction, being in a group, avoiding collisions. The approach of Yamaguchi is
further improved by Robicquet et al. [262] by considering several different sets
of the energy functional parameters, learned from the training data. Each set of
parameters represents a distinct behavior (navigation style of the agent).

Local interaction modeling methods, as well as approaches for predicting
motion in crowds, usually benefit from detecting and considering groups of
people who walk together. For example, Pellegrini et al. [237] propose an ap-
proach to model joint trajectories of people, taking group relations into ac-
count. The proposed framework operates in two steps: first, it generates pos-
sible trajectory hypotheses for each person, then it selects the best hypothesis
that maximize a likelihood function, taking into account social factors, while
at the same time estimating group membership. People and relations are mod-
eled with Conditional Random Fields (CRF). Choi and Savarese [61] propose
an interaction model that incorporates linear motion assumption, repulsion of
nearby people and group coherence via synchronization of velocities. Further
group motion models, e.g. [140, 248, 288, 295], developed in the simulation
and visualization communities, typically address the groups cohesion with addi-
tional forces to attract members to each other, assigning leader’s and follower’s
roles or imposing certain group formation.

A recent reachability-based pedestrian occupancy prediction method, pre-
sented by Zechel et al. [357], accounts both for dynamic objects and semantics
of the static environment. The authors first use a physical model to determine
reachable locations of a person, and then reduce the area based on the inter-
sections with static environment and presence probabilities of other dynamic
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agents. Similarly Luo and Cai [201] compute future agents predictions based
on an optimization approach that handles physical constraints, i.e. kinematics
and geometry of the agents, and behavioral constraints, i.e. intention, attention
and responsibility.

2.4.2 Multi-model Approaches

Complex agent motion is poorly described by a single dynamical model f.
Although the incorporation of map information and influences from multi-
ple agents render such approaches more flexible, they remain inherently lim-
ited. A common approach to modeling general motion of maneuvering targets
is the definition and fusion of different prototypical motion modes, each de-
scribed by a different dynamic regime f. Modes may be linear movements, turn
maneuvers, or sudden accelerations, that over time, form sequences able to
describe complex motion behavior. Since the motion modes of other agents
are not directly observable, we need techniques to represent and reason about
motion mode uncertainty. The primary approach to this end are multi-model
(MM) methods [186] and hybrid estimation [116]. MM methods maintain a
hybrid system state & = (x,s) that augments the continuous valued x by a
discrete-valued modal state s. Following [186], MM methods generally con-
sist of four elements: a fixed or on-line adaptive model set, a strategy to deal
with the discrete-valued uncertainties (e.g. model sequences under a Markov
or semi-Markov assumption), a recursive estimation scheme to deal with the
continuous valued components conditioned on the model, and a mechanism
to generate the overall best estimate from a fusion or selection of the individ-
ual filters. For prediction, MM methods are used in several ways, to represent
more complex motion, to incorporate context information from other agents
and context information from the map. A naive MM approach, presented by
Pool et al. [246], predicts future motion of cyclists using a uniform mixture of
five Linear Dynamic Systems (LDS) dynamics-based motion strategies: go on
straight, turn 45° or 90° left or right. Probability of each strategy is set to zero
if the predicted path does not comply with the road topology in the place of
prediction.

The interactive multiple model filter (IMM) is a widely used inference tech-
nique applied on MM models with numerous applications in tracking [209] and
predictions. For instance, Kaempchen et al. [135] propose a method for future
vehicle states estimation that switches between constant acceleration and sim-
plified bicycle dynamical models. Uncertainty in the next transition is explicitly
modeled with Gaussian noise. Schneider and Gavrila [283] introduce an IMM
for pedestrian trajectory prediction which combines several basic motion mod-
els (constant velocity, constant acceleration and constant turn). Also Schulz and
Stiefelhagen [287] propose a method for predicting the future path of a pedes-
trian using an IMM framework with constant velocity, constant position and
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coordinated turn models. In this work, model transitions are controlled by an
intention recognition system based on Latent-dynamic Conditional Random
Fields: based on the features of the person’s dynamics (position and velocity)
and situational awareness (head orientation), intention is classified as cross-
ing, stopping or going in the same direction. Joint vehicle trajectory estimation
also using IMMs is considered by Kuhnt et al. [169, 170] in a method which
adopts pre-defined environment geometry to estimate possible routes of each in-
dividual vehicle. Contextual interaction constraints are embedded in a Bayesian
Network that estimates the evolution of the traffic situation.

Other examples of IMMs techniques are variable-structure IMM for ground
vehicles [152, 223, 232, 291] to account for road constraints. In a recent work
Xie et al. [341] combined a kinematics-based constant turn rate and accelera-
tion model with IMM-based lane keeping and changing maneuvers mixing. The
method is aware of road geometry and produces results for a varying prediction
horizon.

An alternative approach to hybrid estimation problems are dynamic Baye-
sian networks (DBN) which inherit the broad variety of modeling schemes and
large corpus of exact and approximate inference and learning techniques from
probabilistic graphical models [155]. An example of a DBN-based multi-model
approach is given in Fig. 2.6 (d). The seminal work of Pentland and Liu [238]
introduces an approach to model human behaviors by coupling a set of dy-
namic systems (i.e. a bank of Kalman filters (KF)) with an HMM, which is a
special case of the DBNSs. The authors introduce a dynamic Markov system that
infers human future behaviors, a set of macro-actions described by a set of KFs,
based on measured dynamic quantities (i.e. acceleration, torque). The approach
was used to accurately categorize human driving actions. Agamennoni et al. [3]
jointly model the agent dynamics and situational context using a DBN. The ve-
hicular dynamics is described by a bicycle model whereas the context is defined
by a weighted feature function to account e.g. for closeness between agents
or place-dependent information from a map. The model resembles a switched
Bayesian filter but considers a more general conditioning of the switch tran-
sitions and the case of multiple agents. The authors apply the model for the
task of long-term multi-vehicle trajectory prediction of mining vehicles, useful
for instance during GPS outages. Kooij et al. [156] propose a context-aware
path prediction method for pedestrians intending to laterally cross a street, that
makes use of Switching Linear Dynamical Systems (SLDS) to model maneu-
vering pedestrians that alternate between motion models (e.g. walking straight,
stopping). The approach adopts a Dynamic Bayesian Network (DBN) to infer
the next pedestrian movements based on the SLDS model. The latent (context)
variables relate to pedestrian awareness of an oncoming vehicle (head orienta-
tion), the distance to the curbside and the situation criticality. Kooij et al. [157]
extend this work to cover a cyclist turning scenario. In another extension of
[156], Roth et al. [265] use a second context-based SLDS to model the “brak-
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ing” and “driving” behaviors of the ego-vehicle. The two SLDS sub-graphs for
modeling pedestrian and vehicle paths are combined into a joint DBN, where
the situation criticality latent state is shared. Gu et al. [104] propose a DBN-
based motion model with a particle filter inference to estimate future position,
velocity and crossing intention of a pedestrian. During inference the approach
considers standing, walking and running motion modes of pedestrians. Gindele
et al. [98] is jointly modeling future trajectories of vehicles with a DBN, de-
scribing the local context of the interaction between multiple drivers with a set
of numerical features. These features are used to classify the current situation
of each driver and reason on available behaviors, such as “follow”, “sheer in”
or “overtake”, represented as Bézier curves. Blaiotta [41] also proposes a DBN
for pedestrian prediction with two motion modes (walking and standing), con-
textual awareness flag for the oncoming vehicle and social force-based motion
dynamics for pedestrians.

Techniques derived by the stochastic reachability analysis theory [7] form
another class of hybrid approaches to compute human motion prediction. In
general, those methods model agents as hybrid systems (with multiple modes)
and infer agents’ future motions by computing stochastic reachable sets. The
approach by Althoff et al. [9] generates the stochastic reachable sets for inter-
acting traffic participants using Markov chains, where each chain approximates
the behavior of a single agent. Each vehicle has its own dynamics with many
modes (e.g. acceleration, deceleration, standstill, speed limit), and its goal is
assumed to be known. Althoff et al. [10] further extend [9] with the over-
approximative estimation of the occupancy sets. The method is particularly
framed for hybrid dynamics (mixed discrete and continuous) where computing
the exact reachability sets could be computationally unfeasible. To overcome
this issue, the method proposes to intersect different occupancy sets for dif-
ferent abstractions of the dynamical model. The work by Bansal et al. [23]
also uses a reachability approach for solving the prediction problem for multi-
models systems. The approach rather than using a probability distribution over
human next actions, it uses a deterministic set of allowable human actions. This
reduces the complexity of the predictor and allows for an easy certification pro-
cess.

2.5 Pattern-based Approaches

In contrast to the physics-based approaches which use explicitly defined, para-
metrized functions of motion dynamics, pattern-based approaches learn the
latter from data, following the Sense - Learn - Predict paradigm. These methods
learn human motion behaviors by fitting different function approximators (i.e.
neural networks, hidden Markov models, Gaussian processes) to data. Many of
those methods were introduced by the machine learning and computer vision
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Figure 2.7: Examples of the pattern-based approaches: (a) grid-based local transitions
learning method, (b) sequential location-independent transition model, which accounts
for cues from the dynamic environment, (c) higher-order sequential Markov model, (d)
clustering of full trajectories, (e) location-independent method which learns long-term
transition sequences, 1.e. maneuvers.

communities (i.e. for behavior cloning and video surveillance applications), and
later applied in robotics and autonomous navigation settings.

In our taxonomy we classify pattern-based approaches into two categories,
based on the type of function approximator used:
(1) Sequential methods typically learn conditional models, where it is assumed
that the state (e.g. position, velocity) at one time instance is conditionally de-
pendent on some sufficient statistic of the full history of past states. Many of
the proposed methods are Markov models, where an N-th order Markov model
assumes that a limited state history of N time steps is a sufficient representation
of the entire state history. Similarly to many physics-based approaches, sequen-
tial methods aim to learn a one-step predictor s¢11 = f(st_n.t), where the state
s¢+1 is the one step prediction and the sequence of states s;_n.¢ is the sufficient
statistic of the history. In order to predict a sequence of state transitions (i.e.
a trajectory), consecutive one-step predictions are made to compose a single
long-term trajectory.
(2) Non-sequential methods directly model the distribution over full trajectories
without imposing a factorization of the dynamics (i.e. Markov assumption) as
with sequential models.
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2.5.1 Sequential Models

Sequential models are built on the assumption that the motion of intelligent
agents can be described with causally conditional models over time. Similarly
to the physics-based methods, transition function of sequential models has
Markovian property, i.e. information on the future motion is confined in the
current state of the agent. Differently, the function, often non-parametric (e.g.
Gaussian Processes, vector fields), is learned from statistical observations, and
its parameters cannot be directly interpreted as for many of the physics-based
methods.

Local transition patterns

Learning local motion patterns, such as probabilities of transitions between
cells on a grid-map (Fig. 2.7 (a)), is a simple, commonly used technique for
making sequential predictions [20, 163, 165, 214, 305, 311, 333, 334].

Early examples of local motion patterns include the works of Tadokoro
et al. [305] and Kruse and Wahl [163]. Kruse and Wahl [163] build two transi-
tion models: a stochastic grid where usual motion patterns of dynamic obstacles
are stored, and stochastic trajectory prediction modeled with Poisson processes.
Tadokoro et al. [305] include empirical biases to account for context features
of the cells in the regions where the observations are sparse, e.g. increasing
the probability to move away from the wall, stop near a bookshelf or decrease
walking speed at the crossing. More recently, Thompson et al. [311] expand
the local motion patterns model by accounting for further transitions for sev-
eral steps into the future. Their method maps the motion state of the person
to a series of local patches, describing where the person might be in the future.
Besides the current motion state, the learned patterns are also conditioned on
the final goal or the topological sub-goal in the environment. Wang et al. [333]
model local transition probabilities with an Input-Output HMM. Transition in
each cell is conditioned both on the direction of cell entrance and the global
starting point of the person’s movement. Jacobs et al. [129] use nonlinear es-
timation of pedestrian dynamics with the learned vector-fields to improve the
linear velocity projection model. Ballan et al. [20] propose a Dynamic Bayesian
Network method to predict not-interacting human motion based on statistical
properties of human behavior. To this end a transferable navigation grid-map is
learned. It encodes functional properties of the environment (i.e. direction and
speed of the targets, crossing frequency for each patch, identification of routing
points). Molina et al. [214] address periodic temporal variations in the learned
transition patterns, e.g. based on the time of the day.

In contrast to the discrete transition patterns discussed so far, several au-
thors model the transition dynamics as a continuous function of the agent’s
motion state, using Gaussian Processes and their mixtures [81, 88, 134, 166].
Ellis et al. [81] model trajectory data in the observed environment by regress-

36 ‘ Andrey Rudenko 2.5. Pattern-based Approaches



ing relative motion against current position. Predictions are generated using a
sequential Monte-Carlo sampling method. Joseph et al. [134] model the multi-
modal mobility patterns as a mixture of Gaussian processes with a Dirichlet
process prior over mixture weights. Ferguson et al. [88] further extends the
work of Joseph et al. [134] by including a change-point detection and cluster-
ing algorithm which enables quick detection of changes in intent and on-line
learning of motion patterns not seen in prior training data. Kucner et al. [166]
model multimodal distributions with a Gaussian Mixture Model (GMM) in the
joint velocity-orientation space.

Apart from the commonly used grid-cells, local transition patterns can be
learned using a higher-level abstraction of the workspace, such as a graph of
sub-goals or transition points [108, 124], map of connected position-velocity
points Kalayeh et al. [137], Voronoi diagram [190], Instantaneous Topological
Map (ITM) [326], semantic-aware ITM [323]. More flexible representation of
the workspace topology is achieved this way. Combining the merits of local
and global motion patterns (i.e. sequential and non-sequential models), Chen
et al. [54] model trajectories in the environment with a set of overcomplete
basis vectors. The method breaks down trajectories into a small number of
representative partial motion patterns, where each partial pattern consists of a
series of local transitions. A follow-up work by Habibi et al. [107] incorporates
semantic features from the environment (relative distance to curbside and the
traffic lights signals) in the learning process, improving prediction accuracy and
generalization to similar environments. Han et al. [108] propose a method to
explicitly learn transition points between the local patterns.

Location-independent behavioral patterns

Unlike the local transition patterns, which are learned and applied for predic-
tion only in a particular environment, location-independent patterns are used
for predicting transitions of an agent in the general free space [14, 93, 250,
290, 312] (see Fig. 2.7 (b)).

Several authors, e.g. Foka and Trahanias [93], Shalev-Shwartz et al. [290],
use location-invariant one-step prediction as a part of collision avoidance frame-
work using neural networks. Aoude et al. [14] extend their physics-based ap-
proach [15] by introducing location-independent GP-based motion patterns
that guide the RRT-Reach to grow probabilistically weighted feasible paths of
the surrounding vehicles. Tran and Firl [312] model location-independent mo-
tion patterns of vehicles by applying spatial normalization to the trajectories in
the learning set. Cartesian coordinates are turned into the relative coordinate
system of the road intersection, based on the topology of the lanes.

Keller and Gavrila [143] use optical flow features derived from a detected
pedestrian bounding box to predict future motion. Quintero et al. [250] in-
stead extract full-body articulated pose. In both works, body motion dynamics
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for walking and stopping are learned using Gaussian Processes with Dynamic
Model (GPDM) in a compact low-dimensional latent space. Minguez et al.
[212] extend [250] by considering standing and starting activities as well. A
first-order HMM is used to model the transition between the activities.

Several location-independent methods learn socially-aware models of local
interactions [13, 327]. Antonini et al. [13] adapt the Discrete Choice Model
from econometrics studies to predict local transitions of individuals, given the
intended direction, current velocity, locations of obstacles and other people
nearby. Vemula et al. [327] reformulates the non-sequential joint human mo-
tion prediction approach by Trautman and Krause [313], discussed in Sec. 2.5.2,
as sequential inference with Gaussian Processes. They model the local motion
of each agent conditioned on relative positions of other people in the surround-
ings and the person’s goal.

Complex long-term dependencies

Several recent sequential methods use neural networks for time series predic-
tion, i.e. assuming higher order Markov property [4, 25, 99, 130, 281, 299,
300, 321, 328, 363], see Fig. 2.7 (c). Such time series-based models are mak-
ing a natural transition between the first order Markovian methods (e.g. lo-
cal transition patterns) and non-sequential techniques (e.g. clustering-based).
An early method, presented by Sumpter and Bulpitt [299] learns long-term
spatio-temporal motion patterns from visual input in a known environment.
The simple neural network architecture, based on natural language processing
networks, quantizes partial trajectories in location/shape-space: the symbol net-
work categorizes the object shape and locations at any time, and the context
network categorizes the order in which they appear. Goldhammer et al. [99]
learn usual human motion patterns using an ANN with the multilayer percep-
tron architecture. This method was adapted to predict motion of cyclists by
Zernetsch et al. [358].

Recurrent Neural Networks (RNN) for sequence learning, and Long Short-
term Memory (LSTM) networks in particular, have recently become a widely
popular modeling approach for predicting human [4, 25, 277, 279, 300, 321,
328], vehicle [6, 71, 147, 234] and cyclist [245] motion. Alahi et al. [4] was the
first one to propose a Social-LSTM model to predict joint trajectories in contin-
uous spaces. Each person is modeled by an individual LSTM. Since humans are
influenced by nearby people, LSTMs are connected in the social pooling sys-
tem, sharing information from the hidden state of the LSTMs with the neigh-
bouring pedestrians. The work of Bartoli et al. [25] extends the Social-LSTM,
explicitly modeling human-space interactions by defining a “context-aware”
pooling layer, which considers the static objects in the neighborhood of a per-
son. Varshneya and Srinivasaraghavan [321] use a Spatial Matching Network,
first introduced by Huang et al. [119] (discussed in Sec. 2.6.2), that models the
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spatial context of the surrounding environment, predicting the probability of
the subject stepping on a particular patch. Sun et al. [300] use LSTM to learn
environment- and time-specific human activity patterns in the target environ-
ment from long-term observations, i.e. covering several weeks. The state of the
person is extended to include contextual information, i.e. the time of the day
when the person is observed. Pfeiffer et al. [242] couple obstacle-awareness
with an efficient representation of the surrounding dynamic agents using a 1D
vector in polar angle space. Bisagno et al. [39] add group coherence informa-
tion in the social pooling layer. Saleh et al. predict trajectories of pedestrians
[279] and cyclists [278], adapting the LSTM architecture for the perspective of
a moving vehicle. Numerous other implementations of the LSTM-based predic-
tors offer various improvements, such as increased generalizability to new and
crowded environments [293, 346], considering the immediate [360] or long-
term [344] intention of the agents, augmenting the state of the person with the
head pose [109] or adding a better pooling mechanism with relative impor-
tance of each person in the vicinity of the target agent [89, 235, 343]. Huynh
and Alaghband [123] apply LSTM-based trajectory prediction in combination
with local transition patterns, learned on the fly in a particular scene. Non-
linear motion, historically observed in a coarse grid cell of the environment,
informs the LSTM predictor.

Several authors use LSTMs to estimate kinodynamic motion of vehicles,
combining the benefits of the physics-based and the pattern-based methods
[69, 252]. Raipuria et al. [252] augment the LSTM model with the road in-
frastructure indicators, expressed in the curvilinear coordinate system, to bet-
ter predict motion in curved road segments. Deo and Trivedi [69] propose
an interaction-aware multiple-LSTM model to compute stochastic maneuver-
dependent predictions of a vehicle, and augment it with an LSTM-based ma-
neuver classification and mixing mechanism.

Other approaches use RNN as models of spatio-temporal graphs for prob-
lems that require both spatial and temporal reasoning [68, 79, 120, 127, 130,
328]. Jain et al. [130] propose an approach for training sequence prediction
models on arbitrary high-level spatio-temporal graphs, whose nodes and edges
are represented by RNNs. The resulting graph is a feed-forward, fully differ-
entiable, and jointly trainable RNN mixture. Vemula et al. [328] apply this
method to jointly predict transitions in human crowds.

RNN abilities for prediction of time-series is also combined with differ-
ent neural networks architectures [61, 184, 281, 359, 363]. Schmerling et al.
[281] consider a traffic weaving scenario and propose a Conditional Variational
Autoencoder (CVAE) with RNN subcomponents to model interactive human
driver behaviors. The CVAE characterizes a multi-modal distribution over hu-
man actions at each time step conditioned on interaction history, as well as
future robot action choices. Zheng et al. [363] describes a hierarchical pol-
icy approach that automatically reasons about both long-term and short-term
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goals. The model uses recurrent convolutional neural networks to make predic-
tions for macro-goals (intermediate goals) and micro-actions (relative motion),
which are trained independently by supervised learning, combined by an atten-
tion module, and finally jointly fine-tuned. Zhan et al. [359] extend this ap-
proach using Variational RNNs. Choi et al. [60] uses spatial-temporal graphs
in combination with CVAE. The spatial-temporal graphs are used to model
the relational influence among predicted agents. Conditions of the CVAE are
represented by estimated intentions. Also Li et al. [184] propose a hierarchical
architecture where an upper level (based on variational RNN) provides pre-
dictions of discrete coordination activities between agents and a lower level
generates actual geometric predictions (using a Conditional Generative Adver-
sarial Network). The probabilistic framework called Multiple Futures Predictor
(MFP) [307] models joint behavior of an arbitrary number of agents via a dy-
namic attention-based state encoder for capturing relationships between agents,
a set of stochastic, discrete latent variables per agent to allow for multimodal
future behavior, as well as interactive and step-wise parallel rollouts with agent-
specific RNNs to model future interactions. Furthermore, there model allows
to make hypothetical rollouts under assumptions of behavior for a particular
agent.

Several recent works [131, 251, 259, 261, 297, 320, 345, 362] combine the
benefits of sequential (e.g. RNN-based) and convolutional approaches for mod-
eling jointly the spatial and temporal relations of the observed agents’ motion.
Xue et al. [345] introduce a hierarchical LSTM model, which combines inputs
on three scales: trajectory of the person, social neighbourhood and features
of the global scene layout, extracted with a CNN. Zhao et al. [362] propose
the Multi-Agent Tensor Fusion encoding, which fuses contextual image of the
environment with sequential trajectories of agents, thus retaining spatial rela-
tion between features of the environment and capturing interaction between the
agents. This method is applied to both pedestrian and vehicles. Also Rhinehart
et al. [259] present a prediction scheme for multi-agent that combines CNNs
with a generative model based on RNNs. Moreover the approach conditions
the predictions on inferred intentions of the agents. Srikanth et al. [297] pro-
pose a novel input representation for learning vehicle dynamics, which includes
semantics images, depth information and other agents’ positions. This input
is projected into top-down view and fed into the autoregressive convolutional
LSTM model to learn temporal dynamics. LSTMs have been also used to pre-
dict sequence of future human movements based on a learned reward map Saleh
et al. [280].

Recently, many authors have applied the GAN architecture to achieve multi-
modality in the prediction output [11, 105, 158]. For instance, Gupta et al.
[105] extend the Social-LSTM by using Generative Adversarial Networks and
a novel variety loss which encourages the generative network to produce diverse
multi-modal predictions. Kosaraju et al. [158] use Graph Attention Network
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in combination with GAN architecture to better capture relative importance of
surrounding agents and semantic features of the environment.

2.5.2 Non-sequential Models

Learning motion patterns in complex environments requires the model to gener-
alize across non-uniform, context-dependent behaviors. Specifying causal con-
straints, e.g. through the Markovian assumption for the sequential models
and additionally the particular functional form for the physics-based methods,
might be too restrictive for these situations. Alternatively, instead of focusing
on the local transitions of the system, non-sequential approaches aim to di-
rectly learn a distribution over long-term trajectories, that the observed agent
may follow in the future, i.e. learn a set of full motion patterns from data.

Most basic non-sequential approaches are based on clustering the observed
trajectories, which creates a set of long-term motion patterns [29-32, 57]. This
way global structure of the workspace is imposed on top of a sequential model.
Clustering-based approaches are illustrated in Fig. 2.7 (d). Bennewitz et al.
[29, 30] cluster recorded trajectories of humans into global motion patterns us-
ing the expectation maximization (EM) algorithm and build an HMM model
for each cluster. For prediction, the method compares the observed track with
the learned motion patterns, and reasons about which patterns best explain
it. Uncertainty is handled by probabilistic mixing of the most likely patterns.
Similarly, Zhou et al. [367] models the global motion patterns in a crowd with
Linear Dynamic Systems using EM for parameters estimation. Several authors
[207, 243] propose graph structures to efficiently capture the branching of tra-
jectory clusters. Chen et al. [57] propose a method for dynamic clustering of
the observed trajectories, assuming that the set of complete motion patterns
may mot be available at the time of prediction, e.g. in new environments. Sung
et al. [301] propose to represent the agent’s states as short trajectories rather
than static positions. This higher level of abstraction provides greater flexibility
to represent not only position, but also velocity and intention. Suraj et al. [302]
directly use a large-scale database of observed trajectories (up to 10 millions)
to estimate the future positions of a vehicle given only its position, rotation
and velocity. Combining the concepts of local motion patterns and clustering,
Carvalho et al. [51] represent each cluster with a piece-wise linear vector field
over an arbitrary state-space mesh.

Several approaches use Gaussian processes (GPs) or mixture models as clus-
ter centroids representation [149, 309, 354]. Tay and Laugier [309] introduce
an approach to predict motion of a dynamic object in known scenes based on
Gaussian mixture models and Gaussian processes. Kim et al. [149] model con-
tinuous dense flow fields from a sparse set of vector sequences. Yoo et al. [354]
propose to learn most common patterns in the scene and their co-occurrence
tendency using topic mixture and Gaussian mixture models. Observed trajec-
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tories are clustered into several groups of typical patterns that occur at the
same time with high probability. Given a set of observed trajectories, predic-
tion is performed considering the dominant pattern group. Makansi et al. [206]
present a Mixture Density Network architecture which generates multiple hy-
potheses of future position in fixed interval At and then fits a mixture of Gaus-
sian or Laplace distributions to these hypothesis.

Clustering-based methods, discussed so far, generalize statistical informa-
tion in a particular environment. In comparison, location-invariant methods,
based on matching the observed partial trajectory to a set of prototypical tra-
jectories, can be used in arbitrary free space [112, 144, 339], see Fig. 2.7 (e).
Hermes et al. [112] predict trajectories of vehicles by comparing the observed
track to a set of motion patterns, clustered with a rotationally-invariant dis-
tance metric. In their Probabilistic Hierarchical Trajectory Matching (PHTM)
approach, Keller et al. [144] propose a probabilistic search tree of sample hu-
man trajectory snippets to find the corresponding matching sub-sequence. Xiao
et al. [339] decompose the set of sample trajectories into pre-defined motion
classes, such as wandering or stopping, rotating and aligning them to start from
the same point and have the longest span along the same axis. In contrast, skip-
ping the clustering step, Nikhil and Tran Morris [222] propose a simple method
to map the input trajectory of fixed length to the full future trajectory using a
Convolutional Neural Network.

For interaction-aware non-sequential motion prediction, several authors
consider the case with two interacting agents [136, 200]. Kaifer et al. [136]
propose a method for joint pairwise vehicle trajectory estimation at intersec-
tions. Comparing the observed motion pattern to the ones stored in a motion
database, several prospective future trajectories are extracted independently for
each vehicle. Probability of each pair of possible future trajectories is then esti-
mated. Luber et al. [200] model joint pairwise interactions between two people
using social information. Authors learn a set of dynamic motion prototypes
from observations of relative motion behavior of humans in public spaces. An
unsupervised clustering technique determines the most likely future paths of
two humans approaching a point of social interaction.

In contrast to multi-agent clustering, Trautman and Krause [313] use Gaus-
sian Processes for making single-agent trajectory predictions. Then, an interac-
tion potential re-weights the set of trajectories based on how close people are
located to each other at every moment. A follow-up work [314] incorporates
goal information into the model: the goal position is added as a training point
into the GP. Another approach by Su et al. [298] uses a social-aware LSTM-
based crowd descriptor, which is later integrated into the deep Gaussian Process
to predict a complete distribution over future trajectories of all people.

Recently, several approaches for non-sequential prediction of vehicle mo-
tion using CNNs were presented [67, 72, 117]. An uncertainty-aware CNN-
based vehicle motion prediction approach is presented by Djuric et al. [72].
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Authors use a high-definition map image with projected prior motion of the
target vehicle and full surrounding context as an input to the CNN, which
produces the short-term trajectory of the target vehicle. The approach is ex-
tended by Cui et al. [67] to inferring multi-modal predictions. Hong et al. [117]
propose two methods for output representation using multi-modal regression
with uncertainty or stacks of grid-map crops. Chai et al. [53] use a fixed set of
state-sequence “anchor” trajectories (clustered from training data), which cor-
respond to possible modes of future behavior, as input to a CNN for mid-level
scene features inference, and predict a discrete distribution over these anchors.
For each anchor, the method regresses offsets from anchor waypoints along
with uncertainties, yielding a Gaussian mixture at each time step.

2.6 Planning-based Approaches

Planning-based approaches solve a sequential decision-making problem by rea-
soning about the future to infer a model of agent’s motion. These approaches
follow the Sense-Reason-Act paradigm introduced earlier in Sec. 2.3. Unlike the
previous two modeling approaches, the planning-based approach incorporates
the concept of a rational agent when modeling human motions. By placing an
assumption of rationality on the human, the models used to represent human
motion must take into account the impact of current actions on the future as
part of its model. As a result, much of the work covered in this section use
objective functions that minimizes some notion of the total cost of a sequence
of actions (motions), and not just the cost of one action in isolation.

Here we classify planning-based approaches into two sub-categories, de-
picted in Fig. 2.8. Forward planning-based approaches (Sec. 2.6.1) use a pre-
defined cost function to predict human motion, and inverse planning-based
approaches (Sec. 2.6.2) infer the cost (or policy) function from observations of
human behavior and then use that cost (or policy) function to predict human
motion.

2.6.1 Forward Planning Approaches
Motion and path planning methods

To make basic goal-informed predictions, several methods use optimal mo-
tion and path planning techniques with a hand-crafted cost-function [46, 100,
322, 340, 353]. Bruce and Gordon [46] propose to use a path planning algo-
rithm to infer how a person would move towards destinations in the environ-
ment. Predictions are performed using a set of learned goals. Gong et al. [100]
use multiple long-term goal-directed path hypothesis from different homotopy
classes, generated with a modified A* algorithm [37]. Xie et al. [340] describe a
Dijkstra-based approach to predict human transitions across dark energy fields
generated from video data. Every goal location generates an attractive dark
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Figure 2.8: Examples of the planning-based approaches: (a) forward planning approach,
which uses a predefined cost function (e.g. Euclidean distance), and (b) inverse planning
approach, which infers the feature-based cost function from observations.

matter Gaussian force field, while every non-walkable location generates a re-
pulsive one. The dark matter functional objects, the map and the goals are
inferred on-line using a Monte Carlo Markov Chain technique. For predicting
human motion in a crowd, Yi et al. [353] introduce an energy map to model
the traveling difficulty of each location in the scene, accounting for obstacles
layout, moving people and stationary groups. The energy map is personalized
for each observed agent, and the Fast Marching Method (FMM) [289] is used
to predict the person’s path. Vasishta et al. [322] use A* search over the poten-
tial cost-map function for pedestrian trajectory prediction, aiming to recognize
illegal crossing intention of the observed agent. The potential field accounts for
semantic properties of the urban environment.

Other methods model the probabilities of future motion based on cost-to-go
value estimates [35, 142, 266, 324, 352]. Yen et al. [352] propose a probabilis-
tic goal-directed motion model that accounts for several goals in the environ-
ment. The method computes the cost-to-go function for each goal and evalu-
ates the probabilities of feasible transitions in each state. A person’s trajectory
is predicted using a particle filter with Monte-Carlo sampling. Best and Fitch
[35] propose a Bayesian framework that exploits the set of path hypotheses to
estimate the intended destination and the future trajectory. To this end, a prob-
abilistic dynamical model is used, which evaluates next states of the agent based
on the decrease of the distance to the intended goal. Hypothesis are generated
from the Probabilistic Roadmap (PRM). Karasev et al. [142] solve the pre-
diction problem using a jump-Markov Decision Process, modeling the agents’
behavior as switching non-linear dynamical systems. A soft MDP policy de-
scribes the nonlinear motion dynamics, and the latent goal variable governs the
switches. The method uses hand-crafted costs for each surface type (e.g. side-
walk, crosswalk, road, grass), and handles time-dependent information such
as traffic signals. Instead of using an MDP formulation, Vasquez [324] pro-
poses the Fast Marching Method (FMM) to compute the cost-to-go function
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for a set of goals. The predictor uses a velocity-dependent probabilistic motion
model, describes the temporal evolution along the predicted path, and offers
a gradient-based goal prediction that allows quick recognition of the intended
destination changes.

Multi-agent forward planning

Most planning-based methods discussed so far do not consider interactions be-
tween agents in the scene. To account for presence of other agents, several
authors propose to modify individual optimal policies locally with physics-
based methods [267, 268, 319, 335] or imitation learning Muench and Gavrila
[217]. A crowd simulation approach that combines global planning and local
collision avoidance is presented by van Den Berg et al. [319]. A global path
for each agent is computed using a Probabilistic Road Map (PRM), consid-
ering only static obstacles. Local collision avoidance along the global path is
done jointly for all agents using the Reciprocal Velocity Obstacles (RVO) [318]
method. Another method [267], presented in Chapter 3 of this thesis, extends
the MDP-based approaches [142, 370] with a fast random-walk based method
to generate joint predictions for all observed people using social forces. In the
follow-up publication this approach is extended considering group-based social
motion constraints [268]. Wu et al. [335] extend the gridmap transition-based
and reachability-based framework [66, 254] with automatic inference of lo-
cal goal points, and calculate the stochastic policy in each cell, augmenting the
physics-based dynamics with optimal motion direction. The motion of pedestri-
ans is predicted jointly with other traffic participants by risk checking of future
states based on gap acceptance model [42]. Instead of using a physics-based ap-
proach (e.g. social forces) for augmenting the MDP-based predictor, Muench
and Gavrila [217] propose to learn an additional interaction-aware Q-function
with imitation learning.

A number of approaches consider cooperative planning in joint state-space
that includes all agents [18, 43, 56, 263]. Broadhurst et al. [43] use Monte
Carlo sampling to generate probability distributions over future trajectories of
the vehicles and pedestrians jointly. The approach considers several available
actions for each agent in the scene: each vehicle executes one of the hand-
crafted behaviors, and humans are assumed to move freely in all directions.
Also Rosmann et al. [264] considers planning for cooperating agents. A set
of topologically distinct candidate trajectories for each person is computed us-
ing trajectory optimization techniques [263]. Among those trajectories the best
candidate is chosen according to a metric that includes group integrity, right
versus left motion bias and curvature constraints. Finally, the encounter is re-
solved jointly in an iterative fashion. The interaction point of minimal spatial
separation is computed between each two people, who adjust their trajectories
accordingly, possibly switching to a different topological candidate. Mavro-
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giannis and Knepper [208] represent multi-agent interaction through the use of
braid groups (topological patterns) which formalize trajectories sets. At infer-
ence time, the problem of predicting joint trajectories is posed as a graph search
in a permutation graph.

Joint planning for the robot and the human is addressed by several works
[22, 56, 95]. Assuming availability of a fixed set of goals, Bandyopadhyay et al.
[22] solve an optimal motion problem for each of it, and generate appropriate
motion policies. The latter are used to estimate the future evolution of the joint
state-space of the robot and the human. Galceran et al. [95] introduce a multi-
policy decision-making systems to generate robot motions based on predicted
movements of other agents in the scene, estimated with a changepoint-based
technique [87]. Likelihood of future actions are sampled from the policies. The
final prediction is generated by an exhaustive search of closed-loop forward
simulations of these samples. The approach is well suited for predicting future
macro-actions (i.e. turn left or right, slow down or speed up). Bahram et al.
[18] generates joint robot and agents’ motions using a sequential game theory
technique. The approach presents an interactive prediction and planning loop
where a sequence of predictions (i.e. motion primitives) is generated for the ego-
vehicle by considering the sequential evolution of the entire scene. Chen et al.
[56] develop a de-centralized multi-agent collision avoidance algorithm, which
resolves local interactions with a learned joint value function that implicitly
encodes cooperative behaviors.

2.6.2 Inverse Planning Approaches

Forward planning approaches, discussed so far, make an explicit assumption
about the optimality criteria (reward or cost function) of an agent’s motion. In
this section we discuss algorithms that estimate the reward function of agents
(or directly a policy) from observations, using statistical and imitation learning
techniques (for a survey on imitation learning techniques applied to robotic
systems we refer the reader to [227]). Inverse planning methods assume that
the reward or cost function, which depends on contextual and social features
and defines the rational behavior, can be learned from observations (see Fig. 2.8

(b)).

Single-agent inverse planning

In their influential work, Ziebart et al. [370] propose to learn a reward function
yielding goal-directed behavior of pedestrians using maximum entropy inverse
optimal control (MaxEnt IOC). Humans are assumed to be near-optimal de-
cision makers with stochastic policies, learned from observations, which are
used to predict motion as a probability distribution over trajectories. Building
upon [370], Kitani et al. [153] expand it to include the labeled semantic map
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of the environment. An IOC method takes the semantic map as an input, and
learns the feature-based cost function that captures agents’ preferences for e.g.
walking on the sidewalk, or keeping some distance from parked cars. Previtali
et al. [247] propose an approach that adopts linear programming formulation
of IRL. Using a discrete and non-uniform representation of the 2D workspace,
it scales linearly with respect to the size of the environment. Chung and Huang
[62] present an MDP-based model that describes spatial effects between agents
and the environment. The authors use IRL to estimate cost of each state as a
linear combination of trajectory length, static and dynamic obstacle avoidance
and steering smoothness. Special context-based spatial effects (SSE) are iden-
tified by comparing the costs of the states, learned with IRL, and the actual
observed trajectories. A follow-up work [63] introduces a feature-based repre-
sentation of SSEs, which can be modeled before being naturally observed, as in
[62].

Instead of IRL, other works use different techniques to learn the reward
function [119, 255]. Rehder et al. [255] solve the problem of intention recogni-
tion and trajectory prediction in one single Artificial Neural Network (ANN).
The destinations and costly areas are predicted from stereo images using a
recurrent Mixture Density Network (RMDN). Planning towards these des-
tinations is performed using fully Convolutional Neural Networks (CNN).
Two different architectures for planning are proposed: an MDP network and
a forward-backward network, both using contextual features of the environ-
ment. Huang et al. [119] propose an approach that exploits two CNNs to
learn a reward function considering spatial and temporal contextual informa-
tion from a video sequences. A Spatial Matching Network (SMN) learns the
spatial context of human motion. An Orientation Network (ON) is used to
model the position variation of the object. The Dijkstra algorithm is used to
find the minimum cost solution over a graph whose edges’ weights are set by
considering the reward function and the facing orientation computed by the
two networks (SMN and ON).

All the detailed methods show that IRL or similar methods are providing
powerful tools to learn human behaviors. Furthermore, Shen et al. [292] show
that under some particular requirements (i.e. when the feature vector, model
parameter and output representation are invariant under a rigid body trans-
formation of the world fixed coordinate frame), IRL is suitable for learning
location-independent transferable motion models.

Imitation learning

Instead of first learning a reward function and then applying planning tech-
niques to generate motion predictions, imitation learning approaches directly
extract a policy from the data. Generative Adversarial Imitation Learning (GAIL)
approach, proposed by Ho and Ermon [114], aims for matching long-term dis-
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tributions over states and actions. It uses a GAN-based [101] optimization pro-
cedure, in which a discriminator tries to distinguish between observations from
experts and generated ones by making model rollouts. Afterwards, a model
is trained to make predictions that yield similar long-term distributions over
states and actions. This method has been successfully applied to learning hu-
man highway driving behavior [168] and training joint pedestrian motion mod-
els [105]. Li et al. [188] extend GAIL by introducing a component to the loss
function, which maximizes the mutual information between the latent struc-
ture and observed trajectories. They test their approach in a simulated highway
driving scenario, predicting the driver’s actions given an input image and aux-
iliary information (e.g. velocity, last actions, damage), and show that it is able
to imitate human driving, while automatically distinguishing between different
types of behaviors.

Differently from GAIL, the deep generative technique by Rhinehart et al.
[257] adopts a fully differentiable model, which is easy to train without the need
of an expensive policy gradient search. By minimizing a symmetrized cross-
entropy between the distributions of the policy and of the demonstration data,
the method allows to learn a policy that generates predictions which balance
precision (i.e. avoid obstacle areas) and diversity (i.e. being multi-modal).

Multi-agent inverse planning

In the following we review several inverse planning approaches that predict
multi-agent motions [90, 162, 167, 179, 202, 241]. Kuderer et al. [167] and
Kretzschmar et al. [162] propose a continuous formulation of the MaxEnt IOC
[370] by considering a continuous spline-based trajectory representation. Their
method relies on several features (e.g. travel time, collision avoidance) to cap-
ture physical and topological aspects of the pedestrians trajectories. Pfeiffer
et al. [241] extend the latter works by introducing the variable end-position of
the each trajectory, thus reasoning over the agents’ goals. Walker et al. [331]
present an unsupervised learning approach for visual scene prediction. The ap-
proach exploits mid-level elements (i.e. image patches) as building blocks for
jointly predicting positions of agents in the scene and changes in their visual ap-
pearance. The learned reward function defines the probability of a patch mov-
ing to a different location in the image. To generate predictions, the method
performs a Dijkstra search on the learned reward function considering several
goals. Ma et al. [202] combine the Fictitious Play [45] game theory method
with the deep learning-based visual scene analysis. Future paths hypothesis are
generated jointly and iteratively: each pedestrian adapts her motion based on
the predictions of the other pedestrians’ actions. IRUs reward function features
encode social compliance, neighborhood occupancy, distance to the goal and
body orientation. Gender and age attributes, extracted with a deep network
from video, define the possible average velocity of pedestrians.
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Lee et al. [179] formulate the prediction problem as an optimization task.
The method reasons on multi-modal future trajectories accounting for agent
interactions, scene semantics and expected reward function, learned using a
sampling-based IRL scheme. The model is wrapped into the single end-to-end
trainable RNN encoder-decoder network, called DESIRE. The RNN architec-
ture allows incorporation of past trajectory into the inference process, which
improves prediction accuracy compared to the standard IRL-based techniques.

The previously discussed approaches for joint prediction assume multi-agent
settings with rational and cooperative behavior of all agents. Differently, several
approaches [111, 178] address the problem by modeling one target person as a
rational agent, acting in a dynamic environment. The influence of other agents
then becomes part of the stochastic transition model of the environment. For
example, Henry et al. [111] propose an IRL-based method for imitating human
navigation in crowded environments. They conjecture that humans take into
account the density and velocity of nearby people and learn a reward function
that weights between these and additional features. Another approach by Lee
and Kitani [178] learns a reward function that explains behavior of a wide
receiver in American football, whose strategy takes into account the behavior
of the defenders. Models of the dynamic environment (e.g. linear or Gaussian
Processes) are used as transitions in the IRL framework.

Rhinehart et al. [259] has developed a multi-agent forecasting model called
Estimating Social-forecast Probabilities (ESP) that uses exact likelihood infer-
ence (unlike VAEs or GANs) derived from a deep neural network for forecast
trajectories. In contrast to most standard trajectory forecasting methods, the
approach is able to reason conditionally based on additional information that
it was not trained to use by accepting agent goals at test time. The approach
uses a generative multi-agent model in order to perform PREdiction Condi-
tioned On Goals (PRECOG).

2.7 Contextual Cues

In this section we discuss the categorization of the contextual cues, in those
dealing with the target agent (Sec. 2.7.1), the other dynamic agents (Sec. 2.7.2)
and the static environment (Sec. 2.7.3).

2.7.1 Cues of the Target Agent

Most essential cues, used to predict future states of an agent, are related to
the agent itself. To this end most of the algorithms use current position and
velocity of the target agent [18, 23, 30, 31, 80, 91, 107, 142, 153, 166, 167,
201, 236, 257, 268, 313, 335, 370], often considering also the history of re-
cent states/velocities. Position and velocity are also the main attributes of the
target agent in vehicle motion prediction tasks [43, 112, 136]. Considering the
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head orientation or full articulated pose of the person [41, 109, 156, 157, 212,
250, 265, 287, 317] may bring valuable insights on the target agent’s imme-
diate intentions or their awareness of the environment. Considering additional
semantic attributes of the target agent may further refine the quality of pre-
dictions: gender and age in [202], personality type [32], class of the dynamic
agent (e.g. a person or a cyclist in pedestrian areas, motorcycle, car or a truck
on a highway) [6, 20, 66], person’s attention and awareness of the robot’s pres-
ence in [41, 157, 226], raised arm as a bending intention indicator for cyclists
[157, 245].

2.7.2 Cues of Other Dynamic Agents

Most of the time all agents navigate in a shared environment, adapting their ac-
tions, timing and route based on the others’ presence and behavior. Therefore
for predicting motion it is beneficial to consider interaction between moving
agents. We classify the existing approaches in three categories: unaware predic-
tors, individual-aware predictors and group-aware predictors.

The class of unaware predictors includes all methods that generate motion
prediction for a single agent, considering only the static contextual cues of the
environment. Having no need to explicitly define or learn the interaction model,
these methods are simpler to set up, require less training data to generalize, typ-
ically have less parameters to estimate. Simpler physics-based methods, such as
linear velocity projection or constant acceleration models, are unaware pre-
dictors [19, 66, 82, 83, 94, 159, 322, 323, 341, 368]. Many pattern-based
[29, 30, 51, 54, 57, 99, 107, 108, 112, 123, 147, 149, 165, 166, 206, 207,
214, 222, 243, 261, 279, 301, 302, 305, 311, 317, 334, 339, 344, 346] and
planning-based methods [100, 142, 153, 257, 266, 324, 352, 370] are unaware
predictors, due to the increase of complexity for conditioning the learned tran-
sition patterns or optimal actions on the presence and positions of other agents.
Methods for predicting pedestrians crossing behavior [104, 143, 156,212, 250,
265, 287] and cyclist motion [245, 246, 278, 358] typically treat each agent in-
dividually.

Individual-aware predictors methods consider the interaction between agents
by modeling or learning their influence on each other. Physics-based methods
that use social forces [41, 80, 91, 141, 198, 226, 356] or similar local inter-
action models [23, 139, 149, 201, 233, 236, 237, 240, 262, 347] are classical
examples of individual-aware prediction models. A pattern-based approach by
Ikeda et al. [124] models deviations from the desired path using social forces. In
general, however, learning joint motion patterns is a considerably harder task.
For example, Trautman and Krause [313], Trautman et al. [314] learn unaware
motion patterns, and then evaluate the predicted probability distribution over
the joint paths using an explicit interaction potential. Luber et al. [200] learn
pairwise joint motion patterns of two humans approaching the spatial point of
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interaction. The approach by Yoo et al. [354] learns which motion patterns are
likely to occur at the same time and uses this information for predicting the
future motion of several dynamic objects. Some approaches propose to learn
a motion policy or reward function that accounts for dynamic objects in the
surrounding [62, 63, 111, 178, 327]. Chapter 3 describeS an MDP planning-
based method, where optimal policies of people are locally modified to account
for other dynamic entities [267]. Wu et al. [335] and Zechel et al. [357] dis-
count predicted transition probabilities to states in collision with other agents.
Muench and Gavrila [217] decompose the interactive planning problem into
two policies with the corresponding Q-functions: one for prediction in static
environment, and another for interaction prediction in an obstacle-free environ-
ment. Many deep learning methods consider interactions between participants:
explicitly modeling interacting entities [4, 11, 25, 60, 79, 89, 90, 105, 109,
120, 127, 158, 235, 242, 251, 259, 277, 280, 293, 298, 320, 321, 328, 343,
345, 362], implicitly as a result of pixel-wise prediction [331], or by learning
a joint motion policy [179, 202, 290, 359]. Many vehicle prediction methods
consider interaction between traffic participants, e.g. [3, 6, 18, 43, 53, 67—
69, 71, 72, 117, 131, 136, 147, 170, 184, 234, 252, 297]. Kooij et al. [157]
consider whether the ego-vehicle is on a potential collision course when pre-
dicting the road user path in their SLDS-based approach.

Group-aware predictors also recognize affiliations and relations of individ-
ual agents and respect the probability of them traveling together, as well as
model an appropriate reaction of other agents to the moving group formation.
For example, several physics-based methods model group relations by intro-
ducing additional attractive forces between group members [61, 140, 216, 237,
248, 262,288, 295, 347]. Several learning-based approaches that use LSTMs
[4, 25, 242, 293, 321, 360] may be capable of implicitly learning intra- and
inter-group coherence behavior, however only the work by Bisagno et al. [39]
states this capability explicitly. A planning-based approach which implicitly
respects group integrity by increasing the costs of passing between group mem-
bers is presented by Rosmann et al. [264] and an approach that explicitly mod-
els group motion constraints by Rudenko et al. [268], which is presented here
in Chapter 3.

Algorithms using high-level context information about dynamic agents pro-
duce more precise predictions in a variety of cases. Learning advanced social
features of human motion improves interactive predictors performance, for in-
stance different parameters for interactions of heterogeneous agents [91], ad-
vanced motion criteria such as social comfort of navigation [167, 200, 241] or
“desire to move with the flow” or “avoid dense areas” [111]. Some approaches
model prior knowledge in terms of the dynamics of moving agents [179, 264],
human attributes and personal traits [202]. Chung and Huang [63] present a
general framework for learning context-related spatial effects, which affect the
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human motion, such as avoiding going through a waiting line, or in front of a
person, who observes the work of art in a museum.

Modeling also the influence of the robot’s presence on the agents’ paths
is another interesting line of research: Trautman and Krause [313] and Oli
et al. [226] tackle this problem by placing the robot as a peer-interacting agent
among moving humans. Several authors [162, 167, 241, 264] optimize joint
trajectories for all humans and the robot. A relevant case of modeling the ef-
fect of robotic herd actions on the location and shape of the flock of animals
is studied by Sumpter and Bulpitt [299]. Similarly, Schmerling et al. [281] con-
dition human response on the candidate robot actions for modeling pairwise
human-robot interaction. Eiffert and Sukkarieh [79] include the robot as an
interacting agent in the LSTM-based predictor. Tang and Salakhutdinov [307]
compute a conditional probability density over the trajectories of other agents
given the hypothetical rollout for the robot.

2.7.3 Cues of the Static Environment

Humans adapt their behaviors according not only to the movements of the
other agents but also to the environment’s shape and structure, making exten-
sive use of its topology to reason on the possible paths to reach the long-term
goal. Many existing prediction algorithms make use of such geometric infor-
mation of the environment.

Some approaches produce unaware predictions, assuming an obstacle-free
environment. This category includes several physics-based approaches [19, 41,
82, 83, 94, 240, 283, 368]. Pattern-based methods usually model obstacles im-
plicitly, by learning collision-free patterns [29, 51, 54, 57, 81, 88, 108, 109,
123, 129, 134, 149, 163, 165, 166, 206, 207, 214, 243, 278, 279, 300, 301,
305, 309, 311, 325, 333, 334, 344, 346, 354]. When facing a change in the
obstacles’ configuration, such patterns become obstacle-unaware. Location-
independent motion patterns are usually obstacle-unaware [99, 112, 200, 222,
317, 339]. Pedestrian crossing prediction methods typically assume obstacle-
free environment [104, 143, 156, 157, 212, 250, 265, 287], as well as most
of the vehicle prediction methods [6, 69, 71, 147, 234, 252, 302], which as-
sume the road-surface to be free of static obstacles. Finally, many methods con-
sider only dynamic entities, but no static obstacles in the environment [4, 9-
11, 18, 25, 31, 39, 43, 68, 79, 89, 90, 105, 120, 127, 136, 150, 167, 184, 235,
242,251,293, 298, 313, 314, 321, 327, 328, 343, 356, 360].

In several approaches the exact pose of the objects is known and utilized to
compute more informed predictions (we refer to such methods as to obstacle-
aware methods). Mainly the social force-based and similar techniques model
the interaction between the moving agents and individual static obstacles [80,
91, 139, 141, 142, 162, 198, 201, 226, 233, 236, 237, 259, 262, 318, 347,
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357]. Several location-independent pattern-based methods [13, 14] can handle
static objects avoidance.

Still, obstacle-aware methods may fail in very cluttered environments, due
to the complexity of representing an environment with a set of individual obsta-
cles. To overcome this difficulty many prediction approaches use maps which
are a more complete representation of the environment (we call them map-
aware methods). Occupancy grid maps are the most common representation
for these approaches, e.g. in the physics-based approach by Rehder and Kloden
[254] reachability-based transitions are calculated on a binary grid-map. Par-
ticularly the planning-based approaches use this kind of representation: thanks
to the map they can infer global, intentional behaviors of the agents [35, 46, 56,
62,63,100, 111, 124, 190, 241,247, 264, 266-268, 324, 340, 352, 353, 370].
Fig. 2.5 shows the difference between the pure motion based predictions, the
obstacle-aware and the map-aware approaches. The latter perform better in
terms of global obstacle avoidance behavior during prediction.

Semantic map based approaches extend the map-aware approaches by con-
sidering various semantic attributes of the static environment. A semantic map
[20, 66,142,153,217,255,257,258,261, 280,292,305, 320, 322, 323, 362]
or extracted features from a top-down image [158, 277, 307, 345] can be
used to capture people preferences in walking on a particular type of surfaces.
Furthermore, planning-based methods often use prior knowledge on potential
goals in the environment [35, 142, 247, 266, 324]. Location- and time-specific
information in the particular environment may help to improve prediction qual-
ity [214, 300].

Due to the high level of structure in the environment, methods in autono-
mous driving scenarios extensively use available semantic information, such as
street layout and traffic rules [3, 53, 61, 67, 72, 104, 117, 131, 143, 156, 170,
179, 239, 245, 246, 297, 341] or current state of the traffic lights [104, 131,
142], also for predicting pedestrian and cyclist motion [107, 157, 159].

2.8 Motion Prediction Evaluation

An important challenge for motion prediction methods is the design of exper-
iments to evaluate their performance with respect to other methods and the
requirements from the targeted application. In this section we review and dis-
cuss common metrics and datasets to this end.

2.8.1 Performance Metrics

Due to the stochastic nature of human decision making and behavior, exact pre-
diction of trajectories is rarely possible, and we require measures to quantify
the similarity between predicted and actual motion. Different prediction types —
see Fig. 1.1 — require different measures: for single trajectories we need geomet-
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ric measures of trajectory similarity or final displacement, for parametric and
non-parametric distributions over trajectories we can use geometric measures
as well as difference measures for probability distributions. Metrics, commonly
used in the literature, are summarized in Table 2.1.

Geometric accuracy metrics

Geometric measures are the most commonly used across all application do-
mains. Several surveys have considered the topic of trajectory analysis and
comparison [215, 231, 249, 361, 364] where, based on the previous ones,
only the recent survey by Quehl et al. [249] specifically considers geometric
similarity measures for trajectory prediction evaluation. In addition to that, we
review the probabilistic metrics and the assessment of distributions with geo-
metric methods, and the experiments to evaluate robustness in the following
sub-sections.

Summarizing [215, 249], we consider eight metrics:

Mean Euclidean Distance (MED), also called Average Displacement Error
(ADE), averages Euclidean distances between points of the predicted trajectory
and the ground truth that have the same temporal distance from their respective
start points. An alternate form computes MED in a subspace between coeffi-
cients of the trajectories’ principal components (PCA-Euclid). A third variant
(MEDP) is a path measure able to compare paths of different length. For each
(x,y)-point of the predicted path, the nearest ground truth point is searched.
Being a path measure, MEDP is invariant to velocity differences and temporal
misalignment but does not account for temporal ordering. A fourth variant (n-
ADE) measures MED only on non-linear segments of trajectories. MED mea-
sures are widely used by many authors across all domains, see Table 2.1. Many
authors evaluate probabilistic predictions by computing expected MED under
the predictive distribution, referring to it as mean ADE, weighted mean ADE,
or, abusing notation, simply MED or ADE. This type of evaluation, however,
does not measure how good the predictive distribution matches the ground
truth distribution, falling short of being a true probabilistic measure. For ex-
ample, it favors point predictions and avoids larger variances, as they often
increase the expected ADE.

Dynamic Time Warping (DTW) [34] computes a similarity metric between
trajectories of different length as the minimum total cost of warping one trajec-
tory into another under some distance metric for point pairs. As DTW operates
on full trajectories, it is susceptible to outliers.

Modified Hausdorff Distance (MHD) [78] is related to the Hausdorff dis-
tance as the maximal minimal distance between the points of predicted and
actual trajectory. MHD was designed to be more robust against outliers by al-
lowing slack during matching and to compare trajectories of different length.
A further variant is the #rajectory Hausdorff measure (THAU) [177], a path
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metric that computes a weighted sum over three distance terms each focusing
on differences in perpendicular direction, length, and orientation between the
paths. The weights can be chosen to be application-dependent.

Longest Common Subsequence (LCS) [49] aligns two trajectories of differ-
ent length so as to maximize the length of the common subsequence, i.e. the
number of matching points between both trajectories. A good match is deter-
mined by thresholding a pair-wise distance and time difference where not all
points need to be matched. LCS is more robust to noise and outliers than DTW
but finding suitable values for the two thresholds is not always easy.

CLEAR multiple object tracking accuracy (CLEAR-MOTA) was initially
introduced as a performance metric for target tracking [33]. In the context
of prediction evaluation, it is similar to LCS in that it sums up good matches
between points on the predicted trajectory and the ground truth. The difference
is that the concept of pair-wise matches/mismatches is more complex including
false negatives, false positives and non-unique correspondences.

In addition to the metrics considered in [215, 249], relevant metrics used
in the reviewed literature include the Quaternion-based Rotationally Invariant
LCS (QRLCS), which is the rotationally invariant counterpart of LCS [112],
and several measures that quantify different geometric aspects in addition to
trajectory or path similarity:

Final Displacement Error (FDE) measures the distance between final pre-
dicted position and the ground truth position at the corresponding time point.
If the prediction is represented by a distribution, many authors compute ex-
pected FDE. FDE however, is not appropriate when there are multiple possible
future positions.

Prediction Accuracy (PA) uses a binary function to classify a prediction as
correct if the predicted position fulfills some criteria, e.g. is within a threshold
distance away from the ground truth. Percentage of correctly predicted trajec-
tories is then reported. PA allows to incorporate suitable invariances into the
distance function such as allowing certain types of errors.

As also pointed out by Quehl et al. [249], the challenge in choosing a suit-
able measure is that each of these measures usually produce quite different
results. For the sake of an unbiased and fair evaluation of different predic-
tion algorithms, measures should be chosen not to suit a particular method but
based on the requirements from the targeted application. An application which
includes a lot of different velocities, for example, should not solely rely on path
measures.

Probabilistic accuracy metrics

One of the drawbacks of geometric metrics is their inability to measure uncer-
tainty and also multimodal nature of predictions, e.g. when the target agent
may take different paths to reach the goal, or when an observed partial trajec-
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Metric Used by
Geometric Average Displacement Er- [4, 6, 11, 25, 39, 41, 53, 60, 67-69, 72, 79, 89,
ror (ADE) 90, 105,109,112,117,120, 123,127,131, 142,
147, 150, 157, 158, 184, 201, 212, 222, 234~
236, 242, 246, 250-252, 257, 264, 277-280,
287, 293, 297, 298, 300, 325, 327, 328, 335,
341, 343-347, 353, 354, 358, 360, 362]

Final Displacement Error [4, 11, 39, 41, 60, 62, 79, 89, 105, 109, 120,
(FDE) 123, 127, 158, 201, 222, 235, 251, 277, 293,
298, 321, 327, 328, 343-346, 360, 362]

Modified Hausdorff Dis- [66, 90, 107,129, 153, 266-268, 280, 292, 324,
tance (MHD) 354]

Prediction Accuracy (PA) [31, 35,71, 91, 117, 124]

Probabilistic Negative Log Likelithood [53, 66, 127, 131, 206, 245, 259, 266, 302]
(NLL)
Negative Log Loss (NLL) [153, 202, 247, 307, 324]

Predicted Probability (PP)  [156, 157, 254, 267, 268]

Min. Avg. or Final Dis- [11,53,117,127,179, 184,234,257,259, 261,
placement Error (mADE, 307, 320]

mFDE)

Cumulative Probability  [302]

(CP)

Table 2.1: Metrics to evaluate motion prediction

tory matches several previously learned motion patterns. Moreover due to the
stochasticity of the human behaviors, motion prediction algorithms need to be
evaluated on their accuracy to match the underlying probability distribution of
human movements. Several probabilistic accuracy metrics can be used for this
purpose.

Many variational inference and machine learning algorithms [40, 203] use
the Kullback-Leibler (KL) divergence [171] to measure dissimilarity of two dis-
tributions, e.g. the unknown probability distribution of human behavior p(sy.1)
and the predicted probability distribution q(s;.7|0), with 6 being a set of pa-
rameters of the chosen prediction model. The KL divergence is computed as
dir(pllg) = 3, . es{=p(s1:1)log q(s1:710) + p(s1.1) logp(s1.7)} with the space
of all trajectories S. Minimizing the dky.(pllq) corresponds to maximizing the
log-likelihood function for 6 under the predicted distribution q(s1.7|0). Differ-
ent surveyed papers have adopted variants of the KL divergence as accuracy
metric for their stochastic predictions.

For example, the average Negative Log Likelihood or average Negative Log
Loss evaluates the negative log likelihood term (: > .replogg (slzTIG)) of dgr.

from a set of ground truth demonstrations D = {s} ; }]::1 with the total number
of demonstrations N. Furthermore, several approaches use the Predicted Prob-
ability (PP) metric, (~ Y_[_, q(s0)) or its negative logarithm, to calculate the
probability of the ground truth path (i.e si.1) on the predicted states distri-
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bution. For the above metrics, the computation of the log likelihood depends
on the chosen model, its induced graph and the corresponding factorization.
Finally, the Cumulative Probability (CP) metric computes the fraction of the
predictive distribution that lies within a radius r from the correct position for
various values of r.

Several recently introduced metrics follow a sampling approach to evaluate
a probability distribution. Minimum Average Displacement Error (mADE) met-
ric [259, 284, 307, 310, 332], as well as variety loss, oracle, Minimum over N,
Best-of-N, top n%, or minimum Mean Squared Distance (minMSD), computes
Euclidean distance between the ground truth position of the agent s; at time t
and the closest (or the n% closest) of the K samples from the predicted proba-
bility distribution: miny, ||s; —s¥||. Similarly, minimum Final Displacement Error
(mFDE) evaluates only the distribution at the prediction horizon T. Such met-
rics encourage the predicted distribution to cover multiple modes of the ground
truth distribution, while placing probability mass according to the mode like-
lihood. An evaluation of the robustness of top 1 vs. top n% metrics by Bhat-
tacharyya et al. [38] has shown that the top #% metric produces more stable
results.

Other performance metrics

Prediction accuracy is by far the primary performance indicator in the reviewed
literature across approaches and application domains. In particular for long-
term prediction methods, authors evaluate accuracy against the prediction hori-
zon [18, 41, 60, 62, 69, 95, 99, 112, 124, 129, 142, 143, 178, 241, 242, 250~
252,254, 267, 268, 300, 302, 311, 323, 335, 343]. Much fewer authors ad-
dress other aspects of robustness and investigate the range of conditions under
which prediction results remain stable and how they are impacted by different
types of perturbations.

Experiments to explore robustness evaluate prediction accuracy as a func-
tion of various influences: the length or duration of the observed partial trajec-
tory until prediction (addresses the question of how long the target agent needs
to be observed for a good prediction) [153, 179, 251], the size of the training
dataset [123, 302, 323, 326], number of agents in the scene [259], input data
sampling frequency and the amount of sensor noise [31] or amount of anoma-
lies in the training trajectories [108]. Several authors report a separate accuracy
measurement for the more challenging (e.g. non-linear or anomalous) part of
the test set [89, 123, 157], or evaluate the model’s performance on different
classes of behavior, e.g. walking or stopping [279]. Analysis of generalization,
overfitting and input utilization by a neural network, presented by Scholler
et al. [284], makes a good case for robustness evaluation.

Furthermore, to quantify efficiency of a prediction method, some authors
relate inference time to the number of agents in the scene [267, 268, 311], and
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only a few papers provide an analysis of their algorithms’ complexity [35, 54,
143, 268, 362].

2.8.2 Datasets

In order to evaluate the quality of predictions, predicted states or distributions
are usually compared to the ground truth states using standard datasets of
recorded motion. Availability of annotated trajectories, represented with the
sequence of states or bounding boxes in the top-down view, sets prediction
benchmarking datasets aside from the other popular computer vision datasets,
where the ground truth state of the agent is not available and is difficult to
estimate.

Common recording setup includes a video-camera with static top-down
view of the scene, or ground-based lasers and/or depth sensors, mounted on
a static or moving platform. Detected agents in each frame are labeled with
unique IDs, and their positions with respect to the global world frame are given
as (x,y) coordinates together with the frame time-stamp t, i.e. (id, t,x,y). Of-
ten the coordinate vector is augmented with orientation and velocity informa-
tion. Furthermore, social grouping information, gaze directions, motion mode
or maneuver labels and other contextual cues can be provided. Apart from
this specific form of labeling, further requirements to prediction benchmarking
datasets include interaction between agents, varying density of agents, presence
of non-convex obstacles in the environment, availability of the semantic map
and long continuous observations of the agents.

In Table 2.2 and 2.3 we review the most popular datasets, used for evalu-
ation in the surveyed literature. Out of many datasets, used for benchmarking
by different authors, we picked those used by at least two independent teams,
excluding the creators of the dataset. We believe that this is a good indica-
tion of the dataset’s relevance, which also supports the primary purpose of
benchchmarking — comparing performance of different methods on the same
dataset. Additionally, in Table 2.4 we include three recent datasets, which do
not meet the selection criterion, but cover valuable aspects, missing from the
earlier datasets. This includes the first dataset of cyclists trajectories [246], the
first dedicated benchmark for human trajectory prediction [160, 276] and our
first dataset of human motion trajectories with accurate motion capture data
[270], presented in Chapter 5 of this thesis.
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2.9 Discussion

There has been great progress in developing advanced prediction techniques
over the last years in terms of method diversity, performance and relevance to
an increasing number of application scenarios. In this section, we summarize
and discuss the state of the art and pose the three questions initially raised in
the introduction:

Q1: are the evaluation techniques to measure prediction performance good
enough and follow best practices?

This is discussed in Sec. 2.9.1 by reviewing the existing benchmarking practices
including metrics, experiments and datasets.

Q2: have all prediction methods arrived on the same performance level and the
choice of the modeling approach does not matter anymore?

This is discussed in Sec. 2.9.2 where we consider the theoretical and demon-
strated ability of the different modeling approaches to solve the motion predic-
tion problem by accounting for contextual cues from the environment and the
target agent. And:

Q3: is motion prediction solved?

This is discussed in Sec. 2.9.3 by revisiting the requirements from the different
application scenarios. Finally, in the conclusions to this thesis (Chapter 7) we
summarize the state of motion prediction, outline open challenges and suggest
future research directions.

2.9.1 Benchmarking

Evaluating the performance of a motion prediction algorithm requires choos-
ing appropriate testing scenarios and accuracy metrics, as well as studying the
methods’s robustness against various variables, such as the number of interact-
ing agents or amount of maneuvering in the data.

Depending on the application area, the testing scenario may be an intersec-
tion, a highway, a pedestrian crossing, shared urban street with heterogeneous
agents, a home environment or a crowded public space. Existing datasets, sum-
marized in Sec. 2.8.2, cover a wide range of scenarios, e.g. indoor [48, 270, 366]
and outdoor environments [181, 224, 236], pedestrian areas [28, 205], urban
zones [262, 283] and highways [64, 65, 161], and include trajectories of various
agents, such as people, cyclists and vehicles. However, these datasets are usu-
ally semi-automatically annotated and therefore only provide incomplete and
noisy estimation of the ground truth positions (due to annotation artifacts).
Furthermore, length of the trajectories is often not sufficient for evaluation in
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some application domains, where long-term predictions are required. More-
over, the amount of interactions between recorded agents is often limited or
disbalanced (very few agents are interacting, ergo misinterpreting such cases is
not reflected in the lower benchmark scores). Finally, relevant semantic infor-
mation about static (i.e. grass, crosswalks, sidewalks, streets) and dynamic (i.e.
human attributes such as age, gender or group affiliation) entities is usually not
recorded.

Accuracy metrics, described in Sec. 2.8.1, offer a rich choice for benchmark-
ing, ranging from computing geometric distances between points (ADE, FDE)
also accounting for temporal misalignments (DTW, MHD), to probabilistic
policy likelihood measures (NLL) and sampling-based distribution evaluation
(mADE). For long-term forecasts made in topologically non-trivial scenarios,
results are usually multi-modal and associated with uncertainty. Performance
evaluation of such methods should make use of metrics that account for this,
such as negative log-likelihood or log-loss derived from the KLD. Not all au-
thors are currently using such metrics. Even for short-term prediction horizons,
for which a large majority of authors use geometric metrics only (AED, FDE),
probabilistic metrics are preferable as they better reflect the stochastic nature
of human motion and the uncertainties involved from imperfect sensing.

Another issue of benchmarking is related to variations in exact metric for-
mulation and different names used for the same metric, e.g. for the ADE- and
likelihood-based metrics, as indicated in Sec. 2.8.1. Additionally, precision is
often evaluated on a single arbitrary prediction horizon. These aspects obstruct
comparison of the relative precision of various methods.

Furthermore, very few authors currently address robustness as a relevant
issue/topic. This is surprising as prediction needs to be robust against a vari-
ety of perturbations when deployed in real systems. Examples includes sensing
and detection errors, tracking deficiencies, self-localization uncertainties or map
changes.

On question 1:

We conclude that O1 is not confirmed. Despite the numerous metrics, datasets
and experiment designs, used in individual works, benchmarking prediction
algorithms lacks a systematic approach with common evaluation practices.
For evaluating prediction quality, researchers should opt for more complex
testing scenarios (which include non-convex obstacles, long trajectories, colli-
sion avoidance maneuvers and non-trivial interactions) and the complete set
of metrics (both geometric and probabilistic). It is a good practice to condi-
tion the forecast precision on various prediction horizons, observation periods
and the complexity of the scene, e.g. defined by how many interacting agents
are tracked simultaneously. Furthermore, perfect sensing, perception and track-
ing is not always achieved in real-life operation, and therefore algorithms’ per-
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formance ideally should be investigated in realistic conditions and supported
by robustness experiments, e.g. see Sec. 2.8.1. Performing proper performance
analysis would clarify application potential and effective prediction horizon of
many methods.

Similar benchmarking practices should be applied to runtime evaluation.
Considering efficiency on embedded CPUs of autonomous systems is impor-
tant for the algorithm’s design and evaluation. To prove applicability in real-
life scenarios (e.g. in the pipeline with time-sensitive local and global motion
planners), discussion should include formal complexity and runtime analysis,
conditioned on the scene complexity and prediction horizon.

For a fair objective comparison of the prediction algorithms, developing
a standard benchmark with testing scenarios and metrics is becoming a task
of critical importance, e.g. given the rapid growth in published literature (see
Fig. 2.2). The first attempt to build such a benchmark, TrajNet, is taken by
Sadeghian et al. [276], with the follow up, TrajNet++ [160], actively being
promoted in thematic workshops. TrajNet and TrajNet++ are based on selected
trajectories from the ETH, UCY and Stanford Drone Dataset and uses the ADE
and FDE evaluation metrics. We encourage more researchers to follow this
example and contribute to the unification of benchmarking practices.

2.9.2 Modeling Approaches

With such a wide variety of motion modeling approaches, a natural question
arises: which one should be preferred? In this section we discuss the inherent
strengths and limitations of different approaches’ classes and the efforts to in-
corporate various contextual cues. This discussion continues in Sec. 2.9.3 with
highlighting the specifics of several key tasks in the application domains.
Physics-based approaches are suitable in those situations where the effect
of other agents or the static environment, and the agent’s motion dynamics
can be modeled by an explicit transition function. Many of the physics-based
approaches naturally handle joint predictions and group coherence. With the
choice of an appropriate transition function, physics-based approaches can be
readily applied across multiple environments, without the need for training
datasets (some data for parameter estimation is useful, though). The down-
side of using explicitly designed motion models is that they might not capture
well the complexity of the real world. The transition functions tend to lack
information regarding the “greater picture”, both on the spatial and the tem-
poral scale, leading to solutions that represent local minima (“dead ends”).
In practice, this limits the usability of physics-based methods to short predic-
tion horizons and relatively obstacle-free environments. All in all, the existence
of fast approximate inference, the applicability across multiple domains under
mild conditions, and the interpretability make physics-based approaches a pop-
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ular option for the collision avoidance of the mobile platforms (e.g. self-driving
vehicles, service robots) and the people tracking applications.

Pattern-based approaches are suitable for environments with complex un-
known dynamics (e.g. public areas with rich semantics), and can cope with
comparatively large prediction horizons. However, this requires ample data
that must be collected for training purposes in a particular type of location
or scenario. One further issue is the generalization capability of such learned
model, whether it can be transferred to a different site, especially if the map
topology changes (cf. service robot in an office where the furniture has been
moved). Pattern-based approaches tend to be used in non-safety critical appli-
cations, where explainability is less of an issue and where the environment is
spatially constrained.

Planning-based approaches work well if goals, that the agents try to accom-
plish, can be explicitly defined and a map of the environment is available. In
these cases, the planning-based approaches tend to generate better long-term
predictions than the physics-based techniques and generalize to new environ-
ments better than the pattern-based approaches. In general, the runtime of
planning-based approaches, based on classical planning algorithms (i.e. Dijk-
stra [285], Fast Marching Method [289], optimal sampling-based motion plan-
ners [132, 138], value iteration [195]) scales exponentially with the number of
agents, the size of the environment and the prediction horizon [275].

On question 2:

In our view, Q2 is not confirmed. As we have seen, the different modeling
approaches have various strengths and weaknesses. Although in principle it
could be possible to incorporate the same contextual cues, there have been
so far insufficient studies to compare prediction performance across modeling
approaches. Moreover, different modeling approaches exhibit varying degree
of complexity and efficiency in including contextual cues from different cate-
gories. Physics-based methods are by their very nature aware of the target agent
cues and may be easily extended with other ones (e.g. social-force-based [110]
and circular distribution-based [66]). Pattern-based methods can potentially
handle all kind of contextual information which is encoded in the collected
datasets. Some of them are intrinsically map-aware [30, 165, 265]. Several oth-
ers can be extended to include further types of contextual information (e.g.
[4, 25,242, 313, 328]) but such extension may lead to involved learning, data
efficiency and generalization issues (e.g. for the clustering methods [30, 57]).
Planning-based approaches are intrinsically map- and obstacle-aware, natural
to extend with semantic cues [153, 257, 268, 370]. Usually they encode the con-
textual complexity into an objective/reward function, which may fail to prop-
erly incorporate dynamic cues (e.g. changing traffic lights). Therefore, authors
have to design specific modifications to include dynamic cues into the predic-
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tion algorithm (such as Jump Markov Processes in [142], local adaptations of
the predicted trajectory in [267, 268], game-theoretic methods in [202]. Unlike
for the pattern-based approaches, target agents cues are natural to incorporate,
e.g. as in [167, 202, 267], as both forward and inverse planning approaches
rely on a dynamical model of the agents. Contextual cues-dependent parame-
ters of the planning-based methods (e.g. reward functions for inverse planning
and models for forward planning) are trivial and typically easier to learn but
inference-wise less efficient for high-dimensional (target) agent states compared
to the simple physics-based models.

2.9.3 Application Domains

In Sec. 2.9.2 we have shown that all modeling approaches theoretically can han-
dle various contextual cues. However, the question of preferring one approach
over the others also depends on the task at hand.

Service robots

Predictors for mobile robots usually estimate the most likely future trajectory of
each person in the vicinity of the robot. The usual setup includes cameras, range
and depth sensors mounted on the robot, operating on a limited-performance
mobile CPU.

Physics-based or pattern-based human interaction models, capable of pro-
viding short-term high-confidence predictions (i.e. for 1-2 seconds), are best
suited for local motion planning and collision avoidance in the crowd. Meth-
ods used to this end should have fast and efficient inference for predicting short-
term dynamics of several people around the robot. In the simplest case, even
linear velocity projection is sufficient for smoothing the robot’s local planning
[19, 56]. More advanced methods should handle human-human interaction
[4, 91, 105, 216, 236], the influence of robot’s presence and actions on hu-
man motion [79, 226, 259, 281] and high-level body cues of human motion for
disambiguating the immediate intention [109, 157, 250, 317]. In safety-critical
applications, reachability-based methods provide a guarantee on local collision
avoidance [23]. Furthermore, understanding local motion patterns is useful for
compliant and unobstructive navigation [229, 329].

For global path and task planning, on the other hand, long-term multi-
hypothesis predictions (i.e. for 15-20 seconds ahead) are desired, posing a con-
siderably more challenging task for the prediction system. Reactivity require-
ment is relaxed, however understanding dynamic [32, 202] and static contex-
tual cues [62, 66, 153, 300], which influence motion in the long-term perspec-
tive, reasoning on the map of the environment [142, 267] and inferring inten-
tions of observed agents [35, 255, 324] becomes more important. For both
local and global path planning, location-independent methods are best suited
for predicting motion in a large variety of environments [23, 90, 293].
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In terms of accuracy of the current state-of-the-art methods, experimental
evaluations on simpler datasets, such as the ETH and UCY, show an average
displacement error of 0.19 — 0.4 m for 4.8 s prediction horizon [4, 251, 328,
347]. Linear velocity projection in these scenarios is estimated at 0.53 m ADE.
In more challenging scenarios of the ATC dataset with obstacles and longer
trajectories an average error of 1.4 — 2m for 9 s prediction has been reported

[4, 268, 300].

Self-driving vehicles

The early recognition of maneuvers of road users in canonical traffic scenar-
ios is the subject of much interest in the self-driving vehicles application. Sev-
eral approaches stop short of motion trajectory prediction (i.e. regression) and
consider the problem as action classification, while operating on short image
sequences. Sensors are typically on-board the vehicle, although some work in-
volves infrastructure-based sensing (e.g. stationary cameras or laser scanners)
which can potentially avoid occlusions and provide more precise object local-
ization.

Most works consider the scenario of the laterally crossing pedestrian, deal-
ing with the question what the latter will do at the curbside: start walking,
continue walking, or stop walking [143, 156, 157, 283]. Some works enlarge
the pedestrian crossing scenario, by allowing some initial pedestrian movement
along the boardwalk before crossing (Schneider and Gavrila [283] perform
trajectory prediction, while other approaches are limited to crossing intention
recognition, e.g. [85, 154, 282]). This scenario is safety-critical and crucial for
autonomous vehicles to solve with high confidence. Pose and high-level contex-
tual cues of the target agent [157], and the scene context modeling (e.g. location
and type of the obstacles [217, 330], state of the traffic lights [142]) are helpful
to improve the crossing trajectory prediction.

As to cyclists, Kooij et al. [157] consider the scenario of a cyclist moving in
the same direction as the ego-vehicle, and possibly bending left into the path
of the approaching vehicle. Pool et al. [246] consider the scenario of a cyclist
nearing an intersection with up to five different subsequent road directions.
Both involve trajectory prediction.

For predicting motion of both cyclists and vehicles is it important to con-
sider multi-modality and uncertainty of the future motion. Recently many au-
thors have proposed solutions to this end [53, 67, 117, 362]. Furthermore, it is
important to consider coordination of actions between the vehicles [259, 281].

It is difficult to compare the experimental results, as the datasets are varying
(different timings of same scenario, different sensors, different metrics). Several
works report improvements vs. their baselines. For example, Fig. 2 in [156]
shows that during pedestrian stopping, 0.9 and 1.1 m improvements in lateral
position prediction can be reached with a context-based SLDS, compared to
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a simpler context-free SLDS and basic LDS (Kalman Filter), respectively, for
prediction horizons up to 1s. A live vehicle demo of this system at the ECCV’14
conference in Zurich, showed that the superior prediction of the context-based
SLDS could lead to evasive vehicle action being triggered up to 1 earlier, than
with the basic LDS.

Surveillance

The classification of goals and behaviors as well as the accurate prediction of
human motion is of great importance for surveillance applications such as re-
tail analytics or crowd control. Common setups for these applications use sta-
tionary sensors to monitor the environment. While single-frame based systems
allow to partially solve some tasks such as perimeter protection, incorporating
a sequence of observations and making use of behavior prediction models often
improve accuracy in cases of occlusions or measurements with low quality (e.g.
noise, bad lighting conditions).

Traffic monitoring and management applications can benefit from from
long-term prediction models, as they allow to associate new observations with
existing tracks (e.g. Luber et al. [198], Pellegrini et al. [236, 237], Yamaguchi
et al. [347]) and to model long-term distributions over possible future posi-
tions of each person [63, 352]. Furthermore, it enables the analysis and con-
trol of customer flow in populated areas such as malls and airports, by gath-
ering extensive information on human motion patterns [81, 149, 309, 354],
understanding crowd movement in light and dense scenarios, tracking individ-
uals within them, and making future predictions of individuals or crowds (e.g.
crowd density prediction). Often these methods benefit from employing socio-
logical methods, such as understanding of social interaction, behavior analysis,
group and crowd mobility modeling [13, 31, 202, 367].

Furthermore identifying deviation from usual patterns often makes the foun-
dation for anomaly detection methods that go beyond perimeter protection, as
they analyze trajectories instead of the pure existence of a pedestrian in a spe-
cific region.

Also in this application area it is difficult to compare results obtained by
different approaches, due to the diversity of the used datasets and the way the
evaluation has been performed (e.g. different prediction horizons). In terms of
prediction accuracy, we report the most interesting results obtained in densely
crowded environments using mainly image data. In these settings, recent state-
of-the-art approaches achieve an average displacement error of 0.08 — 1.2m
on the ETH, UC, NY Grand Central, Town Center and TrajNet datasets, and
a final displacement error of 0.081 — 2.44m, with a prediction horizon that
generally goes from 0.8s up to 4.8s (Shi et al. [293], Xue et al. [344, 345,
346], Zhou et al. [367], the latter using a proprietary dataset and going up to
a prediction horizon of 10s).
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On question 3:

As we show in Sec. 2.9, requirements to the motion prediction framework
strongly depend on the application domain and particular use-case scenarios
therein (e.g. vehicle merging vs. pedestrian crossing within the Intelligent Vehi-
cles domain). Therefore, it is not possible to conclude achievement of absolute
requirements of any sort. When considering concrete use-cases, industry-driven
domains, such as intelligent vehicles (IV), appear to be the most mature in terms
of formulated requirements and proposed solutions. For instance, requirements
to the prediction horizon and metric accuracy for emergency braking of IV in
urban driving scenarios are described in the ISO 15622:2018 [126] standard,
which defines norms for comfortable acceleration/deceleration rates for vehi-
cles, conditioned on the maximum speed and traffic rules, as well as the dis-
tribution of pedestrian speed and acceleration. Therefore we conclude, that for
specific use-cases, in particular for basic emergency braking for IV, solutions
have achieved a level of performance that allows for industrialization into con-
sumer products. Those use-cases can be considered solved. For other use-cases
we expect more standardization and explicit formulation of requirements to
take place in the near future. For instance, the standard for safety requirements
for personal care robots ISO 13482:2014 [125] suggests using sensors for de-
tecting a human in the vicinity of the robot to issue a protective stop, and
controlling the speed and force when the robot is in close proximity to humans
to reduce the risk of collision. This standard, however, does not propose motion
anticipation to improve the risk assessment.

Furthermore, several aspects of performance, robustness and generalization
to new environments, discussed in the following sections, need to be explored
before reaching further conclusions on maturity of the solutions. Finally, in
order to reliably assess the quality of existing solutions across all application
domains, is it critical to address the issues of benchmarking.

2.10 Conclusions and Outlook

In this chapter we present a thorough analysis of the human motion trajectory
prediction problem. We survey the literature across multiple domains and pro-
pose a taxonomy of motion prediction techniques. Our taxonomy builds on
the two fundamental aspects of the motion prediction problem: the model of
motion and the input contextual cues. We review the relevant trajectory pre-
diction tasks in several application areas, such as service robotics, self-driving
vehicles and advance surveillance systems. Finally, we summarize and discuss
the state of the art along the lines of three major questions and outlined several
prospective directions of future research.

o Prediction is very difficult, especially about the future.
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This quote (whose origin has been attributed to multiple people) certainly re-
mains applicable to motion trajectory prediction, despite three decades of re-
search and the 200+ prediction methods listed in this chapter. Hopefully this
thesis will increase visibility in this rapidly expanding field and the will stimu-
late further research along the directions discussed.

Following the findings and insights of this chapter, the thesis proceeds to
develop on several topics in the upcoming chapters:

e Having discussed the benefits and drawbacks of the modeling approaches,
a novel combination of the physics-based and planning-based methods
into one powerful framework, which is both interaction- and obstacle-
aware, is proposed in Chapter 3. This MDP-based method naturally sup-
ports available semantic maps, and the social force-based interaction mod-
ule accounts for social grouping, thus incorporating several key con-
textual cues in one method. In its high level of context awareness, this
method bridges a gap between the short-term motion prediction prob-
lem, where the dynamic environment cues are dominant, and long-term
prediction, where semantics, obstacles and goals strongly influence the
motion of people.

e Chapter 4 describes the contribution to the usage of semantic maps in
autonomous systems. In this chapter we propose a data-driven method
to learn occupancy priors of walking people and infer them for such
environments, where no data is available, using only semantic map as
input. This method allows assessing the semantically-rich environment
regardless of the specific observed and tracked pedestrians, enabling an
autonomous system to anticipate the dynamics and better plan the mo-
tion route in a distant area.

¢ Having shown that the available datasets of motion trajectories often lack
important contextual cues, in Chapter 5 we propose a flexible, weakly-
scripted data collection procedure to generate motion trajectories in in-
teractive settings. Our new dataset THOR contains one hour of diverse
and accurate motion data in presence of obstacles and a moving robot,
with groups of up to 6 people, and includes eye-gaze data and LiDAR
recordings.

e Finally, to progress the topic of benchmarking, we propose a bench-
mark design in Chapter 6 which includes automated generation of testing
scenarios, systematic variation of parameters and relevant experiments,
rarely present in the literature, as we discussed in Sec. 2.8.1.
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Chapter 3
Interaction-aware
Planning-based Trajectory
Prediction

If Croesus made war on the
Persians, he would destroy a
mighty empire.

ORACLE OF APOLLO AT DELPHI
gives Croesus a multimodal
prediction, 560 BC

Human motion is influenced by a variety of factors, with elements of the static
and dynamic environment being the key ones. Considering the complex non-
convex obstacles and heterogeneous social interactions between the observed
agents is a challenging but necessary step for operation in cluttered and crowded
environments. This chapter presents a planning-based approach for long-term
human motion prediction that accounts for local interactions and can accu-
rately predict joint motion of multiple agents. Long-term predictions are han-
dled using an MDP formulation that computes a set of stochastic goal-directed
motion policies. To obtain distributions over future motion trajectories, the
policies are sampled with a weighted random walk algorithm in which each
person is locally influenced by social forces from other nearby agents. The in-
teraction model accounts for social grouping information, reflecting the soft
formation constraints that groups typically impose on their members’ motion.
The presented algorithm produces multi-modal predictions with flexible non-
parametric uncertainty representation, can account for individual agent veloc-
ities and requires no training phases. Qualitative and quantitative experiments
demonstrate that the proposed method obtains more accurate predictions in
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comparison to several state-of-the-art methods in terms of accuracy measured
with probabilistic and geometrical metrics.

3.1 Introduction

A mobile robot is expected to operate in a variety of distinct environments
alongside people. As such, the system should not fail when encountering crowds,
obstacles or abnormal behavior. Predicting human motion is a key component
for safe and reliable operation in such environments. This task is challenging
due to the many factors that influence human motion: other agents with their
intentions, actions, attributes or social rules, and the environment with its ge-
ometry, semantics or affordances. The prior art has addressed this task using
different approaches based on physical dynamics modeling, learning and plan-
ning methods, considering both the single-agent case and the multi-agent case,
in which predictions are made jointly.

As we reviewed in Sec. 2.7, it is largely established, that prediction should
account for interactions between the observed people and their influence on
each other’s motion. A large selection of recent methods from all categories
shows this capability to model interactions between people. Also obstacle-
awareness is found more often in the presented methods. In fact, the idea to
use MDP for motion prediction is not new. Ziebart et al. [370], Kitani et al.
[153], Karasev et al. [142] and several others have formulated MDP-based pre-
dictors for individually observed people both indoors and outdoors. However,
the combination of these two properties was not fundamentally explored in the
prior art.

Considering social grouping information is a key feature for social-awareness
of a prediction method, which is still relatively rarely found in the literature.
Our attention to groups is motivated by the insight that social relations among
people are an important factor for predicting future motion, as individuals in
groups typically form and maintain certain spatial patterns, which e.g. in [216]
is described by a model based on social communication between group mem-
bers. An example of the group motion in real-world data is given in Fig. 3.2.

Research in computational social science and human crowd dynamics has
found that up to 70% of people move in groups of two and more members and
that they maintain rather stable formations depending on crowd density [58,
216]. These findings motive our hypothesis that social grouping is an important
cue for the long-term prediction of human motion.

Related work in modeling group structure, crowd simulation or behavior
analysis of pedestrian groups include [140, 248, 295] with applications e.g. for
building design or mass event planning [21, 288]. Detecting groups has also ap-
plications in video surveillance [296] and tracking [176, 197, 237, 347] where
group-informed motion modeling was shown to improve data association. The
detection task has been addressed using clustering of geometrically similar tra-
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Figure 3.1: Prediction results for four persons in the ATC shopping center dataset, ob-
tained with our algorithm and shown in individual colors. The current position of each
person is indicated by a yellow circle, ground truth trajectories are shown in white.

jectories, estimating inter- and intra-group forces among individuals in crowds
or so-called coherent motion indicators [216]. Common techniques for model-
ing group motion include imposing attraction forces to other group members
[21, 237, 248], to the geometrical center of the group [216] or to the group’s
leader [288], or imposing a certain relative formation in which the group is
assumed to be moving [140, 295]. An extension of the social force model that
uses group information was proposed by Moussaid et al. [216].

Social grouping was also incorporated in a prediction algorithm by [193,
197,237, 347]. However, differently from the presented approach, those meth-
ods do not reason globally about goals and the environment topology, i.e. their
predictions might lead into local minima. Furthermore, they are only used for
short-term prediction within a tracking framework.

3.1.1 Contribution

In this chapter we present a novel planning-based approach that accounts for
local social interactions to accurately predict the motion of multiple agents
jointly and in real-time. Developing a planning-based method, we build on the
assumption that humans essentially behave like planners by finding a (near-)
optimal path through the environment. Our method extends the state-of-the-
art by a novel MDP formulation of the joint motion prediction problem using
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Figure 3.2: Illustrating example of group motion in a shopping mall. Colored points
show ground truth positions of people from the ATC dataset at different points in time,
groups are encircled. It can be seen, that people in groups stay together and move in
relatively stable formations. Social grouping is thus an important cue for long-term
motion prediction.

joint stochastic policy sampling to produce goal-directed global motion poli-
cies. For online prediction, those policies are locally modified based on social
interactions between agents and soft formation constraints for agents in groups
modeled by the group social force by Moussaid et al. [216]. Experiments on
real-world datasets show that our method can accurately predict long-term tra-
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jectories of people involved in socially interactive tasks in real-time, outper-
forming four relevant state-of-the-art methods.

We also propose a method for performing predictive robot motion planning
under the obtained policies.

3.1.2 Outline

The chapter is structured as follows: in Sec. 3.2 we describe our approach.
Experiments and results are presented in Sec. 3.3, and Sec. 3.4 concludes the
chapter with an outlook on possible extensions and applications of our method,
both in ongoing and future work.

3.2 Joint sampling MDP for Motion Prediction

3.2.1 Problem Formulation

We frame the task of predicting a person’s future location as estimating the
probability p(s|t) that the person will be in state s at time t, Vs € §, ty <
t < T, where tg is the current time and T is the prediction horizon. We use
2D grid maps of the discretized environment M to represent occupied and free
space, as well as predicted positions of agents. Thus, p(s|t = t;) is a probability
distribution over the prediction domain, estimated at time instance t;. This
is a powerful representation, which natively supports arbitrary multi-modal
distributions, not limited to some parametric form or mixtures thereof.
Our method consists of two main components:

1. Global motion policy in the static environment is modeled using Markov
Decision Processes (MDPs)

2. Local interaction between observed people is modeled using group social
forces

For modeling the global motion policy we make the assumption, common
to the planning-based prediction methods, that goal states are known a-priori
or can be learned off- or online, and that the observed people intend to move
towards those goals in an optimal or near-optimal fashion. Furthermore, we
assume that the static costmap C(s), which carries the unitary cost of each
state, is known. The costmap is set to 1 for occupied states and to a small value
€ > 0 for free states. Furthermore, values in (€,1) can be used to represent
unitary costs of walkable states, e.g. defined by a semantic map.

In the following we review the notation for Markov Decision Processes in
Sec. 3.2.2, and describe the MDP formulation for global motion prediction in
Sec. 3.2.3. Details in these two sections are sufficient for predicting the trajec-
tories in isolation. We go on to present an interaction module in Sec. 3.2.4 and
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combine it with the global motion policies in Sec. 3.2.5. Afterwards, Sec. 3.2.6
and 3.2.7 present complexity analysis and implementation details respectively.

3.2.2 Markov Decision Process Notation

Markov Decision Processes provide a mathematical framework for modeling
decision making problems for a discrete-time stochastic control process. For-
mally, a MDP is described by a tuple (S, A,P,R,vy) where § and A are finite
sets of agent states and actions, respectively. The transition function P(s,s’, a)
defines the probability of getting to state s’ from state s when executing action
a. The reward function R(s, a) specifies the immediate reward gained for tak-
ing action a in state s. The discount factor 'y controls the importance of future
rewards relative to immediate rewards. The agent’s policy t: 8§ — A defines the
action the agent should take in each state. The optimal policy *, which max-
imizes the cumulative expected future rewards (Eq. 3.2), is obtained alongside
with the state and action values, V*(s) and Q*(s, a), by solving the recursive
Bellman equations (Eq. 3.1), using e.g. value iteration [303].

Q*(s,a) =R(s,a) +v)_Pls,s’,q)V*(s")

V*(s) = max Q*(s,a)

71*(s) = argmax Q* (s, a) (3.2)

3.2.3 MDP for Global Motion Prediction

In this section we describe the model of global agent motion towards a goal.
We use the MDP-based formulation of the optimal path planning problem in a
known environment. Given a 2D static map M of the environment representing
occupied and free space, and a set of goal states G, we formulate a separate
MDP path finding problem for each goal g € G to obtain the cost-to-go state
values V(s), action values Qj (s, a) as well as the optimal policy 7t (s) in each
state s = (sx,Sy) € M. We assign negative rewards to all states and actions
except for the goal state g which is represented as an absorbing zero state, i.e.
has only one self-transitioning action with zero reward. Therefore the obtained
policies are goal-directed: the agent will collect negative rewards until the goal
state is reached.

For modeling the action space, we assume that human motion is uncon-
strained in orientation and acceleration. We describe actions as orientation-
velocity pairs: a = (6, v), where 0 € [0,27) is the orientation and v € [0, Viax]
is velocity. An action a = (0,v) defines the deterministic transition between
states s —» s’, calculated as s/ = s, + v cos(0), 8y, = sy + vsin(0), and reads
as “making a move in direction 0 with velocity v”. This action space allows
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transitions up to a large maximum velocity Viyay. This action space, and the
following definition of the reward function, is universal for all agents moving
with their own preferred paces. Later we present a simple modification to reflect
the velocity of a particular observed person.

The reward function Ry(s, a) is constructed as a weighted sum of Euclidean
distance covered by a, and the unitary cost of the target state C(s’), provided
by the optional input semantic map C(s). Higher cost corresponds to states the
agent is assumed to avoid, such as the road or unpaved regions.

Rys,a) = {—wlas')—wﬂs—sm ifs#g (3.3)

0, otherwise,

where s’ = P(s,a) and wy,w, > 0 control the relative importance of each
component: the unitary cost of s’ and the Euclidean distance || - || covered with
the action a. Since the reward function is negative everywhere except the goal
state, we solve the MDP with y = 1 in Eq. 3.1. Thus, the V(s) value of a state
is actually the cost-to-go from s to g.

To predict also alternative paths to the goal and allow deviations from the
optimal policy, we relax the obtained 7ty with the stochastic Boltzmann policy
that assigns to each action a probability to be executed in state s proportional
to its value Qj (s, a). Temperature parameter o controls the level of stochas-
ticity, i.e. the probability that sub-optimal actions are chosen by the agent. We
denote the stochastic policy as 7ty and compute it as in Eq. 3.5, where Qj (s, a)
is the value of action a, and V;(s) is the value of the optimal action.

Q5 (s,0) =waRg(s,a) + Vi (s") (3.4)
a~ my(s) with prob. oc exp(a(Q} (s, a) — Vi(s))) (3.5)

Here an additional weight w, € (0,1) in Eq. 3.4 is introduced to encourage the
agent to perform faster actions with larger v. This modification is necessary for
adapting the policies to the actual observed speed, described in the following.
The obtained policy g allows actions up to a pre-defined very large ve-
locity Viax. For handling individual observed velocities vops < = Viax, We
use a simple policy cutting technique that incorporates information about v,
into the obtained policy. For each person i, the action space is redefined with
v € [0,2v}, ]. The individual stochastic policy 7%; is then computed as in
Eq. 3.6. In @t} the probability of faster actions a = (0,v) with v > v} is

9

set the same as for the symmetrically slower actions with v < v

obs*

{p((ﬁ,v>) inmg, if v<vi, (3.6)

p((6,2vE, —v))inmg, if v> vl
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Basically, we assign the same probability to faster actions with v > v}, as to
the symmetrically slower actions with v < v}, . The original policy 7y is “cut”

at the point of v}, and “mirrored” backwards, hence the name policy cutting.

3.2.4 Joint Human Motion Prediction with Group Social Forces

In this subsection we present our method for jointly predicting trajectories of
all agents in the scene. We assume that a person tracking system delivers short
sequences of observed agent positions, called tracklets, and that this system
also provides group detection as partitionings of individual agents into groups.
These are both realistic assumptions as many tracking systems, for example
[194], are able to robustly track people also across misdetection and occlusions
using e.g. advanced data association techniques. Such systems have also been
extended with the ability to detect and reason about social grouping hypotheses
as discussed in Sec. 3.1.

Given N people in the scene, the observed track of length 1(i), associated
with person 1i, is denoted as T* = (s},s%,...,shi)% where st = (s}(’t,s;’t) is
the state where the person was observed at time t, and i € [1,...,N]. The
tracklet’s end S%(i) = s%(tg) is the position of person i at the current time t
and J is the set of all observed tracks. Membership in one and only one of the
groups Gry, € Gr is assigned to each person: i € Gry, Gr, N Gryr = O VR #
h, Up Grp ={1,...,NL . '

From each tracklet we derive the observed speed v}, , orientation 0}, . and
the discrete probability distribution p*(§) over destinations §. We predict the
final destination of person i based on the observed tracklet. Similarly to [370]
and [324], for each goal g € G we estimate the gradient of the cost-to-go V;(s)
along T* as the difference between the costs at sj and s} ;) using a softmax
function:

plg) o exp (B(Vy(si) — Vals)) - (3.7)

Temperature parameter 3 defines to what extent alternative goals are consid-
ered. Members of the same group Gry, share the goal probability vector, com-
puted as the average of individual vectors: pi (§) = |Grn|™1 X p*(9), i €
GT‘h.

Local interaction modeling with social forces

The concept of social forces [110] describes how the intended motion of a per-
son changes according to the influence of other people and the environment by
superimposing repulsive forces from obstacles and other people with attractive
forces to the goal. The approach, initially developed for crowd behavior anal-
ysis and egress research, performs well in modeling short-term local influences
but performs poorly in making accurate long-term predictions, as we have seen
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Person j

Figure 3.3: Example of the anisotropic social force model with A = 0. Person k is cross-
ing in front of person j. Intended directions FP*" are shown with red arrows. Person j is
influenced by a strong social force F**¢, depicted in blue, while the effect on person k is
limited due to the anisotropic factor. Resulting directions F are shown in green.

in Chapter 2. Therefore, in our method the long-term aspects — attraction to
the goal and repulsion from obstacles — are handled by the MDP formulation.
We only utilize the local influence aspects of the social force model.
Formally, social force £;%, emitted by person k in the direction of person i
is
Tik —dik

ik = ake( ok )ni,k<7\+ (1—2)

1+COS((pi’k)> (38)

2

where ay > 0 specifies the magnitude and by > 0 the range of the force, dix
is the distance between people and ri\ is the sum of their radii. The term ny
is the normalized vector pointing from k to i, which describes the direction of
the force. An anisotropic factor, controlled by A € [0, 1], scales the force in
the person’s direction of motion: the force reaches its full magnitude when the
angle @i between the intended motion direction of person i and ny; is zero,
and has no effect when @i = 7. The factor postulates that influences in the
front of a person are stronger than those to the sides and weak in the back (see
also Fig. 3.3). Social forces on person 1 are added for all k and used to change
the motion direction F;" which in our case is the action a = (0, v) sampled
from the stochastic policy:

Fi _ F[i:)ers_’_F?'oc — FECIS"’_Z 1(’)]i (39)
kA1
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Figure 3.4: Left: illustration of the group social force parameters. Right: in this example,
three people a, b and c in the bottom are walking upwards as a group Gry. Three
individual pedestrians i, j and k are opposing them from different directions. Intended
directions FF*™ are shown with red arrows, omitted for the group members for the sake
of clarity. Person 1 is influenced by a strong social force F**¢, depicted in blue, and has to
halt and adjust the motion trajectory, shown as a gray dotted line. Person k stops and
lets the group pass, while j attempts to cross in front of the group. Resulting motion
directions F are shown in green. Intra-group social forces F' and F** are shown in blue
and orange respectively.

An extension to group social forces

An extension of the social force model to include group interaction was pro-
posed by Moussaid et al. [216]. Several new forces are defining attraction of
people walking in groups to other members of the group (attraction term) and
imposing soft constraints on the walking formation that resembles typical pat-
terns of humans in groups (visibility term). For each member i of the group
GTh, the visibility term f{'* is defined as

£ = —Bro Vi, (3.10)

where 31 is a model parameter describing the strength of the social interac-
tion between group members, and V; is the current velocity vector of person 1.
This deceleration component f!'* is oriented in the opposite direction of current
movement Vi, and it is proportional to the angle «; between the gazing direc-
tion H; of person 1 and the group center of mass ¢y, given the person’s field of
view ¢. An illustration of the parameters is given in Fig. 3.4, left.
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Formulation of f{ imposes a line formation, perpendicular to the direction
of motion, as the preferred walking pattern of a group. However, in order to
facilitate intra-group social interactions, members of larger groups of 4 or more
people often switch to the more compact V-formation. The same happens in
cluttered spaces, as well as in crowded environments, where the members have
to balance between comfortable interaction and efficient movement. To model
this behavior, the attraction term fi" to the geometrical center of the group is
introduced as

£" = B2qaUs, (3.11)

where (3, is the strength of the group attraction effect, and Uj is the unit vector
pointing from pedestrian 1i to the center of masses ¢, of Gry,. This force is only
activated if the distance between person 1 and cp exceeds a certain threshold
qa, otherwise the attraction force is zero.

The added intra-group forces f{* and 2 yield a decelerating effect on pedes-
trians, whose stochastic motions often lead them in front of the group. In reality
this effect is not present as humans by nature are able to better coordinate their
motion within the group. To counterbalance the deceleration effect and get
more precise predictions on average, we simply scale the observed speed v, = of
each human 1 by a factor qs > 1.

The final direction of motion for person i is computed as

N
Fi _ Fipers—l—Fioc'i‘F%muP _ Fipers+Z i,oli _|_f\{is_~_f?tt. (312)
k#1

An example of the social forces affecting the motion of people in a social sce-
nario is given in Fig. 3.4, right.

3.2.5 Stochastic Policy Sampling Using Random Walks

To generate predictions using the stochastic policy 7y, we propose a random
walk algorithm (Alg. 1) that samples K joint paths for all people in the scene,
each path starting in the corresponding current state s (1) of person i at time to.
Each joint path is representing a possible future interaction given the observed
tracklets and available group information. In each of the K samples we ran-
domly draw a goal g(i) for person i from the distribution p'(§) and randomly
generate actions a' = (0%,v') from the policy corresponding to g(i). This is
done by sampling the normalized discrete distribution fr;(i] (si) obtained from
Eq. 3.5. Group members share the same goal, sampled from p%.(§). During
this random walk, we evaluate social interactions among the agents that affect
each agent’s instantaneous stochastic policy according to the group social force
model (see Fig. 3.6 for illustration). The position of each person at time t is then
saved in the corresponding layer Lt of the probabilistic occupancy map L, that

82 ‘ Andrey Rudenko 3.2. Joint sampling MDP for Motion Prediction



0\0——»0——’0—"\0,\/{ “—o0—>0

VT

Figure 3.6: Social interaction example with our random walk algorithm using social
forces. There are two persons side-by-side and a third person moving in the opposite
direction. Observed tracklets 7%23 are shown by white circles, jointly predicted future
positions are shown by the same shade of green. Red arrows indicate the sampled action
of each person, blue arrows show the social force and black arrows show the resulting
action the person executes.

is shared among the K samples. After K iterations L is normalized )" Li(s) = 1
to properly represent the probability distribution p(s|t = t;) of the person’s
possible location at time t; (see also Fig. 3.7).

To achieve smoother path predictions, we introduce a model-free motion
inertia term, parametrized by I = (I, ), that prevents sudden changes in
speed and direction between t — 1 and t. When sampling the stochastic policy
Ty, we obtain action a = (6¢,v¢) which is then shifted towards the current
speed and direction as in Eq. 3.13. By varying Ig and L, together with the
temperature «, we get a flexible control of angular and translational variability
in a person’s goal-directed motion behavior.

(06, ve) = (1 —1) - (O, ve) T + 1+ (Br—1,ve1)" (3.13)

Finally, we have Alg. 2 as our method for prediction, with an illustrative
summary in Fig. 3.5. Its inputs are the obstacles map M of the environment,
the set of goals G, the set of tracklets T, the social grouping information Gr,
and the prediction horizon T. Its parameters are the cost of free space €, mo-
tion stochasticity « and goal uncertainty 3, motion inertia coefficients I, and
Ig, social force parameters SF, = (ax, by, A), group social force parameters
GSF, = (B1,B2,9A, D, qs) and the value of K samples from the stochastic pol-
icy. We keep the inertia and social force parameters constant for all people,
however, online estimation of their values for individually observed persons is
possible in future work. Lines 3-6 prepare and solve the MDP. This part of
the algorithm can be precomputed offline or updated online at lower frequency
since the stochastic policy remains valid as long as the map stays relatively
static. Line 7 calls the joint stochastic policy sampling method that computes
predictions for all people and returns the occupancy map L. See Fig. 3.1 for
example predictions obtained with our method.
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Algorithm 1 Joint Random Walk Stochastic Policy Sampling

: function JointStochPolicySampling(T, Gr, V5(s),mg(s),K,T)
: Compute B,ps, Vobs, P () for each person using I and Vi (s)
: Initialize T x N empty layers of the L occupancy map:
fort=1,...,T,i=1,...,Ndo

L < zeros(|8])
: end for
: Sample K joint paths for all people:
cfork=1,...,K do
For person 1 set initial state s, orientation 8% and velocity v?,,
10:  and sample the goal g(i):
11: fori=1,...,Ndo

CPND LD WN

12: (5}13 e;u 'Vh) — (S]i'(i]s e(i)bss Vi(;bs)
13: g(i) + sample(pt(9))
14:  end for

15:  Jointly predict for T steps ahead:
16: fort=1,...,T do

17: fori=1,...,Ndo

18: repeat )

19: Sample random action a of person i according to fr;m:
20: (6%, vi) « sample(ﬁ;m (si)

21: Apply inertia given current orientation 6% and velocity vi:
2 (8%, vi) < (1—1)- (8%, vi) + - (8%, vi)

23: Calculate state transition of person i executing action a:
24: st Psh, @)

25: Social force on person i given current agents’ positions sy :
26: Fs < socialForce(sn,1)

27: Modify transition of person i given the current social force:
28: S;I+1<_S:1+1+Fs _

29: until 1ine0fSight (s}, s} ;)

30: Add the next position S;H of person 1i to the occupancy map:
31: Li(sh 1) < Li(shq) +1

32: end for

33: Update current positions, orientations and velocities of all people:
34: fori=1,...,Ndo ‘ _ ‘

35: (sns 015 Vi) < (S}LH, 0, vVu)

36: end for

37:  end for

38: end for

39: fort=1,...,T,i=1,...,Ndo
40: Li — normalize(Lit)

41: end for

42: return L
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Figure 3.7: Illustration of the random walk stochastic policy sampling in a scenario with
one person. Top row: For each of the K sampled paths T;...Tx, locations at time t; are
added to the corresponding time layer p(s|t = t;), which is then properly normalized.
The path is depicted in blue, with red being the start sy and green the goal. Bottom row:
Probability distributions p(s|t = t;) are shown by shades of gray, darker areas mean
higher probabilities.

Algorithm 2 Group Social Force MDP Motion Prediction
1: Parameters: o, 3, K, €, 1, SF,, GSF,
: Inputs: M, T, T, G, Gr
: forallg € G do
compute Rq(s, a) as in Eq. 3.3
Vg, Qs Ty < ValueIteration(Rg(s,a)) asin Eq. 3.1, 3.2
compute 74 as in Eq. 3.5
end for
: L« JointStochPolicySampling(J, Gr, V;(s),ng(s), K, T)
return L

B B A A Sl ol >

3.2.6 Complexity Analysis

Alg. 3 summarizes the operations required to obtain predictions with our al-
gorithm. We assume that K joint random paths are requested, N people are in
the scene and T prediction steps are made. The complexity of the goal sampling
operation for every human (line 2) depends on the number of goals |§|. Group
center calculation is done only once for each time step (line 4). The random ac-
tion sampling procedure (line 6) depends on the action space discretization (A
angles and V velocities) and has the worst-case complexity of O(AV). This hap-
pens when the agent is moving with velocity close to Viay. The social force in
the direction of agent i (line 7) is computed for each surrounding agent within a
certain radius. In the worst-case, when all agents are densely located, the com-
plexity is O(N). The group social force computation (line 8) is a constant time
operation.
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Algorithm 3 Joint Stochastic Policy Sampling Operation Analysis
1: fork=1,...,Kdo
2:  Sample a goal for each person: O(N|G|)
fort=1,...,Tdo
Calculate group center for each group: O(N)
fori=1,...,Ndo
Sample a random action: O(AV)
Calculate social force: O(N)
Calculate group social force: O(1)
end for
10:  end for
11: end for

R AR U Sl o

The overall complexity of our prediction algorithm is then O(K(NI|G| +
T(N(AV + N)))). Runtime measurements with comparison to the considered
baselines are given in Sections 3.3.1 and 3.3.2.

3.2.7 Implementation Details

When solving the MDP problem for a goal g, we need to make sure that
g is reachable from every free state, i.e. there are no isolated states which
may prevent convergence of the value iteration algorithm in the absorbing
zero setting. We use a wavefront algorithm starting from the goal state to de-
termine the subset of approachable states, and solve the MDP problem only
for those states. To speed-up convergence, we process the states in the order
of increasing Manhattan distance to the goal. Moreover, since in our MDP
Vs,a,a’ : P(s,a) = P(s,a’) = s’ = Q*(s,a) = Q*(s,a’), i.e. actions a and
a’ have the same effect, we iterate directly over target states s’ instead of every
pair (6, v) € A. Starting with undefined state values, we run value iteration un-
til all states are assigned with some positive value, thus obtaining approximate
costs-to-go. In our experiments, value iteration converges to the approximate
cost-to-go after only one iteration.

For a fine discretization of action space A = (0,V), storing the stochastic
policy m4(s) for every state implies significant storage burden. We store the
policy in a sparse form, saving only actions with probability higher than the
factor of ﬁ. This yields no visible effect on the random walk predictions, but
saves up to 10x storage space, depending on the level of stochasticity in the
original policy. To reduce the number of samples K, we smooth the layers of L
with three iterations of a separable box filter. We found that this leads to very
similar distributions compared to those obtained with 10 to 20 times more
samples.
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3.3 Experiments

In this section we evaluate our method both qualitatively and quantitatively in
a series of experiments and compare it to several baselines. In the first round
of experiments, presented in Sec. 3.3.1, we use scenarios where no group mo-
tion is present. Next, in Sec. 3.3.2 we study how considering social grouping
context improves the quality of prediction. By doing this, we show that already
considering social interactions without groups improves the prediction results
over the typical MDP-based methods, which are not interaction-aware. On the
other hand, using global context, provided by the MDP component, gives our
solution an edge over the pure social force-based methods.

In both rounds of experiments we use two types of environments. Firstly,
we use several simulated scenarios to demonstrate the predicted trajectories.
Then, we qualitatively evaluate the methods using the ATC dataset! of real-
world trajectories recorded in a shopping center. The map of the environment,
covering an area of 900 m?, is shown in Fig. 3.1. Using the large selection of
trajectories, we identify 15 common goal points in the area with trajectory end-
point clustering. From the dataset we select 25 scenarios without groups and
21 scenarios with groups, each having several interacting pedestrians (i.e. be-
tween 2 and 10). In each scenario, people are following various paths to their
intended destinations with different velocities, adjusting paths to comply with
other agents nearby. The presence of high-level motion stochasticity, observa-
tion noise and close proximity to other people makes this dataset a challenging
one, especially for longer prediction horizons.

Since our method combines a planning-based and a social force-based pre-
diction approach, we choose as baselines the planning-based approach by Kara-
sev et al. [142] and the social force-based approach by Elfring et al. [80]. For
the sake of a fair comparison, we apply our own goal estimation technique
(that requires no learning data, see Eq. 3.7) to the baselines.

To stress the performance of the various components of our method, in the
experiments we refer to it as:

e IS-MDP - our first motion prediction method, published in [266], which
stands for Independent or Individual Sampling MDP. This method does
not consider any interactions between people, essentially predicting tra-
jectories as if people were moving in isolation.

® JS-MDP, published in [267], stands for Joint Sampling MDP. This method
uses the social forces, but does not consider social grouping.

® GSF-MDP has the full functionality of the Group Social Force MDP,
presented in [268] and described in this chapter.

Thttp://www.irc.atr.jp/crest2010_HRI/ATC_dataset/
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We evaluate the predictive performance of all algorithms using the follow-
ing metrics: Negative Log-Probability (NLP) is a direct measure of ground truth
path T probability, measured at each point of path J; according to predictions
for that time instance t;: NLP(T) = f% ZiT:1 log p(Tilti). Modified Hausdorff
Distance (MHD) [153] is a geometric measure of distance between the ground
truth path and the most probable path in the predicted probability distribu-
tion. For both metrics, lower values correspond to better prediction accuracy
or smaller geometric deviation, respectively.

All algorithms are implemented in C++, running on a laptop with a 2.8 GHz
Intel Xeon processor and 32 GB RAM. The following sections provide further
technical details of the experiments, such as parameter values and the numbers
of random trials.

3.3.1 Environments with no Groups

In this section we evaluate our Joint Sampling MDP (JS-MDP) approach both
qualitatively and quantitatively and compare it to the baselines.

Experiment 1: Predicting social interactions

The first experiment aims to qualitatively evaluate the local predictive ability
of JS-MDP in predicting future trajectories of humans involved in cooperate
collision avoidance. We simulated four scenarios: two people walking together
side-by-side, one person overtaking another person, people walking in opposite
flows, and a situation in which a person blocks a narrow passage (see Fig. 3.8
top row, Fig. 3.9 top row).

Experiment 2: Prediction accuracy evaluation

In this experiment we quantitatively evaluate the predictive performance of JS-
MDP using the 25 scenarios without groups from the ATC dataset. MHD and
NLP metric values are calculated for each trajectory in these scenarios and aver-
aged across 50 experiments for each scenario. We use 2 seconds as observation
period, and predictions are obtained for T = [2.5,...,15] seconds ahead. We
also give the average times to compute predictions using our algorithm.

For each algorithm we perform hyperparameter optimization using the
SMACS3 toolbox [192] with results, summarized in Table 3.1. Values of wq, w,
and wg in Eq. 3.4 are estimated to match the expected behavior of the pedes-
trian to the best of our knowledge: w; = 1, w, = 1, wq = 0.5 and the cost
of the free space is € = 10~1%. Action space parameters are set as follows: an-
gular discretization of 0 is 7t/20; translational discretization of v is 0.1 m/s,
v € [0,3] m/s. Cell sizes of our grid maps are 0.1 m in Experiment 1 and
0.15 m in Experiment 2. The frequency of predictions is 4 Hz, the number of
random walk samples K = 100.
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Method Parameters

1S-MDP o =15.95, p = 5.44

JS-MDP o =35.03,3 =13,1= (0.687,0.725), (ay, by, A) = (0.271,0.221,0)
Karasev et al. [142] (wg,t, wst) = (0.031, 0.140), o« = 21.31, 3 = 18.68

Elfring et al. [80] (qw, fw,cw) = (1.436, 0.23, 3.097), ¢, = 83.74

Table 3.1: Estimated hyperparameters in experiments with no groups

Results

Fig. 3.8 and Fig. 3.9 show the qualitative results of the first experiment. Our
method correctly predicts the development of each scenario, handling typical
cooperative actions that people carry out in social spaces: the approach is able
to predict overtaking and avoidance maneuvers (see Fig. 3.9), and to infer usual
social interactions such as walking side-by-side or offering the way to a pedes-
trian moving in opposite direction (Fig. 3.8), without discarding the goal inten-
tionality of the pedestrians.

Fig. 3.10 presents the results of the quantitative evaluation, conducted in
Exp. 2, showing the mean of the NLP and MHD metrics over the prediction
horizon of 2.5-15 sec. The NLP results show that our method outperforms
the other three approaches, assigning a higher probability to the future ground
truth location of people, which is essential e.g. for predictive motion planning
as in Sec. 3.4.3. The two planning-based methods [142, 266] accumulate errors
with growing prediction horizon from non-predicted social interactions, while
the social force-based method of Elfring et al. [80] gives worse results as its
predictions do not account for the global environment structure. The results
for the probabilistic MHD metric show that our approach is on par with the
others methods for short prediction horizons but outperforms them for the
more relevant longer horizons.

We also give the runtime results for JS-MDP in Fig. 3.11. Our approach
takes on average 0.4 seconds to predict for T = 7.5 seconds ahead in a scenario
with 5 people. Short-term predictions for T = 2.5 seconds can be quickly ob-
tained in less than 0.2 seconds. Note that these measurements exclude time for
Value Iteration (Alg. 2 line 5) and the stochastic policy computation (Alg. 2 line
6), which take 0.4 s and 2.35 s for each goal respectively, but can be computed
offline for a known environment or updated in a low-frequency cycle.

3.3.2 Experiments with Groups

In this section we present several experiments conducted to evaluate our Group
Social Force MDP (GSF-MDP) approach and compare its predictive capabilities
with the baselines.
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Method Parameters

GSF-MDP o = 4.64, B = 18.65, 1 = (0.09,0.02), (ay, by, A) = (0.09,0.32,0),
(B1, B2, qa, P, qs) = (0.05,1.18,2.93,0.38,1.49)
JS-MDP o =13.26, p = 9.12, I = (0.01, 0.19), (ax, bx,A) = (1.46, 0.11, 0)

Karasev et al. [142] (wg,t, wst) = (0.03, 0.14), « = 21.31, 3 = 18.68
Elfring et al. [80] (qw, fw,Ccw) = (1.44, 0.23, 3.1), ¢, = 83.74

Table 3.2: Estimated hyperparameters in experiments with groups

Experiment 1: Predicting social Interactions

This experiment includes several qualitative demonstrations of the predicted
group collision avoidance behavior of people. To this end we use maps of
two environments and simulate observed trajectories in those maps to see the
predicted development of interactive scenarios. The first scenario (Fig. 3.12)
stages an experiment with 5 people in a narrow corridor. The second sce-
nario (Fig. 3.13) sets up a challenging crowded environment with multiple non-
convex obstacles and 21 people walking in 7 groups.

Experiment 2: Prediction accuracy evaluation

Quantitative evaluation of GSF-MDP is conducted using the 21 social scenar-
ios, extracted from the ATC dataset. These scenarios feature trajectories of 172
people, including 90 pedestrians walking in groups, observed for long periods
of time (see Fig. 3.2 for an example scenario). MHD and NLP metric values
are calculated for each trajectory in the 21 interactive scenarios and averaged
across 20 experiments for each scenario. We use 1.5 seconds as observation
period, and predictions are obtained for T = [2.5,...,12.5] seconds ahead. We
also measure the average time to compute predictions using our algorithm and
the baselines.

Prior to the main experiment, we perform hyperparameter optimization us-
ing the SMAC3 optimization toolbox [192] for each algorithm. Optimization
criteria are to minimize the sum of NLP and MHD values. The optimal param-
eters are found to be as summarized in Table 3.2. The reward function and the
action space parameters are used the same as in Sec. 3.3.1. Cell sizes of the grid
maps are 0.05 m in Experiment 1 and 0.15 m in Experiment 2. The frequency
of prediction is 4 Hz, the number of random walk samples K = 200.
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Figure 3.8: Prediction results in simulated interactive scenarios with no groups (part
1). Predicted distributions are color-coded, augmented with the ground truth position
shown as a dot in contrasting color. Top row: schematic depiction of the situation,
dashed lines show the path of each person. Left: two people walking together side-by-
side, sharing a common goal ahead of them. Right: people walking in opposite flows,
two of them make room for the third person walking in between.
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Figure 3.9: Prediction results in simulated interactive scenarios with no groups (part 2).
Left: a fast walking person is overtaking a slow walker, both of them are heading to-
wards the same goal. Right: a person causes a hindrance by blocking a narrow passage.
In all cases, the algorithm makes goal-oriented predictions that correctly represent the
local ambiguity caused by the other agent or the environment.
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Figure 3.10: NLP and MHD evaluation results in scenarios with no groups. Left: Mean
of the Negative Log-Probability (NLP) metric in the ATC dataset. Our approach out-
performs the baselines along the entire prediction horizon of up to 15 seconds. Right:
Mean of the Modified Hausdorff Distance (MHD) metric. Our approach is on par with
the baselines for short-term predictions and outperforms them for longer horizons.
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Figure 3.11: Average runtime of our algorithm in the ATC scenarios with no groups.
The runtime is measured for prediction horizons T = 2.5, 7.5, 15 seconds ahead and
conditioned on the number of people in the scenario.
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Figure 3.12: Prediction results in a simulated scenario with groups. Predicted distribu-
tions are color-coded. At t = 1.15 seconds a group of three people, depicted in blue,
cyan and purple is walking upwards and then turns into the corridor to the right with-
out losing its formation. At t = 3, t = 4.25 seconds the group is handling a hindrance
caused by the green pedestrian, at t = 5.75, t = 7 seconds the group is handling another
hindrance with the red pedestrian.
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Figure 3.14: NLP and MHD evaluation results in scenarios with groups. Left: Mean of
the Negative Log-Probability (NLP) metric in the ATC dataset. Our approach outper-
forms the baselines along the entire prediction horizon of up to 12.5 seconds. Right:
Mean of the Modified Hausdorff Distance (MHD) metric. Our approach delivers more
precise results on both short and long prediction horizons.

Results

Fig. 3.12 and Fig. 3.13 show the results of Experiment 1. The first simulated
scenario (Fig. 3.12) demonstrates a collision avoidance maneuver, performed
by a group of three pedestrians in a narrow corridor. The group is able to keep
its “social” linear walking formation that facilitates intra-group interaction. In
the end, however, the spreading of samples indicates the predicted possibility of
re-grouping into a more compact V-formation — a behavioral pattern observed
in real crowds [216]. In the second scenario (Fig. 3.13) our method predicts a
realistic behavior of group members. In particular, they are able to wait for the
passage to clear before continuing their motion as a group, keeping the broad
V-shape walking pattern when the available space allows it, and not lose their
members behind in the dense crowd. Predicted results are visually compared
with a baseline, where the group motion is not modeled.

Fig. 3.14 presents the quantitative results of Experiment 2, displaying the
mean of the NLP and MHD metrics over the prediction horizon of 2.5-12.5
seconds. The NLP results suggest that our algorithm assigns higher probabili-
ties to the ground truth states of the person’s future location, outperforming all
the baselines. The planning-based method of Karasev et al. [142] accumulates
errors from non-predicted social interactions over the growing prediction hori-
zon, while JS-MDP [267] suffers from the lack of group awareness. The social
force-based method of Elfring et al. [80] generates worse results due to the lack
of global knowledge of the environment’s structure. The MHD evaluation re-
sults further confirm the improvement of our method over the state-of-the-art
on both short and long-term prediction horizons.
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Figure 3.15: Average runtime of our algorithm for prediction horizons T = 2.5, 7.5 and
12.5 seconds ahead on the ATC dataset with various numbers of people. On average,
our method performs on par with the baselines.

In Fig. 3.15 we give the prediction runtime of GSF-MDP compared to the
baselines. For example, our method is capable of computing 2.5 seconds of
predictions for 5 people in less than 0.1 seconds, or predict 7.5 seconds of
10 people motion in 0.4 seconds. On average, our method performs on par
with the state-of-the-art. Given that the range of the social forces is not large,
and people are typically not agglomerated in a single region, the method most
often scales linearly with the number of people, and not quadratically as in the
worst-case, described in Section 3.2.6.
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Figure 3.16: Challenging changes of motion dynamics in the ATC dataset. Pedestrian
positions are measured at 4 Hz and plotted in red. We observe a change in motion
intent (top, at t = 9.5 seconds) and motion velocity (bottom, at t = 5.5 seconds)
not explainable by nearby people, group membership, environment geometry or other
observable factors in the data.

3.4 Conclusion and Outlook

In this chapter we have discussed an elaborate solution for long-term motion
prediction of pedestrians. Our method accumulates many key concepts from
the motion prediction methodology in one efficient modular solution. In par-
ticular, such concepts include: explicit goal inference, usage of occupancy maps,
accounting for varied velocities, modeling social aspects of human motion, uti-
lization of social grouping information, predicting multi-modal probability dis-
tributions over possible future locations. The modular structure allows for fur-
ther development and improvement of specific components, while the structure
of the layered grid-map output is natively compatible with robot motion plan-
ners. Accordingly, in this section we outline the possibilities for future research
along these two directions.

3.4.1 Semantic Context-awareness

The evaluation results presented above are encouraging. Performing at simi-
lar runtime with the state-of-the-art, our method is capable of delivering more
accurate predictions across the entire prediction horizon. Still, during our ex-
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periments we have encountered situations, which are generally challenging for
long-term predictors, see for instance Fig. 3.16. Our stochastic policy accounts
for variations in paths and homotopy classes, but does not handle sudden veloc-
ity or motion intent changes — this limitation in a long-term setting is a common
unexplored aspect in the literature. Predicting paths accurately in situations
shown in Fig. 3.16 could be done with a dynamic « value, which increases un-
certainty for more distant points in time. Learning relevant stimuli for motion
behavior in the environment and spatially incorporating them into the local
behavior model could be another possibility to better foresee the uncertainty
from sudden intention or velocity changes.

One could imagine the utility of context in semantically-rich indoor en-
vironments: for instance, a person approaching a narrow passage or a sharp
corner, would probably slow down, and such behavior can be predicted in ad-
vance. A vector field-based velocity distribution, either learned [166] or mod-
eled [75] in a given environment, could provide an insight into such behavior
changes.

3.4.2 Combination with a Pattern-based Interaction Model

Our method shows an efficient way to make obstacle-aware predictions — an
aspect in which purely pattern-based methods traditionally struggle. Clearly,
to learn behaviors in every conceivable obstacle layout, such methods would
require a tremendous amount of training data. On the contrary, our method
achieves this with only a few trajectories for hyper-parameter estimation, and
then can be applied in arbitrarily complex environments.

On the other hand, pattern-based methods have shown remarkable pro-
gress in modeling spatio-temporal interactions between people in obstacle-free
spaces, outperforming the classical social force-based models in many situa-
tions. In the future work we intend to combine the global motion policies with
a learned interaction model.

3.4.3 Robot Motion Planning Using Predictions

One key direction for future research on our prediction method is integration
with the motion planner of a robot. The general idea for incorporating predic-
tions into motion planning is to penalize robot locations that will probably be
occupied by other agents at the same time. To this end, we overlay the predicted
regions of occupancy L with the gridmap of static obstacles M, typically used
by the robot for path planning and collision avoidance.

In the preliminary study [266] we compare three different predictive plan-
ning approaches: spatio-temporal discrete search in a time-augmented state
space, used e.g. in [30], costmap inflation suggested by Bai et al. [19] and the
inferring collision points (ICP) technique by Ziebart et al. [370]. We found the
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Person 1

Robot's paths

Figure 3.17: Predictive planning results. Predictions for three people are shown in top
row and bottom left. Observed tracklets are depicted in red, predicted trajectories are
represented with heatmaps (warmer colors correspond to higher occupancy probabil-
ity). Bottom right: the robot is located in the top left corner of the room, its goal is
in the bottom right corridor. Using the inferring collision points algorithm, the robot
iteratively plans three paths (in red, orange and blue), before it finds the green path with
no predicted collisions.

ICP method to be the best compromise between performance and efficiency.
The method iteratively shapes a time-independent navigational cost function
to remove known hindrance points. Initialized with the costmap C = M, at
each iteration, ICP finds the A* solution in C, simulates it forward in time and
compares the position of the robot to the corresponding time layer Ly = 5, L,
inflating the cost of collision regions. See Fig. 3.17 for examples of predictive
planning with the ICP algorithm.

In the future work we intend to study and validate the robot motion plan-
ning methods with explicit predictions. More details to this end are presented
in Sec. 7.3.2.
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Chapter 4
Occupancy Priors of Human
Motion in Urban Environments

Understanding and anticipating human activity is an important capability for
intelligent systems in mobile robotics, autonomous driving, and video surveil-
lance. While learning from demonstrations with on-site collected trajectory
data is a powerful approach to discover recurrent motion patterns, generaliza-
tion to new environments, where sufficient motion data are not readily avail-
able, remains a challenge. In many cases, however, semantic information about
the environment is a highly informative cue for the prediction of pedestrian
motion or the estimation of collision risks. In this chapter, we infer occupancy
priors of human motion using only semantic environment information as in-
put. To this end we apply and discuss a traditional Inverse Optimal Control
approach, and propose a novel one based on Convolutional Neural Networks
(CNN) to predict future occupancy maps. Our CNN method produces flexi-
ble context-aware occupancy estimations for semantically uniform map regions
and generalizes well already with small amounts of training data. Evaluated on
synthetic and real-world data, it shows superior results compared to several
baselines, marking a qualitative step-up in semantic environment assessment.

4.1 Introduction

Throughout this thesis it is shown that understanding and predicting human
motion is an increasingly popular subject of research with the goal of improving
the safety and efficiency of autonomous systems in spaces shared with people.
Application areas include mobile service robots, intelligent vehicles, collabora-
tive production assistants, video surveillance, or urban city planning. Human
motion in these scenarios is influenced by many factors including other agents
in the scene and the environment itself, which can be represented by a topomet-
ric map and semantic information. Indoor human navigation is often driven by
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Figure 4.1: Predicting occupancy priors in semantically-rich urban environments. Top
left: an urban scene from the Stanford Drone dataset. Top right: semantic map of the en-
vironment. Bottom left: CNN-predicted occupancy distribution priors of walking peo-
ple in the environment, encoded with a heatmap: warmer colors correspond to states
with higher probability of observing pedestrians Bottom right: ground truth occupancy
distribution.

avoiding collisions with static and dynamic obstacles, motivating our predic-
tion method design in Chapter 3. On the other hand, surface semantics have a
strong impact in outdoor (e.g. urban) environments. For instance, pedestrians
walk most of the time on sidewalks, sometimes on streets, unpaved areas and
greenspaces, and very rarely over obstacles. Modeling the influence of seman-
tics is a challenging task, typically approached with data-driven methods using
human trajectory data in a given environment [81, 166, 333] without know-
ing the goal of the target agent. Powerful in scenes known beforehand, such
approaches may suffer from poor generalization to never-seen or changing en-
vironments where no data is available.

In this chapter we research the possibility of inferring occupancy priors of
walking people in previously unseen places with limited input, namely using

102 ‘ Andrey Rudenko 4.1. Introduction



only the semantic map of the area. A prior occupancy distribution is intuitively
interpretable and beneficial for a large variety of applications, such as improved
goal estimation [254, 335] (for instance in Fig. 4.1 not all walking directions
are likely to be the goal of a person) and crossing intention recognition in au-
tonomous driving tasks [118, 245], where possible “illegal crosswalks” could
be easily detected. The usage of semantic maps may further improve the ac-
curacy of map-based motion prediction approaches [142], which often assume
constant priors for each semantic class. Such occupancy estimation can guide a
cleaning robot towards more heavily used areas, or a service robot in search of
people to assist.

Traditionally, Inverse Reinforcement Learning (IRL) has been used to learn
semantic preferences of walking people in urban and semantically-rich environ-
ments [153, 256, 320]. It is indeed possible to use the learned preferences to
simulate trajectories and infer the prior occupancy distribution in a new envi-
ronment. In this chapter we review the IRL methodology, applied to the occu-
pancy prior distribution inference, and discuss its limitations. In order to ad-
dress them, we introduce a novel extension to the recent method by Doellinger
et al. [74], which uses a Convolutional Neural Network (CNN) to predict av-
erage occupancy maps indoors, with semantic map input for the urban scenes.
We train our method on scenes from the Stanford Drone Dataset [262], as well
as on simulated environments. In comparison to several baselines, our CNN
method predicts much more accurate prior occupancy priors in terms of KL-
divergence to the ground truth distributions, and makes a qualitative improve-
ment of estimating flexible occupancy priors for semantically-uniform areas by
considering local context and interconnections between different semantic re-
gions.

4.1.1 Contribution

In summary, in this chapter we make the following contributions:

e We analyze and discuss state-of-the-art methodology for inferring occu-
pancy prior distribution in semantically-rich urban environments.

® Addressing the limitations of the prior art, we propose a novel method
based on Convolutional Neural Networks (displayed in Fig. 4.1 and 4.2).

* We execute a thorough comparison of the discussed methods with several
baselines, and show qualitative and quantitative improvement of the KL-
divergence scores when using our CNN method.

4.1.2 Outline

The chapter is structured as follows: in Sec. 4.2 we briefly review the related
work on modeling semantics-awareness for autonomous systems, in Sec. 4.3 we
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detail the proposed solutions and in Sec. 4.4 we describe the training and eval-
uation. Results are presented in Sec. 4.5, and a discussion in Sec. 4.6 concludes
the chapter.

4.2 Related Work

The ability to understand a human environment and its affordances is useful
in a number of tasks where intelligent autonomous systems need to reason on
observed events, anticipate future events, evaluate risks and act in a dynamic
world. Examples include person and group tracking [175, 194, 236], in partic-
ular over a camera network with non-overlapping fields of view, human-aware
motion planning [19, 94, 229], motion behavior learning [225], human motion
prediction [63, 268], human-robot interaction [174], video surveillance [4] or
collision risk assessment [196]. Apart from basic geometric properties of the
workspace, its semantics have a large impact on human motion in these tasks.
Modeling this impact is challenging, therefore a popular approach is learning
the motion patterns directly from data without explicitly specifying semantic
features [81, 166, 313, 333]. However, many of those methods either need ad-
ditional training input in new environments or experience transfer issues. To the
best of our knowledge only a few methods explicitly highlight the performance
in new environments outside the training scenario [20, 153, 292, 297]. As we
will later describe, our approach explicitly uses only semantic maps as input
and there will be no need to adapt the learned models to new environments,
described with the same semantic classes.

Modeling the effect of surface classes on human motion was mainly used in
reactive approaches such as [66] and planning-based approaches [142, 153]. In
particular, these methods leverage semantic segmentation tools for understand-
ing and detecting the semantics in the environment. Several approaches exist to
segment available semantics [17, 219, 337] and to build semantic maps of the
environment [96, 103] — a prerequisite to the methods presented in this chap-
ter. We build on those methods to predict areas frequently used by pedestrians
based on the semantic class of the surface.

Several Inverse Reinforcement Learning (IRL, or Inverse Optimal Control,
IOC) approaches make use of semantic maps for predicting future human mo-
tion [142, 153, 292]. In particular, they use the semantic maps for encoding the
features of the reward function. However, these IRL approaches are limited to
one weight per feature and thus do not generalize well to new environments or
heteregenous datasets with different geometries [342, 355]. In this chapter, we
review an adaption of the Maximum Entropy IRL algorithm [369] to the task
of occupancy priors estimation, and compare our CNN-based approach to it.
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4.3 10C and CNN Approaches for Occupancy Priors
Estimation

In this chapter, we study the problem of estimating occupancy priors of walking
humans in semantically-rich urban environments. The problem is formulated
as follows: given a grid-map of the environment M with associated feature
responses f(s) = [f1(s),..., Tk (s)], Z}le fi(s) = 1 for each state s € M over
the set of K semantic classes, we seek to estimate the probability p(s) of a
walking human being observed in this state.

If we assume having access to a large set of trajectories T in M, the prob-
lem of estimating p(s) can be solved by counting visitation frequencies in each
state:

D(s)
ZS/EM D(S/) j’M,

where D(s) is visitation count of state s over all trajectories Tp. In this pa-
per, we estimate this distribution in environments where no trajectory data are
available. One natural way to overcome the lack of trajectories is to simulate
them, in particular using learned human walking preferences. To this end, in
Sec. 4.3.1 we first review an Inverse Optimal Control (IOC) method [153] for
predicting motion trajectories in semantic environments, and discuss its appli-
cability and limitations. Then, in Sec. 4.3.2, we propose a novel approach based
on Convolutional Neural Networks, which is an extension of the occupancy
prior estimation method by Doellinger et al. [74]. For this task, we assume a
semantic map of the environment f(M), or a method to extract it, to be avail-
able. Without loss of generality and for the sake of visual clarity, the states in
this chapter are represented with one-hot vectors, i.e. Vs 3 k s.t. fi(s) = 1 and
Vj £k f(s) = 0.

p(s) = (4.1)

4.3.1 Inverse Optimal Control on Multiple Maps (IOCMM)

Both Reinforcement Learning (RL) and Inverse RL or Inverse Optimal Control
(IOC) frameworks deal with modeling optimal behavior of an agent, operating
in a stochastic world 8 and collecting rewards R on the way to their goal state
sg € 8. An agent’s behavior is encoded in a policy 7t(als), which maps the
state s € 8 to a distribution over actions a € A. When the reward function is
not known beforehand, which is the case in many real-world applications, one
possiblity is to learn it from a set of observations J with an IOC method. In
this case, the reward function is parametrized by a set of parameters 0.
Modeling the behavior of an agent navigating in the environment, which
is described with a set of features f(s) for each state, suits the problem of re-
covering occupancy priors from semantic map inputs well. Prior art, however,
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Algorithm 4 Inverse Optimal Control: Backward pass

1: function BackwardPass(T%, ©)

2: V(s) «+ —o0

3: forn=N,...,1do

4: V(“)(sg) +«~0

si QM(s,a) ¢ R(s,0) + Epyr VM (s")]
6 VI1(s) < softmax, Q™)(s, a)

7: end for

8: 7t(als) + e*(Qls,a)=V(s))

9: return T

has not dealt with abstract quantities, such as occupancy expectations, focus-
ing rather on the policy of an individual agent [370] or multiple agents jointly
[167]. In this chapter we adapt the IOC framework to this task. As our IOC
implementation is based on [153], we give a short summary of their approach
in this section.

MDP-based Maximum Entropy Inverse Reinforcement Learning (MaxEnt
IRL) [369] assumes that the observed motion of agents is generated by a stochas-
tic motion policy, and seeks to estimate this policy with maximum likelihood
to the available demonstrations. The reward an agent gets in state s is linear
with respect to the feature responses in that state: R(s, ) = 1o + 0T f(s), where
19 > 0 is the base reward of a transition and 0 is a set of weights or costs of the
semantic classes: thl 0y = 1,0y € [0,1]. Given R, the distribution over the
sequence of states s is defined as

H eR(st,0) et T0+0Tf(s¢)
pls,0) = o = o (4.2)
Finding the optimal ©* vector is equivalent to maximizing the entropy of
p(s, 0) in Eq. 4.2 while matching the semantic class feature counts of the train-
ing trajectories. An iterative procedure based on the exponentiated gradient
descent of the log-likelihood £ £ logp(s|@) is described by Kitani et al. in
[153]. The gradient VLg is computed as the difference between the empirical

mean feature count f = ‘17‘ Z‘fl f(T1), i.e. the average features accumulated
over the J training trajectories in the map M, and the expected mean feature
count fe, the average features accumulated by trajectories generated by the cur-
rent parameters 0: VLo = f — fo. The weight vector is then updated as

0 « 0eMVre, (4.3)

where A is the learning rate, and the expected mean feature count fg is computed
using an iterative algorithm described below.
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Algorithm 5 Inverse Optimal Control: Forward pass

1: function ForwardPass(T%,7)
2: D« 0

3: forn=1,...,N do
4 S < Sy

s: while s # sg do
6 D(s) « D(s) + 1
7 s’ <« m(als)

8 s« s’

9:  end while

10: end for

11: fg — Zs f(s)D(s)

12: return ?e

The algorithm iterates backward and forward passes, detailed in Alg. 4 and
5 respectively. The backward pass uses the current © vector to compute the
value function V(s) for each state s in M given the goal state sy — the final
state of the trajectory T4, € Ty A stochastic motion policy 7 (als) to reach
sg in M under R(s, 0) is then computed and used in the forward pass to sim-
ulate several trajectories from sy to sg, where s is the initial state of J%;. The
expected mean feature count is computed as a weighted sum of feature counts
fe = ) f(s)D(s) in the simulated trajectories, and the backward-forward it-
eration is repeated for a batch of trajectories in J»¢. The 0 vector is updated
as in Eq. 4.3 using the cumulative fo for the trajectories in the batch, and the
algorithm is iterated until the gradient VL reaches zero. In order to learn from
multiple maps, including those where only a subset of K features is present, we
run the backward and forward passes for a batch of trajectories in a batch of
maps, accumulating the visitation counts D(s) across several maps. The result-
ing Inverse Optimal Control on Multiple Maps (IOCMM) method is detailed
in Alg. 6.

Having obtained the optimal 0* weights, it is possible to compute the re-
ward R(s, 0*) and simulate trajectories in any environment which is described
by a subset of K semantic features. By simulating semantic-aware trajectories,
an average visitation count for each state, normalized across all states in M,
yields the occupancy probability p(s), as in Eq. 4.1. Apart from the 6* vector,
this simulation depends on the distributions from which the initial and goal
states sg and sq (hereinafter denoted sg ) are drawn: since the algorithm is in-
herently unaware of the semantics behind classes, omitting this step may result
in s 4 generation inside of obstacles or other high-cost areas. To counteract
this issue, we consider two strategies: (1) directly learn probabilities to sample
the start or goal position in a state s, conditioned on the semantic class f(s) of
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Algorithm 6 Inverse Optimal Control on Multiple Maps (IOCMM)
1: 0« 1/K
2: repeat

fo <0, f< 0

4:  Batch B, maps

5: form=1,...,B,, do

6: J < Batch By trajectories from M.,

7

8

9

(O8]

fe bt 7R
R(s,0) « 19+ 07 f(s)
fori=1,...,B; do

10: 7 <—BackwardPass(sq)

11: fe — feJr ForwardPass(sg, 71)
12: end for

13:  end for

14:  f <+ normalize(f)
1$: :fe — normalize(fg)
16: Vig <+ E* %9

17: 0+ 0erV¥o

18: until IVLell < €

the state: p(so,q/f(s)), and (2) generate the sg g only from low-cost regions with
the softmax function over the estimated cost of the state: p(so,q) ~ e R(s,07)/7
Furthermore, to generate long trajectories spanning across the map, both dis-
tributions (1) and (2) are scaled linearly proportional to the distance between
the s 4 and the center of the map.

Analysis and discussion

While delivering adequate results in our experiments, as we show in Sec. 4.4,
the IOCMM approach to occupancy priors estimation has an inherent draw-
back. With rigid costs of a semantic class k, defined by the corresponding 0y
weight, the IOCMM method cannot produce flexible estimations for a spa-
tial region given its position in a wider topological structure. For instance, if
we assume that the grass surface is walkable, then it will have a low cost and
predicted people would largely ignore paved paths in a park. However, this
behavior is probably not confirmed in the training data, which will increase
the costs of the grass regions, potentially making them not traversable in some
cases where such behavior is expected. Controlled by one 0y parameter, the
cost of the semantic class stays constant over the entire map. Similarly, learn-
ing to step on the road surface in places where this behavior is unavoidable
will inevitably lead to decreasing the costs of the road surface everywhere in
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Figure 4.2: Structure of the semapp network. Input semantic tensor of size
<height>x<width>x<features> is downsampled twice before passing through a
bottleneck and getting upsampled to the original resolution again. Black ar-
rows indicate skip connections. The kernel sizes and strides are denoted as
<kernel width>x<kernel height>s<stride>.

the map. Learning such flexible behavior requires reasoning over the local con-
text and interconnections between different semantic attributes and the surface.
To this end, we propose our Convolutional Neural Network-based approach
“Semantic Map-Aware Pedestrian Prediction” (semapp), described in the next
section.

4.3.2 Semantic Map-Aware Pedestrian Prediction (semapp)

Convolutional Neural Networks (CNNs) have shown great successes for op-
erations on map data, such as semantic segmentation [219] or value function
estimation for deep reinforcement learning [306]. For our task of predicting oc-
cupancy distributions of walking humans in semantic environments, we need a
method to map the feature responses (M) to probabilities p(s). To this end, we
extend the network to predict occupancy values in semantics-free geometric en-
vironments [74]. This network, based on the FC-DenseNet architecture [133],
has reasonably few parameters which helps to avoid overfitting when training
on limited amounts of data. Experiments with different architectures have been
made in [74] but the authors have found their results to be very robust to such
changes. We thus decided to perform no further optimization on the network
architecture. The method in [74] is referred to as Map-Aware Pedestrian Pre-
diction (mapp), therefore we call our extension “Semantic mapp”, or semapp.
Extending the architecture from [74] to semantic inputs by changing the input
from one binary input channel to one channel for each semantic class allows the
network to differentiate between pedestrians walking on grass, sidewalks and
streets additional to avoiding obstacles. The architecture is outlined in Fig. 4.2.

The network directly outputs the map-sized tensor with the occupancy dis-
tribution, so, unlike IOCMM, semapp requires no trajectory simulation for
inference. Consequently, for training we convert the trajectories T3¢ in each
map M into the occupancy distribution using Eq. 4.1. This conversion itself
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Figure 4.3: (a) CNN training on crops from larger maps in the Stanford Drone Dataset,
(b) corresponding crops from the ground truth distribution. (c) Inference for a large
map by averaging the inference for random crops in the test image, (d) full predicted
occupancy distribution from 500 crops.

is not without meaning: trajectories, as compared to the processed occupancy
distribution, contain additional temporal information. However, this informa-
tion is not necessarily relevant for the task at hand - in fact, we are deliberately
discarding the temporal aspect of human motion, inferring instead the gen-
eralized prior of observing a person in any state of the environment. Using
directly the distribution emphasises the relationship between the topology of
the environment and the desired occupancy priors. Furthermore, it relaxes the
requirements to the data itself: detections are sufficient, and there is no need
for continuous tracks.

Since the network operates on map crops of fixed size, we decompose a
larger input image into a number of random crops of appropriate size and
then rebuilt the final distribution p(s) for state s as an average of predicted
occupancy values of s in all crops which include that state (see Fig. 4.3b). In
this case random crops, as compared to regular grids, remove the aliasing issues
from combining adjacent crops.
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Dataset U4 Stanford Drone

Number of maps 80 25

Map size in pixels 32 x 32 ~ 146 x 152
Resolution simulation 0.4 m
Number of trajectories per map ~ 30 ~132
Number of semantic classes in the dataset 4 9

Table 4.1: Datasets summary

4.4 Experiments

In this section, we give an overview of the training data (Sec. 4.4.1) and the
experiments’ design, as well as details on the training and baseline implemen-
tation (Sec. 4.4.2).

4.4.1 Datasets

We evaluate all methods on two datasets of human trajectories in semantically-
rich environments: the Stanford Drone Dataset [262] and a set of simulated
maps. Both datasets are summarized in Table 4.1.

To prove the concept of learning occupancy distributions from semantic
maps, we created the “U4” dataset which includes 80 hand-crafted maps of
Urban environments with four semantic classes (sidewalk, grass, road and ob-
stacle) and manually marked trajectories in each map. In this dataset, we pay
particular attention to “illegal crosswalk” detection, i.e. such scenes where
global topology of the environment encourages people to step onto the drive-
way and cross it. Additionally, as people often tend to cut sharp corners by
walking over grass, such behavior is also included in this dataset. Several scenes
from U4 are shown in Fig. 4.4.

The Stanford Drone Dataset (SDD) [262] was recorded on the Stanford
University grounds, which include a wide variety of environments and seman-
tic classes, e.g. shared roads for cyclists and vehicles, pedestrian areas, col-
lege buildings, vegetation and parking lots. The dataset includes 51 top-down
scenes with bounding boxes for various agents, from which we extracted tra-
jectories of people, approximating the position by the center of the bound-
ing box. We chose 235 scenes sufficiently covered by trajectories and scaled the
maps to the constant physical resolution of 0.4 m per cell. We manually seg-
mented each scene into nine semantic classes: pedestrian area, vehicle road,
bicycle road, grass, tree foliage, bulging, entrance, obstacle and parking. Some
example scenes from SDD are shown in Fig. 4.1, 4.3 and 4.5.
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Figure 4.4: Training examples from the U4 dataset: each pair shows the semantic map
on the left and the ground truth occupancy distribution on the right. Semantic classes
include vehicle road in dark gray, pedestrian areas and sidewalks in light gray, unpaved
areas and grass in green and obstacles in red.

4.4.2 Training and Evaluation

To our knowledge, there exist quite some works on human motion prediction,
but none of the existing methods predicts prior occupancy distribution of walk-
ing people in urban environments only based on semantic information — a task
considerably different from trajectory prediction [142, 153]. Therefore in our
experiments we mainly compare the IOC and CNN solutions to the problem
against the ground truth distributions and the following baseline methods:

1. uniform distribution over M
2. uniform distribution over the walkable states in M
3. semantics-unaware mapp network [74]

For quantitative evaluation we measure Kullback-Leibler divergence (KL-div)
between the predicted and the ground truth distribution:

Pt (x)

Dk (ParllQprea.) = D Par(x) log =——— i’

xeM

(4.4)

We train and evaluate IOCMM, semapp and the baselines separately on
the U4 and Stanford Drone datasets. Training and inference parameters are
summarized in Table 4.2.
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Figure 4.5: Semantic segmentation, obtained by our proof-of-concept pipeline in the
Stanford Drone dataset. Left: input images. Middle: ground truth labels. Right: pre-
dicted semantic map.

We optimized the hyperparameters for IOCMM prior to the main experi-
ments on a small portion of data from both datasets. For KL-div benchmarking
we learn the 6 weights from leave-one-out maps in the dataset, and validate the
result in the remaining map, iterating over all maps in the respective dataset.
Furthermore, we evaluate the impact of the number of simulated trajectories for
inference in the new map (as in Eq. 4.1), measuring runtime and solution qual-
ity. Finally, we estimate the two s¢ 4 sampling strategies, detailed in Sec. 4.3.1,
separately.

Training the mapp and semapp networks on the U4 dataset is straightfor-
ward as the size of the maps (32 by 32 pixels) is equivalent to the network
input. From the larger images in the SDD (on average 146 by 152 pixels) we
take 500 random crops of size 64 by 64 pixels. Each crop in the training data
is augmented 7 times by rotation and mirroring. In both cases, leave-one-out
maps are used for training and validation (50/50), and the remaining map is
used for evaluation. We followed the training procedure and hyperparameters
from [74] which turned out robust enough for our application. In particular, we
trained the networks for 100 epochs with binary cross-entropy loss using the
Adam optimizer [151], and stopped the training when the performance on the
validation set did not improve for 15 epochs. Further parameters are detailed
in Table 4.2.
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4.4.3 A Remark on Semantic Segmentation

As a proof-of-concept that the semantic maps, required for the methods pre-
sented in this chapter, can be obtained from images during runtime, we have
set up a preliminary pipeline for semantic segmentation using UNet implemen-
tation in Keras and TensorFlow [106]. We trained the CNN with the 19 images
from the Stanford Drone dataset, augmented 3 times with rotation, and tested
on the remaining 6 images. Even with such negligible amount of data, our ex-
periments (see Fig. 4.5) reached 0.64 frequency-weighted IoU in the training
dataset (78% accuracy), and 0.53 IoU (69% accuracy) in the test dataset. We
are confident, that using state-of-the-art semantic segmentation techniques [1]
the performance, necessary for the application of our method, will be reached.
Combining these two pipelines is of prime priority for our future work.

4.5 Results

We report the mean and standard deviations of the KL-divergences for both
datasets in Table 4.3. In the U4 dataset, both IOCMM and semapp outper-
form the other baselines, furthermore both proposed sampling strategies for
IOCMM show similar performance after appropriate hyperparameter opti-
mization. Semapp, in addition to the quantitative improvement of minimum
14% over the closest baseline (IOCMM), offers a clear qualitative improve-
ment in identifying crucial non-linearities in the predicted priors, as displayed
in Fig. 4.6. This figure shows the extent to which semantics of the environ-
ment impact the distribution prediction — all semantics-unaware methods in
our comparison, e.g. uniform p(s) over M and mapp, perform poorly. On the
contrary, in both datasets semapp outperforms all baselines, due to its ability to
reason over spatially-connected regions using convolutions, learning not only
local contexts where motion probability is high, but also which locations are
usually avoided by pedestrians. Interestingly, in the SDD dataset, due to incom-
plete ground truth coverage of the scenes (as seen in Fig. 4.1 and 4.3), removing
unwalkable spaces from the uniform distribution over all states in M only de-
creases performance of this baseline. The reason here is that for many walkable
states, where no motion is recorded in the ground truth, probabilities increase,
resulting in worse KL-div scores. Despite using this imperfect training material,
semapp consistently outperforms all baselines with the best KL-div score and
smaller standard deviation between maps.

In Fig. 4.7, we visualize the generalization capabilities of the IOCMM
method. To this end, we show the optimal 6* weights in each individual map in
both datasets, and compare them to the globally optimal set of weights, learned
from training on all maps in the respective dataset. Here lies one benefit of the
Inverse Optimal Control strategy to find occupancy priors: IOCMM does not
only generalize well on a large amount of maps, but also retains high perfor-
mance when learning from small amounts of data. In fact, when training on a
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Method U4 dataset  Stanford Drone

Uniform p(s) over M 1.21+0.26 1.4040.31
Uniform p(s) over walkable states in M 0.97 +0.28 1.69 +0.42
Uniform p (s|f(s)) learned from T 0.534+0.09 1.09+0.26

mapp CNN 0.93+£0.27 1.03+0.19
IOCMM with learned p (5.4 ) 0.4240.07 1.04+0.24
IOCMM with modeled p (so0,g) 0.43 £0.07 1.214+0.32
semapp CNN 0.37 +0.11 0.71 £0.13

Table 4.3: Average KL-div in the U4 and Stanford Drone datasets

fraction of maps from the dataset (e.g. as little as 10 random maps), [OCMM
on average still converges to the globally-optimal 8* costs for semantic classes,
and thus the KL-div scores do not drop. This property is not shared by semapp,
which needs a large selection of maps sufficiently covered by trajectories to gen-
eralize across various local contexts.

Both methods, IOCMM and semapp, depend on the number of random
samples during inference. IOCMM samples trajectories between random start
and goal positions, while semapp samples random crops from the larger se-
mantic map. In Fig. 4.8 we show the relation between the number of samples,
performance and inference time in the large maps of the SDD dataset. Runtimes
were measured for Python implementations of both algorithms on an ordinary
laptop with Intel Xeon 2.80GHz x 8 CPU and 32 GB of RAM. The CNN is
implemented using Theano on the built-in GPU Quadro M2000M. It is worth
mentioning that the inference time of semapp on one crop of size 64 by 64 pix-
els (equivalent to 25.6 x 25.6 m) is ~ 0.054 seconds, appropriate for real-time
application.

4.6 Conclusions and Outlook

In this chapter, we looked into the problem of learning human occupancy priors
in semantically-rich urban environments using only the semantic map as input.
Considering two established classes of approaches to this end (Inverse Optimal
Control and Convolutional Neural Network), we show that our CNN-based
semapp approach is outperforming all baselines already with limited training
data. The IOCMM approach, on the other hand, can be used to reasonably
estimate the costs of semantic classes from several maps and few trajectories.
However, it is limited to constant weights, which may not reflect behavior of
people in all local contexts of semantically-complex environments. This ap-
proach lacks reasoning on spatial relevance of surfaces to infer cases where
people may prefer to walk on one surface class over another, or not walk at all.

In future work we intend to further investigate the possibilities of apply-
ing advanced IOC techniques, for instance non-linear IRL with complex fea-
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Figure 4.6: Qualitative comparison of results in the U4 dataset. A binary occupancy map
of the environment highlights the amount of structure imposed by semantics in urban
scenes. There is little surprise that the semantics-unaware mapp approach for learning
occupancy priors [74] is not learning any meaningful behaviors apart from the fact that
people (often) tend to be found close to obstacles. On the contrary, IOCMM correctly
estimates the priors in different walkable areas. On top of that, CNN-based semapp is
capable of detecting all “illegal crosswalks” in these scenes, as well as cutting over grass
in such places where the topology of the environment encourages to do so, e.g. see the
sharp corner in the third row.

tures [183], non-linear reward modeling [204], automated feature extraction
to exploit local correlations in the environment [182, 211], IOC with multiple
locally-consistent reward functions [221] and with CNN-based reward func-
tion approximator [338]. Furthermore, we plan to validate semapp with on-
the-fly semantics estimation and extend it to first-person view for application
in automated driving to infer potential pedestrians’ entrance points to the road.
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Figure 4.7: Optimal 6 costs of various semantic classes, learned by IOCMM in each
individual map, are shown in gray. Globally optimal weights for the entire dataset are
overlaid in black. Left: U4 dataset. Right: Stanford Drone dataset.
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Figure 4.8: Runtime and performance of IOCMM (left) and semapp (right) in the SDD
dataset as a function of the number of sampled trajectories/crops during inference. Both
methods’ runtime scales linearly with the number or random samples, while perfor-
mance improves exponentially.
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Chapter 5
Data Collection for Motion
Prediction

Understanding human behavior is key for robots and intelligent systems that
share a space with people. Accordingly, research that enables such systems to
perceive, track, learn and predict human behavior as well as to plan and in-
teract with humans has received increasing attention over the last years. The
availability of large human motion datasets that contain relevant levels of diffi-
culty is fundamental to this research. Existing datasets are often limited in terms
of information content, annotation quality or variability of human behavior. In
this chapter, we present THOR, a new dataset with human motion trajectory
and eye gaze data collected in an indoor environment with accurate ground
truth for position, head orientation, gaze direction, social grouping, obstacles
map and goal coordinates. THOR also contains sensor data collected by a 3D
lidar and involves a mobile robot navigating the space. We propose a set of
metrics to quantitatively analyze motion trajectory datasets such as the average
tracking duration, ground truth noise, curvature and speed variation of the tra-
jectories. In comparison to prior art, our dataset has a larger variety in human
motion behavior, is less noisy, and contains annotations at higher frequencies.

5.1 Introduction

In Chapter 1 we have outlined many tasks which require understanding hu-
man motion behavior in automated driving, mobile robotics, intelligent video
surveillance systems and motion simulation. Human motion trajectories are
a valuable learning and validation resource in these tasks. For instance, they
can be used for learning safe and efficient human-aware navigation, predict-
ing motion of people for improved interaction and service, inferring motion
regularities and detecting anomalies in the environment.
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Figure 5.1: Environment configuration. Participants, wearing tracking helmets, and the
robot are moving towards their goals in a shared space, tracked by the Qualisys motion
capture system (recorded motion in the bottom left corner).

Datasets of ground level human trajectories, typically used for learning
and benchmarking, include the ETH [236], Edinburgh [205] and the Stan-
ford Drone [262] datasets, recorded outdoors, or the indoor ATC [48], L-CAS
[349] or Central Station [366] datasets (see Table 5.1). While providing the
basic input of motion trajectories, these datasets often lack relevant contextual
information and the desired properties of data, e.g. the map of static obsta-
cles, coordinates of goal locations, social information such as the grouping of
agents, high variety in the recorded behaviors or long continuous tracking of
each observed agent. Furthermore, most of the recordings are made outdoors,
a robot is rarely present in the environment and the ground truth pose annota-
tion, either automated or manual, is prone to artifacts and human errors.
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5.1.1 Contribution

In this chapter we present a human-robot interaction procedure, designed to
collect motion trajectories of people in a generic indoor social setting with ex-
tensive interaction between groups of people and a robot in a spacious environ-
ment with several obstacles. The locations of the obstacles and goal positions
are set up to make navigation non-trivial and produce a rich variety of behav-
iors. The participants are tracked with a motion capture system; furthermore,
several participants are wearing eye-tracking glasses. “Tracking Human motion
in the ORebro university” (THOR) dataset!, which is released public and free
for non-commercial purposes, contains over 60 minutes of human motion in
395k frames, recorded at 100 Hz, 2531k people detections and over 600 in-
dividual and group trajectories between multiple resting points. In addition to
the video stream from one of the eye tracking headsets, the data includes 3D
Lidar scans and a video recording from stationary sensors. We quantitatively
analyze the dataset using several metrics, such as tracking duration, perception
noise, curvature and speed variation of the trajectories, and compare it to pop-
ular state-of-the-art datasets of human trajectories. Our analysis shows that
THOR has more variety in recorded behavior, less noise, and high duration of
continuous tracking.

5.1.2 Outline

The chapter is organized as follows: in Sec. 5.2 we review the related work
and in Sec. 5.3 detail the data collection procedure. In Sec. 5.4 we describe the
recorded data and analyze it quantitatively and qualitatively. Sec. 5.5 concludes
the chapter.

5.2 Related Work

Recordings of human trajectory motion and eye gaze are useful for a num-
ber of research areas and tasks both for machine learning and benchmarking,
as we discussed In Chapter 2. Examples include person and group tracking
[175, 194, 236], human-aware motion planning [19, 94, 229, 304], motion
behavior learning [225], human motion prediction [63, 268], human-robot in-
teraction [174], video surveillance [4] or collision risk assessment [196]. Ac-
cording to our taxonomy, state-of-the-art methods for tracking or motion pre-
diction can incorporate information about the environment, social grouping,
head orientation or personal traits. For instance, Lau et al. [175] estimate so-
cial grouping formations during tracking and our own method from Chapter 3
uses group affiliation as a contextual cue to predict future motion. Unhelkar
et al. [317] use head orientation to disambiguate and recognize typical motion

1 Available at http://thor.oru.se
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patterns that people are following. Bera et al. [32] and Ma et al. [202] learn
personal traits to determine interaction parameters between several people. To
enable such research in terms of training data and benchmarking requirements,
a state-of-the-art dataset should include this information.

Human trajectory data is also used for learning long-term mobility patterns
[214], such as the CLiFF maps [166], to enable compliant flow-aware global
motion planning and reasoning about long-term path hypotheses towards goals
in distant map areas for which no observations are immediately available. Fi-
nally, eye-gaze is a critical source of non-verbal information about human task
and motion intent in human-robot collaboration, traffic maneuver prediction,
spatial cognition or sign placement [2, 52, 77, 146, 228].

Tables 2.2 — 2.4 in Chapter 2 review the existing datasets of human, vehicle
and cyclist trajectories, commonly used in the literature. Here we extend this
review, focusing on the pedestrian datasets and the recorded contextual cues in
Table 5.1. With the exception of [48, 76, 349, 366], all datasets have been col-
lected outdoors. Intuitively, patterns of human motion in indoor and outdoor
environments are substantially different due to scope of the environment and
typical intentions of people therein. Indoors people navigate in loosely con-
strained but cluttered spaces with multiple goal points and many ways (e.g.
from different homotopy classes) to reach a goal. This is different from their
behavior outdoors in either large obstacle-free pedestrian areas or relatively
narrow sidewalks, surrounded by various kinds of walkable and non-walkable
surfaces. Among the indoor recordings, only [76, 349] introduce a robot, nav-
igating in the environment alongside humans. However, recording only from
on-board sensors limits visibility and consequently restricts the perception ra-
dius. Furthermore, ground truth positions of the recorded agents in all prior
datasets were estimated from RGB(-D) or laser data. On the contrary, we di-
rectly record the position of each person using a motion capture system, thus
achieving higher accuracy of the ground truth data and complete coverage of
the working environment at all times. Moreover, our dataset contains many
additional contextual cues, such as social roles and groups of people, head ori-
entations and gaze directions.

5.3 Data Collection Procedure

In order to collect motion data relevant for a broad spectrum of research areas,
we have designed a controlled scenario that encourages social interactions be-
tween individuals, groups of people and with the robot. The interactive setup
assigns social roles and tasks so as to imitate typical activities found in popu-
lated spaces such as offices, train stations, shopping malls or airports. Its goal is
to motivate participants to engage into natural and purposeful motion behav-
iors as well as to create a rich variety of unscripted interactions. In this section
we detail the system setup and the data collection procedure.
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Figure 5.2: Overview of the environment. The Qualisys motion tracking system is in-
stalled in a laboratory room, which is mostly empty except for some shelves and equip-
ment along the walls. A permanent obstacle in the middle of the room is present in all
recordings, while additional obstacles are only placed in the “Three obstacles” scenario
(see Sec. 5.3.2 for details). The position of the camera is shown in the top left corner,
and the position of the Velodyne in the bottom right.

5.3.1 System Setup

Data collection was performed in a spacious laboratory room of 8.4x18.8 m
and the adjacent utility room, separated by a glass wall (see the overview in
Fig. 5.2). The laboratory room, where the motion capture system is installed,
is mostly empty to allow for maneuvering of large groups, but also includes
several constrained areas where obstacle avoidance and the choice of homotopy
class is necessary. Goal positions are placed to force navigation along the room
and generate frequent interactions in its center, while the placement of obstacles
prevents walking between goals on a straight line.

To track the motion of the agents we used the Qualisys Oqus 7+ motion
capture system? with 10 infrared cameras, mounted on the perimeter of the
room. The motion capture system covers the entire room volume apart from
the most right part close to the podium entrance — a negligible loss due to
the focus on the central part of the room. The system tracks small reflective
markers at 100 Hz with spatial discretization of 1 mm. The coordinate frame
origin is on the ground level in the middle of the room. For people tracking, the
markers have been arranged in distinctive 3D patterns on the bicycle helmets,
shown in Fig. 5.3. The motion capture system was calibrated beforehand with
an average residual tracking error of 2mm, and each helmet, as well as the
robot, was defined in the system as a unique rigid body of markers, yielding its
6D head position and orientation. Each participant was assigned an individual

Zhttps://www.qualisys.com/hardware/5-6-7/
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Figure 5.3: Equipment used in our data collection: Left: (1) bicycle helmet with mocap
tracking markers, (2) Tobii Pro Glasses, (3) boxes which were carried by the participants
as a part of the tasks. Right: Linde CitiTruck robot projecting its current motion intent
on the floor.

helmet for all recording sessions, labeled 2 to 10. Helmet 1 was not used in this
data collection.

For acquiring eye gaze data we used four mobile eye-tracking headsets worn
by four participants (helmet numbers 3, 6, 7, and 9 respectively). However, in
this dataset we only include data from one headset (Tobii Pro Glasses), worn
by the participant with helmet 9. The gaze sampling frequency of Tobii Pro
Glasses is 50 Hz. It also has a scene camera which records the video at 25 fps.
A gaze overlaid version of this video is included in this dataset. We synchro-
nized the clocks of each machine (the Qualisys system, the stationary Velodyne
sensor and the eye-tracking glasses) with the same NTP time server. Finally, we
recorded a video of the environment from a stationary camera, mounted in a
corner of the room.

The robot, used in our data collection, is a small forklift Linde CitiTruck
robot with a footprint of 1.56x0.55m and 1.17m high, shown in Fig. 5.3.
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It was programmed to move in a socially unaware manner, following a pre-
defined path around the room and adjusting neither its speed nor trajectory to
account for surrounding people. For safety reasons, the robot was navigating
with a maximal speed of 0.34 m s~ and projecting its current motion intent
on the floor in front of it using a mounted beamer [52]. A dedicated operator
was constantly monitoring the environment from a remote workstation to stop
the robot in case of an emergency. The participants were made aware of the
emergency stop button on the robot should they be required to use it.

5.3.2 Scenario Description and Participants’ Priming

During the data collection the participants performed simple tasks, which re-
quired walking between several goal positions. To increase the variety of mo-
tion, interactions and behavioral patterns, we introduced several roles for the
participants and created individual tasks for each role, summarized in Fig. 5.4.

The first role is a visitor, navigating alone and in groups of up to 5 people
between four goal positions in the room. At each goal they take a random card,
indicating the next target. As each group was instructed to travel together, they
only take one card at a time. We asked the visitors to talk and interact with the
members of their group during the data collection, and changed the structure
of groups every 4-5 minutes. There are 6 visitors in our recording. The second
role is a worker, whose task is to receive and carry large boxes between the lab-
oratory and the utility room. The workers wear a yellow reflective vest. There
are 2 workers in our recording, one carrying the boxes from the laboratory to
the unity room, and the other vice versa. The third role is the inspector. An
inspector is navigating alone between many additional targets in the environ-
ment, indicated by a QR-code, in no particular order and stops at each target
to scan the code. We have one inspector in our recording.

There are several points to motivate the introduction of the social roles.
Firstly, with the motion of the visitors and the workers we introduce distinctive
motion patterns in the environment, while the cards and the tasks make the
motion focused, goal-oriented and prevent random wandering. However, the
workers’ tasks allocation is such that at some points idle standing/wandering
behavior is also observed, embedded in their cyclical activity patterns. Further-
more, we expect that the visitors navigating alone, in groups and the workers
who carry heavy boxes exhibit distinctive behavior, therefore the grouping in-
formation and the social role cue (reflective vest) may improve the intention
and trajectory prediction. Finally, motion of the inspector introduces irregular
patterns in the environment, distinct from the majority of the visitors.

We prepared three scenarios for data collection with different numbers of
obstacles and motion state of the robot. In the first scenario, the robot is placed
by a wall and not moving, and the environment has only one obstacle (see the
layout in Fig. 5.2). The second scenario introduces the moving robot, navigat-
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Figure 5.4: Roles of the participants and their expected motion patterns. Visitors, walk-
ing alone and in groups, are instructed to navigate between goals 1,2,3 and 4. Their mo-
tion patterns are shown with colored solid lines. The laboratory worker, whose waiting
position is at goal 3, picks up an incoming box at goal 1, registers its ID at goal 3 and
then places it at goal 5. The wutility worker, whose waiting position is at goal 2, picks
up the box at goal 5, registers it at goal 2 with a new ID and places it at goal 1. The
patterns of both workers are shown with dotted lines. The trajectory of the robot, cir-
culating around the obstacle in the middle of the room, is shown with a thick hollow
line.

ing around the obstacle (the trajectory of the robot is depicted in Fig. 5.4). The
third scenario features an additional obstacle and a stationary robot in the en-
vironment (see Fig. 5.2 with additional obstacles). We denote these recording
scenarios as One obstacle, Moving robot and Three obstacles, accordingly. In
each scenario the group structure for the visitors was reassigned 4-5 times. Be-
tween the scenarios, the roles were also reassigned. A summary of the scenarios
and durations is given in Table 5.2.

Each round of data collection started with the participants, upon command,
beginning to execute their tasks. The round lasted for approximately four min-
utes and ended with another call from the moderator. To avoid artificial and
unnatural motion due to knowing the true purpose of the data collection, we
told the participants that our goal is to validate the robot’s perceptive abilities,
while the motion capture data will be used to compare the perceived and ac-
tual positions of humans. Participants were asked not to communicate with us
during the recording. For safety and ethical reasons, we have instructed par-
ticipants to act carefully near the robot, described as “autonomous industrial
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Scenario, round |Visitors, groups|Workers Inspector |[Duration
Helmet ID 2-10 |Utility, lab
One 116,7,5 + 8,24 |3 9110 368 sec
obstacle 2(2,5,6,7 + 8,4 3 910 257 sec
316,7,8 +4,5 +2 3 910 275 sec
4|12,4,5,7,8 + 6 |3 910 315 sec
Moving 114,56 + 3,79 |2 810 281 sec
robot 213,5,6,9 + 7,4 2 8(10 259 sec
315,7,9+4,6+3 |2 8|10 286 sec
413,5,6,7,9 + 4 2 8(10 279 sec
513,6 +4,9 +5,7 2 8[10 496 sec
Three 112,3,8 + 6,7,9 |5 4{10 315 sec
obstacles 212,8,9 + 3,6,7 |5 4]10 290 sec
312,3,7+89+6 |5 4(10 279 sec
412,3,6,7,9 + 8 |5 4(10 277 sec

Table 5.2: Role assignment and recording duration in the three scenarios of our data
collection: (i) One obstacle, (ii) Moving robot, (iii) Three obstacles.

equipment” which does not stop if someone is in its way. An ethics approval
was not required for our data collection as per institutional guidelines and the
Swedish Ethical Review Act (SFS number: 2003:460). Written informed con-
sent was obtained from all participants. Due to the relatively low weight of the
robot and the safety precautions taken, there was no risk of harm to partici-
pants.

5.4 Results and Analysis
5.4.1 Data Description

The THOR dataset includes over 60 minutes of motion in 13 rounds of the
three scenarios. The recorded data in .mat, .bag and .tsv format contains
over 395k frames at 100 Hz, 2531k human detections and 600+ individual and
group trajectories between the goal positions. For each detected person the 6D
position and orientation of the helmet in the global coordinate frame is pro-
vided. Furthermore, the dataset includes the map of the static obstacles, goal
coordinates and grouping information. We also share the Matlab scripts for
loading, plotting and animating the data. Additionally, the eye gaze data is
available for one of the participants (Helmet 9), as well as Velodyne scans from
a static sensor and the recording from the camera. We thoroughly inspected
the motion capture data and manually cleaned it to remove occasional helmet
ID switches and recover several lost tracks. Afterwards we applied an auto-
mated procedure to restore the lost positions of the helmets from incomplete
set of recognized markers. In Fig. 5.5 we show the summary of the recorded
trajectories.
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5.4.2 Baselines and Metrics

The THOR dataset is recorded using a motion capture system, which yields
more consistent tracking and precise estimation of the ground truth positions
and therefore higher quality of the trajectories, compared to the human de-
tections from RGB-D or laser data, typically used in existing datasets. For the
quantitative analysis of the dataset, we compare the recorded trajectories to the
several datasets which are often used for training and evaluation of motion pre-
dictors for human environments, as discussed in Sec. 2.8.2. The popular ETH
dataset [236] is recorded outdoors in a pedestrian zone with a stationary cam-
era facing downwards and manually annotated at 2.5 Hz. The Hotel sequence,
used in our comparison, includes the coordinates of the 4 common goals in the
environment and group information for walking pedestrians. The ATC dataset
[48] is recorded in a large shopping mall using multiple 3D range sensors at
~26 Hz over an area of 900 m?. This allows for long tracking durations and
potential to capture interesting interactions between people. In addition to po-
sitions it also includes facing angles. In this comparison we used the recordings
from 24th and 28th of October and 14th of November. The Edinburgh dataset
[205] is recorded in a university campus yard using a camera facing down with
variable detection frequency, on average 9 Hz. For comparison we used the
recordings from 27th of September, 16th of December, 14th of January and
22nd of June.

For evaluating the quality of recorded trajectories we propose several met-
rics:

1. Tracking duration (s): average length of continuous observations of a
person, higher is better.

2. Trajectory curvature (m~"): global curvature of the trajectory 7T, caused
by maneuvering of the agents in presence of static and dynamic obsta-

cles, measured on 4s segments based on the first Ty = (x1,y1), mid-

dle Tiy2s = (x2,y2) and last Tyi4s = (x3,y3) points of the interval:
_ 2(xa—x1) (Y3—y1)—(x3—x1) (Y2—y1) :

K(Ttt4s) = gm0, —oiT o105 w1l T <o w1 he choice of 45

path segments is motivated by the standard motion prediction horizon in

the related work [4]. Higher curvature values correspond to more chal-

lenging, non-linear paths.

3. Perception noise (ms~2): under the assumption that people move on
smooth, not jerky paths, we evaluate local distortions of the recorded
trajectory {T¢}i—1..m of length M, caused by the perception noise of the
mocap system as the average absolute acceleration: 7r S ML T, Less
noise is better.

4. Motion speed (ms~'): mean and standard deviation of velocities in the
dataset, measured on 1s intervals. If the effect of perception noise on
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Metric THOR ETH ATC Edinburgh
Tracking duration [s] 16.7+14.9 |94+54 39.7+64.7 [10.1+12.7
Trajectory curvature [m '] 1.9 +£8.8 0.18+£1.48 [0.84+1.43 |1+3.9
Perception noise [m s 2] 0.12 0.19 0.48 0.81
Motion speed [m s 1] 0.81 £0.49 |1.38+0.46 |1.04+0.46 [1.040.64
Min. dist. between people [m] [1.54 £1.60 [1.33 £1.39 [0.61+0.16 |[3.97 £3.5

Table 5.3: Comparison of the datasets

speed is negligible, higher standard deviation means more diversity in
behavior of the observed agents, both in terms of individually preferred
velocity and compliance with other dynamic agents.

5. Minimal distance between people (m): average minimal euclidean dis-
tance between two closest observed people. This metric indicates the den-
sity of the recorded scenarios, lower values correspond to more crowded
environments.

5.4.3 Results

The results of the evaluation are presented in Table 5.3. Our dataset has suf-
ficiently long trajectories (on average 16.7 s tracking duration) with high cur-
vature values (1.9 + 8.8 m~'), indicating that it includes more human-human
and human-environment interactions than the existing datasets. Furthermore,
despite the much higher recording frequency, e.g. 100 Hz (THOR) vs. ~26 Hz
(ATC), the amount of perception noise in the trajectories is lower than in all
baselines. The speed distribution of +0.49 m s~ shows that the range of ob-
served velocities corresponds to the baselines, while the lower average velocity
in combination with a high average curvature confirms higher complexity of
the recorded behaviors, because comfortable navigation in straight paths with
constant velocity is not possible in presence of static and dynamic obstacles. Fi-
nally, the high variance of the minimal distance between people (1.5441.60 m
THOR vs. 0.614+0.16 m ATC) shows that our dataset features both dense and
sparse scenarios, similarly to ETH and Edinburgh.

An important advantage of THOR in comparison to the prior art is the
availability of rich interactions between the participants and groups in presence
of static obstacles and the moving robot. In this compact one hour recording
we observe numerous interesting situations, such as accelerating to overtake
another person; cutting in front of someone; halting to let a large group pass;
queuing for the occupied goal position; group splitting and re-joining; choos-
ing a sub-optimal motion trajectory from a different homotopy class due to
a narrow passage being blocked; hindrance from walking towards each other
in opposite directions. In Fig. 5.6 — 5.8 we illustrate several examples of such
interactions.
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5.5 Conclusions and Outlook

In this chapter we presented a novel human motion trajectories dataset,
recorded in a controlled indoor environment. Aiming at applications in training
and benchmarking human-aware intelligent systems, we designed the dataset to
include a rich variety of human motion behaviors, interactions between indi-
viduals, groups and a mobile robot in the environment with static obstacles
and several motion targets. Our dataset includes accurate motion capture data
at high frequency, head orientations, eye gaze directions, data from a stationary
3D lidar sensor and an RGB camera. Using a novel set of metrics for the dataset
quality estimation, we show that it is less noisy and contains higher variety of
behavior than the prior art datasets.

The proposed data collection procedure has shown clear potential in gen-
erating interesting and diverse interactions. An obvious continuation of work
on this topic is recording more data in various scenarios. The summary of the
recorded trajectories in Fig. 5.5 shows that the nature of motion in a relatively
simple indoor space is not only defined by the free and occupied space, but also
by its topology, location of obstacles, goals and the presence of the robot. These
are important factors, and learning to recognize their effect on human motion
requires many more example scenarios with variations in each of those factors.
The future recordings may include higher density of people, more eye-tracking
headsets, more robots and variations in their behavior.

Furthermore, we are interested in building a benchmarking suite for tra-
jectory prediction algorithms, rich in contextual cues and factor-conditioned
experiments. The diverse nature of the recorded data allows building balanced
training and validation datasets, and the length of uninterrupted observations
is suitable for evaluation with long-term prediction horizons. On top of that,
the accurate ground truth data can be augmented with controlled sensor noise
to test robustness against imperfect sensing. These first steps are taken in Chap-
ter 6, where we present our benchmark design and use the THOR data in preci-
sion, robustness and transfer experiments, and in Chapter 7, where we discuss
the further development of the benchmarking ideas.
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Figure 5.5: Trajectories of the participants and the robot, recorded in the “One obsta-
cle” scenario (top), “Moving robot” scenario (middle) and “Three obstacles” scenario
(bottom). The robot’s path in the middle image is shown in black.
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Figure 5.6: Social interactions in the THOR dataset with color-coded positions of the
observed people. The current velocity is shown with an arrow of corresponding length
and direction. The past and the future 2 s trajectories are shown with dotted and dashed
lines respectively. Goal locations are marked with gray circles. “One obstacle", Round 1:
at 104 sec the group (2,4,8) starts moving from the goal point, taking the line formation
in the constrained space due to the presence of standing person 10. Later, at 111.5 sec,
person 10 has to adjust the path and slow down while the group (5,6,7) proceeds in the
V formation [216], engaged in communication.
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Figure 5.7: Social interactions in the THOR dataset with color-coded positions of the
observed people. The current velocity is shown with an arrow of corresponding length
and direction. The past and the future 2 s trajectories are shown with dotted and dashed
lines respectively. Goal locations are marked with gray circles. “Moving robot", Round
3: person 8 is leaving the resting position at 61.5 sec and adapts the path to account
for the motion of the robot, taking a detour from the optimal way to reach the goal 5.
At 66 seconds person 8 crosses person 3, who has to slow down, as compared to the
velocity at time 61.5 and 71. The same maneuver of taking a detour due to the presence
of the robot is performed by the group (5,7,9) at time 71.
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Figure 5.8: Social interactions in the THOR dataset with color-coded positions of the ob-
served people. The current velocity is shown with an arrow of corresponding length and
direction. The past and the future 2 s trajectories are shown with dotted and dashed lines
respectively. Goal locations are marked with gray circles. “Three obstacles", Round 3:
Group (2,3,7), navigating in a constrained environment, at 57 sec has to make a detour
around the obstacle while heading to goal 3. On the way back to goal 4 the group splits
at 67.6 sec, and reunites later on.

Chapter 5. Data Collection for Motion Prediction Andrey Rudenko ‘ 135






Chapter 6
Benchmarking Human Motion
Prediction Methods

Did I ever shorten what I ought to
have lengthened? Did I only
weaken what 1 could have
strengthened?

Le Ceneri di Heliodoro
JEROME REUTER

With a multitude of new methods proposed by different communities, the lack
of standardized benchmarking and objective comparison between them has
been a major limitation for assessing the capabilities of the state-of-the-art sys-
tems. Existing attempts in building benchmarking infrastructure are limited in
their support for relevant contextual cues, experiments and variation of pre-
diction parameters. To advance the state of benchmarking, in this chapter we
present a novel benchmark, built for thorough evaluation and comparison of
the motion prediction methods along several axes. Our Atlas benchmark en-
compasses a large variety of heterogeneous datasets, representing usual human
motion behaviors in different places and cultures. The benchmark offers tools,
such as metrics, data preparation and filtering, calibration and visualization to
overcome several limitations of the existing infrastructure, thus sustaining the
enduring development of better algorithms. Using the benchmark, we investi-
gate a hypothesis about a better local interaction model for our MDP-based
motion predictor, presented in Chapter 3.

6.1 Introduction

Benchmarking motion prediction algorithms is not a trivial matter. The eval-
uation outcome can be affected by various factors, and the properties of the
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methods can sometimes be exposed only in elaborate experiments. For instance,
such factors include prediction horizon, which defines how far into the future
predictions are made, and the procedure used to extract testing scenarios from
raw datasets (streams of labeled detections). Even when evaluating the simplest
constant velocity model using the same dataset, metrics and prediction horizon,
the evaluation results still differ from each other, as we can observe in [4] and
[284]. The reason here is that these two papers approach differently the testing
scenarios generation and take different preprocessing steps for the raw data.

In Chapter 2 we revealed a clear demand for a good benchmark to allow
systematic assessment of the prediction quality and formal comparison between
methods. Among the methods, discussed in Chapter 2, evaluation has been a
disorganized effort with little overlap or systematic comparison between works.
Initiatives of various authors range from dropping comparison to the state of
the art (or quantitative evaluation all-together) to extensive evaluation on pro-
prietary closed access data, prohibiting a meaningful comparison to the pub-
lished results by the community. The first significant milestone in benchmarking
is the well-defined evaluation strategy, proposed by Alahi et al. [4] and later re-
leased as the TrajNet benchmark [276], which has been well received by the
prediction community and replicated by many authors. The further release of
TrajNet++ [160] marks notable progress towards the unification of benchmark-
ing human motion predictions. This challenge-centered benchmark, however,
has some limitations which we discuss and address in this chapter. TrajNet++
supports automated extraction of scenes with given observation and prediction
lengths from a raw dataset. The extracted scenes, however, are guaranteed to
include only one trajectory with the requested duration parameters. Further-
more, the challenge-based nature of the benchmark does not explicitly permit
modification of important prediction parameters, restricting the evaluation to
several pre-defined experiments. Crucially, as of this moment TrajNet++ does
not support scenes with obstacles or semantic information about the environ-
ment, it has limited support for prediction uncertainty modeling, and can only
visualize the trajectories aggregated in time, concealing the interactional aspects
of human motion.

6.1.1 Contribution

In this chapter we present the Atlas benchmark as the first step towards au-
tomated benchmarking and evaluation of the motion prediction methods with
systematic variation of parameters. Atlas includes heterogeneous datasets of
human motion trajectories, and is capable of automatically extracting valid
testing scenarios, interpolating, downsampling and smoothing the missing and
noisy detections. Compared to the prior art, it offers many tunable parameters
like the observation period and prediction horizon, import of semantic maps
and other relevant information such as the coordinates of goals in the map,
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evaluation of the probabilistic prediction results, and robustness testing with
added noise to the original data. Unlike TrajNet++, our benchmark is especially
suited for studying how prediction parameters influence the results, in contrast
to fixing the main parameters for producing scores in a specific challenge.

Using this developed benchmark, and taking insight from the methodol-
ogy, discussed in Chapter 3, in this chapter we set out to better investigate the
collision avoidance methods, used for modeling the local interactions between
people. In Sec. 2.4 we described the reactive and predictive models, the latter
being hypothetically superior. In particular, the agents acting according to the
classical social force model [110] would not attempt to avoid collisions until
the social force takes effect in close proximity to another person. This leads to
overconfident, reactive and unnatural motion. Predictive methods aim to solve
this problem by the means of projecting the current dynamic state and reacting
to the expected collisions in advance.

In our comparison we consider two popular predictive approaches, build on
the foundation of the social forces, thus retaining all the benefits of the original
approach. The model by Zanlungo et al. [356] extends the original social force
with explicit collision prediction based on the repulsive potential at the time
of the closest approach between two pedestrians. The model by Karamouzas
et al. [141] also computes the time to a possible collision and the repulsive
force based on the projected future positions, but differently accounts for the
several upcoming collisions, sorted by their remoteness in time. Our thorough
comparison in multiple experiments with varying observation lengths, predic-
tion horizons, added noise, and transfer between datasets, shows no significant
improvement when using the predictive models, despite their theoretical appeal.

6.1.2 Outline

In the following, we discuss the background on benchmarking motion predic-
tion methods in Sec. 6.2 and describe our benchmark design in Sec. 6.3. We
present the quantitative comparison of the local interaction models in Sec. 6.4
and conclude the chapter in Sec. 6.5.

6.2 Background

In this section we revisit the motion prediction problem formulation, define the
main properties of a benchmark and analyze the existing ones.

Generally speaking, a trajectory prediction method aims to estimate future
positions of a moving agent within a certain time horizon with a determinis-
tic or stochastic state hypothesis, the latter potentially being also multi-modal.
Often the problem is cast as a sequence prediction problem, solved either iter-
atively or jointly for several steps into the future. Typically, a motion predictor
uses the current state of the agent (or a history of observed states), possibly
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Benchmark ETH/UCY  [4],|TrajNet++ [160] Atlas
TrajNet [276]
Metrics ADE, FDE ADE, FDE, NLL, Top-k|ADE, FDE, Top-k ADE and
ADE and FDE, Ground|FDE, NLP

truth & Prediction truth

Collision
Obstacles  and - - Semantic map, goal loca-
environment data tions
Variable obs. and|- - v

pred. lengths
Dataset compatibility Any dataset in json format|Any dataset in json format
Uncertainty in pre- Discrete particle-based Analytical, discrete grid-
diction and particle-based
Robustness tests Added noise to data
Hyperparameter op- SMAC3 [192] interface
timization

Table 6.1: Benchmarks for human motion prediction

augmented with the current state of the environment (or history thereof). The
most common state representation for an agent is with 2D coordinates. Simi-
larly, the environment is represented by the states of other moving agents, a 2D
map of static obstacles M and possibly also surface semantics f(M).

This formulation motivates the type of data, used for training and valida-
tion of the prediction models: a detection of person p at time t at position x,y
(computed based on a fixed world frame) is minimally represented with a 4D
(t,p,%,y) vector. Several datasets include such information, e.g. ETH [236],
UCY [181], Edinburgh [205], ATC [48], SDD [262] and most recently THOR
[270], which we reviewed in Sec. 2.8.2 and 5.2. For evaluation of a motion
predictor, a continuous flow of detections in a dataset is converted into testing
scenarios, where all detections between two frames (Observed track in Fig. 6.1)
are used as the observation history of length O, and the following T frames
should be predicted and compared to the ground truth (GT) data (Prediction
horizon in Fig. 6.1). Metrics used to this end include distances between pre-
dicted and GT positions (for instance: Average and Final Displacement Errors,
ADE and FDE, Modified Hausdorff Distance, MHD) or probabilistic meth-
ods to evaluate predicted distributions over the future positions (for instance,
Negative Log-Likelihood, NLL, or Negative Log-Probability, NLP). We already
reviewed the commonly used metrics in Chapter 2, see Table 2.1.

This outlines the main parameters of the evaluation: the dataset used, the
extraction strategy for a testing scenario, observation and prediction intervals
O and T, and finally the adopted metrics. Variation in each of those parameters
(for instance, extracting a different subset of scenarios from the same dataset)
has the potential to may drastically alter the evaluation outcome. Therefore,
a standardized evaluation protocol, or benchmark, is required to guarantee
objective comparison of results published by different papers.
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Figure 6.1: Data processing example in the ATC dataset. Horizontal tracks in black
show available trajectory data (i.e. detections) for each frame on the x axis. Missing po-
sitions between detections, which can be interpolated, are shown with red lines. Vertical
lines in blue show the observed track and prediction horizon. In this testing scenario,
defined by the observed tracks, predictions are made for 14 people, but prediction for
person 7 is excluded from evaluation as no ground truth positions are available.

The evaluation strategy, proposed by Alahi et al. [4], and adopted by many
authors [11, 120, 123, 158, 222, 277, 345, 360, 362], fits this description to
some extent. The authors propose to use the ETH and UCY datasets with fixed
observation history O = 3.2 s and prediction horizon T = 4.8 s and the ADE
and FDE geometric metrics. The testing scenario generation procedure is not
defined, which may lead to different experiment implementations with differ-
ent evaluation results, contradicting the purpose of a benchmark. For example,
the UCY dataset contains trajectories in the form of continuous curves (splines),
so discrete positions must be sampled. Furthermore, 8 frames of observations
at 2.5 Hz may be interpreted as O = 3.2 or 2.8 s, as pointed out in [11]. The
ETH-UCY evaluation strategy was slightly extended and formalized in the first
TrajNet benchmark for motion prediction [276]. TrajNet does not include vari-
ability in the main parameters O and T, obstacles in the environment and any
notion of prediction uncertainty or robustness.
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An improved TrajNet++ benchmark [160] by the same authors addresses
the main issue — testing scenarios in this case are explicitly included in the
benchmark. TrajNet++ uses several datasets, and potentially can be extended
with further ones (stored in json format). It includes the possibility to predict
several discrete positions for each pedestrian in each step, but does not support
other probability distribution representations, such as the ones in Fig. 1.1. The
main limitation here, however, is the rigidly defined testing parameters, which
restrict the evaluation to the fixed observation history O = 3.2 s and predic-
tion horizon T = 4.8 s. For proper quality assessment of a prediction method
it is strictly preferable to benchmark its performance over a wide range of pre-
diction horizons. Furthermore, the scenario extraction strategy only guarantees
that in each scenario one target pedestrian has a complete track of requested
O + T consecutive positions. This contradicts the assumption, commonly made
by many authors, that the history tracks for all pedestrians are available at the
time of prediction [11, 25, 89, 308].

Based on these insights, in this chapter we present our novel Atlas bench-
mark. Atlas includes an automated procedure to extract testing scenarios from
an arbitrary dataset with flexible O and T parameters, accepts occupancy and
semantic maps as input, supports analytical and discrete uncertainty represen-
tation, and includes robustness experiments with added noise to the observed
trajectories. We outline the properties of each benchmark in Table 6.1.

6.3 Our Benchmark Description

Fig. 6.2 outlines the design of our benchmark. The benchmark includes five
main elements: data import, preprocessing, a prediction phase, evaluation and
visualization tools. By explicitly interfacing the prediction module and scripting
the experiments, our benchmark is suited for flexible and highly automated
assessment of the motion prediction algorithms.

As the first step, the datasets and possibly additional information like the
known goals in the environment, obstacle or semantic maps, are imported into
the benchmark. Then, the raw data is preprocessed with downsampling to
the user-defined frequency, interpolating the missing detections and trajectory
smoothing. Once the dataset is ready, we can extract the testing scenarios with
the user-specified observation and prediction horizons, as shown in Fig. 6.1.
The observed histories of all people in the testing scenario, along with environ-
ment data, are explicitly interfaced as input to the prediction algorithm. The
returned predictions are immediately evaluated against the ground truth using
several metrics. Finally, the prediction results can be visualized with plots or
animations. Meta-parameters to control the data processing and experiments
are stored in a separate yaml file, eliminating the need to modify and re-compile
the code.
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Figure 6.2: Altas benchmark design

In the following sections we describe each step of the benchmark in more
detail.

6.3.1 Datasets

The benchmark users can import any dataset in the specific json file format,
compatible with the TrajNet++ benchmark [160], which includes for each de-
tection the time stamp, person id and position. The json dataset format also
supports the obstacle and semantic grid maps, and the common goals in the en-
vironment, which may insight the possible destinations of people. Our bench-
mark currently includes the following three datasets:

i) ETH [236]: This dataset contains people detections from video data recorded
outdoors in the ETH campus.

1) ATC [48]: It is recorded in a shopping mall in Japan, representing therefore
a large indoor environment with densely crowded scenes. Hence, there
exist plenty of interactions.
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iii) THOR (Chapter S of this thesis): This dataset captures human motion in a
room with static obstacles.

These three datasets come from different countries, taken in different envi-
ronments, which increases the diversity of the data, and allows comparing the
prediction methods on different social and cultural contexts.

6.3.2 Preprocessing

Raw datasets often include noise and annotation artifacts (e.g. missing detec-
tions). Hence, our benchmark offers interpolating and smoothing options in the
preprocessing step. In addition, to check the robustness of implemented mod-
els, optional Gaussian noise may be added to each detection. Fig. 6.3 shows the
preprocessing steps applied to one trajectory in the ATC dataset. After detecting
the missing frames in the original trajectory based on the average annotation
frequency, we interpolate the points in the missing part of the trajectory. Then,
a moving average filter is used to smooth the noise. Finally, random noise dis-
tributed as N(0, 62), where o is inversely proportional to the frame frequency,
can be added to each detection.

After the data preprocessing, our benchmark generates the self-contained
testing scenarios with the observation length O and ground truth for the fol-
lowing T frames, as shown in Fig. 6.1. As the prediction quality may strongly
depend on the observation length (in particular for intention estimation and
when the person detection is noisy), it is critical that all people in the testing
scenario are observed in each of the O frames. A testing scenario, along with
the environment information, is passed to the motion prediction step.

6.3.3 Prediction

Our benchmark offers a direct interface to the prediction module, which is
called at this step for the given testing scenario. This allows highly automated
evaluation with a systematic variation of parameters, defined at the previous
steps.

Prior to benchmarking the prediction model on real data, the users can first
validate their methods with several synthetic testing scenarios, created to stress
the basic interaction modeling and obstacle avoidance showcase. These scenar-
ios include various fundamental interactions between people and the environ-
ment, e.g. individuals and groups walking in the opposite directions, crossing
paths and navigating around hindrances (see several examples in Fig. 6.4). For
instance, Fig. 6.4 (top) shows two people walking on a collision course to-
wards each other. Their velocities are 1 m s~ and the initial displacement in
the y axis is 0.2 m. The frame frequency is 2.5 Hz and the observation length
is 8 frames. Fig. 6.4 also includes example predictions made by two popular
social force-based models [110, 356].
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Figure 6.3: Example trajectory from the ATC dataset, which shows the noise and miss-
ing detections in the raw data (original trajectory on the top). Our benchmark offers
interpolation and smoothing to fix this, followed by adding a controlled amount of
noise to test the robustness of the prediction algorithm.

For optimizing the hyperparatemers of the prediction methods, such as [86,
110, 141, 150, 356], we implement an interface to the SMAC3 optimizer [192].

Our benchmark supports analytical, discrete and particle-based uncertainty
representation for the prediction results. Discrete uncertainty is encoded in the
grid map of the environment, separately for each person in each time step. Ana-
lytical uncertainty is represented with a mixture of Gaussians, as Fig. 6.5 shows.
Particle-based uncertain predictions are represented with a set of discrete sam-
ples. These options allow evaluating most existing prediction algorithms.

6.3.4 Evaluation

To evaluate the performance of the various models, the benchmark offers geo-
metric and probabilistic metrics.

Geometric metrics include the Average Displacement Error (ADE), which de-
scribes the error between points of predicted trajectory and the ground
truth at the same time step, and the Final Displacement Error (FDE),
which computes the error between the predicted and the ground truth
position at the last prediction step.

Probabilistic metrics include the Negative Log-Probability (NLP), which com-
putes the average probability of the ground truth position under the pre-
dicted distribution for the corresponding frame, and Top-k ADE and
FDE, which compute the displacements between the ground truth po-
sition and the closest of the k samples from the probability distribution.
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Figure 6.4: Synthetic testing scenarios. The subfigures from top to bottom show the
opposing, chasing, crossing and avoiding an obstacle scenarios. The blue and orange
dotted lines show the observations of the two people in each scenario, the green dotted
lines show the social force predictions [110], and the purple dotted lines illustrate the
predictive social force result [356].

6.3.5 Experiments

The benchmarking methodology described so far, e.g. the datasets, metrics and
pre-processing steps, is fairly straightforward, although not systematically im-
plemented in the prior art. On top of that, in our benchmark we propose a
set of experiments to study the prediction performance under the influence of
various factors. Under the word experiment we understand measuring the tar-
get evaluation metric on a set of validation scenarios under specific conditions
(parameters of the experiment). These experiments allow systematic validation
of parameters and help the users to gain a deeper insight into the applicability
of the methods, in contrast to a limited insight contained in a single benchmark
score. Due to the automated nature of our benchmark, the experiments are
scripted with all parameters available externally in a yaml file.

146 ‘ Andrey Rudenko 6.3. Our Benchmark Description



104 —8— Ground truth
=== Observation

«n @ @ ® Prediction
81 e .. 3 ’:: .Q“
‘M
(]
a« _

E
= 61 <
o
*_\‘—*—-A—._*_. ..
4_
[
L ...
2_
0 2 4 6 8 10 12
x[m]

Figure 6.5: A testing scenario from the ATC dataset. This figure shows the probability
distributions over the final positions of the observed people. Each person’s past track and
ground truth future motion is shown with a different color. Ellipses show the analytical
and points show the particle-based probability distribution over the final position.

Prediction accuracy conditioned on parameters

Observation length and prediction horizon are among the main factors, as-
sociated with predicting motion. The prediction quality naturally degrades for
further time instances, whereas longer observation lengths may improve it over-
all. In Atlas it is possible to measure the accuracy of prediction conditioned on
these two main parameters. We intend to add more conditioned experiments in
the future, e.g. based on the number of people in the scenario.

Transfer experiment

A crucial part of evaluating a prediction method is testing its applicability in
new environments outside the training data. Surprisingly, this capability is most
often overlooked in evaluation sections. In Atlas it is possible to script hyper-
parameter optimization in one dataset, and evaluate the resulting method in
another. In the future we plan to extend this capability to training.

Robustness experiment

For a system working in the real world, perception of the positions of people
is often prone to noise. Therefore the predictor must be robust to noisy in-
put. One possible way to quantify robustness is by measuring accuracy on the
testing scenarios, artificially adding increasing amounts of noise to the initially
noise-free data. We implement this experiment in Atlas by adding noise to the
smoothed trajectories.
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6.4 Case Study: Benchmarking Local Interaction
Models

Our MDP-based predictor, presented in Chapter 3, has shown promising results
for predicting the interactions with the use of the social force model [216]. A
reasonable and popular choice due to its reliability, performance and simple im-
plementation, the social force model is one of many existing collision avoidance
models. Among its main drawbacks is inherent reactivity: the agents engage in
passive collision avoidance only when in close proximity for the social forces
to take effect. In reality, people adapt their trajectories to avoid collisions in
advance. To correct this sort of behavior, the social force theory was extended
with explicit collision prediction by a number of authors, as we reviewed in
Sec. 2.4. These improvements work well in theory, see for instance Fig. 6.4, but
they were in fact never validated with real motion trajectories.

In this section we use the experiments in Atlas to compare the vanilla social
force (Sof) with two popular predictive extensions: the model by Zanlunlgo et
al. [356], abbreviated as Zan in plots and tables, and the model by Karamouzas
et al. [141], abbreviated as Kara. As a baseline, we add the linear velocity
model (Lin), implemented as average velocity in the observed track, and con-
stant velocity model (CVM), implemented as forward propagating the last ob-
served motion state. In the following sections these two prospective methods
[141, 356] are briefly described.

6.4.1 Predictive Social Force Model [356]

The model by Zanlungo et al. [356] extends the original social force with ex-
plicit collision prediction based on the repulsive potential at the predicted time
of the closest approach between two pedestrians. In the original social force
model, as illustrated in Fig. 3.3 and 6.6, the interaction force between two
pedestrians is calculated based on their current positions. Instead, in Zanlungo’s
model the interaction force is based on the future state where these two pedes-
trians are projected to come to the closest approach. The algorithm to obtain
££9¢ in Eq. 3.9 is elaborated as follows:

1. Evaluate whether the two people i and k, with 1y being the sum of their
radii, will collide with each other using 65, which is the angle between
the relative position d; x and relative velocity v; x. If |8; k| is smaller than
mt/4, we assume these two pedestrians may collide, so the time t;  to the
closest approach is computed with Eq. 6.1; otherwise we set t; x = oo.

dixl — 7y
cos Gi,kwil’k ikl > Tix
tix = IVi,kl (6.1)
0.2 Idi x| < Tix
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Figure 6.6: The force projection principle in the model by Zanlungo et al. [356]. Unlike
the repulsion vectors F£°¢ and F;°¢ in the original social force model [110], depicted here
in green, the model by Zanlungo et al. [356] calculates the repulsion forces F§°¢~#¢™ and
F3°¢7#9M based on the point of closest approach.

2. Compute t; i for each neighboring pedestrian and obtain t; = min{t; }.
Similarly, we obtain t; , for obstacles.

3. When the minimal t; is obtained, we calculate the projected relative posi-
tion d{ , for each pedestrian in Eq. 6.2. Here, all pedestrians are assumed
to move forward with current velocity. The interaction force is computed
based on the projected relative position and the minimal meeting time
ti with Eq. 6.3, where n{, is the direction unit vector of the projected
relative position.

Lk = Pi T viti — (pi + viti). (6.2)
ik = waz%e*(d@k*“*)/ O=nf (6.3)

1

Compared with the Eq. 3.8 of the original social force model, the extra
term v;/t; means the pedestrian is aiming to stop in t; seconds, thus the
force to avoid collision is proportional to v; /t;. In case the calculated t; is
too small, we introduce a minimal boundary for t; to prevent enormous
interaction force in our implementation (see Eq. 6.1).

The original Zanlungo’s model in [356] designed for pedestrian-to-pedestrian
interactions. In our implementation it is extended to account for the static en-
vironment obstacles. The total force on pedestrian i is expressed in Eq. 6.4,
where the new term ;¢ and "YS respectively mean the social force and phys-
ical contact force between the nearest obstacle point and the target pedestrian.

B F B R SR Y e SR R e (64

j# j#A
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The social force from the obstacle is calculated in Eq. 6.5. The formulation is
the same as in Eq. 6.3, but the obstacle avoidance parameters a,, and b, are
different from a, and b, (avoidance of moving people).

Vi .
£9° = wazo—e —(dio T"")/b”n’i’o (6.5)
io

The physical force 7 s s calculated as in Eq. 6.6, which is similar to its
formulation in the orlglnal social force. The differences are that d, is the
distance between obstacle and future position of the pedestrian, and n o is the
unit vector that points from the obstacle to the future position of the pedestrian.

fxizys =Kog (ri,0 —di ) nf, (6.6)

6.4.2 Predictive Collision Avoidance Model [141]

Similarly to the model, described in the previous section, the model by
Karamouzas et al. [141] also computes the time to a possible collision and the
repulsive force based on the projected future positions. Differently, this model
constructs a collision set CP; which stores the potential collision time t;; with
other pedestrians in the order of increasing collision time and accounts for the
first N pedestrians. Besides, the collision time t;; is calculated to a safe dis-
tance p instead of the closest approach, and the formula to calculate £73° has
a different specification. The collision set CP; and force F;°¢ are calculated as
follows:

1. Calculating the potential collision time t;; requires finding the time be-
fore reaching the distance d; j, so we need to find the values of t subject
to Eq. 6.7.
di; = [lps — Pl
— Iy + vyt — (py + Vi<t (6.7)
=pi+T
Here, pj and p} are the projected future positions while p; and p; are
present positions, p; is the safe distance of pedestrian i and rj is the radius
of pedestrian j. Desired velocity v8¢S is calculated as
F
vis = v 4+ AL, (6.8)
m
where v; is the present velocity of pedestrian i, Fy is the intended force,
m is the mass of pedestrian and At is the time interval of each prediction

step.
The following solutions of Eq. 6.7 are possible:
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Figure 6.7: The distance-force relation in the model by Karamouzas et al. [141]

- No solution or single solution: no collision happens, therefore t; j is
infinite.

- Two negative solutions: this is a past collision so we can also set t; ;
to infinity.

- One positive solution and one negative solution: this means a colli-
sion is close at hand, so we set t;; to a small value, e.g. tij = 0.1s,
and add the time to the collision set CP;.

- Two positive solutions: we take the smaller solution as collision time
tij and add it into set CP;.

2. Sort the collision set CP; in the order of increasing time and choose first
N pedestrians.

3. Calculate the evasive force f;; from pedestrian j to pedestrian i based on
a piec.ewise function f(D), Where D = llpi — pill + (||pi — p; I —Ti— Tj) is
the displacement of pedestrian i at time t;; plus the relative distance be-
tween i and j at the time t; ;. The piecewise function is shown in Fig. 6.7,
its three parameters dinin, dmia and dmax control the distance-force re-
lation.
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Prediction horizon
Methods 1.6s 3.2s 4.8s 8s
CVM [0.10 £ 0.05{0.23 +0.13|0.40 £+ 0.23]0.84 + 0.57
LIN [0.17£0.09/0.34 £ 0.19]0.55 & 0.35|1.02 £+ 0.69
Sof [0.10 £ 0.05/0.23 +0.12[0.39 £ 0.20(0.78 4+ 0.45
Zan [0.10 £ 0.05/0.23 £0.12]0.38 & 0.19|0.76 £+ 0.44
Kara [0.11 £0.06|0.23 £0.11{0.38 & 0.19|0.75 £ 0.44

Table 6.2: ADE in the ETH dataset with different prediction horizons

Prediction horizon
Methods 1.6s 3.2s 4.8s 8s
CVM [0.19 £0.10]/0.50 £ 0.28|0.90 £ 0.54|1.96 £+ 1.44
LIN {0.29 +0.16{0.66 +0.39|1.13 +0.73|2.25 &= 1.62
Sof [0.19 2 0.09{0.49 4+ 0.26{0.85 +0.45]|1.72 & 1.12
Zan [0.19 +0.10]/0.49 4+ 0.26|0.85 = 0.44|1.67 £ 1.08
Kara [0.20 - 0.10{0.49 4 0.25]/0.85 - 0.44|1.67 & 1.07

Table 6.3: FDE in the ETH dataset with different prediction horizons

Prediction horizon
Methods 1.6s 32s 4.8s 8s
CVM [0.15+0.09(0.38 £ 0.24{0.71 £ 0.45[1.51 £ 0.91
LIN {0.29 +0.18]0.60 4 0.38|0.99 + 0.63|1.84 £ 1.08
Sof [0.18 +0.10{0.36 4= 0.20{0.60 4 0.35|1.13 & 0.67
Zan [0.15 4 0.09]0.34 4+ 0.20]0.59 4+ 0.36[1.16 4+ 0.70
Kara [0.16 - 0.08{0.35 4 0.19]0.60 4 0.36]1.16 4 0.69

Table 6.4: ADE in the THOR dataset (“One obstacle” scenario) with different predic-
tion horizons

4. Compute the total evasive force F°¢ as a weighted sum of the single
evasive forces, according to Eq. 6.9.

N
FoC =) wyfi; (6.9)
j

The weighting factor wy;j is set inversely proportional to t;j, i.e. the force
is larger for those pedestrians who have collisions closer in time.

Similarly to [356], we extend this model to consider static obstacles. The
social force to the nearest obstacle is calculated in a similar way to the social
force among pedestrians, except the evasive force in the third step is obtained
with a different set of method parameters dmin,o, dmid,o and dmax,o-
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Prediction horizon
Methods 1.6s 3.2s 4.8s 8s
CVM [0.28 +£0.18[0.86 4+ 0.54|1.64 £ 1.05|3.54 + 2.11
LIN [0.49 £0.31|1.20 £0.75({2.07 & 1.30(3.97 £ 2.27
Sof [0.29 +0.16/0.72 £ 0.42[1.27 £ 0.79]2.48 £ 1.54
Zan |0.26 +0.16/0.72 +£0.43]1.31 +0.82|2.62 £ 1.61
Kara [0.28 £0.15|0.73 £0.42{1.31 4+ 0.82|2.59 £ 1.59

Table 6.5: FDE in the THOR dataset (“One obstacle” scenario) with different prediction
horizons
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Figure 6.8: ADE/FDE in the ATC dataset with different observation lengths using Gaus-
sian filter as initial velocity filter and without smoothing

6.4.3 Results and Discussion

Tables 6.2-6.5 show the results of experimenting with different prediction hori-
zons. In general, and not surprisingly, the social force models outperform the
linear velocity variants with lower displacement errors, and show more stable
performance with lower standard deviations. However, we did not find a sub-
stantial difference between Sof, Kara and Zan in any of the datasets and on any
of the prediction horizons.

Similarly, in experiments with different observation horizons we found no
difference between the models. Interestingly, if the observations have low lev-
els of noise, observing additional frames does not improve the performance,
see a comparison between the noisy ATC dataset and noise-free THOR in
Fig. 6.8 and 6.9.
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Figure 6.9: ADE/FDE in the THOR dataset (“Three obstacles” scenario) with different
observation lengths

Tables 6.6 and 6.7 summarize the transfer experiment, where the methods
are calibrated on one dataset and tested on another. Also in this case we did not
find that one of the three social force models exhibits superior transferability.

Finally, in Fig. 6.10 and 6.11 we show the robustness experiment, where we
measure performance in presence of noise. While all social force models have
excellent performance, on the level of the very simple and therefore very robust
constant velocity model, the predictive variants do not outperform here either.

6.5 Conclusions and Outlook

Benchmarking motion prediction is no easy matter, and in this chapter we have
shown the sheer amount of experiments required to make an in-depth analysis
of performance. In reality, the summary given in Sec. 6.4 is but a fraction of ex-
periments we conducted in Atlas to benchmark these local interaction models.
In the M.Sc. thesis of Wanting Huang the reader may find further details on the
design of the benchmark and its capabilities.

In the future work we plan to release Atlas implementation in Python as a
tool to work with THOR and other datasets. Among the possible extensions,
as noted throughout this chapter, are additional metrics, other types of scripted
experiments and an interface to train pattern-based methods in the transfer
experiments. Furthermore, we revisit and extend our analysis of benchmarking
in the ongoing work, outlined in Sec. 7.3.2.
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Test

Dataset ETH HOTEL ATC THOR1 THOR3
CVM: 0.40 £ 0.23 {0.20 £ 0.16]0.50 = 0.12{0.83 £ 0.43]0.79 £ 0.41
LIN: 0.55 +£0.35 |0.25 £ 0.22|0.56 £ 0.16/1.14 £ 0.59(1.10 £ 0.56
ETH Sof: 0.39 + 0.20 {0.21 £ 0.16/0.50 + 0.12|0.74 4 0.37|0.75 £ 0.38
Zan: 0.38 +0.19 |0.20 £ 0.16/0.50 £ 0.12/0.71 £ 0.37|0.70 £ 0.38
Kara: 0.38 £ 0.19 {0.21 + 0.16{0.50 = 0.12{0.72 = 0.38]0.72 + 0.38
Sof: 0.40 +£0.23 [0.20 £ 0.16[0.50 £ 0.12[0.83 £ 0.43[0.79 £ 0.41
HOTEL| Zan: 0.40 +0.23 [0.20 0.16/0.50 4 0.12{0.82 4+ 0.43]0.79 4 0.41
Kara: 0.40 £0.23 |0.20 + 0.16{0.50 £ 0.12{0.83 4 0.43|0.79 + 0.41
Sof: 0.40 £ 0.23 [0.20 £ 0.16]0.50 £ 0.12[0.82 £ 0.43[0.79 £ 0.41
ATC Zan: 0.40 £ 0.23 [0.20 £ 0.16{0.50 +0.12|0.82 + 0.43]0.79 £ 0.41
Kara: 0.40 £ 0.23 0.20 £ 0.16]/0.50 £ 0.12|0.82 £ 0.43|0.79 £ 0.41
Sof: 0.39 £0.20 [0.21 £ 0.16[0.50 £ 0.12[0.71 & 0.36[0.70 £ 0.37
THOR1| Zan: 0.38 +0.20 [0.20 £ 0.16]0.50 £ 0.12|0.71 4 0.37/0.69 & 0.37
Kara: 0.38 £ 0.20 |0.21 £ 0.16]/0.50 £ 0.12|0.71 £ 0.37|0.70 £ 0.38
Sof: 0.39 £ 0.21 [0.20 £ 0.16[0.50 + 0.12]0.71 4 0.36]0.68 £ 0.37
THOR3| Zan: 0.38 4+ 0.20 [0.20 + 0.16]0.50 £ 0.12|0.71 4 0.37/0.68 4 0.37
Kara: 0.38 0.20 |0.21 + 0.16/0.50 £ 0.12{0.72 4+ 0.38|0.70 £ 0.38

Calibrate

Table 6.6: ADE measured in the transfer experiments on different datasets. THOR1
abbreviates the first “One obstacle” scenario in THOR, and THORS3 the third one
(“Three obstacles”).

Test

Dataset ETH HOTEL ATC THOR1 THOR3
CVM: 0.90 £+ 0.54 |0.43 £+ 0.40{1.03 + 0.28{1.90 4+ 0.98[1.85 £ 0.94
LIN: 1.13 £ 0.73 [0.49 4+ 0.50{1.08 £+ 0.33]|2.37 £ 1.24{2.31 &= 1.15
ETH Sof: 0.86 £ 0.45 [0.44 4+ 0.40/1.03 4+ 0.28]1.53 4+ 0.82{1.54 £ 0.83
Zan: 0.85 £+ 0.44 |0.43 £ 0.40{1.03 £+ 0.28]1.54 + 0.83|1.54 + 0.84
Kara: 0.85 + 0.44 {0.44 4+ 0.40(1.03 £ 0.28|1.51 £+ 0.84|1.52 £+ 0.82
Sof: 0.90 £ 0.54 [0.43 £0.40[{1.03 £0.28[1.90 £ 0.98|1.85 £ 0.94
HOTEL| Zan: 0.90 £+ 0.54 |0.43 +0.40{1.03 4 0.28{1.90 4 0.98(1.84 £ 0.94
Kara: 0.90 & 0.54 [0.43 £+ 0.40{1.03 £+ 0.28]1.90 + 0.98|1.85 + 0.94
Sof: 0.90 £ 0.54 [0.43 £0.41{1.03 £ 0.28]1.90 £ 0.98]1.85 £ 0.94
ATC Zan: 0.90 & 0.54 |0.43 £ 0.40|1.03 £+ 0.28]1.90 + 0.98|1.84 + 0.94
Kara: 0.90 + 0.54 |0.43 £+ 0.40{1.03 £+ 0.28]1.90 + 0.98]1.85 + 0.94
Sof: 0.86 £ 0.45 [0.44 £0.40[1.03 £0.28[1.51 £ 0.81[1.51 £ 0.81
THOR1| Zan: 0.85 + 0.45 [0.43 4+ 0.40{1.03 4+ 0.28]1.55 4+ 0.84(1.54 4+ 0.83
Kara: 0.85 & 0.45 |0.44 £+ 0.40{1.03 £ 0.28]1.55 £+ 0.86|1.54 + 0.83
Sof: 0.87 £0.47 [0.43 £0.40[{1.03 £0.28[1.56 + 0.81|1.53 £ 0.84
THOR3| Zan: 0.86 +0.46 [0.43 4+0.40{1.03 +0.28[1.56 4= 0.85|1.54 +0.84
Kara: 0.86 = 0.47 |0.44 £+ 0.40/1.03 £+ 0.28]1.61 + 0.88]1.58 +0.85

Calibrate

Table 6.7: FDE measured in the transfer experiments on different datasets. THOR1
abbreviates the first “One obstacle” scenario in THOR, and THOR3 the third one
(“Three obstacles”).
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Figure 6.10: ADE/FDE in the ETH dataset with adding noise and using linear filter
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Chapter 7
Conclusions

Understanding and predicting human behavior is a key skill for intelligent sys-
tems to coexist and interact with humans. An increasingly important branch of
robotics research, it has attracted a remarkable amount of attention in recent
years due to the rapid developments in automated driving and service robotics
technology. Showing great potential, motion prediction elevates safety and ef-
ficiency in some applications, for instance in mobile robotics, while fundamen-
tally enabling others — for instance, fully-automated self-driving vehicles are
unimaginable without some form of future assessment.

The work, presented in this thesis, is an ambitious attempt to overview,
structure and advance the motion prediction domain. This chapter concludes
the thesis with a summary of contributions in Sec. 7.1, a review of the current
trends and open challenges in the literature in Sec. 7.2, and an outlook on our
ongoing and future work in Sec. 7.3.

7.1 Contributions

This thesis explores the fundamental tasks in human motion prediction for
autonomous systems, ranging from surveying the complete methodology, re-
quirements and application scenarios, aspects in data collection and method
development, to evaluation, benchmarking and integration. It formulates many
questions and open challenges in the area, offering solutions to several of them
and proposing the directions of future research to deal with others. The discus-
sion begins with the central question in motion prediction:

9 How to model motion?

To this end in Chapter 2 we review in-depth the complete methodology for mo-
tion trajectory prediction developed in the last three decades. We propose an
organizational principle to classify methods based on the approach to model
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motion and the level of contextual awareness. In the first category, the physics-
based, pattern-based and planning-based approaches each have their own ben-
efits and drawbacks. With respect to the contextual cues, such as the articu-
lated pose of the target agent, social grouping or semantic information about
the environment, usually higher levels of awareness are desirable for better
performance. On the other hand, the problem of introducing certain cues to
specific modeling approaches is a challenging one: for instance, very few of
the highly popular pattern-based approaches can handle environments clut-
tered with complex non-convex obstacles, e.g. hospitals or offices. On the other
hand, very few purely physics-based approaches are capable of incorporating
full-body poses due to the complexity of the underlying dynamical models. Dis-
cussing the modeling approaches from the task-centered perspective, we con-
clude that the existing classes of approaches have their theoretical potential in
different tasks.

Having reviewed the modeling approaches and prediction infrastructure,
the thesis moves on to the second major question:

9 How to design a motion prediction approach for a service
robot in cluttered and dynamic environments?

For a mobile robot, operating in such environments where both people and ob-
stacles are present, the prediction method should be able to account for these
two factors. To this end a novel prediction approach is presented in Chap-
ter 3, which combines the strengths of the planning-based obstacle map aware-
ness and the interaction modeling with physics-based group social forces. The
proposed method incorporates many crucial aspects of the motion prediction
domain exposed in this thesis: it has a high level of contextual awareness, out-
puts model-free uncertainty in human motion, explicitly reasons over possible
goals of each person and alternative ways to reach them. Our method bridges
a gap between the short-term motion prediction problem, where the dynamic
environment cues are dominant, and long-term prediction, where semantics,
obstacles and goals strongly influence the motion of people.

The third question we discuss in this thesis is the use of semantics for im-
proved long-term motion prediction:

9 What can be learned from semantic maps for improved
human-awareness in previously unseen environments?

Semantic information about the environment is a highly informative cue for
the prediction of pedestrian motion or the estimation of collision risks. In
Chapter 4 we explore the possibility to infer occupancy priors of human mo-
tion using only semantic environment information as input. To this end we
apply and discuss a traditional Inverse Optimal Control approach, and pro-
pose a novel one based on Convolutional Neural Networks (CNN). Our CNN
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method produces flexible context-aware occupancy estimations for semanti-
cally uniform map regions and generalizes well already with small amounts of
training data. Evaluated on synthetic and real-world data, it shows superior
results compared to several baselines, marking a qualitative step-up in seman-
tic environment assessment. Using such occupancy priors opens the possibil-
ity of truly forward-looking predictive behavior: collision anticipation for au-
tonomous vehicles along the planned route, less obtrusive motion planning for
mobile robots, more informed search for people to assist for the service robots.

The fourth major question with considerable exposure in this thesis is the
one of data and benchmarking;:

9 How to choose data and experiment design for bench-
marking and evaluation?

The existing and extensively used datasets of human motion trajectories are in-
sufficient in the level of recorded contextual cues, imbalanced towards straight
constant velocity trajectories and often suffer from severe annotation prob-
lems. Many of these issues naturally follow from the usual data collection pro-
tocol: recording natural motion in the wild with a few external sensors. This
recording protocol severely limits the choice of possible environments and their
configurations with restricted recording permissions and limited sensor mon-
tage possibilities. Furthermore, it impairs the annotation accuracy, achieved
with position extraction in post-processing. As an alternative to this, we pro-
pose to record motion in controlled settings using a motion capture system. To
generate natural and purposeful behaviors of the recorded participants, we de-
sign an elaborate weakly-scripted data collection procedure with social roles,
dynamically-allocated goals, group motion, obstacles and a moving robot. As
a result, all the issues listed above are addressed in our novel THOR dataset,
presented in Chapter 5, which includes diverse and very accurate trajectories
with rich and non-trivial interactions in an indoor environment.

The recorded data is incorporated into a new motion prediction benchmark-
ing suite, presented in Chapter 6. This benchmark is designed for a thorough
evaluation of motion prediction methods in a variety of experiments: perfor-
mance conditioned on several key factors (e.g. prediction horizon, observation
length), evaluation of knowledge transfer to a new environment, testing ro-
bustness against added perception noise. The benchmark can be used with any
dataset of human motion, it includes tools for data processing and formalized
scenario extraction for certain observation and prediction lengths.

Our work towards better motion prediction for service robots is far from
over. Hopefully, with the questions raised in this thesis and proposed future
work directions, we lay foundations for the sustainable and enduring develop-
ment of better methods for motion prediction.
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7.2 Open Challenges and Future Research
Directions

The design of motion prediction methods has come a long way since the first
experiments with Kalman filleting and simple motion models. Modern tech-
niques make extensive use of machine learning in order to better estimate
context-dependent patterns in real-world data, handle more complex environ-
ment models and types of motion, or even propose end-to-end reasoning on fu-
ture motion from visual input. An increasing number of methods also includes
reasoning on the global structure of the environment, intentions and actions
of the agent. Having these trends in mind, we see several open challenges and
directions of future research:

7.2.1 Use of enhanced contextual cues

To analyze and predict human motion, as well as to plan and navigate alongside
them, intelligent systems should have an in-depth semantic scene understand-
ing. Context understanding with respect to features of the static environment
and its semantics for better trajectory prediction is still a relatively unexplored
area, see Sec. 2.7.3 for more details.

The same argument applies to the contextual cues of the dynamic envi-
ronment. Socially-aware methods are making an important improvement over
socially-unaware ones in such spaces where the target agent is not acting in
isolation. However, most existing socially-aware methods still assume that all
observed people are behaving similarly and that their motion can be predicted
by the same model and with the same features. Capturing and reasoning on the
high-level social attributes is at an early stage of development, see Sec. 2.7.1
and Sec. 2.7.2, however recent methods take initial steps to this end. Further-
more, most available approaches assume cooperative behavior, while real hu-
mans might rather optimize personal goals instead of joint strategies. In such
cases, game-theoretic approaches are possibly better suited for modeling human
behavior. Consequently, adopting classical Al and game-theoretic approaches
in multi-agent systems is a promising research direction, that is only partly ad-
dressed in recent work, see e.g. [18, 202].

One task where contextual cues become particularly important is long-term
prediction of motion trajectories. While context-agnostic motion and behav-
ioral patterns are helpful for short prediction horizons, long-term predictions
should account for intentions, based on the context and the surrounding envi-
ronment. Many pattern-based methods treat agents as particles, placed in the
field of learned transitions, dictating the direction of future motion. Extend-
ing these models by more goal- or intention-driven predictions, that resemble
human goal-directed behavior, would be beneficial for long-term predictions.
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Consequently, further research on automatic goal inference based on the
semantics of the environment is important. Most planning-based methods rely
on a given set of goals, which makes them unusable or imprecise in a situation
where no goals are known beforehand, or the number of possible goals is too
high. Alternatively, one could consider identifying on-the-fly possible goals in
the environment and predicting the way the agent may reach those goals. This
would allow the application of the planning-based methods in unknown en-
vironments. Additionally, semantic indicators of possible goals, coming from
understanding the person’s social role or current activity [47], could lead to
more robust intention recognition.

Apart from the contextual cues, discussed in this thesis, there are many
other factors influencing pedestrian motion, according to the recent studies
[253], e.g. weather conditions, time of day, social roles of agents. Future meth-
ods could benefit from a closer connection to the studies of human motion and
behavior in social spaces [16, 73, 102].

7.2.2 Robustness and Integration

Several practical aspects of deploying prediction systems in real environments
should be considered in the future work.

Most of the presented methods are designed for specific tasks, scenarios
or types of motion. These methods work well in certain situations, e.g. when
prominent motion patterns exist in the environment, or when the spatial struc-
ture of the environment and target agent’s goals are known beforehand. A
conceptually interesting approach that uses a combination of multiple predic-
tion algorithms to reason about best performance in the given situation is pre-
sented by Lasota and Shah [173]. The multiple-predictor framework opens a
possibility for achieving more robust predictions when operating in undefined,
changing situations, where a combination of strengths of different methods is
required.

We suggest that more emphasis should be put on transfer learning and gen-
eralization of approaches to new environments. Learning and reasoning on ba-
sic, invariant rules and norms of human motion and collision avoidance is a
better approach in this case. When having access to several environments, do-
main adaptation could be potentially used for learning generalizable models.

Integration of prediction in planning and control is another worthwhile
topic for overall system robustness. Predicting human motion is usually mo-
tivated with increased safety of human-robot interaction and efficiency of oper-
ation. However, the insights on exploiting predictions in the robot’s motion or
action planning module are typically left out of scope in many papers. Future
work would benefit from outlining possible ways to incorporate predictions in
the robot control framework.
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7.3 Ongoing and Future Work

In its broad attempt to overview an emerging area of active research, this thesis
includes numerous suggestions on how to improve and further develop the pre-
sented methods in future work. These are concentrated in Sec. 2.9 and Sec. 7.2,
where we discuss the current limitations and open challenges respectively, and
in the “Conclusions and Outlook” sections of each chapter, where we outline
the specific improvements to the presented methods.

In summary, there are several major directions of future work towards bet-
ter motion prediction for autonomous systems. Finding new ways to exploit
relevant contextual cues, such as eye-gaze and head orientation, attention to
other moving actors, semantics, social relations and personal traits, is among
the most important ones. To support such research, we need better datasets that
include these relevant factors and have enough variability in each of them to
allow systematic verification of methods under a variety of conditions. Creat-
ing better datasets in terms of data quantity and condition diversity is another
major direction of future research.

In addition to that, benchmarking and integration are key research topics in
the area. In the following sections we briefly present the ongoing work in these
two directions.

7.3.1 Benchmarking Trajectory Forecasting Methods

The available benchmarking infrastructure, presented in state-of-the-art
TrajNet++ benchmark [160] and Chapter 7 of this thesis, is hardly sufficient
for the diverse range of challenging problems in motion prediction. There are
many uncovered aspects: for instance, safety-critical evaluation of anomalous
or outlier trajectory prediction, goal or intention inference evaluation, system-
atic evaluation of model adaptation for systems that actively learn from new
observations. In the meanwhile, the rising interest to benchmarking manifests
itself in the new challenges' and research efforts on specific aspects of bench-
marking, for instance evaluating single isolated trajectory predictions [122],
datasets of synthetic trajectories with multiple plausible futures [189], balanced
verification datasets of required complexity [12, 121].

Our ongoing research in benchmarking follows the successful collaboration
during the 2020 ECCV Workshop on Benchmarking Trajectory Forecasting
Models? and builds on the results achieved in Chapter 6 of this thesis. We
are interested in offering a unified review of the motion prediction evaluation
aspects (e.g., scenario selection, data pre-processing, evaluation protocols and
metrics), and formulate properties of a general benchmark for motion predic-

Ihttps://eval.ai/web/challenges/challenge-page/454/overview, https://www.
nuscenes.org/prediction?externalData=all&mapData=all&modalities=Any
2https://sites.google.com/view/btfm2020
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Figure 7.1: Aspects in benchmarking trajectory prediction

tion. Such material is not only useful as a thorough guideline for benchmarking
with a variety of possible experiments, but also helps to identify the missing
capabilities in the existing benchmarks, contributing to the creation of more
meaningful challenges and enduring development of better prediction methods.
A collection of ideas for our benchmark research is presented in Fig. 7.1.

7.3.2 Hierarchical Predictive Planning System

A major direction of our future work will be researching the integration of
prediction methods into the control pipelines of autonomous systems, and the
improvement reached thereby. As we discussed in Sec. 7.2, this question is of-
ten omitted from the prediction papers. The same is true for the planning lit-
erature: while some considerable attention is placed on researching human-like
or human-aware collision avoidance policies [55, 84, 241], very few papers
actually research planning with explicit predictions [19, 30, 92, 370].

One prominent idea, driving the discussion and method development in
this thesis, is the one of combination: in cases where a single method or a
single model fails, multiple approaches have the potential to improve perfor-
mance. This idea is illustrated, for instance, by the multi-model physics-based
approaches, grouped in a separate category in our taxonomy, and, importantly,
the work of Lasota and Shah [173], who introduce a Multiple Predictor Ap-
proach to ensure the best performance on various prediction horizons. Our own
method, presented in Chapter 3, combines a planning-based and interaction-
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Figure 7.2: Proposed hierarchical planning architecture. An autonomous system, navi-
gating in shared environments, should be able to detect and track other dynamic agents,
plan its own navigation trajectory and execute it as a series of control inputs. Predic-
tion module informs human tracking, path planning and control of the next probable
positions.

based modules, allowing a seamless transition between the short-term and long-
term predictions and higher accuracy in both cases. What is common to all these
methods is that they essentially assume a single operating model at a time.

Interestingly, the applications often place contradictory requirements on this
model. On one hand, predictions should be as precise as possible, especially in
the short-term perspective. This is a safety-driven requirement, to prevent col-
lisions, abrupt braking and overly conservative behavior, arising from uncer-
tainty. On the other hand, predictions should be multi-modal and uncertainty-
aware for optimal path planning. This requirement, more important in the
long-term perspective, allows the robot to reach its destination in a smooth
and unobtrusive manner.

This observation motivates our hypothesis that in fact several predictors
need to be combined in parallel: a short-term method with the primary focus on
safety and collision avoidance, and a long-term multi-modal uncertainty-aware
method for global motion planning. This would resolve the necessity to con-
trol uncertainty in the short-term and long-term perspective uniformly, and al-
low running these two approaches at various frequencies. This is especially im-
portant since long-term prediction methods tend to be more computationally-
demanding.

Fig. 7.2 outlines our design of a hierarchical predictive planning system,
which combines short-term and long-term predictions. The specific ways to
efficiently include predictions into the local and global planning, as well as the
specifications for the prediction modules, are the subjects of our future research.
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