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Abstract— In this paper we present an approach to reproduce
human demonstrations in a reach-to-grasp context. The demon-
stration is represented in hand state space. By using the distance
to the target object as a scheduling variable, the way in which
the robot approaches the object is controlled. The controller
that we deploy to execute the motion is formulated as a next-
state-planner. The planner produces an action from the current
state instead of planning the whole trajectory in advance which
can be error prone in non-static environments. The results have
a direct application in Programming-by-Demonstration. It also
contributes to cognitive systems since the ability to reach-to-
grasp supports the development of cognitive abilities.

Index Terms— Programming-by-Demonstration, Hand State
Approach, Next-State-Planner, Human Like Motion, Fuzzy
Clustering.

I. I NTRODUCTION

In this paper we present an approach to goal directed imita-
tion of reaching and grasping, where the essential propeties
of the target object and the desired motion profile are ob-
tained from demonstrations. Goal-directed motion primitives
are needed in systems for Programming-by-Demonstration
(PbD), where robots need to reproduce tasks defined by
human demonstrations [11]. In the general case, it is not
possible to create one-to-one mappings from human to robot
motions due to the differences in body structures. Thus,
the human demonstration of a grasping task cannot be used
directly as a desired motion trajectory for the robot. Instead,
it serves as a source of information about the target object
as well as the basic properties of the arm and hand motions
during reach and grasp. That is, the robot has to reproduce
the task by using its own motion primitives.

Work by Lopes and Santos-Victor have addressed the issue
of self explored motions (called sensory-motor maps) usinga
developmental approach in contrast to this we use the human
demonstration to guide the robot from start [12].

To illustrate the approach, we consider a scenario where a
human demonstrator has to teach an industrial robot equipped
with a two finger gripper how to perform a reach-and-grasp-
task. The demonstration is done with the teacher wearing a
6-D motion capturing device and a data-glove tracking hand
and finger motions.

In our previous work [17] we have shown how a
Pick&Place task is transformed from a human demonstration

into desired motion trajectories for the robot. However, the
grasping part, i.e. how to pick up an object, was implemented
in a fairly simple manner in order to match the limited
capabilities of the robotic gripper. In this article, we suggest a
general approach based on the concept of hand state, which
is able to cope with complex grasping tasks and enables
the robot to generalize experience from multiple demonstra-
tions. Moreover, it addreses the problem of coordination of
reaching and grasping motion primitives into a coherent goal-
directed motion.

In our approach, we use the hand state hypothesis intro-
duced by Oztop and Arbib in [14] as a part of the Mirror
Neuron System model. According to the definition, the hand
state trajectory describes the evolution of hand’s pose and
configuration in relation to the target object. That is, it
encodes the goal-directed motion of the hand during reach
and grasp. Thus, when the robot tries to imitate an observed
grasp, it has to move its own hand in such a way that it
follows a hand state trajectory similar to the one of the
demonstration.

In this paper, we suggest a next-state-planner which is
able to generate a hand state trajectory for the robot from
a human demonstration, thus serving as a motion primitive.
The planned trajectory preserves essential propeties of the
human motion, such as velocity profile and trade-off be-
tween speed and accuracy. The next-state-planner approach
combines the planner and controller in one hybrid control
architecture where the new next state is planned from the
current state. This is in contrast to traditional approaches
where the complete trajectory is pre-planned all the way to
the target and then executed by the controller. Our use of a
dynamical system differs to previous work (i.e., [6], [8] and
[10]) in how we combine the demonstrated path with the
robots own plan. The use of hand state trajectories distinguish
our work from most previous work on imitation; most
approaches seen in the literature use joint space for motion
planning while some other approaches use the Cartesian
space, see [8].

When a robot is required to imitate a demonstrated motion,
problems and difficulties arise: 1) the recorded trajectory
itself cannot be used since it contains noise and unwanted
“wiggles” and unintended motions, 2) the robot may not start



from the same position as the human, that means the initial
hand state is different and so will be the total trajectory, 3) the
robot’s configuration differs from human configuration. From
this follows that both amplitude and length of the trajectory
will differ from the demonstrated motion, meaning that the
generation of robot motion should besimilar to the original
motion - not the same.

In order to deal with the above problems we employ the
hand state approach to imitation is developed using a so-
called Next-State-Planner.

Grasping and manipulation are pointed out as a major
problem towards the development of artificial cognitive sys-
tems. For example, basic reach and grasp skills are necessary
for the robot to explore the environment and interact with
it. The ability to interact with objects and learn about their
properties plays a key role in the cognitive development
of the robot since the perception and action are mutually
dependent, see [19].

The rest of the paper is organized as follows: In Sec-
tion II we review the hand state hypothesis and related
work. Furthermore we describe methods for analyzing the
demonstration. In Sec. III the trajectory generation based
on the hand state-approach is presented. In Sec. IV we
demonstrate the approach by experiments. Sec. V concludes
the paper with a final discussion and future work.

II. M OTION ANALYSIS OF HUMAN DEMONSTRATIONS

The concept of hand state stems from research in neuro-
physiology, more specifically schema theory and it is intro-
duced by Oztop and Arbib [14]. They propose a functional
model of the mechanisms behind primate grasping. Fur-
thermore, they introduce the Mirror Neuron System model
to explain the function of the Mirror Neuron System in
Brodmann’s brain area F5, related to grasping. The model
uses the notion of affordances, defined asobject features
relevant to grasping. This suggests that the F5 mirror neuron
system uses an internal representation of the action, which
is independent of the owner of the action. In accordance to
that, the hand state is defined as a vector whose components
represent the movement of the wrist relative to the location
of the object and of the hand shape relative to object’s
affordances. Consequently, grasp motions are modeled with
hand-object relational trajectories as internal representations
of actions.

If we apply these concepts to learning by imitation, our
approach can be outlined as follows. The robot tries to learn
how to reach and grasp by observing a human teacher and
imitating the motions of the teacher, assuming that it knows
the goal of these motions. For this purpose, the observed mo-
tions are mapped into hand state space. The initial imitations
are not necessarily successful due to inability to reproduce
the observed motions or because of wrong assumptions about
the target object and its properties. The ultimate goal is that
the robot learns from experience how to imitate the motions
and how to grasp successfully. The reach and grasp motions
are then synthesized in hand state space and executed with

the help of motion primitives, activated in such way that the
hand follows the desired hand state trajectory.

A. Hand State definition

The hand state describes the configuration of the hand and
its geometrical relation the affordances of the target object.
Thus, the hand stateH and its components are defined as:

H = [h1 ... hk−1 hk ... hp] (1)

where h1 to hk−1 are hand-specific components, andhk to
hp are components describing the hand pose with respect to
the object.

This formulation allows the representation of motions in
terms of hand state trajectories. Note that the hand state
components are specific to the hand’s kinematic structure
and the definition of the object affordances. This means
that some hand state components will be defined differently
for different grasp types since they involve different object
affordances. In the case of robots imitating humans, we have
to defineH in such way that it matches the capabilities of
particular types of end-effectors, e.g. dexterous robot hands,
two-finger grippers, as well as the human hand.

In this article we adopted a general formulation in the
sense that it suits most industrial robot grippers. We formu-
late the hand state as:

H(t) = [φ f (t) dn(t) do(t) da(t) φn(t) φo(t) φa(t)] (2)

The individual components concern the position and ori-
entation of the end-effector as well as the opening and
closing of the gripper, reflecting the limited capabilitiesof
the gripper. The first component is the only hand-specific
one, describing the angle between the thumb and the index
finger. The next three components,dn(t), do(t) and da(t),
describe the distance from the object to the hand along the
three axesn, o anda with the object as the base frame. The
next three components,φn(t), φo(t) and φa(t), describe the
rotation of the hand in relation to the object as around the
three axesn, o anda. This notation implies that all measures
of the object are expressed in the object frame. Our notation
of the hand state is illustrated in Fig. 1.

To determine the hand state representation of a demonstra-
tion, the robot needs to have access to the complete motion
trajectories of the teacher’s hand since the motion must be
in relation to the target object. This means the the hand state
trajectories can not be computed on-line unless the target
object is known in advance.

Note that with this simplified definition ofH we cannot de-
termine the actual human grasp type. This reflects the limited
capabilities of the gripper we use in our experimental setup.
However, the method can be applied in a straightforward
way also to complex robotic hands capable of several grasp
types, see [9] for details.

Furthermore, the configuration of the human hand is used
for grasp classification, described in earlier work ([15], [16]),
where the grasps are classified according to the taxonomy in
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Fig. 1. The hand state is described in the object frame. This can onlybe
determined after the demonstration is performed. A set of affordances are
associated with each type of grasp; for the cylindrical grasp they are the
center axis and the object width.
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Fig. 2. Fuzzy clustering principle. The blue stars are the cluster centers
positions, the lines are the output from each local linear model and the blue
line is the total approximated model. The weights of each local model and
the offsets are not shown.

[7]. The grasp typeG, and it’s associated set of affordances
A are used to provide the frame in which the hand state is
described. The classification is out of scope of this paper,
and we currently only investigated cylindrical grasps of
one single item. Thus the grasp types will always beG =
cylindrical; the affordances are, besides position, size and
cylinder axisA = {width, axis}.

B. Modeling of Hand States

By modeling the hand state trajectories recorded from the
demonstration using Takagi-Sugeno (TS) fuzzy clustering
we obtain three benefits: 1) a compact representation of the
dynamic arm motion in form of cluster centers, 2) nonlinear
filtering of noisy trajectories and 3) simple interpolation
between data samples. A TS fuzzy model is illustrated in
Fig. 2.

There is evidence that the internal models of arm dynamics

found in biological systems state-dependent rather than time-
dependent [2]. Therefore, when we transform human demon-
strations into robot motions, we employdistance to object, d,
as additional scheduling variable for hand state trajectories.
However, to preserve the velocity profile from the human
demonstration the distance to the target is modeled as a
function of time using time clustering, see Fig. 3.

We apply TS fuzzy clustering on hand state trajectories,
with d as input andH(d) as output:

H(d) = [φ f (d) dn(d) do(d) da(d) φn(d) φo(d) φa(d)] (3)

The role of the scheduling variabled is important since
it expresseswhen to move to the next state. On the other
hand, the hand state variables reflectwherethe hand should
be. Thus,d synchronizewhenandwhere.

The TS fuzzy models are constructed from captured data
from the end effector trajectory described by the nonlinear
function:

x(y) = f(y) (4)

where x(y) ∈ Rn, f ∈ R1, and y ∈ Rm. The parametery can
be the timet or the distanced. Equation (4) is linearized at
selected data pointsyi with

x(y) = x(yi)+
∆f(y)

∆y
|yi · (y−yi) (5)

which results in a linear equation iny.

x(y) = A i ·y+ai (6)

where A i = ∆f(y)
∆y |yi ∈ Rn and ai = x(yi)−

∆f(y)
∆y |yi · yi ∈ Rn.

Using (6) as a local linear model one can express (4) in
terms of an interpolation between several local linear models
by applying TS fuzzy modeling [18]:

x(y) =
c

∑
i=1

wi(y) · (A i ·y+ai) (7)

wi(y)∈ [0,1] is the degree of membership of the data pointy
to a cluster with the cluster centeryi , c is number of clusters,
and∑c

i=1wi(y) = 1.
The degree of membershipwi(t) of an input data pointy

in an input clusterCi is determined by

wi(y) =
1

c
∑
j=1

(
(y−yi)TMi pro(y−yi)

(y−y j )TM j pro(y−y j )
)

1
m̃pro j−1

(8)

The projected cluster centersyi and the induced matrices
Mi pro define the input clustersCi (i = 1. . .c). The parameter
m̃pro > 1 determines the fuzziness of an individual cluster
[5].



C. Adaptation of Takagi-Sugeno Models

From the demonstrations we model the motion as a TS
fuzzy-model, where the distance is a function of time.
However, the robot’s motion timeMTrobot will be differ from
the demonstration since the initial conditions are different.
MTrobot is computed att = 0, before the robot starts executing
the motion. To adapt the model to the robots initial condition,
we need to perform three steps:

1) Normalize the cluster centers positionsC and the
offsetsa with respect to the maximum cluster centers
positionscmax, by:

c̃i = ci/cmax

ãi = ai/cmax (9)

2) Compute the new cluster centersCnew and offsetsanew

by multiplying them byMTrobot,

cnew
i = MTrobot ∗ c̃i

anew
i = MTrobot ∗ ãi (10)

3) Compute a scaling factork by:

y0 =
c

∑
i=1

wi(t0) · (A i · t0 +ai)

k =
MTrobot

cmax
·
d(t0)

y0
(11)

where y0 is the output fort0 using Eqn. 7, the first
term in Eqn. 11 represents scaling along the input
dimension (time), and the second scaling along the
output dimension (distance).

The new model becomes:

x(y) =
1
k

cnew

∑
i=1

wi(y) · (A i ·y+anew
i ) (12)

The original model, top graph in Fig. 3, is scaled using the
above algorithm to a new duration shown in Fig. 3, bottom.

D. Variance in Hand State

From a number of demonstrations of the same motion it
is possible to extract information on how exact it must be
followed and what boundaries exist in Cartesian coordinates.
By looking at the variance we can draw conclusions about
the importance of each component of the hand state during
reach-to-grasp. In other words, how much can the trajectory
deviate from the demonstrated one at certain distance. The
variance of the hand state at distanced to target is given by:

var(kh(d)) =
1

n−1

n

∑
i=1

(khi(d)−mean(kh(d)))2 (13)

where d is the Euclidean distance to the target,hi is the
k:th hand state parameter ofi:th demonstration (see Eqn. 2)
and n is the number of demonstrations. Fig. 4 show how
the variance increases as the distance to the object increases,
which means that the hand’s position and orientation is less
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Fig. 3. The top graph shows the original model of the desired distance to
the target as the time evolves. The bottom graph shows how themodel is
adapted to the robots domain, this estimate is made at the initial position,
and might change during the execution.
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Fig. 4. Position- and orientation-variance of the hand state trajectories
as function of distance, across 24 demonstrations of a reaching to grasp
motion. Note that distances over 0.47 are extrapolations made by the
clustering method.

relevant when the distance to the target increases. Recall
that to compute the hand state the object’s position must be
known, so we use the hand’s final position for this purpose.
Therefore, the variance at zero distance is zero.

E. Characteristics of Human Motions

The time taken to reach a target is related to the move-
ment’s amplitude. In the case of reach to a target the
amplitude is equal to the distance to the target at the start
of the motionA = d(t0). The movement’s duration is also
related to the width of the target. This relation is formulated
by Fitts’ law [4] as:

MT = a+blog2

(

2A
W

)

(14)

whereMT is the duration of the motion,A is the amplitude
of the motion, equal to distance to the target at the start of
the motiond(t0), W is the width of the object anda and



b are coefficients. Fitts’ law describes the trade-off between
speed and accuracy of the motion.

From a set of demonstrations whereMT, d(t0) andW are
known we can solve for the coefficientsa and b. When a
robot is instructed to imitate the human demonstration we
cannot assume that the amplitude of the motion will be the
same as in the demonstration. Thus we need to compute the
desired duration of the robot’s motionMTrobot, if we want
to preserve the characteristics of the human motion. Since
we know the width of the object, the initial distance to the
object, and the coefficientsa andb, we can apply Fitts’ law
(Eqn. 14) to compute the timeMTrobot.

III. G ENERATION OFROBOT TRAJECTORIES

In this section we present the next-state planner, which
generates a hand state trajectory for the robot using the TS
fuzzy-model of the demonstration. It serves as a motion
primitive for controling the arm’s reaching motion. Fig. 5
shows the architecture of the next-state-planner. The planner
works as follows. Firstly, the distance to target is computed,
d(t0) = A, and the duration (MT) of motion is computed
using Fitt’s law (see Eqn 14). Since the position and affor-
dances of the object are assumed to be known, the initial
hand state of the robot can be computed for initialization.
Secondly, the desired distanced⋆ is obtained from the TS
fuzzy-model (Eqn. 12), and the desired hand stateH⋆ from
the TS fuzzy-model (Eqn. 7).

The dynamical system we use as hand state controller
is similar the VITE controller suggested by Bullock and
Grossberg [1] and the dynamical systems used by Ijspeert
[8]. But instead of only having a goal attractor as in VITE,
or use internal dynamic variables as Ijspeert et. al., we usea
second additional attractor: the desired hand-state trajectory.
The system has the following dynamics:

Ḧt+1 = α(−Ḣt +β (HG−Ht)+ γ(H⋆(d)−Ht))(15)

Ḣt+1 = Ḣt + Ḧt+1 (16)

Ht+1 = Ht + Ḣt+1 (17)

whereHG is the goal,H⋆(d) the desired value at distance
d, Ht is the state at timet, Ḣ and Ḧ are the velocity
and acceleration,α is a positive constant andβ , γ are
positive weighting parameters whereβ weights the goal and
γ tracking point. The goal hand stateHG is obtained from
the fuzzy clustering model at the estimated final time step.
The desired hand state valueH⋆(d) at distanced is computed
using the desired distance at the current time step and use the
TS-model at that distance. The weightsβ andγ are variables
reflecting the importance of the goal versus the path, acquired
form variance, see Sec. II-D.

The next-state planner uses the models built from the
demonstration to generate a hand state trajectory similar
to the demonstrated one. The hand state trajectory for a
reaching motion is modeled as a function of the distance to
the object. Hence, the closer to the object we are the more
important it becomes to follow the desired trajectory. On the

d(t) H2T T2d

DS 2

β γ
β γ

Pose

Gripper

H*(d*)

TSFCTSFC

H* T dH

Obj

DS 1t d*

Fig. 5. Controller architecture. t is the time, d⋆ is the desired distance
to target computed from the TS-model,H⋆(d)is the desired hand state
computed from the TS-model, “DS1” and “DS2” are dynamical system con-
trolling the arm’s pose and the gripper’s state respectively, H2T transforms
the hand state into Cartesian coordinates, “d2T” computes the Euclidean
distance to the target and “β γ” computesβ and γ from d.

basis of the variance in the hand state (see Sec. II-D), we
can conclude that a shorter distance to the target decreases
the variance in hand state, approximately following a square
curve. This property is reflected in the dynamical system by
adding a higher weight to the trajectory-following dynamics
the closer we get to the target; in reverse a long distance to
target leads to a higher to the goal directed dynamics, and
low weight it follow some specified path to the goal. The
outcome from these weighting parameters is that at some
distance to the target the goal is to reach the target, without
any trajectory constrains. The closer we get to the target
the goal becomes less important and the path becomes more
important. The final position of the path is the same point
as the goal position, thus the point of attraction becomes the
same at the end of the motion.

The controller has an open loop structure as in Fig. 5. The
reason for this structure is that a commercial manipulator
usually has a closed architecture, where the controller is
embedded into the system. For this kind of manipulators a
fixed trajectory is usually pre-loaded. Therefore, we generate
the trajectories in batch mode for this platform. Since our
approach is general, for a given different robot platform
with hetroceptive sensors (e.g., vision) our method can be
implemented in an online mode.

IV. EXPERIMENTAL EVALUATION

To illustrate our approach we performed demonstrations of
a reaching motion. Simulations where made in MATLAB us-
ing “Robotic Toolbox” [3]. We performed two experiments:

1) generate a new trajectory based on one of the models
from the recorded trajectories but in the robots work
(covered in Sec. IV-C),

2) generate trajectories from the robot’s home position to
100 randomly placed objects (covered in Sec. IV-D).

As experimental platform we used one motion capturing
system for the human demonstration and an industrial serial
manipulator (ABB IRB140) equipped with a two finger grip-
per. In these experiments we only simulated the manipulator.

A. Data capturing of Human Demonstration

The experimental platform we use consists of Immersion
CyberGlove with 18 sensors to capture the hand config-
uration (only yaw and pitch data are needed to position
the grasp center point; the remaining sensors are used for



Fig. 6. The experimental setup with the data glove and the 6D tracker
used for data collection.
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Fig. 7. Trajectory of a reaching and grasp task. 24 demonstration reaching
for a cylindrical grasp.

measuring finger joint angles) and a Polhemus FASTRAK
6 DOF magnetic tracker that captures the wrist’s position and
orientation. Fig 6 shows the experimental setup. Compared
to vision systems the use of wearable sensors are somewhat
impeding for the user but provide several important benefits.
They are generally more accurate and do not suffer from oc-
clusion. Moreover they provide fast and simple computation
by placing sensors directly on the measure points avoiding
ambiguities. In our experiments, a demonstrator performs a
set of grasps of a cylindrical object (bottle) located at a fixed
position (C1). The grasp begins from an arbitrary position in
the work-frame. The demonstrator’s arm/hand moves toward
the object and the grasp ends when the object is firmly
caught in the hand. Then, the hand moves away from the
object and rests before repeating the task from another initial
position. The motions are automatically segmented into reach
and retract motions using the velocity profile, reach motions
are used for these experiments. The data representing the
motion of the hand toward the object while performing the
grasp is collected. A set of paths for hand motions are shown
in Fig. 7.

B. Generation of Hand State Trajectories

From the recorded demonstration we reconstruct the end
effector trajectory as it moves, represented by a time depen-
dent homogeneous matrixTee(t). Each element is represented
by the matrix:

Tee=

(

Nee Oee Aee Qee

0 0 0 1

)

(18)

We can also extract affordances of the grasped object.
When the cylindrical grasp is recognized using grasp recog-
nition (see [15]) we extract the affordances associated with
a cylinder. These are positionC = [Cx Cy Cz]

T , radiusR and
cylinder axisP= [Px Py Pz]

T (height is not possible to extract
using our current platform). The positionC is determined
by theTee(t f ), wheret f is the time at the final position. The
cylinder axis is determined by the orientation vectorOee of
Tee.

Now, recall the definition of the hand state from Eqn. 1,
which is defined in relation to the objectC, thus Tee is
represented in the object frameTob, which is Tee(t f ). The
transformation to the end effector frame relative to the object
frame is expressed by:

ob
eeT = T−1

ob ·Tee (19)

where Tee is the hand frame andTob is the object frame.
These transformations are illustrated in Fig. 8.

The hand state representation (Egn. 2) is invariant with
respect to the actual location and orientation of the target
object. Thus, grasp demonstrations of objects at different
locations and initial conditions can be represented in a
common domain. The object domain is both the strength and
weakness of the hand state approach; a change in Cartesian
space does not result in a change in hand state space, since
it describes motions in relation to objects; when an object is
firmly grasped the hand state is fixed and will not capture
a change in Cartesian space. So for object handling and
manipulation the use of hand state space is limited.

The input to the fuzzy clustering are the hand state
parameters and the Euclidean distance at each instance.

dE =
√

(Qee−C)2 (20)

where Qee and C are the end effector position and object
position respectively.

C. Experiment 1

In our first experiment we generate motions that imitates
one of the demonstrations, but statistics from all demonstra-
tions are used. That is, one of the trajectories,H(t) (shown
in Fig. 7) is used to generate a robot trajectory. The final
position of the path is the same for the robot as in the
demonstration, but it starts from a different initial position.
In Fig. 9 the hand state trajectories from four demonstrations
are displayed together with the corresponding generated tra-
jectory for the robot. Despite the different initial conditions
the generated trajectory converges towards the imitated path.
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Fig. 8. The transformation between different frames.Teeis the end effector
transformation, Tob is the object transformation and Ths is the transforma-
tion from object to hand, which describes the a part of the hand state.

Fig. 10 shows the generated and demonstrated reaching
motions towards objects for four recorded trajectories.

D. Experiment 2

In our second experiment trajectories are generated toward
objects placed at random positions within the reachable
area of the work space. We assume that these objects have
observable affordances acquired by some other means than
the demonstration (e.g., vision, intelligent environment, CAD
models).

In total, 1425 of 2200 trail trajectories have been classified
as successful. A success is defined as reaching a target in
less than 1.5 times the estimated timeand the distance to
the object less than 0.01 m from the intended distance.

No. 1 2 3 4 5 6 7 8
SR 100% 99% 99% 99% 99% 31% 99% 99%
Var 0.08 0.06 0.16 0.03 0.11 0.77 0.22 0.11
No. 9 10 11 12 13 14 15 16
SR 8% 7% 42% 99% 99% 94% 87% 5%
Var 0.30 0.95 0.45 0.02 0.12 0.20 0.12 1.08
No 17 18 19 20 21 22
SR 1% 13% 79% 15% 99% 52%
Var 0.00 0.48 0.17 0.18 0.42 0.30

“SR” means success rate and “Var” is the variance of
movement duration. Model 1-5, 7, 8, 12 and 13 succeeded
in reaching the target 99-100% of the time and with a low
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Fig. 10. Three sample trajectories. The blue line is trajectory executed
by the robot, the red the demonstrated trajectory to follow.(The object is
removed to not occlude the path.

variance. On the other hand, model number 9, 10, 16 and
17 succeeded in less than 10% of the trials and have a
high variance (a “normal” reaching lasts approximately 2 s).
Model number 21 have a high success rate but also a high
variance. The variance in hand state over the 1425 trials is
shown in Fig. 11.

By testing each model we can decide if it performs satis-
factory or not. In future an automatic performance measure
will enable a developmental aspect of reaching motions (see
[13] for a review), e.g., a reinforcement learning framework.

V. D ISCUSSION AND CONCLUSIONS

In this paper we have presented an approach to encoding
reach-to grasp trajectories, obtained from demonstration,
based on fuzzy clustering. The method implements a com-
bined hybrid control architecture operating in hand state
space. The three main features of the approach are:

1) a dynamical system is used to generate goal directed
motions balanced between following a demonstrated trajec-
tory and fast approach of the target;

2) trajectories areindirectly time depended since we
encode distance to the object as a time variable;
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Fig. 11. The variance over 1425 trajectories where the models succeeded
in reach-to-grasp.

3) Modeling in hand state space results in position- and
orientation-invariant representation of trajectories. Moreover,
it provides a natural way of synchronization of reach and
grasp.

The fuzzy time-clustering techniques has the following
advantages:

1) a compact representation by cluster centers, gains,
weight and offsets and a simple linear interpolation between
two cluster centers;

2) the simple algorithm in which cluster centers can be
modified to encode a desired trajectorysimilar to the original
demonstration.

The results of this work have direct application in
Programming-by-Demonstration of robots. They also con-
tribute to the fields of humanoid robotics and cognitive
systems since the ability to reach to grasp enables interac-
tion with the environment and supports the development of
cognitive abilities.

As a part of our future work, we will test the hand state
approach on different type of objects. The aim is to expend
the approach for the most common human grasp types and
find appropriate definitions of the corresponding affordances.
Furthermore, more experimental data will also test our hy-
pothesis on using the Euclidian distance to the object as a
state parameter; e.g., circular motions will need additional
parameters. Future work also include the implementation on
a real industrial robot system, where possible weaknesses of
the approach would be seen.

The ability to forget a model that performed badly or
produce a very similar trajectory compared to other models
will also be part of our future work. A pruning ability will
prevent the database of models from becoming too large.
Another direction for future research is to include robot’s
own perception in the learning process, e.g. to recognize and
track objects and their affordances. In this way the robot
would not need to blindly rely on human demonstrations
and would be able to work in dynamic environments. In this
respect, we are currently investigating the capability of this

approach for motion prediction from observations. This will
incorporate intention recognition into our framework, which
is a key capability for cognitive robotic systems.
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