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Abstract— In this paper we present an approach to reproduce into desired motion trajectories for the robot. Howevee th

human demonstrations in a reach-to-grasp context. The demon- grasping part, i.e. how to pick up an object, was implemented
stration is represented in hand state space. By using the distance in a fairly simple manner in order to match the limited

to the target object as a scheduling variable, the way in which biliti £1h boti . In thi ticl t
the robot approaches the object is controlled. The controller C@PaPNILES OT the robotic gripper. In this article, we gagt a

that we deploy to execute the motion is formulated as a next- g€neral approach based on the concept of hand state, which
state-planner. The planner produces an action from the current is able to cope with complex grasping tasks and enables

state instead of planning the whole trajectory in advance which the robot to generalize experience from multiple demonstra
can be error prone in non-static environments. The results have tions. Moreover, it addreses the problem of coordination of

a direct application in Programming-by-Demonstration. It also hi d . fi imiti int h i
contributes to cognitive systems since the ability to reach-to- reaching and grasping moton primitives into a conerent-goa

grasp supports the development of cognitive abilities. directed motion.

Index Terms— Programming-by-Demonstration, Hand State In our approach, we use the hand state hypothesis intro-
Approach, Next-State-Planner, Human Like Motion, Fuzzy duced by Oztop and Arbib in [14] as a part of the Mirror
Clustering. Neuron System model. According to the definition, the hand

state trajectory describes the evolution of hand’s pose and
configuration in relation to the target object. That is, it
In this paper we present an approach to goal directed imitencodes the goal-directed motion of the hand during reach
tion of reaching and grasping, where the essential prapetiand grasp. Thus, when the robot tries to imitate an observed
of the target object and the desired motion profile are olgrasp, it has to move its own hand in such a way that it
tained from demonstrations. Goal-directed motion privedi follows a hand state trajectory similar to the one of the
are needed in systems for Programming-by-Demonstratiaiemonstration.
(PbD), where robots need to reproduce tasks defined byIn this paper, we suggest a next-state-planner which is
human demonstrations [11]. In the general case, it is nable to generate a hand state trajectory for the robot from
possible to create one-to-one mappings from human to robathuman demonstration, thus serving as a motion primitive.
motions due to the differences in body structures. Thughe planned trajectory preserves essential propetieseof th
the human demonstration of a grasping task cannot be usegman motion, such as velocity profile and trade-off be-
directly as a desired motion trajectory for the robot. ladte tween speed and accuracy. The next-state-planner approach
it serves as a source of information about the target objecbmbines the planner and controller in one hybrid control
as well as the basic properties of the arm and hand motioaschitecture where the new next state is planned from the
during reach and grasp. That is, the robot has to reproducerrent state. This is in contrast to traditional approache
the task by using its own motion primitives. where the complete trajectory is pre-planned all the way to
Work by Lopes and Santos-Victor have addressed the isstiee target and then executed by the controller. Our use of a
of self explored motions (called sensory-motor maps) uaingdynamical system differs to previous work (i.e., [6], [8]dan
developmental approach in contrast to this we use the humHi0]) in how we combine the demonstrated path with the
demonstration to guide the robot from start [12]. robots own plan. The use of hand state trajectories disshgu
To illustrate the approach, we consider a scenario whereoair work from most previous work on imitation; most
human demonstrator has to teach an industrial robot eqdiippapproaches seen in the literature use joint space for motion
with a two finger gripper how to perform a reach-and-graspplanning while some other approaches use the Cartesian
task. The demonstration is done with the teacher wearingspace, see [8].
6-D motion capturing device and a data-glove tracking hand When a robot is required to imitate a demonstrated motion,
and finger motions. problems and difficulties arise: 1) the recorded trajectory
In our previous work [17] we have shown how aitself cannot be used since it contains noise and unwanted
Pick&Place task is transformed from a human demonstratidwiggles” and unintended motions, 2) the robot may not start

I. INTRODUCTION



from the same position as the human, that means the initidde help of motion primitives, activated in such way that the
hand state is different and so will be the total trajectoyyhg hand follows the desired hand state trajectory.

robot’s configuration differs from human configuration. fro o
this follows that both amplitude and length of the trajegtor A+ Hand State definition

will differ from the demonstrated motion, meaning that the The hand state describes the configuration of the hand and
generation of robot motion should Isémilar to the original its geometrical relation the affordances of the target abje

motion - not the same. Thus, the hand statd and its components are defined as:
In order to deal with the above problems we employ the
hand state approach to imitation is developed using a so- H=1[hy...he1hg... hp Q)

called Next-State-Planner. herehr to h hand i ¢ i
Grasping and manipulation are pointed out as a maj erehs to hyy are hand-specific components, andto

problem towards the development of artificial cognitive-sys, P are components describing the hand pose with respect to

tems. For example, basic reach and grasp skills are ne;zesst e o_b1ect. . . : .
This formulation allows the representation of motions in

for the robot to explore the environment and interact with . .
.terms of hand state trajectories. Note that the hand state

it. The ability to interact with objects and learn about thei (iomponents are specific to the hand's kinematic structure
roperties plays a key role in the cognitive developmen - . :
brop piay y g P d the definition of the object affordances. This means

of the robot since the perception and action are mutual . . :
dependent, see [19]. &nat some hand state components will be defined differently

: . . for different grasp types since they involve different abje
The rest of the paper is organized as follows: In Sec- P

. . . ffordances. In the case of robots imitating humans, we have
tion 1l we review the hand state hypothesis and relate

work. Furthermore we describe methods for analyzing the defineH in such way that it matches the capabilities of

demonstration. In Sec. lll the trajectory generation bas dartlgular types of end-effectors, e.g. dexterous robotlba
wo-finger grippers, as well as the human hand.

on the hand state-approach is presented. In Sec. IV "CIn this article we adopted a general formulation in the

demonstratg the a_pproa_\ch by_expenments. Sec. V COncmseesnse that it suits most industrial robot grippers. We fermu
the paper with a final discussion and future work.

late the hand state as:
II. MOTION ANALYSIS OF HUMAN DEMONSTRATIONS

The concept of hand state stems from research in neuro- H() = [@r(1) ch(t) do(t) da(t) (t) ®(1) (V)] (2)
physiology, more specifically schema theory and it is intro- The individual components concern the position and ori-
duced by Oztop and Arbib [14]. They propose a functionaéntation of the end-effector as well as the opening and
model of the mechanisms behind primate grasping. Fuclosing of the gripper, reflecting the limited capabilities
thermore, they introduce the Mirror Neuron System modehe gripper. The first component is the only hand-specific
to explain the function of the Mirror Neuron System inone, describing the angle between the thumb and the index
Brodmann's brain area F5, related to grasping. The modéhger. The next three componentd(t), do(t) and da(t),
uses the notion of affordances, defined aject features describe the distance from the object to the hand along the
relevant to graspingThis suggests that the F5 mirror neurorthree axes, o anda with the object as the base frame. The
system uses an internal representation of the action, whiclext three componentgh(t), @(t) and g (t), describe the
is independent of the owner of the action. In accordance tatation of the hand in relation to the object as around the
that, the hand state is defined as a vector whose componetiitsee axes, o anda. This notation implies that all measures
represent the movement of the wrist relative to the locatioof the object are expressed in the object frame. Our notation
of the object and of the hand shape relative to objectsf the hand state is illustrated in Fig. 1.
affordances. Consequently, grasp motions are modeled withTo determine the hand state representation of a demonstra-
hand-object relational trajectories as internal repriegiEms  tion, the robot needs to have access to the complete motion
of actions. trajectories of the teacher’'s hand since the motion must be

If we apply these concepts to learning by imitation, ouin relation to the target object. This means the the hane stat
approach can be outlined as follows. The robot tries to leatrnajectories can not be computed on-line unless the target
how to reach and grasp by observing a human teacher aabject is known in advance.
imitating the motions of the teacher, assuming that it knows Note that with this simplified definition dfi we cannot de-
the goal of these motions. For this purpose, the observed mefmine the actual human grasp type. This reflects the limite
tions are mapped into hand state space. The initial imitatio capabilities of the gripper we use in our experimental setup
are not necessarily successful due to inability to repreduddowever, the method can be applied in a straightforward
the observed motions or because of wrong assumptions abagy also to complex robotic hands capable of several grasp
the target object and its properties. The ultimate goalas thtypes, see [9] for details.
the robot learns from experience how to imitate the motions Furthermore, the configuration of the human hand is used
and how to grasp successfully. The reach and grasp motiofws grasp classification, described in earlier work ([138]),
are then synthesized in hand state space and executed withere the grasps are classified according to the taxonomy in
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Fig. 1. The hand state is described in the object frame. This can loaly
determined after the demonstration is performed. A set fofdences are
associated with each type of grasp; for the cylindrical grakey are the
center axis and the object width.
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Fig. 2. Fuzzy clustering principle. The blue stars are the clustemters
positions, the lines are the output from each local lineadeiand the blue
line is the total approximated model. The weights of eachllowodel and
the offsets are not shown.

[7]. The grasp typés, and it's associated set of affordances
A are used to provide the frame in which the hand state is

found in biological systems state-dependent rather timae-ti
dependent [2]. Therefore, when we transform human demon-
strations into robot motions, we empldistance to obje¢d,
as additional scheduling variable for hand state trajezsor
However, to preserve the velocity profile from the human
demonstration the distance to the target is modeled as a
function of time using time clustering, see Fig. 3.

We apply TS fuzzy clustering on hand state trajectories,
with d as input andH(d) as output:

[91(d) d(d) do(d) da(d) gh(d) @(d) @u(d)] (3)
The role of the scheduling variabk is important since
it expressesvhento move to the next state. On the other
hand, the hand state variables refletterethe hand should
be. Thusd synchronizewvhenand where
The TS fuzzy models are constructed from captured data
from the end effector trajectory described by the nonlinear
function:

4

wherex(y) € R",f ¢ R}, andy € R™. The parametey can
be the timet or the distancal. Equation (4) is linearized at
selected data pointg with

Af(y)

X(y) =X(¥i) + Ty|yi (y=wi) (5)
which results in a linear equation in
x(y) =Ai-y+a (6)

where A; %myi € R" and g = x(y;) — %yy)h,i yi € R
Using (6) as a local linear model one can express (4) in
terms of an interpolation between several local linear fsode

by applying TS fuzzy modeling [18]:

mwzgmm«my+m ™

described. The classification is out of scope of this paper,
and we currently only investigated cylindrical grasps ofwv(y) € [0,1] is the degree of membership of the data pgint

one single item. Thus the grasp types will always®e-

to a cluster with the cluster centgr ¢ is number of clusters,

cylindrical; the affordances are, besides position, size arehd 37, wi(y) = 1.

cylinder axisA = {width, axis-.
B. Modeling of Hand States

By modeling the hand state trajectories recorded from the 1
demonstration using Takagi-Sugeno (TS) fuzzy clustering
we obtain three benefits: 1) a compact representation of the

The degree of membershig (t) of an input data poiny
in an input clustelC; is determined by

. 8
ST TS Y

1
mproj*1
(y—yj) ™™ pro(Y—yj))

i=1

dynamic arm motion in form of cluster centers, 2) nonlinear
filtering of noisy trajectories and 3) simple interpolationThe projected cluster centegs and the induced matrices
between data samples. A TS fuzzy model is illustrated M, define the input cluster§; (i = 1...c). The parameter

Fig. 2.

Moro > 1 determines the fuzziness of an individual cluster

There is evidence that the internal models of arm dynamigs].



Model of demonstrated motion
T T T

C. Adaptation of Takagi-Sugeno Models 0s

From the demonstrations we model the motion as a TS °¢
fuzzy-model, where the distance is a function of time. £°3
However, the robot’s motion timkl T,opor Will be differ from

Distance (m)
o
N

the demonstration since the initial conditions are diffiere 01

MTopot IS computed at = 0, before the robot starts executing 0 ; ‘ ‘ ‘ ‘ : ‘ ‘ ‘

the motion. To adapt the model to the robots initial conditio L -y S
we need to perform three steps: Estimated MT at =0

o
o

1) Normalize the cluster centers positio@s and the
offsetsa with respect to the maximum cluster centers
positionsSCmay by:

o
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Distance (m)
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Time (s)
2) Compute the new cluster cent&g,, and offsetsnew  Fig. 3. The top graph shows the original model of the desired distanc
by multiplying them byMTgpot, the target as the time evolves. The bottom graph shows homtiue! is
adapted to the robots domain, this estimate is made at thialipiosition,
¢ = MTopot * G and might change during the execution.
new __ ;.
ai - MTTObOt * a' (10) Variance in hand state space (distances)
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whereyp is the output fortg using Egn. 7, the first
term in Egn. 11 represents scaling along the input . °2f
dimension (time), and the second scaling along the
output dimension (distance).
The new model becomes:
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1 c ne Distance (m)
X(y) = K Zi wi(y) - (Ai-y+a'") (12)  Fig. 4. Position- and orientation-variance of the hand state tcagaies
I= as function of distance, across 24 demonstrations of a iegcto grasp

The original model, top graph in Fig. 3, is scaled using th@?ﬁé&%?i'ng'?rﬁztggzt distances over 0.47 are extrapolationslenay the
above algorithm to a new duration shown in Fig. 3, bottom.

D. Variance in Hand State relevant when the distance to the target increases. Recall

From a number of demonstrations of the same motion ffit {0 compute the hand state the object's position must be
is possible to extract information on how exact it must b&NOWN, S0 we use the hand's final position for this purpose.

followed and what boundaries exist in Cartesian coordmate' N€refore, the variance at zero distance is zero.

By Ipoking at the variance we can draw conclusions abqtg_ Characteristics of Human Motions

the importance of each component of the hand state during ) .

reach-to-grasp. In other words, how much can the trajectory ' "€ time taken to reach a target is related to the move-
deviate from the demonstrated one at certain distance. THEN'S amplitude. In the case of reach to a target the

variance of the hand state at distant® target is given by: amplitude is equal to the distance to the targgt at_ the start
of the motionA = d(tp). The movement’s duration is also

1 N related to the width of the target. This relation is formatht
var(*h(d)) = mZ}khi (d) —mearih(d)))?  (13) by Fitts’ law [4] as:
1=

whered is the Euclidean distance to the targét,is the MT = a+blog, <2VC> (14)
k:th hand state parameter bth demonstration (see Eqn. 2)

and n is the number of demonstrations. Fig. 4 show howvhereMT is the duration of the motior is the amplitude
the variance increases as the distance to the object irsrea®f the motion, equal to distance to the target at the start of
which means that the hand’s position and orientation is lesse motiond(tp), W is the width of the object and and



b are coefficients. Fitts’ law describes the trade-off betwee 6y By
speed and accuracy of the motion.

From a set of demonstrations wheMéI’ d(to) andW are | a0 1 T 1 os1 M wer [T 2 |
known we can solve for the coefficienéssand b. When a ‘TSFC ! ‘TSFC ! ‘Pose \‘ ‘ ! ‘ N !
robot is instructed to imitate the human demonstration we Obj
cannot assume that the amplitude of the motion will be the
same as in the demonstration. Thus we need to compute the Gripper

desired duration of the ro.bqt’s motid Tropor, if we _Want . Fig. 5. Controller architecture. t is the time,*dis the desired distance
to preserve the characteristics of the human motion. Sineg target computed from the TS-mod#l?(d)is the desired hand state

we know the width of the object, the initial distance to thecomputed from the TS-model, “DS1" and “DS2" are dynamicastgm con-
trolling the arm’s pose and the gripper’s state respectiy®l2T transforms

object, and the Coefficien’es.and b, we can apply Fitts’ law e hand state into Cartesian coordinates, “d2T” computes Euclidean
(Egn. 14) to compute the time Topot. distance to the target and@'y” computesf and y from d.

Ill. GENERATION OFROBOT TRAJECTORIES basis of the variance in the hand state (see Sec. I-D), we
In this section we present the next-state planner, whiatan conclude that a shorter distance to the target decreases
generates a hand state trajectory for the robot using the Ti® variance in hand state, approximately following a sguar
fuzzy-model of the demonstration. It serves as a motioaurve. This property is reflected in the dynamical system by
primitive for controling the arm’s reaching motion. Fig. 5adding a higher weight to the trajectory-following dynamic
shows the architecture of the next-state-planner. Thenplan the closer we get to the target; in reverse a long distance to
works as follows. Firstly, the distance to target is comgute target leads to a higher to the goal directed dynamics, and
d(tp) = A, and the durationMT) of motion is computed low weight it follow some specified path to the goal. The
using Fitt's law (see Eqgn 14). Since the position and afforeutcome from these weighting parameters is that at some
dances of the object are assumed to be known, the initidistance to the target the goal is to reach the target, withou
hand state of the robot can be computed for initializatiorany trajectory constrains. The closer we get to the target
Secondly, the desired distandé is obtained from the TS the goal becomes less important and the path becomes more
fuzzy-model (Eqn. 12), and the desired hand skitefrom  important. The final position of the path is the same point
the TS fuzzy-model (Egn. 7). as the goal position, thus the point of attraction becomes th
The dynamical system we use as hand state controllsame at the end of the motion.
is similar the VITE controller suggested by Bullock and The controller has an open loop structure as in Fig. 5. The
Grossberg [1] and the dynamical systems used by ljspeagason for this structure is that a commercial manipulator
[8]. But instead of only having a goal attractor as in VITE,usually has a closed architecture, where the controller is
or use internal dynamic variables as ljspeert et. al., weauseembedded into the system. For this kind of manipulators a
second additional attractor: the desired hand-statectaaje  fixed trajectory is usually pre-loaded. Therefore, we gateer
The system has the following dynamics: the trajectories in batch mode for this platform. Since our
approach is general, for a given different robot platform
with hetroceptive sensors (e.g., vision) our method can be

le = Q(—H.t +B(He —Ht) +y(H*(d) —=Ht))(15)  implemented in an online mode.
H = H{+H 16
t+1 e M (16) IV. EXPERIMENTAL EVALUATION

Hipa = He+H 17 . _
tt t+ (7 To illustrate our approach we performed demonstrations of
whereHg is the goal,H*(d) the desired value at distancea reaching motion. Simulations where made iATMAB us-
d, H¢ is the state at timg, H and H are the velocity ing “Robotic Toolbox” [3]. We performed two experiments:

and accelerationg is a positive constant anf, y are 1) generate a new trajectory based on one of the models
positive weighting parameters wheBeweights the goal and from the recorded trajectories but in the robots work
y tracking point. The goal hand stakés is obtained from (covered in Sec. IV-C),

the fuzzy clustering model at the estimated final time step. 2) generate trajectories from the robot’s home position to
The desired hand state valbi(d) at distancel is computed 100 randomly placed objects (covered in Sec. IV-D).

Using the desired distance at the current time Step and ase th As experimenta| p|atform we used one motion Capturing
TS-model at that distance. The weigii@ndy are variables system for the human demonstration and an industrial serial
reflecting the importance of the goal versus the path, aeduir manipulator (ABB IRB140) equipped with a two finger grip-

form variance, see Sec. II-D. _ per. In these experiments we only simulated the manipulator
The next-state planner uses the models built from the

demonstration to generate a hand state trajectory simildy Data capturing of Human Demonstration

to the demonstrated one. The hand state trajectory for aThe experimental platform we use consists of Immersion

reaching motion is modeled as a function of the distance ©yberGlove with 18 sensors to capture the hand config-

the object. Hence, the closer to the object we are the moogation (only yaw and pitch data are needed to position

important it becomes to follow the desired trajectory. Om ththe grasp center point; the remaining sensors are used for



B. Generation of Hand State Trajectories

From the recorded demonstration we reconstruct the end
effector trajectory as it moves, represented by a time depen
dent homogeneous matife(t). Each element is represented
by the matrix:

_ Nee Oee Aee Qee

We can also extract affordances of the grasped object.
When the cylindrical grasp is recognized using grasp recog-
nition (see [15]) we extract the affordances associatetl wit
a cylinder. These are positidd = [CXCyCZ]T, radiusR and
cylinder axisP = [RR, P,]T (height is not possible to extract
using our current platform). The positidd is determined

4 by theTeg(ts), wherets is the time at the final position. The

linder axis i rmin he orientation veoiye of
Fig. 6. The experimental setup with the data glove and the 6D trackeCy der axis is dete ed by the orientation ve e0

used for data collection. ee o
Now, recall the definition of the hand state from Eqgn. 1,

which is defined in relation to the obje&, thus Tee is
represented in the object frandg,, which is Teg(ts). The
transformation to the end effector frame relative to the=obj
frame is expressed hy:

W tech. ory, se

Human demonstrations

0.2
0.15+

0.1+

BT =T, b Tee (19)

z-axis

where Tee is the hand frame andyy, is the object frame.
These transformations are illustrated in Fig. 8.

The hand state representation (Egn. 2) is invariant with
respect to the actual location and orientation of the target
g object. Thus, grasp demonstrations of objects at different
0 s * locations and initial conditions can be represented in a
common domain. The object domain is both the strength and
weakness of the hand state approach; a change in Cartesian
space does not result in a change in hand state space, since
it describes motions in relation to objects; when an object i
firmly grasped the hand state is fixed and will not capture
measuring finger joint angles) and a Polhemus FASTRAI change in Cartesian space. So for object handling and
6 DOF magnetic tracker that captures the wrist’s positiah aNmanipulation the use of hand state space is limited.
orientation. Fig 6 shows the experimental setup. Comparedpe input to the fuzzy clustering are the hand state

to vision systems the use of wearable sensors are somewhgtameters and the Euclidean distance at each instance.
impeding for the user but provide several important benefits

They are generally more accurate and do not suffer from oc- de = 1/(Qee— C)? (20)
clusion. Moreover they provide fast and simple computation

by placing sensors directly on the measure points avoidinghere Qge and C are the end effector position and object
ambiguities. In our experiments, a demonstrator performsgosition respectively.

set of grasps of a cylindrical object (bottle) located at adix ]

position (C1). The grasp begins from an arbitrary position jC- EXperiment 1

the work-frame. The demonstrator's arm/hand moves toward In our first experiment we generate motions that imitates
the object and the grasp ends when the object is firmlgne of the demonstrations, but statistics from all demanstr
caught in the hand. Then, the hand moves away from thmns are used. That is, one of the trajectoridét) (shown
object and rests before repeating the task from anothéalinitin Fig. 7) is used to generate a robot trajectory. The final
position. The motions are automatically segmented intohreaposition of the path is the same for the robot as in the
and retract motions using the velocity profile, reach mationdemonstration, but it starts from a different initial pasit

are used for these experiments. The data representing theFig. 9 the hand state trajectories from four demonstnatio
motion of the hand toward the object while performing there displayed together with the corresponding generaged tr
grasp is collected. A set of paths for hand motions are shovjactory for the robot. Despite the different initial condits

in Fig. 7. the generated trajectory converges towards the imitatdd pa

0.05+

y-axis x-axis

Fig. 7. Trajectory of a reaching and grasp task. 24 demonstrati@théng
for a cylindrical grasp.
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Fig. 9. Four sample demonstrations, and the corresponding inoiteti The solid lines are the trajectories produced by thetrotier, dashed lines are
the recorded from the demonstration. In the top and middiegblgs, blue is distance and rotations in n-axis, red o-axisl green a-axis. In the bottom
graphs grippers hand state is shown. Notice how the grigple&nd state is synchronized with the other hand states.

gle)T = Ths= T_bl'Tee

[o]

z-axis

?2
han ce)gT y—a><isio'2
y-axis 02 0 x-axis
Tee
object !
TOb 08
g 0.6
base L 04
Fig. 8. The transformation between different framegslthe end effector s o2 e
transformation, , is the object transformation and,J is the transforma- 0% 0 05  yoaxis U 08 06 0a 02 yoas
tion from object to hand, which describes the a part of thecharate. x-axis ¢ oaxis ¢

; Hg. 10. Three sample trajectories. The blue line is trajectory exed
Fig. 10 shows the generated and demonstrated reaChlkgi)gthe robot, the red the demonstrated trajectory to follie object is

motions towards objects for four recorded trajectories. removed to not occlude the path.

D. Experiment 2

In our second experiment trajectories are generated towaf@"ance. On the other hand, nlodel number 9, 10, 16 and
objects placed at random positions within the reachabfe! Succeeded in less than 10% of the trials and have a
area of the work space. We assume that these objects hdj@h variance (a “normal” reaching lasts approximately .2 s)

observable affordances acquired by some other means tH4Rde! number 21 have a high success rate but also a high
the demonstration (e.g., vision, intelligent environm@aD variance. The variance in hand state over the 1425 ftrials is

models). shown in Fig. 11.

In total, 1425 of 2200 trail trajectories have been clagsifie By testing each model we can decide if it performs satis-

as successful. A success is defined as reaching a targef@qtory or not. In future an automatic performance measure
less than B times the estimated timend the distance to will enable a developmental aspect of reaching motions (see

the object less than.0L m from the intended distance. 131 for a review), e.g., a reinforcement learning framekwor

V. DISCUSSION AND CONCLUSIONS

No. 1 2 3 4 5 6 7 8 . .
SR 1 100% | 99% | 99% | 99% | 99% | 31% | 99% | 99% In this paper we have presented an approach to encoding

\N/ar 0-;8 01-%6 01-116 01-23 Oiél 01-17 Oif_)Z Oiél reach-to grasp trajectories, obtained from demonstration
0. . .

SR 8% 9% T 4395 99% | 99% | 549% | 879 5% bgsed on fgzzy clusterlng._ The method mplqments a com-

Var || 030 | 0.95 | 045 | 002 | 0.12 | 020 | 0.12 | 1.08 bined hybrid control architecture operating in hand state
No 17 18 19 20 21 22 H .

SE 1% T 139% 1 79% | 15% | 99% | 53% space. The three main feqtures of the approach are: _

var || 0.00 | 0.48 | 0.17 | 0.18 | 0.42 | 0.30 1) a dynamical system is used to generate goal directed

motions balanced between following a demonstrated trajec-
“SR” means success rate and “Var” is the variance dbry and fast approach of the target;
movement duration. Model 1-5, 7, 8, 12 and 13 succeeded?2) trajectories areindirectly time depended since we
in reaching the target 99-100% of the time and with a lovencode distance to the object as a time variable;
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Fig. 11. The variance over 1425 trajectories where the models saetkbe (5]
in reach-to-grasp. (6]

3) Modeling in hand state space results in position- and
orientation-invariant representation of trajectorierbbver, 7
it provides a natural way of synchronization of reach and
grasp. 18]

The fuzzy time-clustering techniques has the following
advantages:

1) a compact representation by cluster centers, gaingg]
weight and offsets and a simple linear interpolation betwee
two cluster centers;

2) the simple algorithm in which cluster centers can beio]
modified to encode a desired trajectaignilar to the original
demonstration.

The results of this work have direct application in
Programming-by-Demonstration of robots. They also corill]
tribute to the fields of humanoid robotics and cognitive
systems since the ability to reach to grasp enables interac-
tion with the environment and supports the development 2]
cognitive abilities.

As a part of our future work, we will test the hand statg13]
approach on different type of objects. The aim is to expend
the approach for the most common human grasp types aﬂq]
find appropriate definitions of the corresponding afforadsnc
Furthermore, more experimental data will also test our hy-
pothesis on using the Euclidian distance to the object as B!
state parameter; e.g., circular motions will need addition
parameters. Future work also include the implementation on
a real industrial robot system, where possible weaknegses®’
the approach would be seen.

The ability to forget a model that performed badly or
produce a very similar trajectory compared to other modeld”!
will also be part of our future work. A pruning ability will
prevent the database of models from becoming too large.
Another direction for future research is to include robot'ﬁ18
own perception in the learning process, e.g. to recognide an
track objects and their affordances. In this way the robot
would not need to blindly rely on human demonstrationﬁg]
and would be able to work in dynamic environments. In this
respect, we are currently investigating the capabilityhi$ t

) —a approach for motion prediction from observations. Thid wil
/

W\/va\,'\ ‘

o] incorporate intention recognition into our framework, ki
is a key capability for cognitive robotic systems.
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