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Null Space Based Efficient Reinforcement Learning with
Hierarchical Safety Constraints

Quantao Yang!, Johannes A. Stork!, and Todor Stoyanov

Abstract— Reinforcement learning is inherently unsafe for
use in physical systems, as learning by trial-and-error can cause
harm to the environment or the robot itself. One way to avoid
unpredictable exploration is to add constraints in the action
space to restrict the robot behavior. In this paper, we propose
a null space based framework of integrating reinforcement
learning methods in constrained continuous action spaces. We
leverage a hierarchical control framework to decompose target
robotic skills into higher ranked tasks (e.g., joint limits and
obstacle avoidance) and lower ranked reinforcement learning
task. Safe exploration is guaranteed by only learning policies
in the null space of higher prioritized constraints. Meanwhile
multiple constraint phases for different operational spaces are
constructed to guide the robot exploration. Also, we add penalty
loss for violating higher ranked constraints to accelerate the
learning procedure. We have evaluated our method on different
redundant robotic tasks in simulation and show that our null
space based reinforcement learning method can explore and
learn safely and efficiently.

I. INTRODUCTION

Trial-and-error learning (such as Reinforcement Learn-
ing) poses challenges when applied to physical robotics.
Reinforcement learning (RL) involves performing a number
of exploratory actions, often with a degree of randomness,
which can lead to damage of the robot or its environment.
This problem has been previously addressed by learning in
simulation [1], [2], [3], safety exploration [4], [5], imitation
learning [6], [7] and learning from demonstration (LfD) [8],
[9]. However, some of these solutions do not guarantee
safety, while others face difficulties when transferring from
simulated to real environments. Another challenge applying
RL on robot system is sampling efficiency because it is
unfeasible for the robot to interact with its surroundings
to collect millions of experience samples. Therefore, it is
imperative to address these problems in order to enable RL
on real physical robots.

Classical approaches to safe RL aim to reduce undesir-
able exploration results by limiting policy updates between
iterations [10], [11]. However, it is hard to determine the
best update step and these methods still might over time
result in visiting unsafe states. In contrast, we propose a null
space based framework that enables safe RL exploration in
constrained continuous action spaces. We leverage a hierar-
chical framework that can guarantee constraint satisfaction
in the least-square sense during the robot’s trial-and-error
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Fig. 1. An illustration of the experimental setup for two robot system: (a) a
3-DOF planar robot reaching a target while the robot end effector avoiding
three cylinder obstacles and (b) 7-DOF redundant Franka Panda putting a
book inside the top layer of the cabinet.

exploration, where constraints are used to describe safety
conditions. We base our work on Safe-To-Explore State
Space (STESS) [4], which restricts the robotic operational
space to a collision-free space. This is accomplished by
decomposing a robotic skill (e.g., putting a book into a
cabinet) into different prioritized tasks. Higher ranked safety
tasks are prioritized over lower ranked RL task, which
ensures safe and efficient RL in the redundant null space
of higher ranked tasks. We demonstrate the ability of our
approach to satisfy constraints during RL trial-and-error by
the comparison of our method with baseline algorithm on
three simulated tasks. Our experimental setups for two robot
systems are shown in Fig. 1.

The main contributions of this paper are:

o A null space based hierarchical method that integrates
RL algorithms in the safe action space by eliminating
constraint violations during RL exploration and enables
collision-free high dimensional robotic control tasks in
continuous action spaces;

o A novel approach that constructs several constraint
phases that can switch between multiple operational
spaces and restrict the robot end effector movement with
the different stack of constraint tasks;

o Evaluation of three RL algorithms’ performance with
our hierarchical control framework on three simulated
experiments that demonstrates our null space based
framework can generalize to different RL algorithms.

This paper is organized as follows: we introduce related

works in Section II and background knowledge of hierarchi-
cal control and safety constraints in Section III respectively.
Next, our null space RL formulation as a lower ranked task is
described in Section IV. Experimental results are presented
in Section V. Discussion and some possibilities for future
work follow in Section VI.



II. RELATED WORK

RL for robotics is categorized into the problem of a
continuous action and state space. Safety during exploration
is one of the main challenges and safe RL [12], [13], [14] is
a significant branch of RL in continuous high dimensional
tasks.

One approach is to incorporate a constraint term into
RL which results in Constrained Markov Decision Process
(CMDP) [15], where agents must satisfy auxiliary constraint
costs. However, this kind of constrained RL approach is
still not effective for continuous high dimensional control
tasks. Trust region methods [10] ensure safe exploration
by limiting policy updates between iterations in terms of
Kullback-Leibler (KL) penalty. Although trust region meth-
ods can reduce the unintended exploration, it is hard to
determine the best update step and the agent still might
explore harmful behaviors. Constrained Policy Optimization
(CPO) [16] approximately enforces the constraints in a trust
region of every policy update. In comparison, our algorithm
takes advantage of a hierarchical control framework to satisfy
constraints during exploration process and safe exploration
is guaranteed in the null space of the prioritized tasks.

A recent method trains the policy for constraint as an
advisor of the actor [17], which is together denoted as
Actor-Advisor method. The advisor learns from the collected
experiences to prevent the actor from violating the constraint.
However, actor and advisor might tend to induce different
regions of the state space, which is sample inefficient.
Zhu et al. propose Dynamic Actor-Advisor Programming
(DAAP) [18], where actor and advisor are intertwined in pol-
icy updates and the advisor is trained simultaneously without
any prior knowledge. But it requires two separate sets of
reward for minimizing the cost and constraint violation.

Constraint-aware learning by demonstration has also been
shown to perform well on the robotic system, in which the
task or the constraint is learned first and a null space policy
is learned separately [19]. In [8], Armesto et al. propose
a constraint-aware learning method that is divided into two
problems, learning the constraint and then learning an acting
policy in the null space of the constraint. It is validated on
a redundant robot that their method can generalize learned
null space policies across different constraints that were not
known during training. By comparison, constraints are not
learned separately and can be defined in advance for our
hierarchical control framework.

The prior work constrains the agent to explore in Safe-
To-Explore-State-Spaces (STESS) [4], which decomposes a
robotic skill into prioritized elemental tasks and a normalized
Radial Basis Function (RBF) [4] network is used to represent
the learning policy. We continue with STESS framework in
this paper and further construct several phases for different
period constraints. To be specific, constraint phases can be
switched when the robot enters different exploration spaces.
Our null space based RL framework is validated on REIN-
FORCE [20], Normalized Advantage Function (NAF) [21]
and Deep Deterministic Policy Gradient (DDPG) [22].

III. HIERARCHICAL CONTROL AND SAFETY
CONSTRAINTS

In this work, we leverage the prior hierarchical stack-of-
tasks (SoT) [23] motion control framework to restrict RL
exploration in the null space of higher prioritized tasks (e. g.,
joint limits and obstacle avoidance). Each task is described
by a mapping from joint space to an operational space.

The vectors g, q and ¢ € R™ represent joint configuration,
joint velocity and joint acceleration respectively, where n is
degree of joint freedoms. According to [24], we define task
Jacobians via the derivatives of pre-defined task functions
e(q). The task evolution is given by

e(q) = J(9)a;
e(q) = J(@)q + J(a)q, ey
where J € R™*" denotes the task Jacobian J(q) = 82(;1)

and J is the corresponding task Jacobian derivative.

A desired performance measure of (1) can be attained via
control law €*(q), where we use simple PD controllers of
the form

€"(q) = —Kpe(q) — Kqé(q), 2)

where K, and K are the positive definite gain matrices. In
case of only one equality task, finding joint space controls
corresponds to solving the following least square Quadratic
Program (QP)

1 .
argmin o[ Jg +Jq — &%, 3)
q

which can be solved analytically via the pseudo-inverse of
J. Considering inequality tasks, a more general constraint is
given by

é(q) < €"(q). €

If the constraint in (4) is infeasible, it can be formulated
as a least squares function by introducing the slack variable
w in the decision variables

1
min —f|w]? )
qw 2
subject to Jg < &* — Jq+w.

To form a hierarchical stack of tasks with p = 1,..., P
priority levels, we stack all task Jacobians of equal priority
p in a matrix A, and the corresponding upper bounds in a

vector b, to form one constraint of the form A,q < b, for
each hierarchy level, where

J e —Jig
A=l lm=| | ©)
Jn e —Jngq
To avoid large acceleration, a regularization term \||g||?
is incorporated into the objective function

1 N
min o ([lwy, |* + Agl]*) Q)
q, Wy
subject to A,g <b,+w;, i=1,...,.p—1
A,q < b, + w,.



The main idea of the hierarchical framework above is to
solve lower prioritized tasks (e. g., policy search) optimally
in the null space of higher prioritized tasks. In this way
the RL exploration will not violate higher ranked tasks and
therefore a safe behavior is guaranteed in the least-square
sense.

IV. EFFICIENT REINFORCEMENT LEARNING WITH
SAFETY CONSTRAINT CONTROL TASKS

We propose a null space based hierarchical method that in-
tegrates RL algorithms in the safe action space by eliminating
constraint violations during RL exploration. We leverage a
hierarchical control framework that can guarantee constraint
satisfaction during the robots trial-and-error exploration,
where constraints are used to describe safety conditions.
We can limit exploratory actions from arbitrary operational
spaces to a collision-free subset of the original state space,
which is done by decomposing a robotic skill (e. g., putting a
book into a cabinet) into prioritized tasks defined in different
operational spaces.

A. Problem Formulation

In the framework of reinforcement learning, the agent
interacts with the environment which is modeled as a Markov
Decision Process (MDP). An MDP is described by the tuple
(S, A, T,R), where S is the state space, A is the set of
actions, 7 denotes the transition probability from state s; to
the next state s;4; under action a;, and r € R is imme-
diate reward with that transition. The goal of reinforcement
learning problem is to learn the optimal parameters 6* of the
policy 7y that maximize the expected return

G(e) = 7_51_9 [Z Fytr(st? ag, St-i-l)]) (8)
t=0

7 is the state-action trajectory and ' € [0, 1] is the discount
rate at time ¢.

In this paper, the state space consists of a set of the robot’s
joint positions g, velocities ¢ and task error functions e, the
action space is the second derivative of task error functions
é. The immediate reward is negatively shaped according to
current error function values.

B. Reinforcement Learning in Null Space

A hierarchy of control tasks with safety constraints having
higher priority than the RL task are defined in advance. We
use the framework introduced in the Section III to guarantee
safety during learning process by limiting RL exploration
action to a collision-free subset of the original action space.
We consider model-free RL and create a control task for RL
agent in the stack.

RL task is ranked lower than prioritized constraint tasks
in the hierarchical controller. According to (6), all desired
task behavior & are stacked in the vector b, of the same
hierarchy p and also the RL agent commands the second
derivative € of control task in the error space. The hierar-
chical control framework satisfies all constraints sequentially
starting from the highest priority by quadratic programming

method [24] and each lower constraint task is solved in the
null space of the previous higher ranked constraints that are
left unchanged.

We take advantage of STESS [4] to enable safe exploration
of lower ranked RL task in the null space of higher ranked
tasks.All tasks are solved in the acceleration space and the
objective function can be formulated as

min ©

subject to Aqg < b,
Jg=¢; - Jq,
where A\ € R, is a small factor to avoid large accelerations.
A is upper constraints matrix and b is the corresponding
upper boundary for all higher prioritized constraints. The
inequality provides all upper constraints that need to be
satisfied by the feasible optimal solution €.

Safe RL task has lower priority than constraints in the
controller and thus can learn the policy in the remain-
ing collision-free low dimensional search space. However,
sometimes it is difficult or even impossible for the agent
to learn a skill in a complicated environment only using
single set of constraints. We also propose a novel approach
that can switch constraint phases when the robot enters
different exploration spaces. Multiple phases for constraint
can accelerate learning speed for complicated tasks. The null
space based RL training is described in Algorithm 1.

Algorithm 1: Training the policy in the null space
of higher ranked constraints

Input : Stack of tasks with different priorities
Output: Trained null space policy
1 Initialize the policy 7 and initialize replay buffer B;
2 for each episode=1,M do

3 Initialize a random noise € for action exploration;
4 Start environment and enter constraint phase Cy;
5 for each step=1,N do

6 Select action a; ~ 7(8;) + €;

7 Execute action a; and receive reward 7;;

8 if constraint phase condition C; satisfied then
9 ‘ Switch and enter constraint phase C;;

10 end

1 Store transition tuple (sy, a¢, ¢, S¢y1) in B;
12 if reach the goal or constraint violated then
13 ‘ Reset the environment;

14 end

15 end
16 Train and update the policy 7’ with sampled

transitions from B;

17 end

Prior to training the policy, a stack of tasks formulated
in (7) are defined with different priorities and the policy 7
is initialized with random weights. The agent starts each
episode from a default constraint phase Cj that restricts
the initial movement of the robot. Given the state in each



step, the policy 7 generates an action a; and an Ornstein-
Uhlenbeck noise [25] is added in the exploration episodes. A
reward is received after action execution and each transition
(8¢, @t, T4, Sey1) is stored in the replay memory 5. The agent
should switch and enter constraint phase C; if the switching
condition is satisfied. The policy is trained at the end of each
episode. We validated our null space RL methods including
REINFORCE, DDPG and NAF.

V. EXPERIMENTS

We have evaluated our approach on three simulation tasks
in the Gazebo simulator [26]: two redundant reaching tasks
and a putting book task. Performance of null space based
RL on three tasks is evaluated to show that the hierarchical
constraints can lead the agent to learn safely and efficiently.
Reaching tasks can be achieved by calculating the remaining
distance between the end effector and the object, while the
task of putting a book inside a cabinet is devised into two
consecutive phases with different exploration constraints.
Our implementation is available at https://github.
com/yquantao/panda_demos/tree/develop.

A. Experimental Setup

Our three experiments are performed on a 3-DOF arm and
Franka panda manipulator respectively. In all experiments
each robot joint is controlled by a velocity controller and
the velocity commands are generated by the desired task
behavior & from RL agent. We use PyTorch to train all three
RL methods and Adam [27] is the optimizer with a fixed
learning rate 1 x 1073. Two reaching experiments consist
of 200 episodes and putting book task was trained within
100 episodes. In all experiments each episode has 300 steps.
Each episode is terminated and restarts from the initial joint
configuration if the robot finishes the goal or violates any
constraint.

B. Redundant Reaching Tasks

Two redundant reaching tasks are implemented with a
planar 3-DOF arm and 7-DOF Franka panda manipulator
respectively. Each reaching task is executed with surrounding
planes which restrict the action space of the end effector.
Reward is shaped as the addition of proportional distance
between the end effector and the target point and the error
value of constraint violation

r=—ag X ||p—Pgoallz — 1 x ¢, (10)

where «; is a positive proportional number, p and p,,y
are positions of the robot end effector and the target point
respectively, e is the absolute error function value of the
constraint that is violated. If the end effector reaches the
target point within 0.02m in our experiment, a positive large
reward will be assigned to the agent.

To ensure safe exploration, some prioritized constraints are
set in the controller. Table I lists all constraints for the 3-DOF
planar reaching task, including joint limits, the end effector
collision avoidance with robot body, surrounding planes
and 3 cylinder obstacles. For 7-DOF reaching task similar

prioritized constraints are set. RL task has lower priority 2
in the hierarchical controller [24] and the generalization of
the proposed null space learning framework is validated with
three RL algorithms: REINFORCE, DDPG and NAF.

TABLE I
CONSTRAINTS SET FOR THE FIRST EXPERIMENT

Constraint Description Priority
joint] limit limits for qo, go, Go 0
joint2 limit limits for q1,41, g1 0
joint3 limit limits for g2, g2, G2 0
self collision-free end effector outside of robot body 0
back plane -0.6m in y direction of world frame 1
front plane 0.6m in y direction of world frame 1
left plane -0.6m in x direction of world frame 1
right plane 0.6m in x direction of world frame 1
3 obstacles end effector outside of 3 cylinders 1

The comparison of cumulative reward for 3-DOF reaching
task using null space based RL methods is shown in Fig. 2(a),
where learning curves are plotted with mean and variance of
three independent runs with the same set of parameters. It
presents that the null space NAF method achieves the reward
more efficiently and the average cumulative reward is higher
than the null space DDPG and REINFORCE. As comparison,
Fig. 2(b) shows the training results of three baseline methods.
We can see that all three baseline methods learn slowly
without our null space based higher prioritized constraints.

The hierarchical controller ensures the elimination of con-
straint violations that have higher priorities than RL task. The
constraint violation rates of two reaching tasks are shown in
Table. II and the error threshold of constraint violation is
0.02m. In the first reaching task only one violation occurred
with DDPG out of 200 episodes, while three baseline RL
methods violate constraints nearly all the time. It can be
seen that our null space RL framework is capable of reducing
constraint violations significantly.

Training reward with three null space RL methods on
Franka reaching task is shown in Fig. 2(c). Null space
based NAF and REINFORCE can learn the task efficiently,
by comparison DDPG learned quickly at the beginning but
oscillated after 75 episodes. When our null space framework
is removed, no baseline methods can learn the skill success-
fully. Same as the first reaching experiment, our null space
based RL methods reduced constraint violations significantly
compared with 100% violation rate of the baseline without
higher ranked constraints depicted in Table. II. Especially
null space based NAF decreased the violation rate from
100% to 1.0%.

TABLE II
CONSTRAINT VIOLATION RATE FOR REACHING TASKS

3-DOF reaching (%) Franka reaching (%)

Method Null space RL  Baseline  Null space RL  Baseline
NAF 0.0 99.5 1.0 100.0
DDPG 0.5 98.5 7.0 100.0
REINFORCE 0.0 100.0 3.5 100.0
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Fig. 2.  Comparison of training rewards in three simulated tasks: (a) Training rewards for 3-DOF reaching task with three null space based RL methods;
(b) Training rewards for 3-DOF reaching task using baseline RL methods (without null space framework); (c) Training rewards for Franka reaching task
with null space based RL methods; (d) Training rewards for Franka putting book task with null space based NAF and NAF baseline method.
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Fig. 3. TIllustration of two constraint phases: (a) Constraint phase Cp
that restricts the robot end effector inside the surrounding blue cuboid; (b)
Constraint phase C7 in which all four book corners should be kept inside
the corresponding green exploration cuboid.

C. Putting Book Inside Cabinet Task

Based on the observed results achieved on reaching exper-
iments, we chose NAF to validate our approach of multiple
phases for different constrained exploration spaces. The goal
of our third experiment is to put a book inside the top layer
of a cabinet which is shown in Fig. 3.

1) Experimental Setting: To guide the robot to put a
book into the cabinet, we devised two phases for different
exploration spaces. The robot is set in the first phase Cy
default during which the end effector should be kept inside
of the blue cuboid shown in Fig. 3(a). When all four corners
of the book are above the top layer plane of the cabinet,
the robot will enter the second phase C; and constraints are
switched. In this phase, all book corners are constrained to
stay inside the green cuboid to ensure no collision with the
cabinet as shown in Fig. 3(b).

TABLE III
CONSTRAINT VIOLATION RATE FOR DIFFERENT ERROR THRESHOLD IN
PUTTING BOOK TASK

Error threshold 0.02 (%)
Null space RL ~ Baseline

Error threshold 0.05 (%)

Method Null space RL  Baseline

2.0 100.0 1.5 100.0

The reward in this experiment is shaped as the sum of the
distances between each book corner and a corresponding line
drawn with red color in Fig. 4(a) and also the error value of
constraint violation:

(1)

where «; is the positive proportional number, J; is the posi-
tion displacement of each book corner and its corresponding
straight line and e is the absolute error value of the violated
constraint. As each displacement §; tries to minimize the
distance between a point and a line, it will allow the robot
to place the book anywhere in an upright configuration inside
the cabinet top layer. There is a wide range of configurations
that would satisfy the goal, which means that the goal is
more complex than reaching tasks. One successful example
of putting the book inside the cabinet is shown in Fig. 4(b).

2) Results: The training reward for Franka putting book
experiment is shown in Fig. 2(d). The robot succeeded in
learning the task within 20 episodes efficiently compared
with around 50 episodes in both reaching experiments shown
in Fig. 2(a) and Fig. 2(c). It validates that the design of
multiple constraint phases accelerates learning procedure in
this complex task. We recorded constraint violations with

T=—a0X(50+51+52+(53)—a1><€,
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Fig. 4. Two consecutive snapshot showing a successful task completion
of putting a book inside the cabinet: (a) The reward is shaped according to
the displacement between each book corner and the corresponding projected
line and (b) Franka panda puts the book inside the top layer of a cabinet
successfully.

two error threshold 0.02m and 0.05m respectively listed in
Table. III. NAF baseline method kept violating constraints
and failed in this experiment, while our null space based
NAF reduced violation rate to 2.0% and 1.5% for two error

threshold values.
VI. DISCUSSION

In this paper, we present an approach for safe and efficient
RL for simulated robot systems. A hierarchical control
framework is leveraged to decompose target robotic skills
into higher ranked tasks (e. g., joint limits and obstacle
avoidance) and lower ranked RL task. By encoding prior
knowledge in form of constraints, our method ensures safe
RL exploration and RL algorithms can be learned in the
null space of prioritized constraint tasks. Meanwhile, due to
the restricted action space and multiple constraint phases,
learning efficiency is improved. We evaluated our approach
by simulated reaching point and putting book tasks demon-
strating that null space based RL is able to learn high
dimensional control tasks safely and efficiently.

In our last experiment the switching conditions of con-
straint phases are defined by hard coding manually. In future
work we plan to look into letting the agent learn these
conditions. Also how to transfer the learned model from
simulation to the real physical system is another potential
future work.
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