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Abstract

In order to safely and effectively operate in real-world unstructured environ-
ments where a priori knowledge of the surroundings is not available, robots
must have adequate perceptual capabilities. This thesis is concerned with sev-
eral important aspects of vision-based perception for autonomous robotic ma-
nipulation. With a focus on topics related to scene reconstruction, object pose
estimation and grasp configuration generation, we aim at helping robots to
better understand their surroundings, to avoid undesirable contacts with the
environment and to accurately grasp selected objects.

With the wide availability of affordable RGB-D cameras, research on vi-
sual SLAM (Simultaneous Localization and Mapping) or scene reconstruction
has made giant strides in development. As a key element of an RGB-D recon-
struction system, a large number of registration algorithms have been proposed
in the context of RGB-D Tracking and Mapping (TAM). The state-of-the-art
methods rely on color and depth information to track camera poses. Besides
depth and color images, semantic information is now often available due to the
advancement of image segmentation driven by deep learning. We are interested
to explore to what extent the use of semantic cues can increase the robustness
of camera pose tracking. This leads to the first contribution of this disserta-
tion. A method for reliable camera tracking using an objective function that
combines geometric, appearance, and semantic cues with adaptive weights.

Beyond the purely geometric model of the environment produced by classi-
cal reconstruction systems, the inclusion of rich semantic information and 6D
poses of object instances within a dense map is useful for robots to effectively
operate and interact with objects. Therefore, the second contribution of this
thesis is an approach for recognizing objects present in a scene and estimat-
ing their full pose by means of an accurate 3D semantic reconstruction. Our
framework deploys simultaneously a 3D mapping algorithm to reconstruct a
semantic model of the environment, and an incremental 6D object pose recov-
ery algorithm that carries out predictions using the reconstructed model. We
demonstrate that we can exploit multiple viewpoints around the same object to
achieve robust and stable 6D pose estimation in the presence of heavy clutter
and occlusion.
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The methods taking RGB-D images as input have achieved state-of-the-art
performance on the object pose estimation task. However, in a number of cases,
color information may not be available — for example, when the input is point
cloud data from laser range finders or industrial high-resolution 3D sensors.
Therefore, besides methods using RGB-D images, studies on recovering the 6D
pose of rigid objects from 3D point clouds containing only geometric informa-
tion are necessary. The third contribution of this dissertation is a novel deep
learning architecture to address the problem of estimating the 6D pose of mul-
tiple rigid objects in a cluttered scene, using only a 3D point cloud of the scene
as an input. The proposed architecture pools geometric features together using
a self-attention mechanism and adopts a deep Hough voting scheme for pose
proposal generation. We show that by exploiting the correlation between poses
of object instances and object parts we can improve the performance of object
pose estimation.

By applying a 6D object pose estimation algorithm, robots can perform
grasping known objects where the 3D model of objects is available and a grasp
database is pre-defined. What if we want to grasp novel objects? The fourth
contribution of this thesis is a method for robust manipulation of novel objects
in cluttered environments. we develop an end-to-end deep learning approach
for generating grasp configurations for a two-finger parallel jaw gripper, based
on 3D point cloud observations of the scene. The proposed model generates
candidates by casting votes to accumulate evidence for feasible grasp config-
urations. We exploit contextual information by encoding the dependency of
objects in the scene into features to boost the performance of grasp generation.
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Chapter 1
Introduction

This year, the term “robot” celebrates its 100th anniversary, first appearing in
Karel Capek’s play R.U.R. (Rossum’s Universal Robots). The word “robot” de-
rives from the Czech for “labor”. Since then, super-human robots have always
been a compelling topic in science fiction books and movies. In fictional worlds,
robots are sentient, far more efficient than their human counterparts, and able
to deal with all environment conditions. The robots of science fiction like Op-
timus Prime or R2-D2 formed the perception of robots in ordinary people’s
minds, but also triggered their interest in science and inspired advancements
of technology in the real world. Over the past decades, our concept of robots
has evolved from fictional technologies to real-world machines integrated into
manufacturing settings and many other areas. It is routine to see robot manip-
ulators being deployed in auto-factories for repetitive tasks such as welding,
painting, cutting, assembly, handling, etc. Indeed, robots have transformed the
manufacturing industry, especially automotive factories. However, the fictional
robots remain a long-term goal rather than a reality. Despite the development
of AI and powerful sensors, robots today still perform far worse on many skills
that come naturally to humans. Manipulating objects in an uncontrolled setting
is a typical example. Even the most advanced robot would be unable to get you
a cup of coffee smoothly and autonomously.

Humans have a fantastic ability to interact with and manipulate objects
in the physical world. By just taking a glance at the scene, we can immedi-
ately, almost instinctively, localize the objects of interest and move our bodies
in complex ways to grab and pick them up. This is contrary to the state-of-
the-art autonomous robots of today, since manipulation is hard, especially in
open environments. This fact may seem strange, as we often see robots move
with blurring speed and perform specific tasks with extraordinary precision
and repeatability in factories. However, they are only skilled at specific tasks
in carefully controlled settings such as industrial assembly setups. In unstruc-
tured environments where robots do not have complete knowledge about their
surrounding, they are much less capable. Inspired by humans’ remarkable abil-
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ity to perceive the environment and manipulate objects, perception for ma-
nipulation has become one of the most studied topics. This thesis focuses on
vision-based perception to help robots better understand their surroundings,
avoid undesirable contact with the environment, and accurately grasp selected
objects.

1.1 Challenges of Vision-based Robot Manipulation

In order to safely and effectively operate in real-world unstructured environ-
ments where a priori knowledge of the surroundings is not available, robots
must have adequate perceptual capabilities. Vision technologies enable robots
to sense the world and understand the state of the world. However, vision sen-
sors can only provide partial knowledge of the surroundings. To expand the
knowledge, robots can move cameras and obtain information (images) from
different locations. Then the acquired information needs to be fused into a
consistent scene representation. This problem is referred to as scene reconstruc-
tion and has been the target of several decades of research. The task of recon-
structing the surrounding environment relates to several sub-problems includ-
ing camera selection, calibration, camera pose estimation, data fusion, scene
representation. As one of the most challenging pieces of the problem, camera
pose tracking is difficult due to measurement noise, illumination variation, the
limit of computing resources in practice, undesired elements such as planar sur-
faces, and more. The most widely investigated class of scene reconstruction
systems relies on depth and color information to estimate camera pose. How-
ever, tracking failures can occur in case there are not enough features to fully
constrain all 6DOF of the camera pose. In Chapter 3, we discuss state-of-the-
art methods for camera tracking and propose a robust camera pose estimation
approach.

The purely geometric map of the surrounding environment produced by
scene reconstruction is not sufficient to enable robots to operate safely and
effectively in applications with a high demand for flexibility. For instance, au-
tomated picking and manipulation of boxes and other types of goods requires
information about the position and orientation of objects. Robots need to have
the capability of understanding the 3D structure and semantics of their environ-
ment. Thus, fusing semantic along with geometric information and providing
the position and orientation of target objects within a 3D reconstructed map is
a promising approach to enable robots to better understand a 3D scene. It is
especially important for mobile manipulation in which robots simultaneously
navigate in unknown environments and pick objects. To accurately grasp se-
lected objects and avoid collisions with neighboring obstacles in the workspace,
the reconstruction process needs to produce a high-quality map of the working
environment. The addition of semantic information and object poses enables
a much greater range of functionality than geometry alone. However, recog-
nizing objects and recovering their poses is a significant challenge, because the
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target objects can be any form, shape, and have six degrees of freedom (DOF).
In addition, the targets may be arranged in a challenging manner in the scene.
Because there are many objects with the same shape and appearance, it is not
easy to recognize the right object and place targets at the defined position, es-
pecially in cluttered environments and under large occlusions. In Chapter 4, we
present an approach for recognizing objects present in a scene and estimating
their full pose by means of an accurate 3D semantic reconstruction.

Providing pose of objects in the 3D space enables robots to meaningfully
interact with the objects as well as to deftly and safely move in open environ-
ments. Deep learning-based methods taking RGB or RGB-D images as input
have achieved promising results on the object pose estimation task. Nonethe-
less, these methods require large amounts of labeled training data. Collecting
images of objects from the real world under various conditions and annotating
the images with 6D object poses is time-consuming and requires a significant
human effort. A promising alternative is the use of synthetic data for training
such deep neural networks. Yet, it is still difficult for methods requiring color
information where the domain gap between synthetic training and real test im-
ages is severe. In addition, in a number of cases, color information may not be
available — for example, when the input is point cloud data from laser range
finders or industrial high-resolution 3D sensors. Therefore, besides methods us-
ing RGB or RGB-D images, studies on recovering the 6D pose of rigid objects
from 3D point clouds containing only geometric information are necessary. In
Chapter 5, we present a novel approach to address the problem of estimating
the 6D pose of multiple rigid objects in a cluttered scene, using only a 3D point
cloud of the scene as an input. Compared to color images, the domain gap be-
tween the synthetic and real data is considerably smaller for 3D point clouds.
In addition, synthesizing data with only geometric information is less expensive
in the terms of time and hardware storage as there is no texture or illumination
present in the data. This low cost allows us to scale it up to a large number of
objects, which is often desired in practical applications.

Previously, we discussed the challenges of the object pose estimation prob-
lem. Assuming that a robot had an accurate pose of objects, then how can a
robot arm grasp an object? Given the pose of objects, a model of the object
to be grasped can be aligned to measured data. A set of grasps is then selected
from a database of pre-computed grasps. Given a gripper configuration, the
robot can start to plan its motion and perform a grasp. However, predicting
the pose of novel objects is not possible, as for 6D object pose estimation we
assume that the 3D model of the object is available and crucially that the ob-
ject coordinate system is defined in the 3D space of the model. This leads to a
new problem of predicting grasps for novel objects. We discuss and propose an
approach to address this problem in Chapter 6.
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1.2 Outline

The following chapters will explore some aspects of the most crucial compo-
nents of a vision-based perception system for robot manipulation. The rest of
this thesis is organized as follows.

Chapter 2 makes a broad introduction to the field of vision-based percep-
tion for robot manipulation, and the sub-problems that it contains.

Chapter 3 discusses the problem of registration of RGB-D images. This
chapter introduces a reliable camera tracking method and compares the pro-
posed approach against current algorithms on a newly collected warehouse
dataset.

Chapter 4 begins with a discussion about the problem of 6D object pose
estimation using an RGB-D camera. It then introduces a method for multi-view
6D object pose using accurate semantic reconstruction and shows experimental
results on the YCB-Video dataset [133] and the warehouse dataset.

Chapter 5 discusses the problem of recovering the 6D pose of rigid objects
from 3D point clouds containing only geometric information. This study intro-
duces a novel deep learning architecture to address the problem of estimating
the 6D pose of multiple objects in a cluttered scene given a point cloud. The
proposed approach is evaluated on data from the Siléane dataset [10] and the
Fraunhofer IPA dataset [64]. A comparison against the most closely related
works is also performed here.

Chapter 6 discusses the problem of grasp detection that generates grasp
configurations directly from 3D point clouds for robotic manipulation with-
out estimating object pose. This chapter proposes and evaluates an end-to-end
context-aware grasp detection network for generating collision-free grasps. To
build robustness to occlusion, the proposed network generates candidates by
casting votes to accumulate evidence for possible grasps. The proposed ap-
proach is evaluated and compared with other state-of-the-art methods on the
public dataset GraspNet-1Billion [29].

Chapter 7 concludes this dissertation and summarizes the major contribu-
tions and directions of future research.



1.3. CONTRIBUTIONS 5

1.3 Contributions

The major contributions of this thesis, as outlined in the previous section, can
be summarized as follows:

A method for reliable camera tracking and state-of-the-art surface recon-
struction using an objective function that combines geometric, appearance, and
semantic cues with adaptive weights. (Chapter 3)

An incremental 6D object pose recovery algorithm that carries out predic-
tions from multiple viewpoints around the same object to achieve robust object
pose in the presence of heavy clutter and occlusion. (Chapter 4)

A novel end-to-end trainable artificial neural network architecture for esti-
mating the 6D pose of multiple rigid objects in a cluttered scene. The approach
uses only a 3D point cloud of the scene as an input and learns to abstract
lower-level point features into high-level features by encoding the dependency
between object parts and object instances. (Chapter 5)

An end-to-end deep learning approach for generating 6-DOF collision-free
grasps of unknown objects, based on 3D point cloud observations of the scene.
To build robustness to occlusion, the proposed model generates candidates by
casting votes to accumulate evidence for feasible grasp poses. The approach
exploits contextual information by encoding the dependency between objects
in the scene into features to boost the performance of grasp generation. The
contextual information enables the model to increase the likelihood that the
generated grasps are collision-free. (Chapter 6)

1.4 Publications

Parts of this work have appeared previously in a number of journal and confer-
ence papers. The following list summarizes all the publications accomplished
during the course of working towards this thesis, as well as the precise chapters
of this work that each article contributed to.

• Hoang, D. C., Stoyanov, T., & Lilienthal, A. J. (2019, September). Object-
RPE: Dense 3D Reconstruction and Pose Estimation with Convolutional
Neural Networks for Warehouse Robots. In 2019 European Conference
on Mobile Robots (ECMR) (pp. 1-6). IEEE.
Main part of Chapters 3 and 4

• Hoang, D. C., Lilienthal, A. J., & Stoyanov, T. (2020). Object-RPE: Dense
3D reconstruction and pose estimation with convolutional neural net-
works. Robotics and Autonomous Systems (RAS), 133, 103632.
Main part of Chapters 3 and 4
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• Hoang, D. C., Lilienthal, A. J., & Stoyanov, T. (2020). Panoptic 3D
Mapping and Object Pose Estimation Using Adaptively Weighted Seman-
tic Information. IEEE Robotics and Automation Letters (RAL), 5(2),
1962-19. (accepted and presented at IEEE International Conference on
Robotics and Automation (ICRA 2020)).
Main part of Chapters 3 and 4

• Hoang, D. C., Stork, J. A, & Stoyanov, T. Voting and Attention-based
Pose Relation Learning for Object Pose Estimation from 3D Point Clouds.
IEEE Robotics and Automation Letters (RAL). Under review.
Main part of Chapter 5

• Hoang, D. C., Stork, J. A., & Stoyanov, T. Context-Aware Grasp De-
tection for Target Objects in Cluttered Scenes Using Deep Hough Vot-
ing. IEEE International Conference on Robotics and Automation (ICRA
2022). Under review.
Main part of Chapter 6



Chapter 2
Background

2.1 Dense RGB-D Reconstruction

Three-dimensional (3D) scene reconstruction from images is an important re-
search topic that derives from computer graphics and computer vision. It has
drawn considerable attention from the industrial and research communities and
has become a core technology of a wide variety of fields. In robotics, simulta-
neous localization and mapping (SLAM) using RGB-D cameras (also can be
referred to as online dense RGB-D reconstruction) – is one of the most im-
portant factors for scene understanding, planning and interaction. To achieve
effective and autonomous operation in unstructured environments, robots need
to perceive the 3D world and infer information about the environment. The re-
constructed scene models together with 3D data processing algorithms would
enable robots to identify features in their surroundings, recognize relevant ob-
jects and acquire task-relevant knowledge. With such importance placed on
the scene modeling, visual SLAM has been extensively studied by the robotics
community in recent years. We have seen a solid progress towards achieving
real-time, dense reconstruction of complex scenes using RGB-D cameras. Fig.
2.1 shows a reconstructed model of an office room containing over 2.5 mil-
lion colored vertices. In this section, we provide the background as well as an
overview of recent advances in dense RGB-D reconstruction techniques.

2.1.1 RGB-D Data

An RGB-D image is a combination of a colored image (RGB) and its corre-
sponding depth image (D). In depth images, each pixel relates to a distance
between the image plane and the corresponding object. RGB and Depth images
are often aligned, in the sense that pixels in the appearance and geometric chan-
nels correspond to the projection of the same physical point on to the camera
plane. Fig. 2.2 shows an example of an RGB image and its corresponding depth
image. A variety of techniques have been developed to augment color images
with geometric information. These include structured light, time of flight (ToF),
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Figure 2.1: An example of a 3D model of an office room at Orebro University.
The model reconstructed by ElasticFusion framework [129] contains over 2.5
million colored vertices.

(a) (b)

Figure 2.2: Example of an RGB-D image captured by a Xtion Pro Live camera.
(a) Color image; (b) Depth image.
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stereo vision, active infrared stereo cameras (AIRS). They also can be divided in
two main approaches: active and passive depth sensing. Structured light meth-
ods make use of a projection device to project known patterns into the scene
and calculate the depth based on deformation of pattern when striking objects
surfaces. Sensors using this technique are called active systems because they ac-
tively modify the scene to obtain surface information of the objects. ToF cam-
eras are active systems as well, which acquire depth information by measuring
the round trip time of an emitted light pulse [30]. Different from the above two
types of depth sensors, stereo cameras simulate human 3D vision to perceive
depth based on the input of multiple conventional monochrome or color cam-
eras. They are considered as passive systems due to to the fact that these sensors
do not modify the scene to obtain the scene depth. The active infrared stereo
cameras (AIRS) are an extension of the passive stereo sensors using an infrared
stereo camera pair with pattern projective texturing the scene.

The above depth sensing techniques already date back several decades. How-
ever, RGB-D cameras only became widely available and affordable to a large
user base since 2010 when Microsoft launched its first commodity depth sensor,
known as Kinect v1. The first generation of Kinect incorporates a structured
light based depth sensor and generates a 640x480 depth map at 30Hz. Kinect
gained wide acceptance for applications in robotics and other fields because
of its reasonable accuracy at a very affordable price, adequate resolution as
well as real-time rates. Subsequently, other depth cameras using different depth
sensing techniques were introduced, such as Kinect v2 (Microsoft), Xtion Pro
Live (Asus), Astra (Orbbec), RealSense (Intel), etc. A comparison of common
sensors is shown in Table 2.1. Similar to Kinect v1, Xtion PRO Live and Astra
cameras are designed for short-range measurements using structure light tech-
nology. Generally, only a depth within 3.5 m is able to be used for reconstruc-
tion. The measurement accuracy of these structure light-based RGB-D devices
decreases with the increase of the measurement distance. In contrast, ToF-based
Kinect v2 the depth accuracy is almost constant over different distances and it
slightly extended the range of depth values [125, 67]. However, the depth map
resolution of ToF cameras like Kinect v2 does not reach a video graphic array
resolution of 640x480 pixels. Kinect v2 has a resolution of 512x424 instead of
640x480, but the images (RGB, depth, and infrared) obtained with Kinect v2
were of better quality than those with Kinect v1. For higher resolution, Intel
released RealSense D435 cameras with AIRS technology provides a resolution
of 1920x1080 in RGB image and 1280x720 in the depth image. RealSense sen-
sors are able to provide a robust solution in both indoor and outdoor scenar-
ios. The advent of affordable consumer grade RGB-D cameras led to significant
advances in dense 3D reconstruction. To evaluate scene modeling systems on
RGB-D data, a number of RGB-D benchmarks have been introduced.

TUM Dataset: this benchmark [112] is one of the most popular datasets
for the evaluation of RGB-D SLAM systems. The dataset covers a large variety
of scenes and camera motions and provides sequences for debugging with slow
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Table 2.1: Comparison of RGB-D sensor principles. The table is from the survey
[32].

Sensors Advantages Disadvantages

Struc-
tured
Light

Kinect v1;
Astra S;
Xtion PRO
Live

High precision at
close range
measurement

Low precision at long
range measurement;
heavily affected by
illumination and light
reflection

Time of
Flight

Kinect v2

High precision at
long range
measurement; less
affected by
illumination

Low image resolution;
high power
consumption; high
hardware cost

Active
Infrared
Stereo
Cameras

RealSense
R200 D435

Small size; light
weight; high image
resolution

High computation
cost; poor real-time
performance

motions as well as longer trajectories with and without loop closures. It consists
of 39 sequences recorded in office and industrial environments using the Kinect
v1. Each sequence contains the color and depth images, as well as the ground-
truth trajectory from the motion capture system. Fig. 2.3 shows a recorded
scene and camera trajectory.

ScanNet [22] this dataset contains 2.5M RGB-D images in 1513 sequences
acquired in 707 distinct spaces. The data is annotated with 3D camera poses,
surface reconstructions, textured meshes, object-level semantic category labels,
and aligned CAD models. To collect this dataset, the authors developed a scal-
able collection and annotation system with a low-cost RGB-D sensor similar to
the Microsoft Kinect v1.

2.1.2 Surface Representation and Prediction

An important element of dense 3D reconstruction systems is the design of sur-
face representation. A surface representation needs to be very efficient in fus-
ing overlapping 3D points into a consistent global model to allow for real-time
processing. Moreover, in order to increase the accuracy of scene reconstruction,
the camera pose estimation process often requires dense surface prediction from
the most up-to-date scene representation. This can be achieved by rendering a
view of the currently reconstructed surface using a virtual camera. Therefore,
the scene representation should allow an efficient rendering process. In addi-
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(a) (b)

Figure 2.3: Example of a sequence contained in TUM RGB-D dataset [112]: (a)
recorded scene; (b) camera trajectory.

tion, it should also be adaptive for modeling both large or small environments
without too much memory overhead. There are two widely used classes of rep-
resentations for incremental dense reconstruction: voxel-based and surfel-based
methods.

Voxel-Based Representation.

The truncated signed distance function (TSDF) is a voxel-based representa-
tion of 3D space which has been used in a large number of real-time dense 3D
reconstruction methods [87, 128, 13]. The TSDF was originally introduced by
Curless and Levoy [21] for the integration of range images. The TSDF has a set
of desirable properties such as incremental updating, time and space efficiency,
the ability to fill gaps. It is also well-suited for data-parallel algorithms. This
is attractive due to the ability to enhance computational performance using
GPGPU (General-purpose computing on graphics processing units).

In a signed distance function, the value at a given point is equal to the dis-
tance from the point to the nearest surface. By convention, for a true SDF the
value is positive for points located in free space, and negative for points that
are inside objects. The absolute value of the distance increases when advanc-
ing the surface. With the sign of distance value we can distinguish between
points inside and outside of objects and extract the zero-crossing isosurface
which represents the actual surface of objects. In practice, the distance values
are truncated at pre-defined limits to lie between Dmin and Dmax. However,
computing the true SDF is sophisticated and not well-posed from just mea-
surements. Instead, a projective truncated signed distance function (TSDF) is
usually used by estimating distances along the lines of sight of a range sensor.

Surfel-Based Representation.

Alternative to voxel-based representation, a reconstructed scene also can be
represented with a set of surfels. This is the choice of scene representation in
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many reconstruction systems [3, 126, 62], especially it is one of the key com-
ponents in the state-of-the-art RGB-D SLAM framework ElasticFusion [129].
Surfels are point primitives without explicit connectivity as defined in [95].
Each surfel might consist of different attributes such as position, color, normal,
and others.

2.1.3 Reconstruction Frameworks

One of the earliest methods for real-time dense 3D reconstruction using RGB-D
sensors (KinectFusion) was presented by Newcombe et al. [87]. KinectFusion
fuses all of the depth data from a Kinect camera into a global voxel-based
surface model (TSDF) of the observed scene. The TSDF is stored as a 3D voxel
grid in GPU memory. We denote the global TSDF that contains a fusion of the
registered depth measurements from frames 1...k as Sk(p), where p ∈ R

3 is a
given cell location (voxel). Two components are stored at each voxel including
the current truncated signed distance value Sk(p) and a weight Wk(p) :

Sk(p) �→ [Sk(p),Wk(p)] (2.1)

The weightW corresponds to the certainty of the distance value. The update of
the weight and distance values is as follows:

Sk(p) =
Wk−1(p)Sk−1(p) +WDk

(p)SDk−1(p)

Wk−1(p) +WDk
(p)

(2.2)

Wk(p) =Wk−1(p) +WDk
(p) (2.3)

With the currently reconstructed scene model available with continuous surface
fusion, a surface prediction can be achieved by rendering the surface encoded
in the zero level set Sk = 0 into a virtual camera. Fortunately, this can be
done simply and efficiently on modern parallel hardware using implicit surface
raycasting [92]. The output of the surface prediction is a predicted depth image
that can be used in estimating camera pose. The sensor poses are obtained
by registering the live depth frame to a predicted depth map from the global
model using a variant of the iterative closest point (ICP) algorithm. Central to
the functionality of KinectFusion is the use of highly parallel general purpose
GPU techniques giving it the ability to perform tracking and mapping at the
frame rate of the Kinect sensor.

However, due to the limitation of TSDF voxel model, KinectFusion is not
able to create highly detailed maps of extended scale environments. Whelan
et al. [128] introduced an extension to the KinectFusion algorithm that per-
mits dense reconstruction of an unbounded extended area, called Kintinuous.
Specifically, instead of restricting the tracking and surface reconstruction to the
region around the point of initialization of the TSDF, Kintinuos permits the
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area mapped by the TSDF to move over time. They utilize a cyclical buffer
data structure in implementation to continuously augment the reconstructed
surface in an incremental fashion as the camera moves. Soon after Canelhas et
al. [13] proposed a parallel algorithm for online RGB-D reconstruction that is
practical for use on modern CPU hardware without a GPU. Unlike the works in
[87, 128], their algorithm does not use predicted depth images from the current
model for registration, but rather registers data directly to the TSDF model.

All the above frameworks rely solely on depth information for the esti-
mation of camera pose. Using only depth data, tracking failure can occur in
situations where the amount of characteristic features in the depth map is low.
Steinbrucker et al. [111] introduced an energy minimization approach for RGB-
D image registration that relies on color information instead. In comparison
with geometric ICP, the authors reported that their method is more accurate in
the regime of small camera motions. However, a reliance on color information
alone for camera tracking suffers from a lack of visual features and does not ex-
ploit the rich geometric information contained within the scene. Whelan et al.
[130] combined the color and depth information in the cost function so that all
given information is used. They demonstrated that this combination increases
the robustness of camera tracking across a variety of environments. This idea
was further used in ElasticFusion [129] which fuses measurements and uses a
surfel structure instead of a volumetric one for reconstruction.

In ElasticFusion, the scene model is represented by a cloud of surfels Ms,
where each surfel consists of a position p ∈ R

3 , normal n ∈ R
3, colour c ∈ N

3,
weight w ∈ R, radius r ∈ R, initialisation timestamp t0 and last updated times-
tamp t. The radius for each surfel is estimated to maximize distance between
adjacent surfels and minimize visible holes. The radius r and weight w are ini-
tialized as:

r =
1√
2

d/f

nz

(2.4)

w = exp−γ2/2σ2
(2.5)

where d is the depth, f is the focal length of the depth camera and nz the z
component of the estimated normal. γ is the normalized radial distance of the
current depth measurement from the camera center. In accordance with the
work [62] σ = 0.6 is derived empirically. The surfel-based scene representation
is flexible, since surfel coordinates can be updated very efficiently for the whole
reconstruction. We denote the prime superscript (e.g. p ′) for the newly associ-
ated measurement and the hat operator (e.g. p̂) denotes the new updated value
for a given surfel at the next time step. Then the update rules for each surfel
component are detailed as follows:
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p̂ =
wp+w ′p ′

w+w ′ (2.6)

n̂ =
wn+w ′n ′

w+w ′ (2.7)

r̂ =
wr+w ′r ′

w+w ′ (2.8)

ŵ = w+w ′ (2.9)

The color attribute c is also updated in the same way. The surfel-based rep-
resentation is highly adaptive as measurements at a higher resolution lead to
denser point representation. Compared to voxel-based representation, surfel
clouds are easier to handle thin objects. While raycasting is employed for ren-
dering the voxel-based reconstruction, surfel-based methods render the explicit
representation using a simple surface-splatting technique as introduced in [62]:
they render overlapping, disk-shaped surface splats that are spanned by the
model point’s position p, radius r and normal n. Instead of using more re-
fined surface-splatting techniques, EWA Surface Splatting [144] for example,
they simply render opaque splats. The output of the splatted rendering is a pre-
dicted depth or color image which is used in Chapters 3 and 4. An in-depth
system architecture diagram of ElasticFusion is shown in Fig. 2.4. The global
model is simply an unordered list of surfels with associated attributes as pre-
sented above. Points evolve from unstable to stable status based on how often
they are observed by the camera as illustrated in Fig. 2.5. Only surfels that are
marked as active model surfels are used for camera pose estimation and depth
map fusion.

2.2 Convolutional Neural Networks

Another foundational topic used throughout this thesis is deep learning. Chap-
ter 3 introduces a segmentation framework with convolutional neural net-
works. Chapter 4 integrates Mask R-CNN [44] and DenseFusion [121] into
our pipeline which use ResNet [45] as a feature extractor network. In the fol-
lowing, we provide the basic concepts of convolutional neural networks as well
as some of the backbone network architectures we rely on.

Convolutional neural networks, also known as ConvNets or CNNs, are
a specialized class of artificial neural network designed for working with data
that has a grid-like structure [36]. A two-dimensional (2D) image can be viewed
as a 2D grid of pixels which has spatial correlation between the neighborhood
data points. In view of this, ConvNets is suitable for processing digital images,
although they can also be used with one-dimensional and three-dimensional
data. Indeed CNNs have been tremendously successful in computer vision tasks
such as image classification, 2D object detection, semantic segmentation, etc.
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Figure 2.4: ElasticFusion architecture diagram. (i) The current depth and color
images are aligned with the predicted models; (ii) Register views and attempt
deformation to ensure local and global surface consistency; (iii) Labeling surfels
that have not been seen in a period of time as inactive; (iv) Live camera data is
fused with the latest updated model and an up to date prediction of the active
model.

Central to the convolutional neural network is the mathematical operation con-
volution that gives the network its name. In mathematics, convolution is an op-
eration on two functions g(x) and h(y) producing a third function and defined
as
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(a) (b)

(c) (d)

Figure 2.5: Example a sequence with active model colored by surface normal
overlaid on the inactive model. (a) Initially all data is in the active model; (b)
The area of map not seen recently is set to inactive; (c) The camera revisits the
inactive area of the map, the inactive region then becomes active; (d) Final full
map.

f(x) =

∫
g(y)h(x− y)dy (2.10)

The convolution operation is typically denoted with an asterisk:

f(x) = (g ∗ h)(x) (2.11)

In ConvNets, the functions g, h, and f are often referred to as input, kernel,
and feature map respectively. For image data, we use a 2D image as the input
and a 2D kernel K:

F(i, j) = (I ∗ K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j− n) (2.12)

Because of commutative property of convolution, we can re-write Eq. 2.12 as

F(i, j) = (I ∗ K)(i, j) =
∑
m

∑
n

I(i−m, j− n)K(m,n) (2.13)
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Fig. 2.6 illustrates convolution operation applied to a 2-D tensor. A typical layer
of a convolutional network consists of three components as shown in Fig. 2.7.
Since convolution is a linear operation and we want to realize rich and complex
functions, the non-linearity stage often comes after the convolution stage to
introduce non-linearity to the activation map. The final stage is pooling such as
max pooling or average pooling to reduce the dimensions of the feature maps
so that we can avoid overfitting as well as reduce the number of parameters
and computation in the network.

Figure 2.6: An example of 2-D convolution. The boxes with arrows indicate
how the output is formed by applying the kernel to the corresponding region of
the input tensor. Note that here we restrict the output to only positions where
the kernel lies entirely within the image.

LeNet-5 [68] was one of the earliest CNN architectures that has the mod-
ern structure of ConvNets – stacked convolutional layers (as presented above)
are followed by fully-connected layers. However, it was often surpassed by tra-
ditional machine learning methods such as support vector machine (SVM) or
boosting algorithms due to lack of training data and computing power. Hence,
it did not obtain enough attention at that time. The first viable CNN architec-
ture that could outperform hand-designed features and SVMs was presented in
2012. AlexNet[65] achieved record-breaking results in ImageNet classification
and outperformed all the entries by a large margin that year. The architecture
of AlexNet comprises five convolutional and three fully-connected layers com-
pared to three convolutional and three fully-connected in LeNet-5. By incorpo-
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Figure 2.7: The components of a typical convolutional neural network layer
[36]. In the first stage, convolutions are performed to produce a set of linear
activations. Then, each linear activation is run through a nonlinear activation
function. In the next stage, a pooling function is used to modify the output.

rating the nonlinearity function of ReLu (Rectified Linear Unit) instead of Tanh
or Sigmoid, AlexNet was able to accelerate the training speed. The output of
the last fully-connected layer is fed to a softmax function which produces a dis-
tribution over the 1000 class labels. There are 60 million trainable parameters
in this network. To combat overfitting, they use data augmentation methods
and dropout technique. Inspired by the success of AlexNet, researchers have
put more effort to bring advancements in CNNs. Notably, Simonyan et al. pro-
posed a deeper CNN model by adding more layers, named as VGG [109]. It
was the first study proved that increasing depth of the network can improve the
performance. VGG is made 19 layers deep and uses very small 3 × 3 kernels.
The major drawback of VGG is the use of 138 million trainable parameters,
which makes it computationally expensive.
To increase the depth of the network while keeping the computations to a
constant level, Sermanet et al. [114] proposed GoogleNet model, also called
Inception-v1 as there are v2, v3 and v4 later on. Inspired by human visual
system, it introduced the new concept of inception architecture in CNN that
allows visual information processed at various scales and then aggregated lo-
cally. To achieve this without a memory explosion, 1 × 1 convolutions are em-
ployed to compute reductions before the expensive 3 × 3 and 5 × 5 convolu-
tions. In inception modules, 1x1 convolution is used as a dimension reduction
module to reduce the computation that enables it to create deeper architec-
ture. GoogLeNet has 22 layers in total including 9 inception modules and it
replaces all fully connected layers with average pooling. This saves a lot of pa-
rameters. By going deeper with convolutions, this architecture was the winner
at the ILSVRC 2014 image classification challenge [104]. VGG and GooLeNet
confirm that “the deeper the better”. The question is why don’t they go deeper
rather than 19 layers (VGG) or 22 layers (GoogLeNet). Adding more layers
did not work for the researchers because of the well-known problem of vanish-
ing gradients [6, 34]. While training deeper networks, during training accuracy
gets saturated and then degrades rapidly. He et al. addressed the problem by
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introducing a deep residual learning framework, called ResNet [45]. The main
contribution of ResNet is the residual block as illustrated in Fig. 2.8. The “skip
connection” technique is the core of residual blocks. Rather than expect stacked
layers to fit a desired underlying mapping H, we explicitly let these layers fit a
residual mapping F(x) := H(x)−x. Then the original becomes H(x) := F(x)+x.
The skip connections solve the problem of vanishing gradient by allowing in-
formation to skip layers which hurt the performance. ResNet architecture with
152 layers deep CNN won the 2015-ILSVRC competition [104]. A comparison
of CNN architectures can be found in Table 2.2.

Figure 2.8: A residual block of deep residual network [45]. The “skip connec-
tion” technique is the core of residual blocks. This technique solves the prob-
lem of vanishing gradient by allowing information to skip layers which hurt the
performance.

Table 2.2: The comparison of different CNN architectures on model size, clas-
sification error rate, and model depth.

Parameters Error Rate
Depth

LeNet-5 [68] 0.060 million MNIST: 0.95 5

AlexNet [65] 60 million
ImageNet:
16.04

8

VGG19 [109] 138 million ImageNet: 7.3 19
GoogLeNet
[114]

4 million ImageNet: 6.7 22

ResNet-152
[45]

25.6 million ImageNet: 3.6 152



20 CHAPTER 2. BACKGROUND

2.3 Deep Learning on 3D Point Clouds

While Convolutional Neural Networks (CNN) are most commonly applied to
2D images, it is difficult for CNNs to handle point cloud data that is unordered,
irregular and not on a structured grid as illustrated in Fig. 2.9. To reason about
3D geometric data, a variety of deep learning architectures for learning features
from point cloud have been proposed [98, 99, 143, 124, 41]. In the next chap-
ters, we will use PointNet [98] and PointNet++ [99] as backbone networks for
feature extraction from 3D point sets. Therefore, in this section we detail the
architecture of these two networks.

(a) Irregular. (b) Unstructured.

(c) Unordered.

Figure 2.9: Properties of 3D point clouds: (a) Irregular – Sparse and dense
regions; (b) Unstructured – Each point is independent and distance between
neigh-boring points is not fixed;(c) Unordered – Point cloud are invariant to
permutation.

PointNet [98] is a pioneering work in studying deep learning on 3D point
clouds. Given an unordered point set x1, x2, ...xn with xi ∈ R

3, PointNet ap-
proximates a set funtion f to map the set of points to a vector:
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f(x1, x2, ..., xn) = γ
(

max
i=1,...,n

(h(xi))

)
(2.14)

where max is a vector operator that takes n vectors as input and returns a new
vector of the element-wise maximum, γ and h are multi-layer perceptron (MLP)
networks. The network architecture of PointNet is visualized in Fig. 2.10. The
input transform module consists of a shared MLP with layer output sizes (64,
128, 1024) on each point, a max pooling across points and two fully connected
layers with output sizes (512, 256). All layers, except the last one, include ReLU
and batch normalization. The output is a 3 × 3 matrix. Similarly, the feature
transform module has the same architecture except that the output is a 64×64
matrix. The shared MLPs can be implemented as 1 × 1 convolutions to share
weights and biases through all points. Note that 1 × 1 convolutions really are
1 × 1 × D, where D is the feature dimensions. The key to PointNet is the use
of max pooling layer as a symmetric function to select informative points and
encode the reason for the selection. Thereby it is invariant to ordering.

Despite being able to encode the whole input point cloud into a global fea-
ture map. PointNet lacks the ability to capture local features. As an extension
of PointNet, PointNet++ [99] is introduced to to resolve the limitation. It is
a hierarchical neural network due to the fact that it processes the input point
cloud in a metric space in a hierarchical fashion ((see Fig. 2.11)). In the first step
points are grouped into local regions. Then we extract features of these regions
using PointNet. The extracted features are further grouped into larger units
and abstracted to higher level representations. This process is repeated until we
obtain the features of the whole input point cloud. A high-level overview of
the architecture is provided in Fig. 2.11. As we can see the core of PointNet++
network is set abstraction modules. Each module is composed by three key lay-
ers: sampling layer, grouping layer and PointNet layer. Given input point cloud
x1, x2, ..., xn, the sampling layer selects a subset of points xi1 , xi2 , ..., xin using
iterative farthest point sampling (FPS). In the grouping layer, a ball query is
used to find all points within a radius and form local regions. The input to this
layer is a sampled point cloud with the sizeN×(d+C) and the coordinates of a
set of centroids of size N

′ ×d. The output is N
′

clusters. Each cluster is a point
set of size K × (d + C) corresponding to a local region and K is the number of
points in the neighborhood of centroid points. The N

′
local regions of points

are then fed into PointNet layer local pattern learning. By stacking several set
abstraction levels, PointNet++ effectively learns deep point set features. Besides
solving classification and semantic segmentation problems, PointNet++ is used
as a backbone network for feature extraction in many other works.
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Figure 2.10: PointNet architecture [98] for a number of 3D recognition tasks.
“mlp” stands for multi-layer perceptron, numbers in bracket are layer sizes.
The T-net aims to learn an affine transformation matrix. The classification net-
work takes n points as input and output classification scores for k classes. For
segmentation network, the output after the second transformation network and
output of the max pooling are concatenated for each point to extract new per
point features.
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Figure 2.11: Illustration of feature learning architecture in PointNet++. The
key element of PointNet++ network is set abstraction modules. Each module
consists of a sampling layer, grouping layer, and PointNet layer.
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2.4 Object Pose Estimation

2.4.1 Problem Statement

Given input data acquired by a sensor such as a monocular camera, RGB-D
sensor, or LiDAR, we are interested in detecting objects and estimating their
orientations and translations in 3D space. The problem is akin to 3D object de-
tection, where the goal is to estimate oriented 3D bounding boxes of physical
objects from sensor data as shown in Fig 2.12. The box bounds the complete
object and is parameterized by its size (height, width, length), center, and orien-
tation. However, the information from bounding boxes is often not applicable
to robot manipulation. For example, in Fig 2.12 a mobile robot with forks is
approaching pallets, but with the estimated bounding boxes it is still not able to
find the right path to pick pallets up. Rather than detect objects with bounding
boxes, aligning a full 3D model of the target object to its incomplete measured
data would be more useful for manipulation tasks. To this end, we assume that
the 3D models of objects are available and the object coordinate system O is
defined in the 3D space of the model as illustrated in Fig. 2.13a. Object pose
is represented by a rigid transformation from the object coordinate system to
a reference coordinate system G (often camera coordinate system). The rigid
transformation consists of a rotation R ∈ SO(3) and a translation t ∈ R

3,
ξ = [R|t]. With an estimated object pose, we can perform the model-to-scene
alignment as shown in Fig. 2.13.

(a) (b)

Figure 2.12: Example of 3D object detection. (a) a scene in warehouse envi-
ronment; (b) 3D point cloud from a RGB-D camera and estimated bounding
boxes.

2.4.2 Conventional Methods

Conventional methods are mainly based on the matching of hand-crafted lo-
cal or global features to extract the correspondence between observations (2D
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(a) (b)

(c) (d)

Figure 2.13: Example of 6D object pose estimation. (a) 3D model of a pallet; (b)
3D point cloud from a RGB-D camera; (c-d) the 3D model of pallet is aligned
with the object cloud

images or 3D point clouds) and object mesh models. Here, the term “hand-
crafted” refers to features manually designed in traditional methods which are
distinct from learned features in deep neural networks. Global feature-based
approaches utilize the whole geometric appearance of the object surface to de-
fine a single feature vector that effectively and concisely describes the entire 3D
object [105, 131, 2]. On the contrary, the local feature-based methods exploit
the geometric properties around specific keypoints [40]. While global meth-
ods are able to handle objects with self-similar surface parts, such as planar
patches, spheres and cylinders, local approaches are more suitable for detecting
and estimating the pose of complex objects in cluttered scenes. As a compro-
mise solution, Drost et al. [26] build a global model description using point pair
feature (PPF) and match that model locally using a fast voting scheme. The PPF
method and its variants are well studied and commonly used as baseline meth-
ods in many previous works, including our work in Chapter 5. The following
gives details about PPF and its variants.
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The point pair feature (PPF) describes the relative position and orientation
of two oriented points. More specifically, we denote si ∈ S for points in the
scene point cloud and mi ∈ M for points in the model point cloud. For two
points m1 and m2 with normals n1 and n2, we set d = m2 −m1 and then the
point pair feature F is defined as:

F(m1,m2) = (‖ d ‖2,�(n1,d),�(n2,d),�(n1,n2)) (2.15)

where �(a,b) ∈ [0;π] denotes the angle between two vectors. The feature F
is then used to build a global model description which is a mapping from the
point pair feature space to the model. Fig. 2.14 shows an example of point
pairs and their features on a single object. A hash table is used to represent
model description and can be used to search matches between model features
and scene features. While the global model description is accomplished in the
offline phase, scene point pair features are calculated in the online phase. The
potential matches then vote for an object pose via an efficient voting scheme
and return the optimal object pose. The algorithm shows its high recognition
performance and is utilized in a vast number of industrial and robotic appli-
cations. Since introduced, PPF has been improved and extended in many other
works [16, 7, 49, 122, 39, 70]. Because of relying on a pair of points on the ob-
ject surface and their normals, PPF is not discriminative enough for industrial
parts which do not have rich variations in surface normals. To this end, [16]
proposed several novel pair features that exploit boundary points and boundary
line segments. The first new point pair feature is FB2B (Boundary-to-Boundary)
based on two points on the object boundary (depth edges). Instead of employ-
ing surface normals as in the original PPF, we fit line segments to boundary
points and use their directions as orientations. We define B2B feature descrip-
tor FB2B ∈ R

4 as

FB2B = (‖ d ‖2,�(nb
1 ,d),�(nb

2 ,d),�(nb
1 ,nb

2 )) (2.16)

This descriptor is equivalent to the original PPF as in Eq. 2.15 except that nb
1

and nb
2 are directions of the 3D lines. The second new point pair feature is

FS2B (Surface-to-Boundary) based on an oriented surface point and an oriented
boundary point. we define S2B feature descriptor FS2B ∈ R

4 as

FS2B = (‖ d ‖2,�(n1,d),�(nb
2 ,d),�(n1,nb

2 )) (2.17)

Another point pair feature is FL2L (Line-to-Line) using two 3D line segments.
We define L2L feature descriptor FL2L ∈ R

3 as

FL2L = (‖ ci − cr ‖2,�(l2r − l1r, l2i − l
1
i),dmax) (2.18)
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(a) (b)

Figure 2.14: An example of buiding a global model descriptor using point pair
feature (PPF) [26]: (a) Point pair feature F = (F1, F2, F3, F4) of two oriented
points; (b) The global model description.

where cr and ci are the closest points to lines that contain the 3D line segments,
and l1r, l2r, l1i , l1i are the end points of line segments. dmax is the maximum dis-
tance between two end points in two different segments. The experimental re-
sults shows that the pair features based on the object boundary improve the
performance of object pose estimation for a wide class of industrial parts. While
all points in the original PPF method contribute to the global feature descriptor
equally, [7] argues that the points are not equally important to matching. There-
fore, they perform weighting strategy based on the visibility per each vertex of
the object surface. In addition, [7] introduced a coarse-to-fine segmentation
step, a fast ranking and verification postprocessing steps to address the issues
regarding the high dimensionality of the search space, sensitivity of the corre-
spondence and the effect of outliers and low density surfaces. Although being
extensively studied, PPF-based approaches share some common problems: (1)
relying on searching a large set of paired feature correspondences severely lim-
its their speed; (2) they are sensitive to measurement noise, heavy occlusion and
background clutter.

2.4.3 Deep Learing-based Methods

Deep networks, especially Convolutional Neural Networks (CNN), have emerged
as a powerful strategy for learning feature representations directly from RGB
images and have led to significant progress in fundamental computer vision
tasks such as image classification, object detection or semantic segmentation.
Inspired by this success, 6D object pose estimation from a single RGB im-
age using deep learning has been actively studied in recent years. Some works
address the challenge by training CNN models to predict 2D keypoints and
then compute 6D pose parameters with Perspective-n-Point (PnP) algorithms
[93, 94, 100, 115]. Instead of detecting keypoints to serve as an intermedi-
ate representation for pose estimation, newer methods such as PoseCNN [133]
directly estimate 6D poses from image data. The PoseCNN architecture em-
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ploys semantic labeling which provides richer information about the objects.
PoseCNN recovers the 3D translation of an object by localizing its center in the
image and estimating the 3D center distance from the camera. The 3D rotation
of the object is estimated by regressing convolutional features to a quaternion
representation. In addition, in order to handle symmetric objects, the authors
introduce ShapeMatch-Loss, a new loss function that focuses on matching the
3D shape of an object. The results show that this loss function produces su-
perior estimation for objects with shape symmetries. However, this approach
requires Iterative Closest Point (ICP) for refinement which is prohibitively slow
for real-time applications.

Although deep learning-based methods significantly improve the pose esti-
mation accuracy compared to the traditional methods, features learned from
only RGB images are sensitive to occlusion and illumination changes, which
places them far from being applied to complicated scenes. Moreover, the meth-
ods mainly rely on 2D images to estimate 6D pose of objects, which could lead
to losing geometric constraint information of rigid objects. When depth infor-
mation is available, it can be combined with RGB images to provide a richer
representation and improve the performance of object pose estimation. Wang
et al. proposed DenseFusion [121] which is approximately 200x faster than
PoseCNN-ICP and outperforms previous approaches on two datasets, YCB-
Video and LineMOD. The key technique of DenseFusion is that it extracts
features from the color and depth images and fuses RGB values and point
clouds at the per-pixel level. This per-pixel fusion scheme enables the model
to reason about the local appearance and geometry information, which is es-
sential to handle occlusions between objects. In addition, an end-to-end itera-
tive pose refinement procedure is proposed to further improve pose estimation
while achieving near real-time inference.

Fig. 2.15 illustrates the overall architecture of DenseFusion. It is composed
of three components: a) a PointNet-like network that processes each point in
the masked 3D point cloud to a geometric feature embedding, b) a CNN-based
image embedding network that processes the color information to extract per-
pixel features representing the appearance information of the input image at
the corresponding location, c) a pixel-wise fusion network that combines both
embeddings, performs local per-pixel fusion and makes pose predictions based
on each fused feature. The core of DenseFusion is the fusion network that em-
beds and fuses the appearance and geometric information at the per-pixel level.
This fusion scheme enables the model to potentially favor the predictions based
on the seen part of the object and soften the effects of occlusion and measure-
ment noise. The loss is defined as the distance between the points sampled on
the object model in ground truth pose and corresponding points on the same
model transformed by the estimated pose:
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L
p
i =

1
M

∑
j

‖ (Rxj + t) − (R̂ixj + t̂i) ‖ (2.19)

where xj denotes the jth point of the M randomly selected 3D points from the
object’s 3D model, ξ = [R|t] is the ground truth pose, and ξ̂i = [R̂i|t̂i] is the
predicted pose generated from the fused embedding of the ith dense-pixel. For
objects with symmetric views, the metric is adapted by computing the average
distance using the closest point distance:

L
p
i =

1
M

∑
j

min
0<k<M

‖ (Rxj + t) − (R̂ixk + t̂i) ‖ (2.20)

Although DenseFusion has achieved promising results, like other single-
view-based methods it suffers significantly from the ambiguity of object appear-
ance and occlusions in cluttered scenes, which are very common in practice. In
addition, since DenseFusion relies on segmentation results for pose prediction,
its accuracy highly depends on the performance of the segmentation framework
used. As in pose estimation networks, if the input to a segmentation network
contains an occluder, the occlusion significantly influences the network output.
Not only DenseFusion but also most of the current CNN-based methods con-
sider objects independently and estimate their poses using a single input (RGB
or RGB-D) image. However, scenes are often composed of different object in-
stances and multiple images of the scene can easily be captured by a single
moving camera, or in a multiple-camera setup. In Chapter 4, while exploit-
ing the advantages of DenseFusion framework, we address the problem of the
ambiguity of object appearance and occlusion by combining information from
multiple views and estimates jointly the pose of multiple objects to obtain a
single consistent scene interpretation.
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Figure 2.15: Architecture of DenseFusion [121] for 6D object pose estimation.
Color images are processed by a segmentation framework to generate object
masks and bounding boxes. Then, for each segmented object, the RGB colors
and point cloud from the depth map are encoded into embeddings and fused at
each corresponding pixel. The pose predictor produces a pose estimate for each
pixel and the predictions are voted to generate the final 6D pose prediction of
the object.



Chapter 3
Registration of RGB-D Images

3.1 Introduction

The ability to quickly acquire a 3D map (model) of an unknown environ-
ment is of extreme importance in robot manipulation. It enables robots to
operate safely and effectively in applications with a high demand on flexi-
bility. For instance, automated picking and manipulation of boxes and other
types of goods in warehouses requires an accurate model of the world to help
robots better understand their surroundings, and to, for example, avoid unde-
sirable contacts with the environment. With the increasing availability of RGB-
D sensors, research on 3D mapping has made giant strides in development
[129, 87, 111, 127, 13, 23]. These approaches achieve dense surface recon-
struction of complex scenes while maintaining real-time performance through
implementations on highly parallelized hardware. Most of these approaches
have a very similar processing pipeline. In the first stage, noise reduction and
outlier removal are applied to the raw depth measurements and then 3D points
are generated. Additional information such as normals also might be extracted
from the depth image. In the next step, the current camera pose relative to the
scene is estimated via a registration algorithm in a frame-to-frame or frame-
to-model fashion by minimizing a cost function. Finally, the surface measure-
ments are fused into an accumulated global model based on the camera pose
determined in the previous stage. Camera pose estimation is the crux to 3D
reconstruction systems and its performance mainly depends on the registration
process. Therefore, in this chapter, we focus on registration algorithms.

A large number of registration algorithms have been proposed in the con-
text of RGB-D Tracking and Mapping (TAM) [129, 87, 57, 28]. Feature-based
approaches estimate the sensor pose by only considering informative and char-
acteristic points known as key points [57, 28]. Alternatively, dense geometric
tracking approaches, such as KinectFusion [87], typically apply an ICP [15]
variant to directly register the full depth image to an online reconstructed vol-
umetric model. The original KinectFusion algorithm uses a Truncated Signed

31
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Distance Function (TSDF) for model representation and point-to-plane ICP
[15] for alignment. Several alternatives to this choice of algorithms have been
proposed [85, 13], which are expected to perform better in regions where the
point-to-plane distance is ill-defined. Using only depth data, tracking failure
can occur in situations where the amount of characteristic features in the depth
map is low. Steinbrucker et al. [111] introduced an energy minimization ap-
proach for RGB-D image registration that relies on color information instead.
In comparison with geometric ICP, the authors reported that their method is
more accurate in the regime of small camera motions. Whelan et al. [127] com-
bined the color and depth information in the cost function so that all given
information is used. They demonstrated that this combination increases the ro-
bustness of camera tracking across a variety of environments. Besides depth
and color images, semantic information is now often available due to the im-
provement of semantic image segmentation driven by deep learning. However,
there is still a lack of studies that examine the use of semantic cues in improving
the performance of the registration process.

In this chapter, we review current registration algorithms and explore the
benefits of utilizing segmentation in camera tracking. We propose modifications
of the registration objective function to make full use of the semantic cues in
the process. For a fair comparison, we employ the pipeline of ElasticFusion as
a backbone for all registration methods and evaluate them within this frame-
work. The rest of this chapter is organized as follows. Section 3.2 provides
preliminaries, while a problem statement is formalized in Section 3.3. Section
3.4 presents a discussion on existing registration methods. Having discussed
current registration algorithms, Section 3.5 then shifts the focus of this chapter
to our proposed approach for reliable camera pose tracking. The results are
then presented and analyzed in Section 3.6. Finally, Section 3.7 summarizes the
main contributions and lessons learned in this chapter.

3.2 Preliminaries

Following ElasticFusion [129], the reconstruction system maintains a fused
surfel-based model of the environment. The model is represented by a cloud
of surfels Ms, where each surfel consists of a position (vertex) v ∈ R

3 , normal
n ∈ R

3, color c ∈ N
3, initialization timestamp t0 and last updated timestamp

t. The image space domain is defined as Ω ⊂ N
2 , where an RGB-D frame is

composed of a RGB image Irgb and a depth image Id of depth pixels:

Irgb : Ω ⊂ N
2 → N3 (3.1)

Id : Ω ⊂ N
2 → R (3.2)

We define the 3D back projection of a point p ∈ Ω given a depth image Id as
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v(p) = [
px − cx
fx

Id(p),
py − cy
fy

Id(p), Id(p)]ᵀ (3.3)

Considering the camera intrinsics matrix

K =

⎡
⎣fx 0 cx

0 fy cy
0 0 1

⎤
⎦ (3.4)

and the perspective projection of a 3D point

Π([x,y, z]ᵀ) = [x/z,y/z]ᵀ (3.5)

we can express v(p) and p(v) as

v(p) = K−1Id(p)(p, 1)ᵀ (3.6)

p(v) = Π(Kv) (3.7)

Given a RGB image Irgb with color c(p) = [c1, c2, c3]
�, the intensity value of

a pixel p ∈ Ω is defined as Irgb(p) = (c1 + c2 + c3)/3.

3.3 Problem Statement

Given a new RGB-D frame [It+1
rgb, It+1

d ] at time step t + 1, we wish to find the
global pose of the camera Tt+1 (w.r.t. a global frame FG). We represent the
6DOF camera pose estimated by a rigid body transformation matrix:

Tt+1 =

[
Rt+1 tt+1

0 0 0 1

]
∈ R

4×4 (3.8)

consisting of a rotation Rt+1 ∈ SO(3), parametrized as a matrix ∈ R
3×3 and

a translation tt+1 ∈ R
3. Since we already know the transformation from the

previous time step Tt, we only need to find the incremental transformation ΔT
between t and t+ 1. Then Tt+1 can be computed as

Tt+1 = TtΔT (3.9)

So we first move the new measurements by ΔT such that they are aligned with
the previous data in their respective coordinate system and then transform them
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to global coordinates using Tt. To find ΔT , we need to align the two consec-
utive RGB-D image pairs [It+1

rgb, It+1
d ] and [Itrgb, Itd] to get our desired result.

This alignment is called frame-to-frame tracking. However, in many systems,
they instead track the new camera frame by aligning [It+1

rgb, It+1
d ] against the

model prediction [Îtrgb, Îtd] from the previous frame, called frame-to-model. A
successful alignment will give us the incremental transformation ΔT . Note that
we assume the camera has a small motion and the scene remains static.

3.4 Prior Methods

3.4.1 Geometric Pose Estimation

Many of the previous works rely on the iterative closest point (ICP) [15, 85, 13]
or its variants to align depth images for camera pose tracking [87, 128, 13, 85].
The general idea is to iteratively assign correspondences between the points of
the two frames and to register them. Newcombe et al. [87] introduced the first
system (KinecFusion) which permits real-time and dense 3D surface reconstruc-
tion using an RGB-D camera through extensive GPGPU parallelization. The
original registration algorithm used in KinectFusion is a variant of the ICP al-
gorithm and performs data alignment in a frame-to-model fashion. It estimates
the sensor pose for each new frame by utilizing a point-to-plane error metric in
which the objective of minimization is the sum of the squared distance between
a point from a live surface measurement and the tangent plane at its corre-
spondence point from the model prediction. The cost function performs well in
environments with high geometric textures.

Given the predicted depth image Îtd from the last frame at time step t, the
back-projection of the i− th vertex in Îtd is defined as:

v̂ti := v̂
t(pi) (3.10)

In the setting, the vertices obtained by back-projection of the new depth image
It+1
d describe the scene in the local camera coordinate system at time t:

vt+1
i := ΔTvt+1(pi) (3.11)

We assume that there exists a set of correspondence pairs between the two
points sets. KinectFusion exploits the fact that these points are generated from
a camera with known intrinsic parameters. Computing the correspondences is
therefore done by the fast projective data association algorithm [8]. For each
vertex vt+1(pi), which is defined in the local coordinate system at time t + 1,
we compute the vertex v̂c(i) at time t that is at the same line of sight in the local
system at time t. This means, we first need to know the coordinates of vertex
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vt+1(pi) in the other coordinate system by applying ΔT , then project it to pixel
coordinates and use this pixel pc(i) as a look up for the corresponding vertex:

v̂tc(i) = v
t(p(ΔTvt+1(pi))) (3.12)

After having calculated the correspondences, a measure of error as the sum of
squared distances between corresponding points in 3D can be computed:

Egeo =
∑
i

‖ (vt+1
i − v̂tc(i)) · n̂t

c(i) ‖2 (3.13)

This formulation is the point-to-plane error function as described in [87]. In
particular, we wish to find a rigid transformation ΔT that minimizes the error
between the correspondences:

min
T

.
∑
i

‖ (vt+1
i − v̂tc(i)) · n̂t

c(i) ‖2 (3.14)

ξ→ ΔT = exp(ξ̂)ΔT (3.15)

The problem is solved by an iterative estimation process and ΔT is updated in
every iteration via the estimated motion parameters ξ = [ωᵀ xᵀ]ᵀ, ω ∈ R

3 and
x ∈ R

3. The hat operator forms the matrix:

ξ̂ =

[
[ω]× x

0 0 0 0

]
(3.16)

where [ω]× ∈ R
3×3 is a skew-symmetric rotation component:

ω]× =

⎡
⎣ 0 −ω2 ω1

ω2 0 −ω0

−ω1 ω0 0

⎤
⎦ (3.17)

We can re-write the error function as:

Eicp =
∑
i

‖ (exp(ξ̂)vt+1
i − v̂tc(i)) · n̂t

c(i) ‖2 (3.18)

We assume that motions are small, then we have:

exp(ξ̂) =

∞∑
0

ξ̂n

n!
≈ I+ ξ̂ (3.19)
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By plugging this approximation into the error function and rearranging the
terms as described in [127], then we get the final form of energy equation:

Eicp =
∑
i

‖
[
vt+1
i × n̂t

c(i)

n̂t
c(i)

]
ξ+ (vt+1

i − v̂tc(i)) · n̂t
c(i) ‖2 (3.20)

=‖ Jgeoξ+ rgeo ‖2 (3.21)

To estimate the motion update vector ξ, we compute the least-squares solution:

argmin
ξ

‖ Jgeoξ+ rgeo ‖2 (3.22)

3.4.2 Photometric Pose Estimation

In Section 3.4.1 above, the dense point-plane based ICP minimizes the cost
over the error Eicp between vertices in the current depth frame and the pre-
dicted depth image. The cost function performs well in environments with high
geometric texture, however tracking failures can occur in case there are not
enough features to fully constrain all 6DOF of the camera pose. For instance,
if the measured points are located on planar surfaces then the point-to-plane
error metric will fail to register successive views. This is because there will be
no mechanism to guarantee that a global minimum can be reached by shifting
source points to target points in the direction perpendicular to the normals.
Steinbrucker et al. [111] used appearance information to overcome this. In ad-
dition to the assumption of small camera motion and static scene, we also can
assume that every surface point has the same intensity in all images. This means
the appearance of the scene is the same in both images. Based on this assump-
tion, we aim to find the motion parameters ξ that minimize the cost over the
photometric error (intensity difference) between pixels:

Ergb =
∑
i

‖ It+1
rgb(pi) − Î

t
rgb(Ψ(ξ,pi)) ‖2 (3.23)

Ψ(ξ,pi) = Π(KξΔTvt+1(pi)) (3.24)

According to the original algorithm by Steinbruecker et al. [111], in a similar
manner as Eicp we get Jrgb and rrgb for the color (intensity) correspondences.
Then we have the final form of energy equation

Ergb =‖ Jrgbξ+ rrgb ‖2 (3.25)

And similar to the geometric pose estimation method, we solve least-squares
problem to estimate the motion parameters ξ.
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3.4.3 Joint Optimization

Using only depth information, tracking failure can occur in situations where
the scene has no distinctive shapes such as a large planar scene or spherical
surface. Similarly, a reliance on color information alone for the estimation of
the camera pose suffers from the lack of visual features and does not exploit
the rich geometric information contained within the scene. As a result, Whelan
et al. [130, 129] uses both dense depth and photometric information. They
combine the cost functions of both the geometric and photometric estimates in
a weighted sum. The sum of the RGB-D and ICP cost is defined as

Eicp_rgb = Eicp +ωrgbErgb (3.26)

whereωrgb is the weight and was set empirically to 0.1 to reflect the difference
in metrics used for Eicp and Ergb costs. To optimize this cost, Whelan et al.
[127, 130] use the Gauss-Newton non-linear least-squares method and exploit
the GPU to accelerate the minimization process. The details of implementation
can be found in [130, 129].

3.5 Joint Optimization with Semantic Information

While the ICP method does not work well in scenarios with repetitive geo-
metric structures, the largest drawback of photometric pose estimation is their
susceptibility to illumination and changes in camera exposure time. On the
contrary, semantic segmentation label image offers the favorable property of
being largely invariant to both environmental conditions as well as the surface
characteristic. In this section, we propose modifications of the registration cost
function to make full use of the semantic class labels in the process. The pro-
posed objective function features tunable weights for the depth, appearance,
and semantic information channels, which are learned from data. A fast se-
mantic segmentation and registration weight prediction convolutional neural
network (Fast-RGBD-SSWP) suited to efficient computation is introduced.

3.5.1 Sematic Segmentation

Our segmentation framework for Fast RGBD Semantic Segmentation and Weight
Prediction (Fast-RGBD-SSWP) is inspired by Fast-SCNN [96] and FuseNet [43]
to address the problem of real-time semantic labeling on RGB-D data. We em-
ploy depthwise separable convolutions and residual bottleneck blocks for deep
CNNs [106]. The network contains two branches to extract features from RGB
and depth images, and the depth feature map is constantly fused into the RGB
branch as shown in Fig. 3.1. In each branch, only three layers are employed
to extract low-level features for the purpose of feature sharing. The first layer
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is a standard convolutional layer (Conv2D) and the remaining two layers are
depthwise separable convolutional layers (DSConv) [106].

The low-level features not only become the input for the other stages of
semantic segmentation but also share computation with the branches for per-
image adaptive weight estimation. The weight prediction is treated as a classi-
fication problem where the target is a binary decision whether or not the given
RGB image and depth image should be used in the registration process. In other
words, we aim to train our weight predicting model as a binary classifier, where
one class signifies that the image contains useful information for the subsequent
registration process, while the other class indicates the converse. The probabil-
ity predicted from the classification model is considered as an adaptive weight
for our joint cost function for camera pose estimation.

Similar to Fast-SCNN, the semantic segmentation branch includes a global
feature extractor, a feature fusion module and a standard classifier as shown
in Fig. 3.1. However, instead of using feature maps from the RGB branch, our
global feature extractor module takes the feature maps fused by the depth and
RGB branches. This module is composed of efficient bottleneck residual blocks
[106] and a pyramid pooling module (PPM) [141]. The bottleneck block uses
depthwise separable convolution to enhance efficiency without significantly re-
ducing effectiveness. The feature fusion module processes a simple addition
of features as utilized in ICNet [140]. In the classifier, two depthwise separa-
ble convolutions (DSConv) and one pointwise convolution (Conv2D) are em-
ployed. Softmax is used during training and inference. The output of the CNN
is a per-pixel independent probability distribution over the class labels P(li)(u),
li ∈ L with u denoting pixel coordinates. L is a predetermined set of L semantic
classes encoded by L := {0, ...,L− 1}.

3.5.2 Joint Optimization

Rather than rely on only geometric and photometric data, we additionally em-
ploy semantic information to perform registration. The cost we wish to mini-
mize depends on the difference in predicted likelihood values between the label
probability maps:

Esem_full =
∑
i

∑
j

‖ P(lj)(pi) − P(lj)(Ψ(ξ̂,pi)) ‖2 (3.27)

Ψ(ξ,pi) = Π(KξΔTvt+1(pi)) (3.28)

To simplify minimizing the cost function, we only take the probability of the
most likely class on each pixel-wise probability vector Q(u,P) = maxP(li)
from frame t and the probability of the same class label from frame t + 1. We
denote values of Q(u,P) over a given image as a semantic probability map. So
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Figure 3.1: Fast-RGBD-SSWP makes dense predictions inferring labels for ev-
ery pixel while simultaneously yielding per-image adaptive weights for cam-
era tracking. The network uses standard convolution (Conv2D), depth-wise
separable convolution (DSConv), depth-wise convolution (DWConv), inverted
residual bottle-neck blocks (bottleneck), a pyramid pooling module and a fea-
ture fusion module block.
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based on this simplification, the semantic probability error can be formulated
as:

Esem =
∑
i

‖ Q(pi,Pt+1) −Q(Ψ(ξ̂,pi),Pt) ‖2 (3.29)

In words, Pt+1 and Pt are per-pixel independent probability distributions over
the class labels from the frame at time step t + 1 and t respectively. There are
alternatives, and later discussion in the experimental results we will explain
why we decided to go with the simplified function.

At this point, we aims to estimate a sensor pose that minimizes the cost
over a combination of the global point-plane energy, photometric error, and
semantic difference. We wish to minimize a joint optimization objective:

Eicp_rgb_sem = ωgeoEicp +ωrgbErgb +ωsemEsem (3.30)

where ωgeoEicp, ωrgbErgb, and ωsemEsem are the geometric, photometric
and semantic error terms respectively. The geometric and photometric error
functions are weighted by factors predicted from the Fast-RGBD-SSWP net-
work. The weight for semantic error is defined as ωsem = Nm/Nu, where
Nm is the number of non-background pixels and Nu is the number of pixels
per frame. This fraction accurately captures the amount of semantic texture
present in the scene. Finally, we find the transformation by minimizing the ob-
jective 3.30 through the Gauss-Newton non-linear least-square method as in
the previous Section 3.4.3.

3.5.3 Per-pixel Adaptive Weights

In Eq. 3.30 we combine adaptively weighted photometric, geometric and se-
mantic cost terms in a single objective function. These adaptive weights are
chosen on a per-image basis, while ideally they should be different for each
pixel, as certain regions in the image can contain varying amounts of structure
and color. We use this observation and propose to estimate per-pixel adaptive
weights based on textureness assessment (Fig. 3.2). To define the textureness of
each depth image pixel, we assume that untextured regions are often piecewise
flat and thus the amount of characteristic features is low. Under these assump-
tions, the idea behind our proposed cost function is to favor highly textured
regions of the image. The energy is adaptively weighted based on the local vari-
ance at u = pi, we define it as in [120]:

λ(u) =
σ2
u

σ2
u + ε

(3.31)

where σu denotes the local variance of the 5x5 patch around pixel u in the
current image and ε is an empirically set constant. The higher the variance, the



3.5. JOINT OPTIMIZATION WITH SEMANTIC INFORMATION 41

(a) (b)

(c) (d)

Figure 3.2: Visualization of per-pixel weights computed on color (a) and depth
(c) images, higher weights are whiter in (b) and (c). (a) Color image; (b) Weights
on color image; (c) Depth image; (d) Weights on depth image.

closer the weight is to 1. Fig. 3.2 shows an example of per-pixel weights for a
RGB-D image. We can reformulate the geometric energy Eicp, the photomet-
ric energy Ergb, and the joint objective Eicp_rgb_sem with per-pixel adaptive
weights as following:

E
pa
icp =

∑
i

λicp(pi) ‖ (exp(ξ̂)vt+1
i − v̂tc(i)) · n̂t

c(i) ‖2 (3.32)

E
pa
rgb =

∑
i

λrgb(pi) ‖ It+1
rgb(pi) − Î

t
rgb(Ψ(ξ,pi)) ‖2 (3.33)

E
pa
icp_rgb_sem = Epaicp + Epargb +ωsemEsem (3.34)

where the weights λicp and λrgb are computed from Eq. 3.31 with the varaince
σu taken as the variance of a local 5x5 patch of pixels from the depth and
intensity images.
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3.6 Evaluation

In this section, we evaluate the presented registration algorithms through ex-
periments on the standard TUM RGB-D dataset [112] and a newly collected
warehouse dataset. Our experiments are aimed at evaluating trajectory estima-
tion and surface reconstruction accuracy. For all tests, we ran our system on
a desktop PC running 64-bit Ubuntu 18.04 Linux with an Intel(R) Xeon(R)
E-2176G CPU 3.70GHz and an Nvidia GeForce RTX 2080 Ti 10GB GPU.
For a fair comparison, we employ the pipeline of ElasticFusion as a back-
bone for all registration methods and evaluate them within this framework.
The Fast-RGBD-SSWP network is implemented using PyTorch 1.0. To train
Fast-RGBD-SSWP we used stochastic gradient descent (SGD) with momentum
0.9 and batch-size 12. In all of the presented experimental setups, results are
generated from RGB-D video with a resolution of 640x480 pixels.

3.6.1 The Warehouse Object Dataset

Unlike scenes recorded in other publicly available datasets, warehouse environ-
ments pose more complex problems, including low illumination inside shelves,
low texture and symmetric objects, clutter, and occlusions. To advance appli-
cations of robotics to warehouse logistics as well as to thoroughly evaluate
our method, we collected an RGB-D video dataset containing instances of the
11 objects shown in Fig. 3.3. The dataset focuses on the challenges in recon-
structing unknown environments and detecting warehouse object poses using
an RGB-D sensor. The dataset consists of over 100,000 RGB-D images ex-
tracted from 100 videos captured by an ASUS Xtion PRO Live sensor, the 6D
poses of the objects and ground truth instance segmentation masks manually
generated using the LabelFusion framework [78], as well as camera trajectories
from a motion capture system developed by Qualisys1. Calibration is required
for both the RGB-D sensor and motion capture system shown in Fig. 3.4. We
calibrated the motion capture system using the Qualisys Track Manager (QTM)
software. For RGB-D camera calibration, the intrinsic camera parameters were
estimated using the classical black-white chessboard and the OpenCV library.
For extrinsic calibration, four markers were placed on the outer corners of the
checkerboard as in [112]. We also attached four spherical markers on the sen-
sor. Similar to [112], we were able to estimate the transformation between the
pose from the motion capture system and the optical frame of the RGB-D cam-
era. Fig. 3.5, Fig. 3.6 and Fig. 3.7 show examples of scenes from the warehouse
dataset.

1https://www.qualisys.com



3.6. EVALUATION 43

(a) Waffle (b) Jacky (c) Skansk (d) Sotstark

(e) Onos (f) Risi Frutti (g) Pauluns (h) Tomatpure

(i) Small Jacky (j) Pallet (k) Half Pallet

Figure 3.3: The set of 11 objects in the warehouse object dataset.

(a) (b) (c)

Figure 3.4: We collected a dataset for the evaluation of reconstruction and pose
estimation systems in a typical warehouse using (a) a hand-held ASUS Xtion
PRO LIVE sensor. Calibration parameters were found by using (b) a chessboard
and (c) reflective markers detected by the motion capture system.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.5: Sequences (a-b) warehouse_01, (c-d) warehouse_02, (e-f) ware-
house_03, and (g-h) warehouse_04 in the warehouse dataset. (left) scenes;
(right) camera trajectories.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.6: Sequences (a-b) warehouse_05, (c-d) warehouse_06, (e-f) ware-
house_07, and (g-h) warehouse_8 in the warehouse dataset. (left) scenes; (right)
camera trajectories.
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(a) recorded scene (b) camera trajectory

(c) recorded scene (d) camera trajectory

Figure 3.7: Sequences warehouse_09 and warehouse_10.

3.6.2 Trajectory Estimation

We compare the trajectory estimation performance of the registration method
using different error functions on the TUM RGB-D dataset and the warehouse
dataset. The test set covers a large variety of scenes and camera motions and
provides sequences for debugging with slow motions as well as longer trajec-
tories with and without loop closures. Each sequence contains the color and
depth images, as well as the ground-truth trajectory from the motion cap-
ture system. To evaluate the error in the estimated trajectory by comparing
it with the ground-truth, we adopt the absolute trajectory error (ATE) root-
mean-square error metric (RMSE) as proposed in [112]. {Pesti ∈ SE3}

n
i=1 and

{P
gt
i ∈ SE3}

n
i=1 are sequences of camera poses from the estimated trajectory

and from the ground truth trajectory, respectively. The error Ei between Pi and
Qi at time step i is then given by:

Ei = (Pgti )−1SPesti (3.35)

where S the rigid-body transformation found by the Horn method [51] to align
the trajectories. The ATE is defined as the root mean square error from error
matrices:
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ATErms =

(
1
n

n∑
i=1

‖ trans(Ei) ‖2

)1/2

(3.36)

where trans(Ei) are the translational components from the relative pose error
Ei.

Table 3.1: Comparison of the absolute trajectory error ATErms [m]
on the TUM RGB-D dataset [112]. freiburg3_large_cabinet (freiburg3_lc);
E
pa
icp_rgb_sem (Ours)

Eicp Ergb Eicp_rgb Eicp_rgb_sem Ours

freiburg1_desk 0.030 0.031 0.020 0.017 0.016
freiburg1_room 0.074 0.075 0.068 0.064 0.060
freiburg1_teddy 0.086 0.087 0.083 0.078 0.071
freiburg1_desk2 0.025 0.024 0.022 0.018 0.017
freiburg2_desk 0.082 0.088 0.071 0.065 0.060
freiburg2_xyz 0.013 0.014 0.011 0.009 0.009
freiburg3_lc 0.112 0.105 0.099 0.043 0.040

MEAN 0.060 0.061 0.053 0.042 0.039

Table 3.2: Comparison of absolute trajectory error ATErms [m] on the ware-
house dataset.

Eicp Ergb Eicp_rgb Eicp_rgb_sem E
pa
icp_rgb_sem

warehouse_01 0.035 0.031 0.026 0.020 0.019
warehouse_02 0.035 0.045 0.031 0.027 0.023
warehouse_03 0.042 0.041 0.036 0.028 0.025
warehouse_04 0.033 0.031 0.022 0.016 0.015
warehouse_05 0.050 0.058 0.045 0.031 0.028
warehouse_06 0.035 0.037 0.028 0.024 0.022
warehouse_07 0.040 0.037 0.034 0.028 0.026
warehouse_08 0.050 0.053 0.041 0.034 0.030
warehouse_09 0.043 0.044 0.036 0.026 0.021
warehouse_10 0.043 0.045 0.037 0.031 0.029

MEAN 0.041 0.042 0.034 0.027 0.024

Tables 3.1 and 3.2 show the results. The best quantities are marked in bold.
The evaluation shows that our proposed objective function Eicp_rgb_sem out-



48 CHAPTER 3. REGISTRATION OF RGB-D IMAGES

performs the others in all the tested sequences. This result is explainable since
the strengths and the weaknesses of the error functions are different and a com-
bination would help them to perform better. We also can see that the combined
energy function Eicp_rgb is more suitable for achieving precise alignment than
the geometric energy Eicp and photometric ICP Ergb.

In addition, we performed an ablation study and computed the trajectory er-
rors for our approach with fixed per-image adaptive weights, per-pixel adaptive
weights, fixed weights, full and simplified semantic error functions. As we can
see in Fig. 3.8 and 3.9, the full version of our approach using per-pixel adaptive
weights consistently results in the lowest observed trajectory errors across all
datasets. While the use of the semantic energy Esem_full in Eq. 3.27 results in
slightly lowerATErms errors, the computational time required (200ms) for reg-
istration is much higher than using the simplified function Esem (30ms). There-
fore, we decided to use the simplification in our system. A visualization of tra-
jectories by running ElasticFusion using the combined geometric and photomet-
ric error function Eicp_rgb and our proposed objective function Eicp_rgb_sem

on two sequences freiburg1_desk2 and freiburg1_teddy in TUM RGB-D
dataset [112] is shown in Fig. 3.10. Similarly, Fig. 3.11 visualizes estimated tra-
jectories of two videos in the warehouse dataset. Note that the TUM RGB-D
dataset does not contain ground-truth data for semantic segmentation. There-
fore, we used data from SceneNN [56] for training the Fast-RGBD-SSWP net-
work and then run inference for TUM images.

Figure 3.8: Boxplot of the ATErms in meters on the TUM RGB-D dataset (over
all sequences considered in Table 3.1). We ran a number of tests on sequences of
the dataset to analyze the different energy functions including (i) Eicp (ICP), (ii)
Ergb (RGB), (iii) Eicp_rgb (ICP_RGB), (iv) Epaicp_rgb_sem with per-pixel adaptive
weights and simplified function Esem (Ours), (v) Epaicp_rgb_sem with per-pixel
adaptive weights and Esem_full (Ours_FS), (vi) Eicp_rgb_sem with per-image
adaptive weights (Ours_AW), (vii) Eicp_rgb_sem with fixed weights (Ours_FW).
In each box the red central line is the median, the box edges the 25th and 75th
percentiles and the whiskers extend to the minimum and maximum estimates.
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Figure 3.9: Boxplot of the ATErms in meters on the warehouse dataset. We
ran a number of tests on sequences of the dataset to analyze the differ-
ent energy functions including (i) Eicp (ICP), (ii) Ergb (RGB), (iii) Eicp_rgb

(ICP_RGB), (iv) Epaicp_rgb_sem with per-pixel adaptive weights and simpli-
fied function Esem (Ours), (v) Epaicp_rgb_sem with per-pixel adaptive weights
and Esem_full (Ours_FS), (vi) Eicp_rgb_sem with per-image adaptive weights
(Ours_AW), (vii) Eicp_rgb_sem with fixed weights (Ours_FW). In each box the
red central line is the median, the box edges the 25th and 75th percentiles and
the whiskers extend to the minimum and maximum estimates.

3.6.3 Reconstruction Results

In the context of robot manipulation, a reconstruction system is required to
build a persistent and accurate 3D map of reconstructed objects. The quality of
the model is vital for picking, and in particular small detailed parts of the ob-
jects of interest are more important than having an even precision throughout
the environment. Hence, we can not evaluate the system by looking at tra-
jectory estimates alone. In this section, we address the surface reconstruction
quality aspect in more detail.

In order to evaluate surface reconstruction quality, we compare the recon-
structed point cloud of each object to its ground truth 3D model. For every
object present in the scene, we need to align the reconstructed object point
cloud O to the ground truth model G. To achieve this, we utilize a human-
assisted alignment tool [78]. More specifically, We first manually identify each
object in the scene and then select the corresponding mesh object model. Then
we provide an initial alignment by clicking three points on the object in the
reconstructed point cloud, and then clicking roughly the same three points in
the object model as shown in Fig. 3.12. Given a rough alignment from the pre-
vious step, a cropped point cloud is taken from the points within 1cm of the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: The result trajectories estimated by ElasticFusion (using Eicp_rgb)
and our proposed approach (using Eicp_rgb_sem) compared to the ground
truth of two sequences in the TUM RGB-D dataset [112]. Ground truth and
camera trajectories projected to 2D: (a-c) freiburg1_desk2 sequence, (d-f)
freiburg1_teddy sequence.

roughly aligned model. Finally, in order to obtain a fine alignment, ICP method
is employed to align this cropped point cloud to the model.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: The result trajectories estimated by ElasticFusion (using Eicp_rgb)
and our proposed approach (using Eicp_rgb_sem) compared to the ground truth
of two videos in the warehouse dataset. Ground truth and camera trajectories
projected to 2D: (a-c) video 1, (d-f) video 2.
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(a)

(b)

Figure 3.12: Human Assisted alignment tool (model-to-reconstruction) [78]. (a)
Initial alignment using 3 clicks; (b) Alignment result.

At this stage, we can start evaluating the quality of reconstructed point
clouds. We project every vertex from O onto G and compute the distance be-
tween the original vertex and its projection. Finally, we calculate and report
the mean distance μd over all model points. The results of this evaluation on
the reconstruction datasets are summarised in Table 3.3. Qualitative results are
shown in Fig. 3.13. Our system using Epaicp_rgb_sem consistently results in the
lowest reconstruction errors over all objects. From this comparison, it is evi-
dent that the proposed approach benefits greatly from the use of the proposed
joint cost function. We observe an increase in accuracy is achieved when more
segmented objects appeared in the reconstructed environment, suggesting that
our system makes efficient use of the available semantic information to improve
surface reconstruction quality. In other words, when the number of objects of
interest increases the semantic probability map becomes more textured, which
leads to a better reconstruction performance.
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(a) Scene (b) Depth

(c) Segmentation (d) 3D map

(e) ElasticFusion (f) Ours

Figure 3.13: Heat maps showing reconstruction error of ElasticFusion (EF) and
our proposed method. Color-coded visualization of point-wise distance error
ranging from 0 mm to 20 mm. Points belonging to the background are color-
coded with blue only for visualization purpose.
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Table 3.3: Comparison of surface reconstruction error (mm) results on the
warehouse objects. We ran a number of ablations to analyze the proposed ob-
jective function including (i) Eicp_rgb_sem with per-image adaptive weights and
Esem_full (Ours∗), (ii) Eicp_rgb_sem with per-image adaptive weights and the
simplified function Esem (Ours−), and (iii) Epaicp_rgb_sem with per-pixel adap-
tive weights and the simplified function Esem (Ours).

Eicp Ergb Eicp_rgb Ours∗ Ours− Ours
001_frasvaf_box 9.5 9.2 8.3 5.5 5.6 5.0

002_small_jacky_box 9.1 9.8 6.5 5.8 6.0 5.3
003_jacky_box 8.1 8.3 6.6 5.1 5.3 4.7
004_skansk_can 9.6 9.9 7.9 6.2 6.3 5.6
005_sotstark_can 9.8 9.0 7.3 5.2 5.2 4.5

006_onos_can 9.6 9.4 8.1 6.0 6.0 5.4
007_risi_frutti_box 6.5 7.1 4.1 4.2 4.2 4.0
008_pauluns_box 8.8 8.8 5.8 4.9 5.0 4.5
009_tomatpure 9.2 9.5 7.4 5.1 5.2 4.7

010_pallet 13.1 12.5 11.7 7.6 7.7 7.4
011_half_pallet 14.2 13.8 12.5 7.6 7.8 7.4

MEAN 9.8 9.7 8.0 5.7 5.8 5.3

3.7 Discussion

In this chapter, we have presented and evaluated algorithms for registration of
RGB-D images. Our main contribution is to show that by combining geometric,
appearance, and semantic cues in an adaptively weighted sum we are able to
obtain reliable camera tracking and state-of-the-art surface reconstruction. We
also introduced a newly collected warehouse object dataset for the evaluation of
RGB-D reconstruction and object pose estimation systems. This dataset is more
challenging than other publicly available datasets due to recorded environments
posing more complex problems, including low illumination inside shelves, low-
texture and symmetric objects, clutter, and occlusions. We have provided an
extensive evaluation on a common benchmark TUM RGB-D dataset and our
warehouse dataset. Experimental results confirmed that the proposed system
achieves improvements over state-of-the-art methods in terms of camera pose
estimation and surface reconstruction. The results confirm that the developed
system is able to produce a high-quality dense map with robust tracking. We
believe that the accurate scene reconstruction will open the way to new applica-
tions regarding autonomous robotic manipulation. Indeed, in the next chapter,
we exploit this high quality reconstruction system to boost the performance of
6D object pose estimation.



Chapter 4
Object Pose Estimation with
Semantic Mapping

4.1 Introduction

The problem of recognizing objects and estimating their 6D poses has drawn
interest from the research community over the last two decades because of
its practical value. Especially in robotic manipulation, localizing objects in 3D
from images is an important task towards highly complex autonomous systems.
The ability to estimate the 3D location and 3D orientation of objects, provides
useful information for reasoning about contact, physics, and occlusion among
objects. Many approaches were introduced in the past. However, accurate 6D
object pose estimation still remains a largely unsolved problem, especially when
objects are occluded.

Conventional methods are mainly based on the matching of hand-crafted
local or global features to extract the correspondence between images (2D im-
ages or 3D point clouds) and object mesh models. Global feature-based ap-
proaches utilize the whole geometric appearance of the object surface to define
a single feature vector that effectively and concisely describes the entire 3D ob-
ject [105, 131, 2]. On the contrary, the local feature-based methods exploit the
geometric properties around specific keypoints [40, 26, 1]. While global meth-
ods are able to handle objects with self-similar surface parts, such as planar
patches, spheres, and cylinders, local approaches are more suitable for detect-
ing and estimating the pose of complex objects in cluttered scenes. Nonethe-
less, due to the time-consuming multi-stage processing for feature extraction,
generating coarse pose hypotheses, and refining the coarse poses, it is difficult
for hand-crafted feature-based methods to satisfy the requirements of accurate
pose estimation and fast inference simultaneously. More recently, with the ex-
plosive growth of advances in machine learning, especially deep learning, Deep
Neural Network (DNN) based approaches have been introduced into this task
[133, 115, 121]. Compared to conventional hand-crafted feature extractors,

55
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Figure 4.1: Robots with an attached camera. (top row) an eye-in-hand config-
uration, an ASUS RGB-D camera is mounted on top of a robot hand. In this
way, the robot can position the camera in many different locations. (bottom
row) a mobile robot equipped with an ASUS RGB-D camera allows a more
flexible and effective solution.

DNNs capture different scale information in different layers, and extract ro-
bust and discriminative features. These techniques demonstrate a significant
improvement of inference time and the accuracy of 6D object pose estimation.

Although DNN-based methods have shown promising results, due to the
limitation of single-view-based pose estimation they still suffer significantly
from the ambiguity of object appearance and occlusions in cluttered scenes,
which are very common in practice. These methods consider objects indepen-
dently and estimate their poses using a single input (RGB or RGB-D) image.
However, scenes are often composed of different object instances and multiple
images of the scene can easily be captured by a single moving camera, or in a
multiple-camera setup. For instance, in a robot manipulation setting, a camera
can be attached on the robot end effector, in which the camera is moved contin-
uously and posed with different gestures by the robot within its working area
as in Fig. 4.1. From this observation, some works [110, 66, 72] have addressed
the problem of the ambiguity of object appearance and occlusion by combining
information from multiple views. The common approach used in multi-view
methods is employing a single-view algorithm on each of the images and com-
bining the resulting output. However, the challenge here is that estimated object
poses from individual images cannot easily be expressed in the same global co-
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ordinate system because the camera poses are unknown. Another problem is
that since most of the object pose estimation approaches rely on segmentation
results for pose prediction, their accuracy highly depends on the performance
of the segmentation framework used. As in DNN-based approaches, if the in-
put to a segmentation network contains an occluder, the occlusion significantly
influences the network output. Similarly, estimating object poses directly from
raw RGB-D data often gives poor results because of noise from the sensor.
Hence, recovering 6D object pose in cluttered scenes is still an open problem.

In this chapter, we present a method for multi-view 6D object pose esti-
mation using accurate semantic reconstruction with an RGB-D camera. We
overcome the challenge of finding unknown camera poses by utilizing the reg-
istration algorithm based on geometric, photometric and semantic cues pre-
sented in the previous chapter. To address the issue regarding measurement
noise, our approach explores performing 6D object pose estimation from mul-
tiple viewpoints supported by a high-quality semantic reconstruction system.
Specifically, we integrate deep-learning-based semantic segmentation, instance
segmentation, and 6D object pose estimation into a state-of-the-art RGB-D
mapping system [129]. To mitigate the adverse effects of measurement noise,
instead of directly using raw depth and color frames captured by the camera for
object pose estimation, we employ the surfel-splatted predicted depth map and
the color image of our accurate reconstruction scene model. Finally yet impor-
tantly, rather than directly operating on masks from the segmentation network,
we use predicted 2D masks that are obtained by reprojecting the current re-
constructed scene model. Thereby, our object pose estimation method benefits
from the use of more accurate segmentation results.

In the next section, we overview some of the recent developments in seman-
tic mapping. Section 4.3 describes the proposed multi-view object pose estima-
tion with semantic mapping, which is a central concept in this chapter. The
results are then presented and analyzed in Section 4.4, followed by a summary
of the major contributions.

4.2 Semantic Reconstruction

Fusing semantic along with geometric information within a 3D reconstructed
map is a promising approach to enable robots to better understand a 3D scene.
The inclusion of rich semantic information and 6D poses of object instances
within a dense map is useful for robots to effectively operate and interact with
objects. In the case of robotic manipulation, providing accurate object poses
together with semantic information is crucial for robots that have to manip-
ulate the objects around them in diverse ways. To accurately grasp selected
objects and avoid collisions with neighboring obstacles in the workspace, the
reconstruction process needs to produce a high-quality map of the working en-
vironment. The addition of semantic information enables a much greater range
of functionality than geometry alone.
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Figure 4.2: Semantic reconstruction pipeline in [80]. A sequence of color images
and depth maps are used as input images to build a 3D scene model, and to
generate 2D semantic labels as well as a set of probability prediction maps.
These maps are fused into the final dense semantic model via Bayesian updates.

Recent advances in deep learning-based semantic segmentation have en-
abled the integration of rich semantic information within real-time Simulta-
neous Localization and Mapping (SLAM) systems. A number of semantic map-
ping systems have been developed [80, 47, 132]. Hermans et al. [47] utilize
Random Decision Forests to achieve semantic pixel-wise image labeling and
fuse them in a classic Bayesian framework. Previous work by McCormac et al.
[80] aimed at combining Convolutional Neural Networks and ElasticFusion
[129] to obtain semantic-aware 3D reconstruction as shown in Fig. 4.2. The
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correspondences between frames are estimated by the SLAM system. Mean-
while, their CNN architecture adopts a Deconvolutional Semantic Segmenta-
tion network [89] to generate a pixel-wise semantic map for incoming images.
Unlike the original architecture [89], this system incorporates depth informa-
tion to obtain a higher accuracy than the pretrained RGB network. The authors
reported that fusing multiple predictions led to a significant improvement in se-
mantic labeling and it is the first real-time capable approach suitable for inter-
active indoor scene scanning and labeling. Likewise, SegICP-DSR [132] fuses
RGB-D observations into a semantically-labeled point cloud for object pose
estimation using adversarial networks and ElasticFusion. There is, however,
one significant difference. SegICP-DSR employs the semantic label difference
instead of a photometric error when formulating the alignment objective func-
tion. Then, a semantically-labeled point cloud can be directly obtained from
the reconstruction process without an extra update step. The addition of se-
mantic information enables a much greater range of functionality than geome-
try alone. However, since the above systems only consider class labels, they are
limited to scenarios with single object instances per scene and may degenerate
performance in case multiple objects of the same type are present.

A number of other works have been proposed to overcome the limita-
tion of semantic reconstruction [79, 86, 103]. These approaches generate the
reconstructed model of an environment enriched with semantic information
in the form of object instances, called object-oriented semantic reconstruc-
tion or instance-aware semantic reconstruction. Fig. 4.3 illustrates differences
between conventional geometric reconstruction, semantic reconstruction and
object-oriented reconstruction. The work of McCormac et al. Fusion++ [79]
aimed to produce multiple semantically labeled maps of object instances with-
out a dense representation of the entire static scene. Fusion++ uses Mask R-
CNN instance segmentation to initialize dense per-object TSDF reconstructions
with object size-dependent resolutions. For camera tracking, Fusion++ takes
an approach similar to KinectFusion using projective data association and a
point-to-plane error. Note that apart from object level maps, Fusion++ also
maintains a coarse background TSDF to assist frame-to-model tracking. While
the authors evaluated the trajectory error of the developed system against the
baseline approach of simple coarse TSDF odometry, the reports did not pro-
vide a comparison with other photometry or semantics-aware state-of-the-art
approaches.

Similarly, MaskFusion [103] is a real-time, object-aware, semantic and dy-
namic RGB-D SLAM system. It combines geometric segmentation running on
every frame and instance segmentation using Mask R-CNN computed for select
keyframes. The geometric segmentation algorithm acquires object boundaries
based on an analysis of depth discontinuities and surface normals, while Mask
R-CNN is used to provide object masks with semantic labels. Camera poses
are estimated by minimizing a joint geometric and photometric error function
as presented in [129]. The reported results demonstrate that while MaskFu-
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(a) RGB image (b) Depth image

(c) 3D reconstruction (d) Semantic reconstruction

(e) Object-oriented semantic reconstruction

Figure 4.3: An example indicates the difference between semantic reconstruc-
tion and object-oriented semantic reconstruction [86]. The semantic map in (c)
can distinguish different object classes but not object instances. The monitors
are represented as the same color and we can not discriminate between them.
On the contrary, in (d) object-oriented semantic reconstruction or instance-
aware semantic map is able to differentiate individual objects.
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sion outperforms a set of baseline state-of-the-art algorithms in highly dynamic
scenes, ElasticFusion performs best on static and moderately dynamic scenes.

While previous approaches simply fuse semantic information into global
scene models as an additional attribute, our work discovers the use of semantic
cues to boost the performance of reconstruction and object pose estimation.
In Chapter 3, we have shown that the use of semantic cues can improve the
accuracy of camera pose estimation and scene reconstruction. In the next sec-
tion, we explore the performance of 6D object pose estimation from multiple
viewpoints supported by a high-quality semantic reconstruction system that is
built upon the system in Chapter 3.

4.3 Object Pose Estimation with An Accurate
Semantic Map

Our proposed pipeline is visualized in Fig. 4.4. The input RGB-D data is pro-
cessed through a semantic segmentation module (as presented in chapter 3),
followed by camera pose tracking, and finally a data fusion stage. In a separate
thread, RGB keyframes are processed by an instance segmentation framework
(Mask R-CNN [44]) and the detections are filtered and matched to the ex-
isting instances in the 3D map. When no match occurs, new object instances
are created. Note that our pipeline does not specifically limit the choice of in-
stance segmentation frameworks. Mask-RCNN can be replaced by a different
instance segmentation approach of comparable quality. The final component is
a 6D object pose estimator that exploits multiple views of the same instance
and our high-quality reconstruction to accurately predict the pose of objects.

Figure 4.4: Overview of the proposed system.
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4.3.1 Review of Mask R-CNN

Different from object detection and semantic segmentation, the goal of instance
segmentation is to classify each pixel of an image into a fixed set of categories
and differentiate object instances (see Fig. 4.5). Mask R-CNN [44] is a CNN-
based framework for instance segmentation. It takes an image as input and out-
puts a class label, a bounding box offset, and a mask for each candidate object.
Fig 4.6 shows the architecture of Mask R-CNN. Its procedure consists of two
stages. In the first stage, candidate object bounding boxes are proposed by a
Region Proposal Network (RPN). In the second stage, classification, bounding-
box regression, and mask prediction are performed in parallel on each small
feature map. To speed up inference and improve accuracy, the mask branch is
applied to the highest scoring 100 detection boxes after running the box pre-
diction. The mask branch predicts a binary mask from each RoI using an FCN
architecture [74]. The binary mask is a single m×m output regardless of class,
which is generated by binarizing the floating-number mask or soft mask at a
threshold of 0.5. The output of Mask-RCNN including class probabilities and
masks is then used in the object pose estimation stage.

(a) Object detection (b) Semantic segmentation (c) Instance segmentation

Figure 4.5: An illustration of differences between object detection, semantic
segmentation, and instance segmentation.

Figure 4.6: Mask R-CNN architecture for instance segmentation. CNN, RoI,
FCN, and FC stand for convolutional neural network, region of interests, fully
convolutional networks, fully connected respectively.
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4.3.2 Incremental Semantic Map Fusion

To perform camera tracking, our mapping system maintains a fused surfel-
based model of the environment (similar to the model used by ElasticFusion
[129]). Here we borrow and extend the notation proposed in the original Elas-
ticFusion paper. The model is represented by a cloud of surfels Ms, where each
surfel consists of a position p ∈ R

3 , normal n ∈ R
3, color c ∈ N

3, initialization
timestamp t0 and last updated timestamp t. In addition we maps each element
of the 3D map (surfel) to a pair (ls, os) ∈ L×N, where ls represents the seman-
tic class of surfel s and os represents its object instance id. L is a predetermined
set of L semantic classes encoded by L := {0, ...,L− 1}. We estimate an incre-
mental transformation ξ̂ between a newly captured RGB-D image at time t
and the previous sensor pose at time t − 1 by minimizing a joint optimization
objective as presented in Chapter 3.

Data association: Given an RGB-D frame at time step t, each maskM from
Mask R-CNN must be associated with an instance in the 3D map. Otherwise,
it will be assigned as a new instance. To find the corresponding instance, we
use the tracked camera pose and existing instances in the map built at time step
t − 1 to predict binary masks via splatted rendering. The overlap percentage
between the maskM and a predicted mask M̂ for object instance o is computed

as U(M, M̂) =
M ∩ M̂
M̂

. Then the maskM is mapped to object instance o which

has the predicted mask M̂ with largest overlap, where U(M, M̂) > 0.3. Fig 4.7
shows a series of 4 frames illustrating the incremental semantic map fusion of
the proposed system.

To efficiently store class probabilities, we propose to assign an object in-
stance label o to each surfel and then this label is associated with a discrete
probability distribution over potential class labels, P(Lo = li) over the set of
class labels, li ∈ L. In consequence, we need only one probability vector for all
surfels belonging to the same object entity. This makes a big difference when
the number of surfels is much larger than the number of classes. To update the
class probability distribution, recursive Bayesian update may be used as in [47].
However, this scheme often results in an overly confident class probability dis-
tribution that contains scores unsuitable for ranking in object detection [79].
In order to make the distribution more even, we update the class probability by
simple averaging:

P(li|I1,..,t) =
1
t

t∑
j=1

(pj|It) (4.1)

Besides fusing main class probabilites, we enrich segmentation information
on each surfel by adding the probability to account for background/object pre-
dictions from the binary mask branch of Mask R-CNN. To that end, each surfel
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(a) Frame 66 - color image (b) 3D map at frame 66

(c) Frame 316 - color image (d) 3D map at frame 316

(e) Frame 767 - color image (f) 3D map at frame 767

(g) Frame 1000 - color image (h) 3D map at frame 1000

Figure 4.7: A series of 4 frames illustrating the incremental semantic map fusion
of the proposed system.
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in our 3D map has a non-background (object) probability attribute po. As pre-
sented in [44] the binary mask branch first generates anm×m floating-number
mask which is then resized to the RoI size, and binarized at a threshold of 0.5.
Therefore, we are able to extract a per-pixel non-background probability map
with the same image size 480 × 640. Given the RGB-D frame at time step t, a
non-background probability po(It) is assigned to each pixel. Camera tracking
and the 3D back projection introduced in Chapter 3 enables us to update all
the surfels with the corresponding probability as following:

po =
1
t

t∑
j=1

pj(It) (4.2)

Segmentation Improvement: Despite the power and flexibility of Mask R-
CNN, it frequently misclassifies object boundary regions as background. In
other words, the detailed structures of an object are often lost or smoothed.
Thus, there is still much room for improvement in segmentation. We observe
that many of the pixels in the misclassified regions have non-background prob-
ability just slightly smaller than 0.5, while the soft probabilities mask for real
background pixel is often far below the threshold. Based on this observation,
we expect to achieve a more accurate object-aware semantic scene reconstruc-
tion by considering the non-background probability of surfels within a frame
sequence. With this goal, each possible surfel s (0.4 < po < 0.5) is associated
with a confidence ϑ(s). If a surfel is identified for the first time, its associated
confidence is initialized to zero. Then, when a new frame arrives, we incre-
ment the confidence ϑ(s) ← ϑ(s) + 1 only if the corresponding pixel of that
surfel satisfies 2 criteria: (i) its non-background probability is greater than 0.4;
(ii) there is at least one object pixel inside its 8-neighborhood. After n frames,
if the confidence ϑ(s) exceeds the threshold σobject, we assign surfel s to the
closest instance. Otherwise, ϑ(s) is reset to zero.

4.3.3 Multi-view Object Pose Estimation

Given an RGB-D frame sequence, the task of 6D object pose estimation is to
estimate the rigid transformation from the object coordinate system O to a
global coordinate system G. We assume that the 3D model of the object is
available and the object coordinate system is defined in the 3D space of the
model. The rigid transformation consists of a 3D rotation R(ω,ϕ,ψ) and a 3D
translation T(X, Y,Z). The translation T is the coordinate of the origin of O in
the global coordinate frame G, and R specifies the rotation angles around the
X-axis, Y-axis, and Z-axis of the object coordinate system O.

Contrary to the problem setting considered by classical single-view-based
approaches, robots usually observe the same instances of objects in their en-
vironment several times and from disparate viewpoints. Thus, we explore per-
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forming object pose estimation from multiple viewpoints, under the conjecture
that combining multiple predictions can improve the robustness of an object
pose estimation system. For every single frame, we utilize a modified Dense-
Fusion [121] object pose estimation module to predict the position and ori-
entation of objects in 3D space. A key distinction between our approach and
DenseFusion is that instead of directly operating on masks from segmentation,
we use predicted 2D masks, depth and RGB images that are obtained by re-
projecting of the current surfel map Ms. Our semantic mapping system leads
to an improvement in the 2D instance labeling over the baseline single frame
predictions generated by Mask R-CNN. As a result, our object pose estima-
tion method benefits from the use of more accurate segmentation results as
well as a high-quality scene model. The predicted poses are then transferred to
the global coordinate system and serve as measurement inputs for an extended
Kalman filter (EKF) to estimate an optimal pose of each object.

Object pose update: For each frame at time t, the estimates obtained by
DenseFusion and camera motions from the registration stage are used to com-
pute the pose of each object instance with respect to the global coordinate
system G. The pose is then used as a measurement update in a Kalman filter to
estimate an optimal 6D pose of the object. Since we assume that the measured
scene is static over the reconstruction period, the object’s motion model is con-
stant. The state vector of the EKF combines the estimates of translation and
rotation:

x = [X Y Z φ ϕ ψ]� (4.3)

Let xt be the state at time t, x̂−
t denote the predicted state estimate and P−t

denote predicted state covariance at time t given the knowledge of the process
and measurement at the end of step t − 1, and let x̂t be the updated state
estimate at time t given the pose estimated by DenseFusion zt. The EKF consists
of two stages: prediction and measurement update (correction) as follows.

Prediction:

x̂−
t = x̂t−1 (4.4)

P−t = Pt−1 (4.5)

Measurement update:

x̂t = x̂−
t ⊕ Kt(zt  x̂−

t ) (4.6)

Kt = P
−
t (P

m
t + P−t )

−1 (4.7)

Pt = (I6×6 − Kt)P
−
t (4.8)

Here,  and ⊕ are the pose composition operators. Kt is the Kalman gain
update. The 6 × 6 matrix Pmt is measurement noise covariance, computed as:

Pmt = μI6×6 (4.9)
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where μ is the mean distance from measured object points to its 3D model
transformed according to the estimated pose. The measured object points are
computed from depth and mask back-projected from the current 3D map.

4.4 Evaluation

We have evaluated our system by performing experiments on the YCB-Video
dataset [133] and the warehouse dataset in chapter 3. These experiments are
aimed at 6D object pose estimation accuracy. In addition, we also evaluate the
accuracy of segmentation masks produced by our pipeline against the accuracy
achieved by Mask R-CNN and state-of-the-art semantic reconstruction frame-
works.

Our pipeline is implemented in ROS Kinetic using services to call different
modules. The sensor pose tracking module is implemented in C++ with CUDA.
The Mask R-CNN and DenseFusion codes are based on the publicly available
implementations by Matterport1 and Wang2. The Fast-RGBD-SSWP network
for semantic segmentation is implemented using PyTorch 1.0 and the rest of the
framework is in Python. In all of the presented experimental setups, results are
generated from RGB-D videos with a resolution of 640x480 pixels.

4.4.1 Training Details

The CNNs for instance segmentation was initialized with weights pre-trained
on the COCO dataset [73]. We fine tuned layers of Mask R-CNN on the ware-
house dataset with 11 object classes in warehouse environments (pallet and
boxes) and on a portion of the YCB video data set not used in the evaluation.
We trained on 1 GPU (mini-batch size is 1 image) using stochastic gradient de-
scent with momentum of 0.9 for 40 epochs with a learning rate of 0.001. In
both warehouse dataset and YCB dataset, the semantic label sets for semantic
segmentation and instance segmentation are identical, Lo = L. As regards to
object pose estimation, the DenseFusion network was trained for 200 epochs
with a batch size of 8. Adam [63] was used as the optimizer with learning rate
set to 0.0001.

4.4.2 Segmentation

In the first experiment, we compare our method to the state-of-the-art meth-
ods in instance segmentation. We report the standard COCO metrics including
AP (averaged over IoU thresholds from 50% to 95%, at a step of 5%), AP50

(threshold 0.5), and AP75 (threshold 0.75) [73]. A prediction is considered to
be True Positive if IoU > threshold. The IoU metric measures the number of

1https://github.com/matterport/Mask_RCNN
2https://github.com/j96w/DenseFusion
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(a) Tested image (b) Ground truth mask

(c) Predicted mask

(d) Intersection (e) Union

Figure 4.8: An illustration of intersection over union (IoU) calculation for eval-
uating instance segmentation.

pixels common between the ground truth and predicted masks divided by the
total number of pixels present across both masks as illustrated in Fig. 4.8.

IoU =
Intersection

Union
=
ground truth mask ∩ predicted mask
ground truth mask ∪ predicted mask (4.10)
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To compare with Mask R-CNN, we generated 2D projections of 3D instance-
aware semantic maps using the estimated camera pose trajectory. For a fair
comparison, we used the current map at time step k to generate a 2D pro-
jection instead of a completed map. A numerical comparison over each label
class are summarized in Table 4.1 and Table 4.2. Table 4.2 shows results on
YCB-Video dataset in term of AP (averaged over IoU thresholds from 50% to
95%, at a step of 5%). Our approach improves the accuracy of Mask R-CNN
by 18.5% and surpasses state-of-the-art semantic reconstruction frameworks
MaskFusion [103] and Voxblox++ [38] in all the test objects by a large mar-
gin. Table 4.1 indicates results for 11 objects in warehouse dataset. We saw an
improvement of 24.3% over the baseline Mask R-CNN with our system, from
62.8% to 87.1%. Similar to YCB objects, our proposed method also outper-
forms MaskFusion and Voxblox++ by a significant margin (14% and 11.3%
respectively). Fig. 4.9 and Fig. 4.10 show boxplots of segmentation accuracy
with different thresholds. As shown in the figures, it is firmly convinced that
the proposed system outperforms other compared methods in both AP50, AP75,
and AP. Qualitative results from this evaluation are shown in Fig. 4.11

Figure 4.9: Boxplot of segmentation accuracy on YCB-Video dataset. The box
edges are the 25th and 75th percentiles and the whiskers extend to the mini-
mum and maximum values.
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Figure 4.10: Boxplot of segmentation accuracy on the warehouse dataset. The
box edges are the 25th and 75th percentiles and the whiskers extend to the
minimum and maximum values.

Table 4.1: Comparison of instance segmentation accuracy (AP) results on the
warehouse objects. Masks are generated by Mask R-CNN, and from 3D maps
in MaskFusion [103], Voxblox++ [38], and our system.

Mask R-CNN MaskFusion [38] Ours
001_frasvaf_box 58.1 67.0 73.4 86.3
002_small_jacky box 74.1 75.0 76.2 85.8
003_jacky_box 62.1 70.0 77.1 88.5
004_skansk_can 58.9 74.0 73.3 84.5
005_sotstark_can 58.2 75.4 75.5 86.8
006_onos_can 60.7 76.0 77.3 91.1
007_risi_frutti_box 65.2 70.9 74.7 83.7
008_pauluns_box 66.5 76.6 75.6 90.7
009_tomatpure 65.8 70.0 76.6 87.5
010_pallet 60.1 72.3 75.8 85.8
011_half_pallet 60.7 80.0 78.1 86.9
MEAN 62.8 73.4 75.8 87.1
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.11: Examples of semantic segmentation result on the YCB-Video
dataset and warehouse dataset.
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Table 4.2: Comparison of instance segmentation accuracy (AP) results on the
YCB objects. Masks are generated by Mask R-CNN, and from 3D maps in
MaskFusion [103], Voxblox++ [38], and our system.

Mask R-CNN MaskFusion [38] Ours
002_master_chef_can 67.3 78.5 79.3 85.9
003_cracker_box 67.5 80.0 79.2 86.7
004_sugar_box 69.8 76.1 77.2 87.8
005_tomato_soup_can 66.2 75.2 75.3 85.2
006_mustard_bottle 67.6 76.0 79.9 85.6
007_tuna_fish_can 67.6 80.1 78.3 87.8
008_pudding_box 69.4 78.5 75.6 84.7
009_gelatin_box 61.4 74.4 79.1 86.1
010_potted_meat_can 66.1 76.6 72.4 84.5
011_banana 67.5 71.3 70.5 83.2
019_pitcher_base 60.5 75.2 77.9 85.5
021_bleach_cleanser 60.8 70.3 72.5 79.8
024_bowl 68.2 70.0 70.1 78.5
025_mug 66.0 78.0 79.5 85.7
035_power_drill 63.1 78.9 78.7 84.4
036_wood_block 63.6 69.3 70.5 80.9
037_scissors 62.6 70.0 70.2 83.8
040_large_marker 61.3 72.0 73.1 81.7
051_large_clamp 61.6 80.0 77.9 85.4
052_extra_large_clamp 71.3 73.0 68.2 78.5
061_foam_brick 65.5 74.2 76.8 83.6
MEAN 65.5 75.1 75.3 84.0

4.4.3 Pose Estimation Results

The error of an estimated pose P̂ with respect to the ground-truth pose P̄ of
an object model M is measured by the most widely used pose-error function
Average Distance of Model Points (ADD) [48]. The error is calculated as the
average distance from vertices of the object model in the ground-truth pose to
vertices of the model in the estimated pose. Given the ground truth rotation R̄
and translation T̄ and the estimated rotation R̂ and translation T̂ , the average
distance is defined as:

ADD =
1
m

∑
x∈M

‖ (R̄x+ T̄) − (R̂x+ T̂) ‖ (4.11)
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m is the number of points. For objects with symmetric views, we adapt the met-
ric by computing the average distance using the closest point distance following
prior works [10].

ADD− S =
1
m

∑
x1∈M

‖ min
x2∈M

(R̄x1 + T̄) − (R̂x2 + T̂) ‖ (4.12)

Then we can compute the accuracy of predictions in average precision (AP)
where a 6D pose estimate is considered to be true positive if the average dis-
tance is smaller than a fixed threshold [10]. However, this evaluation cannot
reveal how an approach performs on these incorrect poses with respect to
that threshold. Therefore, Xiang et al. [133] vary the distance threshold and
plot an accuracy-threshold curve to compute the area under the curve for pose
evaluation. We report the area under the accuracy-threshold curve (AUC) for
6D pose estimation on the YCB-Video dataset and warehouse dataset follow-
ing PoseCNN [133] and DenseFusion [121]. The maximum threshold is set to
10cm. We also set the maximum threshold of AUC to be 2cm which is a lot
more reasonable for most of the robot grippers.

(a) YCB objects (b) Warehouse objects

Figure 4.12: Accuracy-threshold curves for all the 21 objects in the YCB-Video
dataset and 11 objects in the warehouse dataset.

We compare our method with two multi-view-based approaches from the
current state of the art [138, 66]. Fig 4.12 shows accuracy-threshold curves
of the evaluated methods. Table 4.3 and 4.4 present a detailed evaluation for
all the 21 objects in the YCB-Video dataset and 11 objects in the warehouse
dataset. Our results show significant improvement in all objects by effectively
employing more accurate projected mask, depth and color images from the
high-quality semantic map. In addition, we validate the effectiveness of com-
bining multiple views and the use of semantic map in object pose estimation by
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Table 4.3: Area under the accuracy-threshold curve for 6D object pose es-
timation on the YCB-Video dataset. We compare our proposed system with
multi-view-based methods [138, 66] that achieve state-of-the-art results on this
dataset. We report the area under the accuracy-threshold curve (AUC). The
maximum threshold is set to 10cm. We also set the maximum threshold of
AUC to be 2cm which is a lot more reasonable for most of the robot grippers.

[138] [66] Ours
10cm 2cm 10cm 2cm 10cm 2cm

002_master_chef_can 96.4 75.2 97.2 76.7 97.6 80.1
003_cracker_box 96.5 74.3 97.0 77.8 97.7 81.3
004_sugar_box 97.5 77.8 97.7 76.6 98.4 82.0
005_tomato_soup_can 94.6 71.0 95.9 75.4 97.3 80.2
006_mustard_bottle 97.2 76.8 98.1 76.9 98.5 82.5
007_tuna_fish_can 97.6 76.1 98.2 79.3 98.7 81.0
008_pudding_box 98.5 78.5 98.1 77.4 98.4 79.9
009_gelatin_box 98.1 81.1 98.5 80.0 99.3 85.7
010_potted_meat_can 94.3 72.0 94.5 74.5 95.6 80.0
011_banana 97.0 75.1 97.4 76.3 98.2 81.1
019_pitcher_base 98.5 77.0 99.2 78.6 99.4 84.4
021_bleach_cleanser 97.1 75.5 97.3 77.3 98.0 81.2
024_bowl 93.2 70.1 93.1 69.8 95.6 81.4
025_mug 98.2 81.4 98.6 80.0 99.2 86.5
035_power_drill 98.0 76.4 98.0 77.3 98.1 79.6
036_wood_block 94.7 73.7 95.3 75.2 96.3 80.0
037_scissors 97.2 78.0 97.3 76.5 98.1 80.5
040_large_marker 98.0 76.1 98.0 77.4 98.8 82.5
051_large_clamp 81.9 65.0 82.3 60.5 85.2 75.3
052_extra_large_clamp 77.9 65.9 78.2 64.4 80.1 73.1
061_foam_brick 94.5 71.1 94.9 70.5 96.4 85.4
MEAN 95.0 74.7 95.5 75.2 96.4 81.1

comparing it with the baseline DenseFusion as shown in Table 4.5. Our pro-
posed object pose estimation system with semantic mapping achieves superior
performance compared to the baseline single frame predictions. We observe
that on both datasets combining information from multiple views improved
the accuracy of the pose estimation over the original DensFusion. We see an
improvement of 3.4% over the baseline single frame method with the proposed
method, from 93.0% to 96.4% for the YCB-Video dataset. We also observe a
marked improvement, from 60.5% for a single frame to 77.6% with our ap-
proach on the warehouse object dataset. Furthermore, we ran an ablations to
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Table 4.4: Area under the accuracy-threshold curve (AUC) for the warehouse
dataset. We compare our proposed method against the related works [138, 66].
We report the area under the accuracy-threshold curve (AUC). The maximum
threshold is set to 10cm. We also set the maximum threshold of AUC to be 2cm
which is a lot more reasonable for most of the robot grippers.

[138] [66] Ours
10cm 2cm 10cm 2cm 10cm 2cm

001_frasvaf_box 70.0 57.5 69.9 57.1 70.4 60.3
002_small_jacky box 71.1 57.9 71.8 58.5 75.6 64.8
003_jacky_box 70.3 56.0 74.2 60.7 76.7 66.5
004_skansk_can 73.3 59.6 70.2 57.0 74.8 63.3
005_sotstark_can 69.6 56.3 70.3 56.7 78.2 67.0
006_onos_can 70.1 56.0 71.4 57.8 80.0 69.3
007_risi_frutti_box 69.9 55.1 68.5 54.5 75.9 65.2
008_pauluns_box 68.6 55.1 71.6 56.3 82.2 67.7
009_tomatpure 73.5 58.4 74.1 60.5 83.5 65.5
010_pallet 72.3 56.6 68.4 55.0 77.1 62.5
011_half_pallet 68.9 54.4 69.5 56.7 78.5 61.9
MEAN 70.7 56.6 70.9 57.3 77.6 65.0

Table 4.5: Ablation studies. We ran a number of ablations to analyze the con-
tribution of different components to the performance of 6D object pose esti-
mation including: DenseFusion using projected masks (DF-PM); DenseFusion
using projected masks and projected depth (DF-PM-PD); DenseFusion using
projected masks, depth, and RGB image (DF-PM-PD-PC); Our multi-view-
based method without using projected masks, depth, and RGB images (Ours−);
Our full system (Ours). We report the area under the accuracy-threshold curve
(AUC) with the maximum threshold is set to 10cm.

YCB-Video Dataset Warehouse Dataset
DF [121] (single-view) 93.0 60.5
DF-PM (single-view) 93.7 64.6
DF-PM-PD (single-view) 94.3 67.6
DF-PM-PD-PC (single-view) 94.5 68.8
Ours− (multi-view) 94.8 69.7
Ours (multi-view) 96.4 77.6

analyze the developed system including (i) DenseFusion using projected masks
(DF-PM) (ii) DenseFusion using projected masks and projected depth (DF-PM-
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Table 4.6: Average run-time analysis of system components (ms per frame).

Component Run-time (ms)
Segmentation 50
Registration 30
Data Fusion 20

Object Pose Estimation 40
Total 140

PD) (iii) DenseFusion using projected masks, projected depth, and projected
RGB image (DF-PM-PD-PC). DF-PM performed better than DenseFusion on
both datasets (+0.7% and +4.1%). For DF-PM-PD, performance improved ad-
ditionally with +0.6% on the YCB-Video dataset and +3.0% on the warehouse
object dataset. The performance benefit of DF-PM-PD-PC was less clear as it
resulted in a smaller improvement of +0.2% and +1.2% over DF-PM-PD. The
remaining improvement is due to the fusion of estimates in the EKF. Fig 4.13
and Fig. 4.14 visualize dense 3D semantic mapping and object pose estimation
from the proposed system on 2 different videos in our warehouse dataset.

Lastly, the execution times of the individual components, averaged over
all evaluated sequences, are shown in Table 4.6. Note that the segmentation
computation time is a sum of semantic segmentation (15ms per frame) and
instance segmentation (350ms per keyframe, 1 keyframe per 10 frames).

(a) Object poses-frame 50 (b) Object poses-frame 300

Figure 4.13: Object pose estimation from the proposed system on a video in the
warehouse dataset.
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(a) Map-frame 100 (b) Object poses-frame 100

(c) Map-frame 500 (d) Object poses-frame 500

Figure 4.14: Dense 3D semantic mapping and object pose estimation from the
proposed system on a video in the warehouse dataset.

4.4.4 Robotic Manipulation Experiments

Our perception system has been integrated into a dual-arm robotic platform to
perform picking operations for logistics in a completely autonomous manner
[91]. An Asus Xtion PRO camera is mounted on top of a hand of the dual-
arm manipulator as shown in Fig. 4.15. An extensive set of experiments on
different objects and conditions is perfromed to assess the performance of the
integrated system. A representative set of objects in the warehouse dataset was
chosen for this evaluation. The particular object instances are motivated by
the use case of the ILIAD EU project3. A task executed correctly consists of a
correct detection of the objects to pick and a successful picking action. From
this definition, the success rate of the platform can be expressed by the product
of the detection rate and the picking rate retrieved from the experiments. The
results are reported in Table 4.7.

3https://iliad-project.eu/
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Figure 4.15: The developed object-oriented semantic reconstruction has been
employed to perform robotic manipulation in Research Center E.Piaggio, Uni-
versity of Pisa [91].

Table 4.7: Performance of the integrated system for picking operations.

Objects Detection rate Picking rate Success rate
Skansk 100% 100% 100%
Sotstark 90% 80% 72%

Jacky 100% 100% 100%
Tomatpure 100% 90% 90%

Pauluns 90% 100% 90%

4.5 Discussion

In this chapter, we have presented and validated a multi-view object pose es-
timation system with semantic mapping. The developed system yields high-
quality semantic reconstruction while simultaneously recovering 6D poses of
object instances. The main contribution of this chapter is to show that by tak-
ing advantage of deep learning-based techniques and our reconstruction system
we are able to improve the performance of object pose estimation as compared
to single view-based methods. We have provided an extensive evaluation on
common benchmarks and our own dataset. The results confirm that the pro-
posed method is able to produce a high quality dense map with robust tracking.
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We also demonstrated that the proposed object pose estimator benefits from the
use of mask, depth and RGB images generated by the mapping system and from
combining multiple predictions based on the Kalman filter. We believe that ac-
curate scene reconstruction and object pose estimation from multi-views will
open the way to new applications regarding autonomous robotic manipula-
tion.

In this chapter, we present systems capable of reconstructing highly detailed
object-level models and estimating the 6D pose of objects by means of an RGB-
D camera. However, these methods require large amounts of labeled training
data. Collecting images of objects from the real world under various condi-
tions and annotating the images with 6D object poses is time-consuming and
requires a significant human effort. In addition, in a number of cases, color in-
formation may not be available, such as measured point cloud data from laser
range finders or industrial high-resolution 3D sensors. In the next chapter, we
present a method for recovering the 6D pose of rigid objects from 3D point
clouds containing only geometric information and using only synthetic data for
training.





Chapter 5
Object Pose Estimation from
3D Point Clouds

5.1 Introduction

In Chapter 4, by taking RGB-D images as input we have achieved state-of-the-
art performance on the object pose estimation task. However, in a number of
cases, color information may not be available — for example, when the input
is point cloud data from laser range finders or industrial high-resolution 3D
sensors. Therefore, studies on recovering the 6D pose of rigid objects from 3D
point clouds containing only geometric information are necessary.

Deep learning-based methods require large amounts of labeled training data.
Collecting images of objects from the real world under various conditions and
annotating the images with 6D object poses is time-consuming and requires a
significant human effort. A promising alternative is the use of synthetic data for
training such deep neural networks. Nonetheless, it is still difficult for methods
requiring color information where the domain gap between synthetic training
and real test images is severe. Compared to color images, the domain gap be-
tween the synthetic and real data is considerably smaller for 3D point clouds
[50, 77]. In addition, synthesizing data with only geometric information is less
expensive in the terms of time and hardware storage as there is no texture or
illumination present in the data. This low cost allows us to scale it up to a large
number of objects, which is often desired in practical applications. This ability
to generate vast quantities of data, coupled with the relatively small domain gap
between simulated and real data, suggests that it is feasible to develop DNN-
based object pose estimation methods that can be trained purely in simulation
and work well in the real world.

In this chapter, we propose a novel DNN architecture to address the prob-
lem of estimating the 6D pose of multiple rigid objects in a cluttered scene, using
only a 3D point cloud of the scene as an input. We build our network on top of
a deep Hough voting architecture [97], VoteNet. The voting mechanism allows

81
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(a) Object instances (b) Object parts

Figure 5.1: An example to illustrate the pose relation between object parts and
object instances. The red, blue, and black arrows indicate high, fair, and low
correlations respectively.

our model to perform reliable detection under clutter and occlusion. More im-
portantly, we explore the relation and contextual information between objects
(instances) and local parts of objects (parts), which are crucial for the 6D pose
estimation task as shown in Fig. 5.1. To this end, we introduce two high-level
feature learning modules (MO and MP) into the VoteNet architecture to model the
pose relation between object instances and object parts in the scene. The mod-
ule MO first generates object-centric proposals using a per-point voting scheme
inspired by VoteNet. We then feed proposal features into a self-attention mod-
ule in order to enable higher-order interactions between neighboring proposal
features and learn instance-to-instance correlations. Similarly, the module MP
votes for object part centers and then learns part-to-part correlations with self-
attention.

The main contributions of this chapter are: (1) An end-to-end trainable net-
work for 6D object pose estimation from 3D point clouds: robust to noise and
occlusion, and able to deal with multiple objects in cluttered scenes; (2) Two
high-level feature learning modules for modeling part-to-part and instance-to-
instance correlations with self-attention to improve the performance of object
pose estimation; (3) Extensive experiments demonstrating the benefits of high-
level feature learning.

5.2 Hough Voting in Computer Vision

The Hough Transform has been widely used in computer vision for tasks like
object detection [108, 117], motion detection [59], medical imaging [35], and
robot navigation [58] for decades. It was originally introduced to detect analyt-
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ically defined shapes such as line, circle or ellipse [52, 53, 27] in 2D images. To-
day, Hough Transform or Hough voting usually refers to any detection process
where evidence coming from local elements is accumulated to form a confident
detection. Voting-based approaches [117, 97] demonstrated the ability to per-
form reliable detection under clutter and occlusion. This is due to the additive
attribute of the Hough transform which makes the method robust to partial
occlusions. Tombari and Di Stefano [117] proposed a Hough Voting approach
for object recognition in 3D scenes. The key technique of their method is that
each corresponding feature can cast a vote to accumulate evidence for possible
object centers. This permits simultaneous voting of all feature correspondences
in 3D Hough space. In [61], researchers presented a 3D object detection and
pose estimation method by combining neural networks and a local voting-based
approach.

Recently, VoteNet [97] was introduced to detect objects via point feature
grouping, sampling, and voting. While traditional Hough voting is difficult to
optimize jointly due to multiple separate modules, VoteNet is end-to-end op-
timizable. Fig. 5.2 illustrates the architecture of this end-to-end detection net-
work. VoteNet directly votes for center points of objects from point clouds
and generates a group of high-quality 3D object proposals by aggregating vote
features. The experimental results show that the developed methods above per-
form well in 3D scenes with a significant degree of occlusion and clutter. The
output of VoteNet and other 3D object detection approaches is 3D bounding
boxes as well as semantic classes of objects. In robot manipulation, rather than
proposing bounding boxes, we are more interested in estimating the 6D pose
of objects as discussed in Chapter 2. Motivated by the success of VoteNet in
the object detection task, in this chapter we build a 6D object pose estimation
network upon the deep Hough voting module. However, extending VoteNet
for object pose estimation task is not straightforward. Although VoteNet had
achieved favorable performance on 3D object detection, it fails to explore the
correlation between objects (instances) and local parts of objects (parts), which
are crucial for the 6D pose estimation task. The correlations do not relate to
semantic meanings, but rather allow the propagation of information about the
spatial relationship between objects and parts. For instance, in Fig. 5.1 we have
contextual information: part 2-1 is on top of part 1-1, part 2-3 is on top of
part 3-2, part 2-2 connects part 2- 3, and part 2-1. From these relationships,
we can infer that object 2 locates somewhere in between object 1 and object
3 and does not lie on the supporting surface or standing. Therefore, in Section
5.4 we propose self-attention modules for encoding the dependency of object
parts and object instances into features to boost the performance of object pose
estimation.
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Figure 5.2: Architecture details of VoteNet [97] for 3D object detection in point
clouds. Given an input point cloud, PointNet++ is used as a backbone network
to subsamples and learns features and outputs M seed points of dimension (3
+ C). This subset of points are considered as seed points. Then each seed point
generates one vote. In the next step, the votes are grouped into clusters and
processed by the proposal module to generate 3D bounding boxes.
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5.3 Self-Attention

Attention mechanisms allow deep learning models to learn to focus on im-
portant regions within a context and have been widely applied in a variety of
tasks [82, 5, 17]. Self-attention is an attention mechanism that allows inputs to
interact with each other and to learn the correlation between them. The abil-
ity of self-attention to directly model long-distance interactions and to reduce
sequential computation have revolutionized machine translation and natural
language processing [119, 24]. This has inspired applications of self-attention
to computer vision tasks such as image recognition [54], semantic segmenta-
tion [31], and image captioning [135]. As discussed in [123], self-attention can
be viewed as a form of the non-local mean [11]. The non-local module [123]
is designed to capture long-range spatio-temporal dependencies in images and
videos. It can be integrated into many computer vision architectures. The au-
thors demonstrated that it can greatly improve the performances of existing
deep neural networks on many benchmarks for video classification and static
image recognition tasks. Following [123], a non-local operation in deep neural
networks is defined as:

Y = f(θ(X),φ(X))g(X) (5.1)

where X ∈ R
N×C is the input feature map, Y is the output signal of the same size

as X, C is the number of channels, and N is the number of positions N = HW

(width W and height H). θ(·),φ(·),g(·) are parametrized function approxima-
tors on the input. Using 1 × 1 convolution, the transformations can be written
as:

θ(·) : RN×C × R
C×C → R

N×C, θ(X) = XWθ ∈ R
N×C (5.2)

φ(·) : RN×C × R
C×C → R

N×C, φ(X) = XWφ ∈ R
N×C (5.3)

g(·) : RN×C × R
C×C → R

N×C, g(X) = XWg ∈ R
N×C (5.4)

parameterized by the weight matrices Wθ,Wφ,Wg ∈ R
C×C respectively. The

function f(·, ·) : RN×C × R
N×C → R

N×N computes the affinity between all
positions. The non-local behavior in Eq. 5.1 is due to the fact that all positions
are considered in the operation. There are various choices for f. [123] describes
several versions of f including Gaussian function, embedded Gaussian, dot-
product, and concatenation. Dot-product is considered as the simplest one:

f(θ(X),φ(X)) = θ(X)φ(X)� (5.5)

The non-local operation (Eq. 5.1) captures dependencies between any two po-
sitions via a joint location-wise matrix f(θ(X),φ(X)) by aggregating all channel
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Figure 5.3: Compact generalized non-local (CGNL) module [137]. The input
feature map X of the size (N × C) is first fed into three 1 × 1 × 1 conv layers
and then divided along channels into multiple groups. The channels dimension
is grouped into C ′ = C/G, where G is a group number. The compact repre-
sentations for generalized non-local module are build within each group. P and
BN denotes the order of Taylor expansion for kernel functions and BatchNorm
respectively.

information together. The Compact Generalized Non-local Network (CGNL)
[137] (Fig. 5.3) explores channel-wise correlations to generalize the non-local
module and learn explicit correlations among all of the elements across chan-
nels. According to the experimental results in [137], CGNL demonstrated the
generality of non-local operations and can become a basic building block in
designing deep neural networks.
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5.4 Object Pose Estimation in 3D Point Clouds

Conventional methods [105, 131, 2, 40, 26] are mainly based on the match-
ing of local or global features extracted from input point cloud to features in
a 3D model of the object. Global feature-based approaches utilize the whole
geometric appearance of the object surface to define a single feature vector
that effectively and concisely describes the entire 3D object [105, 131, 2]. On
the contrary, the local feature-based methods exploit the geometric properties
around specific keypoints [40]. While global methods are able to handle ob-
jects with self-similar surface parts, such as planar patches, spheres and cylin-
ders, local approaches are more suitable for detecting and estimating the pose
of complex objects in cluttered scenes. Drost et al. [26] attempt to combine the
advantages of the two by using point pair features and match that model locally
using a fast voting scheme. The proposed point pair feature (PPF) describes the
relative position and orientation of two oriented points. The algorithm was
shown to achieve high scores on standard object recognition benchmarks [10]
and is utilized in a vast number of industrial and robotic applications [16, 122].
Since introduced, PPF has been improved and extended in many other works
[7, 49, 39, 70]. Although extensively studied, PPF-based approaches share some
common problems: (1) relying on searching a large set of paired feature corre-
spondences severely limits their speed; (2) they are sensitive to measurement
noise, heavy occlusion and background clutter. Recent work has attempted to
leverage the power of deep learning to achieve fast and robust 6D pose esti-
mation [121, 46, 14, 42, 33]. However, these approaches either still require
color information in the process or rely on a prior instance segmentation step.
As the quality of the segmentation mask greatly influences the performance of
pose estimation, these approaches are often limited by poor performance of
segmentation in the presence of clutter and occlusion. Unlike existing methods,
our model consumes unordered 3D point cloud data without color information
and does not require segmentation masks. Our method relies on a voting mech-
anism to perform reliable detection and learns the dependency of object parts
and object instances to boost the performance of pose estimation. The details
of our developed model are presented in the rest of this section.

5.4.1 Overview

The proposed network is illustrated in Fig. 5.4 and Fig. 5.5. The architecture
comprises of four components. The first one takes as input a 3D point cloud
and extracts seeds as high-dimensional features. The second component MP op-
erates on the high-dimensional features to learn part proposals and uses a self-
attention module to enable higher-level interactions between part proposals.
Similarly, the third one MO takes seeds as input to learn object proposals and
then encode the instance-to-instance correlation information through a self-
attention module. The voting part in both MP and MO extend the idea about
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deep Hough voting in VoteNet [97] to estimate centers of object parts and ob-
ject instances. Last, a pose estimation module combines feature maps from the
self-attention modules and generates the pose of objects.

Figure 5.4: The architecture of the proposed network for 6-DOF object pose
estimation in point cloud data. Our model builds on the deep Hough voting
module of VoteNet [97] to vote objects and parts. Especially, we introduce
self-attention modules for encoding the dependency of object parts and object
instances into features to boost the performance of object pose estimation.
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Figure 5.5: Self-attention module with generaized non-local network (CGNL)
[137].

5.4.2 Feature Extraction

In order to extract geometric features, we utilize the PointNet++ architecture
with multi-scale grouping as our backbone network. As the core of our base
network, its set abstraction level is composed of three layers: a sampling layer,
a grouping layer, and the PointNet [98] based learning layer. Through Point-
Net++, we are able to capture fine geometric structures from the neighborhood
of each point. The base network selects M interest points (called seed points)
and enriches them with high-dimensional features {si}

M
i=1 where si = [xi; fi]

with xi ∈ R
3 being the seed location in 3D space and fi ∈ R

C being a feature
vector.

5.4.3 Learning Part-to-Part Correlation

Given the high-dimensional features {si}
M
i=1, a part detection module MP is

used to generates a fixed number J of proposals. A proposal is a tuple (zi,hi, si)
consisting of a position zi ∈ R

3, a proposal features vector hi ∈ R
D and a set

of points si associated with the proposal. To be specific, each seed point si is
fed into a shared Multi-Layer Perceptron (MLP) to compute a feature offset
Δfi ∈ R

C and a relative 3D offset Δxi ∈ R
3 between the point position xi ∈ R

3

and its corresponding part center ci ∈ R
3. Then the vote can be denoted as

vi = [yi;gi] ∈ R
3+C with yi = xi + Δxi and gi = fi + Δfi. To supervise the

learning of the 3D offset Δxi, we apply a regression loss:

Lpart−vote =
1

Mpos

∑
i

‖xi + Δxi − cpi ‖H · 1(xi) (5.6)
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where Mpos is the count of the total number of seeds on the object surface,
‖ · ‖H is the Huber norm and 1(·) is a binary function indicating whether a
seed point si belongs to an object part. After each seed point has voted for
a part center, we obtain a distribution over object part centers. The next step
is to form J vote clusters by uniform sampling and finding neighboring votes
within a certain Euclidean distance. Then votes from J clusters are aggregated
to generate J feature proposals {hi ∈ R

D}Ji=1 using a PointNet-like module as
described in [97]. At this stage, we have J proposals composed of 3D positions
zi = xi + Δxi located near part centers, proposal features hi ∈ R

D describing
the local geometry, and a set of seed points si associated with each proposal.

So far, the proposal feature mapsH = {hi}
J
i=1 encode only local information

of the point cloud. In order to enable features to become aware of their global
neighborhood, we explicitly model higher-order interactions between proposal
features, and it can be formulated as the non-local operation:

Hpart−part = f(θ(H)φ(H))g(H) (5.7)

where θ(·), φ(·), g(·) are learnable transformations on the input feature map
H, and f(·) encodes the relation between any two parts. To this end, we opt for
the compact generalized non-local network (CGNL) [137] as our self-attention
module to explicitly model rich correlations between parts and to provide
higher-level feature learning in addition to the lower-level point features. Fig 5.6
illustrates object part center votes and relation between parts.

(a) (b)

Figure 5.6: An example to illustrate learning in object part center votes and
seft-attention module. The red, blue and black arrows indicate high, fair and
low correlations respectively.
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5.4.4 Learning Instance-to-Instance Correlation

(a) (b)

Figure 5.7: An example to illustrate learning in object center votes and self-
attention module. The red, blue and black arrows indicate high, fair and low
correlations respectively.

Similarly, an object detection module MO is used to generate K clusters
from the high-dimensional features {si}Mi=1 and a set of object centers. The loss
is defined as:

Lobject−vote =
1

Mpos

∑
i

‖xi + Δxi − coi ‖H · 1(xi) (5.8)

where Δxi is a Euclidean space offset between the point position xi and its
corresponding ground-truth object center coi . To encode the relationship of ob-
jects in the scene into features or exploit information outside of local regions,
instead of processing each cluster independently, our network computes a new
feature map from all clusters to learn higher-level features that consider the re-
lationships between all object instances. Fig 5.7 illustrates object center votes
and relation between object instances. By leveraging a self-attention mecha-
nism, we can combine features from clusters to enable higher-order interac-
tion between proposals. We thus make use of the compact generalized non-
local network (CGNL) [137]. CGNL allows for explicit modeling of rich inter-
dependencies between clusters in feature space in a fast and low-complexity
computation flow. The CGNL based self-attention module takes K clusters
C = {C1,C2, ...,CK} as inputs. Then votes from each cluster are processed by a
MLP before being max-pooled to a single feature vector and passed to CGNL.
The self-attention mechanism allows the features from different clusters to in-
teract with each other. The output is a new feature map Hobj−obj = {Hk

obj−obj}

with k = 1, ...,K.
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Hobj−obj = CGNL( max
i=1,...n

(MLP(vi))) (5.9)

5.4.5 Multi-task Loss

Given new feature mapsHpart−part andHobj−obj generated by the self-attention
modules, max-pooling is first applied to get two vectors including the part fea-
ture vector and the object feature vector, combining information from all the
part and object candidates. These two vectors are then concatenated to form
a single feature vector. An MLP layer is applied to further aggregate global in-
formation. While we can learn the translation part of the pose in the Euclidean
space, representing the rotation part is more complicated. The common options
of using Euler angles-based and quaternion-based representations are discon-
tinuous and difficult for neural networks to learn as explained by [142]. In
[142], the authors show that the 3D rotations have continuous representations
in 5D and 6D, which are more suitable for learning. Therefore, we make use
of 6D continuous representation for 3D rotations. Following [142], we map
the 6D representation produced by the network into the original rotation space
and minimize the L2 loss between the output and the ground-truth rotation
matrices.

We supervise the learning of modules jointly with a multi-tasks loss:

L = λ1Lpart−vote + λ2Lobj−vote + λ3Lpose (5.10)

where λ1, λ2 and λ3 are the weights for each task. The loss includes a voting
part loss Lpart−vote, a object vote loss Lobj−vote, and a pose loss Lpose. We
define the pose loss function as follows:

Lpose = Lt + αLrot + βLobj + γLsem (5.11)

where α, β, and γ are weights that scale the losses to similar scales. The pose
loss is composed of a translation loss Lt (regression), an L2 loss between the
output and the ground-truth rotation matrices, an objectness loss Lobj and a
semantic classification loss Lsem. The objectness loss is a cross-entropy loss
for two classes (an object or not). The semantic classification loss is also a
cross-entropy loss of NC semantic classes. Hovever, the above loss Lrot for
rotation can only appropriate to asymmetric objects. For symmetric objects
having multiple correct 3D rotations, given the ground truth rotation R̄ and
translation T̄ and the estimated rotation R̂ and translation T̂ we compute Lrot
as:
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Lrot =
1
m

∑
x1∈M

‖ min
x2∈M

(R̄x+ T̄ − R̂x+ T̂) ‖ (5.12)

where M denotes the set of 3D model points and m is the number of points.
The loss is calculated as the average distance from vertices of the object model
in the ground-truth pose to closest vertices of the model in the estimated pose.
That way the loss is minimized when the two 3D models are aligned with each
other.

5.4.6 Implementation Details

Table 5.1: Layer parameters of the PointNet++ [99] based feature learning net-
work.

layer name input layer layer params
SA1 point cloud (2048,0.025,[64,64,128])
SA2 SA1 (1024,0.05,[128,128,256])
SA3 SA2 (512,0.1,[128,128,256])
SA4 SA3 (256,0.2,[128,128,256])
FP1 SA3, SA4 [256,256]
FP2 SA2, SA3 [256,256]

Network Architecture. In our implementation we randomly choose N=50k
points from each raw point cloud and set λ1=0.5, λ2=1.0, λ3=0.1 in Eq. 5.10,
α=β=γ=1.0 in Eq. 5.11. We then apply the PointNet++ [99] based feature learn-
ing network, which has 4 set abstraction layers (SA) and 2 feature propagation
layers (FP). The detailed layer parameters are shown in Table 5.1. The FP2
outputs seeds that will be transformed to votes. The voting module generates
J = 2 votes per seed with an MLP layer spec: [256, 256, 259 × 2], 1 vote
for the object center and 1 vote for the part center. In the learning part-to-part
and instance-to-instance correlation modules, we form 1024 clusters by finding
neighboring votes and finally output a new feature map for each cluster. In the
last step, 256 proposals are generated from 256 vote clusters sampled from the
1024 part-centric vote clusters and 1024 instance-centric vote clusters in the
previous step.

Training the network. Our proposed model is trained from scratch in an
end-to-end manner using the Adam optimizer. We train the entire network with
a batch size of 48 and learning rate 0.001 for 200 epochs. It takes around 10
hours for training the Siléane and Fraunhofer IPA dataset [10, 64] using six
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Nvidia Tesla V100 32GB GPUs. In regard to inference time, it takes around
150ms to process an input containing 50k points.

5.5 Evaluation

We evaluated our proposed approach on data from the Siléane dataset [10]
and the Fraunhofer IPA dataset [64]. These datasets consist of multiple rigid
texture-less objects of the same type under cluttered scenes with multiple and
heavy occlusions. A comparison against the most closely related works is also
performed here.

5.5.1 Datasets

The Siléane dataset [10] consists in a total of 2,601 independent scenes, fully
annotated. Depending on the object, the dataset comprises 46 to 325 scenes
and is too small to train our model. Therefore, we used this dataset only for
testing. For model training, we relied on the Fraunhofer IPA Bin-Picking dataset
[64]. It includes 520 fully annotated point clouds and corresponding depth
images of real-world scenes (for testing) and about 206,000 synthetic scenes
(for training). The dataset comprises eight objects from the Siléane dataset and
two newly introduced ones (gear shaft and ring screw). Training data for the
coffee cup (C.cup) was not generated in the Fraunhofer IPA dataset. Hence, we
precisely rebuilt the setup from the dataset in simulation and produced 10,000
scene point clouds depicting various numbers of C.cup instances in bulk.

5.5.2 Evaluation metric

The error of an estimated pose P̂ with respect to the ground-truth pose P̄ of
an object model M is measured by the most widely used pose-error function
Average Distance of Model Points (ADD) [48]. The error is calculated as the
average distance from vertices of the object model in the ground-truth pose to
vertices of the model in the estimated pose. Given the ground truth rotation R̄
and translation T̄ and the estimated rotation R̂ and translation T̂ , the average
distance is defined as:

ADD =
1
m

∑
x∈M

‖ (R̄x+ T̄ − R̂x+ T̂) ‖ (5.13)

m is the number of points. For objects with symmetric views, we adapt the
metric by computing the average distance using the closest point distance fol-
lowing prior works [10]. We report the accuracy of predictions in average preci-
sion (AP) following [10], given the goal of retrieval of instances less than 30%
occluded. A 6D pose estimate is considered to be true positive if the error is
smaller than 0.1 times the diameter of the smallest bounding sphere.
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5.5.3 Results

Table 5.2: Results (AP) on non bin-picking scenarios. The methods includes
the baseline (modified VoteNet [97] for 6D pose estimation), our proposed net-
work algorithm without learning object-object correlations (Ours (-MO)), with-
out learning part-part correlations (Ours (-MP)), with full options (Ours (full)).

Baseline Ours (- MO) Ours (- MP) Ours (full)
Brick 0.35 0.46 0.37 0.48
Bunny 0.49 0.63 0.51 0.65
C.stick 0.47 0.63 0.49 0.66
C.cup 0.39 0.54 0.42 0.57
Gear 0.56 0.64 0.57 0.65
Pepper 0.31 0.44 0.33 0.45
Tless 20 0.35 0.42 0.35 0.42
Tless 22 0.29 0.36 0.30 0.38
Tless 29 0.38 0.46 0.40 0.46
Gear shaft 0.58 0.65 0.60 0.65
Ring screw 0.60 0.67 0.62 0.69
MEAN 0.43 0.54 0.45 0.55

Table 5.3: Results (AP) on bin-picking scenarios.

Baseline Ours (- MO) Ours (- MP) Ours (full)
Brick 0.28 0.38 0.41 0.47
Bunny 0.32 0.48 0.49 0.58
C.stick 0.31 0.39 0.44 0.55
C.cup 0.25 0.36 0.39 0.47
Gear 0.45 0.58 0.60 0.63
Pepper 0.20 0.25 0.27 0.34
Tless 20 0.27 0.37 0.39 0.45
Tless 22 0.20 0.32 0.33 0.36
Tless 29 0.28 0.37 0.39 0.45
Gear shaft 0.41 0.57 0.58 0.64
Ring screw 0.43 0.55 0.57 0.65
MEAN 0.31 0.42 0.44 0.51

Table 5.2 and Table 5.3 present a detailed evaluation for 9 objects in the
Siléane dataset [10] and 2 objects (gear shaft and ring screw) in the Fraunhofer
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IPA dataset [64]. We modified the VoteNet architecture to directly estimate the
6D pose of objects from the vote aggregated features and used it as the baseline
method. Our proposed model achieves superior performance compared to the
modified VoteNet. We observe that in all cases learning part-to-part and object-
to-object correlations improved the accuracy of the pose estimation over the
baseline method. We see an improvement of +12% over the baseline method
with our proposed model, from 43% to 54% for the non bin-picking scenarios.
We also observe a marked improvement, from 31% to 51% on bin-picking sce-
narios. Fig 5.8 example of scenes in the Siléane dataset [10] and the Fraunhofer
IPA dataset [64]. Fig. 5.9 and Fig. 5.10 demonstrate qualitative results.

Furthermore, we ran a number of ablations to analyze our network without
learning part-to-part correlation (Ours (- MP)) and without learning object-to-
object correlation (Ours (- MO)). Ours (- MO) performed better than the baseline
method on both bin picking and non-bin picking scenarios (+11% and +11%).
The performance benefit of (- MP) was less clear as it resulted in a small im-
provement of +2% on non bin-picking scenarios. On the contrary, performance
improved significantly with +13% on the bin-picking scenarios. This suggests
that our framework makes efficient use of the object-to-object correlation in-
formation to improve pose estimation.

Table 5.4: AP values of conventional algorithms and our method on objects
from the Siléane dataset [10] and the Fraunhofer IPA dataset [64] (both non
bin-picking and bin-picking scenarios).

[48] [48]+PP [1] PPF [26] PPF+PP [1] [70] Ours
Brick 0.10 0.17 0.19 0.24 0.37 0.48
Bunny 0.38 0.42 0.27 0.34 0.44 0.61
C.stick 0.37 0.45 0.15 0.21 0.50 0.60
C.cup 0.08 0.19 0.27 0.28 0.40 0.52
Gear 0.21 0.26 0.28 0.31 0.40 0.64
Pepper 0.04 0.03 0.06 0.12 0.28 0.39
Tless 20 0.11 0.13 0.21 0.26 0.31 0.44
Tless 22 0.09 0.12 0.13 0.17 0.22 0.37
Tless 29 0.19 0.21 0.28 0.33 0.39 0.46
Gear shaft 0.18 0.20 0.32 0.34 0.38 0.65
Ring screw 0.27 0.33 0.40 0.46 0.54 0.67
MEAN 0.18 0.23 0.23 0.28 0.38 0.53

Table 5.4 and Table 5.5 summarize the comparison results between our
method and current point cloud-based approaches on the same objects from
above. The experiments are based on publicly available implementations by
the authors [48, 14, 1, 33], and on our own implementation of the rest. Our
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proposed approach achieves state-of-the-art results and outperforms others on
all objects, obtaining an average precision of 53%. As can be seen from the
obtained results, the proposed method results in an improvement of +15% to
+35% on AP compared with the conventional approaches [48, 26, 1, 70]. The
AP score of our method also surpasses the existing deep learning-based methods
[14, 42, 33] with a significant margin.

Table 5.5: AP values of deep learning-based methods on objects from the
Siléane dataset [10] and the Fraunhofer IPA dataset [64] (both non bin-picking
and bin-picking scenarios).

G2l-net [14] [42] [33] Ours
Brick 0.42 0.36 0.38 0.48
Bunny 0.54 0.46 0.52 0.61
C.stick 0.54 0.50 0.52 0.60
C.cup 0.45 0.41 0.44 0.52
Gear 0.51 0.42 0.50 0.64
Pepper 0.30 0.24 0.25 0.39
Tless 20 0.38 0.35 0.30 0.44
Tless 22 0.29 0.20 0.23 0.37
Tless 29 0.35 0.40 0.37 0.46
Gear shaft 0.48 0.41 0.51 0.65
Ring screw 0.56 0.45 0.54 0.67
MEAN 0.44 0.38 0.41 0.53

(a) (b)

Figure 5.8: Example of scenes in the Siléane dataset [10] and the Fraunhofer
IPA dataset [64].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.9: Visualization for pose estimation results on non bin-picking scenar-
ios: (a-c) 3D point cloud inputs; (d-f) ground truth poses; (g-i) retrieved pose
hypotheses by the baseline method; (j-l) retrieved pose hypotheses by our pro-
posed method. Color-coded visualization of point-wise distance error ranging
from 0 (green) to greater than 0.2 times the diameter of the object (red). Pre-
dicted poses with ADD more than 0.2 times the diameter of the object have
been removed for visualization purposes.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.10: Visualization for pose estimation results on bin-picking scenar-
ios: (a-c) 3D point cloud inputs; (d-f) ground truth poses; (g-i) retrieved pose
hypotheses by our baseline method; (j-l) retrieved pose hypotheses by the pro-
posed method. Color-coded visualization of point-wise distance error ranging
from 0 (green) to greater than 0.2 times the diameter of the object (red). Pre-
dicted poses with ADD more than 0.2 times the diameter of the object have
been removed for visualization purposes.
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5.6 Conclusions

In this chapter, we introduced a new method for 6D object pose estimation from
3D point clouds. Our core idea is to employ correlation between poses of object
instances and object parts to improve the performance of object pose estima-
tion. We make use of the self-attention mechanism and feature fusion to model
the part-to-part and object-to-object relationships, and propose two modules MP
and MO. We first produce a number of proposals using part-centric and object-
centric voting-based VoteNet. We then allow higher-order feature interactions
between proposals via the non-local network CGNL. Ablation studies demon-
strate the effectiveness of the proposed modules to improve the accuracy of pose
estimation. Experiments further show that our architecture outperforms previ-
ous approaches. In Chapters 4 and 5, we have introduced methods for 6D ob-
ject pose estimation that align CAD models of objects to input point clouds. For
robot grasping, after performing model-to-scene alignment, a set of grasp con-
figurations can be selected from a database of pre-computed grasps. However,
this model-based approach is not able to synthesize grasps for novel objects
due to the unavailability of 3D object model. The next chapter introduces an
end-to-end trainable grasp generation network given an input 3D point cloud.
We will show that the proposed approach is able to generalize and perform
well on novel objects.



Chapter 6
Grasp Generation in Cluttered
Scenes

6.1 Introduction

To provide grasp configurations for robot manipulation, conventional model-
based grasp planning requires knowledge of the 6D pose of objects in the scene.
A set of grasps is then selected from a database of pre-computed grasps [9]. In
the previous chapters, we have introduced methods for 6D object pose estima-
tion that register a CAD model of the object to be grasped to measured data.
However, predicting the pose of novel objects is not possible, as for 6D object
pose estimation we assume that the 3D model of the object is available and cru-
cially that the object coordinate system is defined in the 3D space of the model.
Even if we can estimate the 6D pose of unknown objects, synthesizing grasps
for these objects is unachievable, as for the model-based approaches we assume
that the 3D model of objects is available.

An alternative approach is to generate the grasp configurations directly from
sensor data without assuming a known 3D model of the object or pre-computed
grasps [75]. Inspired by the success of convolutional neural networks (CNNs)
in a broad range of computer vision tasks, recent works [75, 76, 101, 69] rely
entirely or partially on deep learning. Some methods only employ deep CNNs
for finding features of a good grasp from data [75, 76], while others employ
end-to-end learning for grasp generation [101, 69]. The reported results from
both are promising across a wide variety of objects, sensors, and robot end
effectors. However, the current state-of-the-art CNN-based grasp generation
methods utilize 2D or 2.5D input without taking the 3D geometry information
into consideration. This might lead to failure to perform a grasp due to the
lack of geometric analysis. Therefore, a few approaches have been proposed to
localize grasps from 3D point sets [116, 84, 71, 29].

Although grasp generation methods in point clouds have achieved remark-
able results, many problems remain unsolved. Due to measurement noise, oc-

101
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clusions, and undesirable contacts with the environment, generating feasible
and reliable grasps in cluttered scenes is difficult. Many existing methods re-
quire time-consuming multi-stage processing for sampling grasp candidates and
evaluating the grasp quality. While several works proposed end-to-end mod-
els for 6-DOF grasp generation and achieved state-of-the-art results in bench-
marks, most of these methods rely only on features extracted by a backbone
network such as PointNet++ [99] to predict grasps without considering the re-
lationship between objects in the scenes. Grasping in clutter requires both rea-
soning about object parts and potential collisions with the gripper. Therefore,
the contextual information, encapsulating the geometry of the rest of the scene,
is important and should be taken into consideration to boost the performance
of collision-free grasp generation in cluttered environments.

In this chapter, we propose an end-to-end deep learning approach for gen-
erating grasps on objects of interest, given point cloud measurements of the
workspace. The core of our approach is to encode the positional relationship
between objects in the scene into features by a context learning module. The
contextual information enables our model to reduce the number of generated
grasps that can cause the gripper to collide with other objects. To make the
developed system robust to occlusion, we build our network on the ideas from
Chapter 5. The voting mechanism allows our model to perform grasp genera-
tion under clutter and occlusion. The specific improvement in performance due
to each of our contributions is quantitatively measured in both simulation and
real-world evaluation.

The main contributions of this chapter can be summarized as follows: (1) A
new framework for 6-DOF grasp generation named VoteGrasp, that robustly
generates grasp configurations in cluttered environments under severe occlu-
sion using a voting mechanism. (2) A context learning module encoding the
dependency of objects in the scene into features to boost the performance of
collision-free grasp generation. (3) Demonstration of the generalization capa-
bility of our method to novel objects.

6.2 Context and Attention in 3D Point clouds

Much prior work has widely explored the use of the contextual information
to improve performance of 3D point matching [25], point cloud semantic seg-
mentation [136], instance segmentation of 3D point clouds [55], and 3D scene
layout prediction [107]. Deng et al. [25] introduced PPFNET that captures the
global context across all local patches using a max-pooling aggregation and
fusing the output into the local description to boost the local feature represen-
tation. Ye et al. [136] presents a pointwise pyramid pooling module to learn a
multi-scale neighboring context. Hu et al. [55] achieve robust multiscale patch-
based segmentation via exploiting the learned cluster-based contextual infor-
mation. Shi et al. [107] show that using hierarchical context aggregation and
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propagation based on a denoising recursive autoencoder improves object de-
tection performance on real-world 3D point cloud datasets.

Motivated by the success in natural language processing, recent works have
focused on leveraging the self-attention mechanism with contextual depen-
dency to achieve more accurate results in various perception tasks. Xie et al.
[134] connects the self-attention idea with shape context to propose ShapeCon-
textNet that can be applied to the general point cloud classification and seg-
mentation problems. Zhang et al. [139] proposed a point contextual attention
network for point cloud based retrieval. It takes the local point features and
produces an attention map that enables the network to find more important
features and produce a more discriminative global descriptor. Paigwar et al.
[90] use a visual attention mechanism with point clouds to achieve accurate
detection of objects. The core idea behind attention mechanisms is to pay more
attention to the related parts of input with respect to the task. Grasping in
clutter requires both reasoning about object parts and potential collisions with
the gripper. Therefore, we find that self-attention based context learning is well
suited to our problem of interest. Similar to Chapter 5, we opt for the compact
generalized non-local network (CGNL) [137] as our self-attention module.

6.3 3D Point Cloud Based Grasp Generation

Machine learning-based approaches have been introduced to generate grasps
from 3D point clouds [116, 84, 71, 88], with promising results across a wide
variety of objects, sensors, and robots. ten Pas et al. [116] proposed a grasp
generation method that first generates a large set of grasp hypotheses by a sam-
pling process and then classifies them as good or bad grasps. The authors solve
the binary classification task using a four-layer convolutional neural network
(CNN). The CNN-based classifier is constructed by several projection features
on a normalized point cloud. Extending on the idea of GPD, PointNetGPD [71]
replaces the CNN-based grasp quality evaluation model by an evaluation net-
work using the architecture of PointNet [98]. Although both methods [116, 71]
densely sample candidates, they are not able to generate grasps on regions such
as rims of mugs or plates where they can not estimate surface normals correctly.
To overcome this limitation, [84] considers grasp generation as sampling a set
of grasps using a variational autoencoder, then assesses and refines the sampled
grasps using a grasp evaluator network. The variational autoencoder is trained
to map the 3D point cloud of an observed object to a diverse set of grasps for
the object. The evaluator model maps the point cloud and the robot gripper to
a quality assessment of the 6D gripper pose using the PointNet [98] architec-
ture. However, this approach only focuses on local features around the grasped
object. To encode global information, PointNet++ Grasping [88] abandons the
conventional learning pipeline and takes the whole scene point clouds as input
to regress the grasp poses. However, only relying on features extracted by a
backbone network such as PointNet++ [99], these methods lack the consider-
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Figure 6.1: The architecture of the proposed VoteGrasp for 6-DOF grasp gen-
eration in point cloud data. Our model builds on a deep Hough voting neural
network [97] to vote grasps with an added self-attention context learning mod-
ule. Grasps are color-coded by the predicted quality scores. Green is the highest
and red is the lowest.

ation of the relationships between different objects, which limits their perfor-
mance in cluttered scenes. As a result, they have not yet been demonstrated to
be reliable under occlusion, which is common in manipulation domains. We
address this challenge by leveraging a voting mechanism and contextual infor-
mation to generate grasp configurations directly from 3D point clouds.

6.4 VoteGrasp Approach

We introduce our end-to-end grasp generation network given scene point cloud
inputs, which is illustrated in Fig. 6.1. In this work, we address the problem
of generating grasps for any desired object in a cluttered scene from partial
point cloud observations. The input to our approach is a point cloud of size
N × 3. The network aims to predict a ranked list of grasps, where each grasp
G = (p,R,w,q) specified by a center p = (x, y, z) ∈ R

3, the gripper orienta-
tion R ∈ SO(3), a width of the gripper w ∈ R, and a grasp quality measure
q ∈ [0, 1]. Due to the non-linearity of the rotation space as explained by [94],
directly regressing the 3D orientation is difficult. Therefore, we reformulated
the gripper orientation estimation as in [60]. We decouple orientation predic-
tion into first recovering a viewpoint anchor (a discrete viewpoint classification
task) and then estimating an in-plane rotation (Fig. 6.2) as a mixture of classi-
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Figure 6.2: The orientation of the gripper is defined by a viewpoint anchor (a
discrete viewpoint) and an in-plane rotation angle. The left part of the figure
shows anchors sampled in the upper hemisphere. The right part visualizes in-
plane rotation angles.

fication and regression formulations. In the rest of this section, we will examine
each of the main components of our proposed architecture.

Backbone Network: In order to extract geometric features, we utilize the
PointNet++ architecture with multi-scale grouping as our backbone network.
Thereby, we are able to capture fine geometric structures from the neighbor-
hood of each point. The backbone network selects M interest points (called
seed points) and enriches them with high-dimensional features {si}

M
i=1 where

si = [xi; fi] with xi ∈ R
3 being the seed location in 3D space and fi ∈ R

F being
a feature vector.

Vote and Cluster: The seed points {si}
M
i=1 are then fed into a multi-layer

perceptron (MLP) to compute votes {{vij = [yij;gij] ∈ R
3+F}Mi=1}

J
j=1, J votes

per seed. The MLP consists of fully connected layers, ReLU and batch nor-
malization. Each vote vij is represented by a point yij in 3D space with its
Euclidean coordinates supervised to be close to a grasp center, and a feature
vector gij learned for the final grasp generation task (F-dimensions). Our ap-
proach, VoteGrasp, computes multiple votes per seed V = {vj} with j = 1, .., J.
This is because we aim to estimate more than one grasp pose for each ob-
ject. The next step is to cluster the votes by uniform sampling and finding
neighboring votes within a certain Euclidean distance. Given input votes {vi =
[yi;gi] ∈ R

3+F}M×J
i=1 , we use iterative farthest point sampling (FPS) based on

{yi} to choose a subset of K votes {vik }
K
k=1. To find neighboring votes, a ball
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query finds all votes that are within a given radius to the query vote vik . The
output are K clusters of vote sets of size K×nk× (3+F), where each group cor-
responds to a grasp center and nk is the number of votes in the neighborhood
of the vote vik .

Context Learning: Grasping in cluttered environments requires both reason-
ing about invisible object parts and potential collisions with the manipulator.
Therefore, it is important to encode the relationship of objects in the scene into
features or exploit contextual information outside of interest regions for gen-
erating collision-free grasps. However, the VoteNet architecture is designed to
detect each object individually. Indeed each cluster Ck is independently pushed
through the MLP layer to regress its object class and bounding box. Context
outside a cluster is crucial and could help make more informed grasp predic-
tions. Therefore, instead of processing each cluster independently to predict
grasps, our network computes a new feature map from all clusters to learn
the context that considers the relationships between all clusters. We find inspi-
ration from self-attention based models [119, 134, 123, 31] to add a contex-
tual module into our framework to capture the contextual information in 3D
points. By leveraging a self-attention mechanism, we can combine features from
other clusters to give more information on the object relationships. We opt for
the compact generalized non-local network (CGNL) [137] as our self-attention
module. The details of CGNL can be found in Chapter 5. CGNL allows for ex-
plicit modeling of rich interdependencies between clusters in feature space in a
fast and low-complexity computation flow. More specifically, we first aggregate
features from votes in each cluster. Votes {vi = [yi;gi] ∈ R

3+F}nk

i=1 in cluster k
are fed into a MLP network before being max-pooled to a single feature vector
Ck ∈ R

F′
. At this stage, we have a feature map C = [C1;C2; ...;CK] ∈ R

K×F′

from K clusters summarizing local context. In order to enable features to be-
come aware of their global neighborhood, we explicitly model higher-order
interactions between features in C, and it can be formulated as:

Ccontext = CGNL( max
i=1,...n

(MLP(vi))) (6.1)

The self-attention mechanism allows the features from different clusters to
interact with each other. The output is a new feature map of the same size
Ccontext = [Cct

1 ;Cct
2 ; ...;Cct

K ] ∈ R
K×F′

. The effectiveness of the context learn-
ing module is visualized in Fig. 6.3. As we can see, when context is taken into
account fewer of the grasps generated on a target object (banana) are in colli-
sion (shown in red) with neighboring objects.

Grasp Generation: Given a new feature map Ccontext = [Cct
1 ;Cct

2 ; ...;Cct
K ] ∈

R
K×F′

, a multi-layer perceptron network is applied to output a ranked list of
grasps, where each grasp G = (p,R,w,q) specified by a center p = (x, y, z) ∈
R

3, the gripper orientation R ∈ SO(3), a width of the gripper w ∈ R, and a
grasp quality measure q ∈ [0, 1]. To be specific, each Cct

k is further processed
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(a) (b) (c)

Figure 6.3: An example to illustrate the effectiveness of context learning module
on grasp generation: (a) simulated scene; (b) result without the context module;
(c) result with context module. The red grasps are not collision-free. Here we
only visualize grasps for the target object (banana).

by a multi-layer perceptron composed of 3 fully connected layers. All fully
connected layers are followed by batch normalization and ReLU except for the
last prediction layer. The prediction layer has 5 + V + 2A channels where the
output consists of 3 grasp center regression values, 1 gripper width regression
value, 1 grasp confidence regression value, V viewpoint scores, A angle scores
(in-plane rotation), and A angle residual regression values (in-plane rotation).
V and A denote the numbers of sampled viewpoints and in-plane rotations
respectively.

Loss function: We supervise the learning of modules jointly with a multi-
tasks loss:

Lvotegrasp = Lvote + Lgrasp (6.2)

The VoteGrasp loss Lvotegrasp includes a voting loss Lvote and a grasp estima-
tion loss Lgrasp. To supervise the learning of votes {vi = [yi;gi] ∈ R

3+F}M×J
i=1 ,

we apply a regression loss:

Lvote =
1
Mo

∑
i

‖yi − cgi ‖H · 1(xi) (6.3)

where Mo is the total number of seeds on the object surface, cgi is the closest
ground truth grasp center, ‖ · ‖H is the Huber norm and 1(·) is a binary function
indicating whether a seed point si belongs to an object. We define the grasp loss
function as follows:

Lgrasp = Lcenter + αLrot + βLwidth + γLscore (6.4)
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where α, β and γ are weights that scale the losses to similar scales. The grasp
loss is composed of a grasp center loss Lcenter (regression), a rotation loss
Lrot = Lviewpoint+Lin−plane, a gripper width loss Lwidth (regression), and a
grasp confidence score Lscore (regression). The loss Lviewpoint is for viewpoint
classification. Meanwhile, for the in-plane rotation estimation, we use a mix-
ture of classification and regression formulations Lin−plane = 0.1Langle−cls+
Langle−reg. For all regression loss components of Lgrasp we use the robust
L1-smooth loss [102], while for classification the standard cross entropy loss is
employed.

With the loss function in Eq. 6.2, training our network does not require
object category labels. During inference, the trained model will generate grasp
configurations without the information about object categories. This is because
our goal is to make the trained network generalized to novel objects. However,
our network is flexible and can be altered to predict categories together with
poses, widths, and quality scores of object grasps. To this end, we need to add
a semantic classification loss Lsem to Lsem Lvotegrasp as follows:

Lvotegrasp = Lvote + Lgrasp + Lsem (6.5)

6.4.1 Implementation Details

Table 6.1: Layer parameters of the PointNet++ [99] based feature learning net-
work.

layer name input layer layer params
SA1 point cloud (2048,0.025,[64,64,128])
SA2 SA1 (1024,0.05,[128,128,256])
SA3 SA2 (512,0.1,[128,128,256])
SA4 SA3 (256,0.2,[128,128,256])
FP1 SA3, SA4 [256,256]
FP2 SA2, SA3 [256,256]

Network Architecture. In our implementation, we randomly choose N=50k
points from each raw point cloud and set α=β=γ=1.0 in Eq. 6.4. We then ap-
ply the PointNet++ [99] based feature learning network, which has 4 set ab-
straction layers (SA) and 2 feature propagation layers (FP). The detailed layer
parameters are shown in Table 6.1. The FP2 outputs M = 1024 seeds with
F = 256 − dim features and 3D coordinates that will be transformed to votes.
The voting module generates J = 10 votes per seed with an MLP layer spec:
[256, 256, 259 × 10]. In the context module, we form K = 1024 clusters and
output a new feature map Ccontext ∈ K× F ′ where K = 1024, F ′ = 128. In the
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last step, 1024 grasps are generated from the new feature map. The prediction
layer has 5 + V + 2A channels where V = 120, and A = 6.

6.5 Evaluation

In this section, we first aim to determine to what extent the proposed network
learns to synthesize grasps for target objects from a synthetic training set, and
how well the trained model works in the real world. To achieve this, we in-
troduced a pipeline to rapidly generate a large set of labeled data and trained
the proposed network with the loss Lvotegrasp in Eq. 6.5. Then we evaluate
the performance of the trained model on a synthetic test set and on real-world
robotic grasping.

Furthermore, we are particularly interested to evaluate how well the learned
model generalizes to novel object categories and in what way it compares to
current state of the art. Finally, we evaluate the robustness of our approach to
clutter and explore to what extent the use of context learning can mitigate the
negative effects of occlusions.

To answer the above questions, we evaluate our method and compare with
other state-of-the-art methods on the public dataset GraspNet-1Billion [29].
This is a large-scale grasp dataset collected from cluttered scenes considering
multi-object-multi-grasp setting. The objects in GraspNet-1Billion have vary-
ing shapes, textures, sizes, materials and under different occlusion conditions.
Hence, it can be used to evaluate robustness to occlusion and the generalization
ability of our trained model (using the loss Lvotegrasp in Eq. 6.2).

6.5.1 Synthetic Data Generation

In order to train our VoteGrasp framework, a dataset is needed that contains
point clouds as well as ground-truth grasps and votes. Since labeling data man-
ually is error-prone and tedious, we develop an automated pipeline for synthetic
point cloud generation and grasp pose annotation which runs on the platforms
provided by Blender [20] and the GraspIt! [81] as shown in Fig. 6.4. The syn-
thetic point cloud generation method samples training examples using two dis-
tributions. The first distribution is a state distribution that randomizes over
object categories, object poses, and camera parameters. The second distribu-
tion is an observation distribution that models sensor operation and noise. We
sample synthetic depth images using rendering and then compute point clouds
from these images. In addition, object masks are also extracted by determin-
ing the set of pixels in the depth images with corresponding 3D points on the
surface of objects.

Regarding grasp annotation, we use a gripper model of the Franka Emika
Panda robot, but this method could be applied to other grippers as well. After
robot gripper and target object models have been loaded into a virtual 3D
workspace, we apply the eigengrasp concept [19] and collision detection system
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(a) (b)

(c) (d)

Figure 6.4: Training data generation: (a) synthetic point cloud generation; (b)
grasp pose annotation; (c) object models and grasps; (d) synthetic point cloud
and grasps. Grasps are color-coded by the quality scores. Green is the highest
and red is the lowest.

in Graspit! [81] to produce stable grasps. Then we follow [71, 29] to compute
a quantitative score of grasp quality.

This pipeline enabled us to collect a dataset of 100k synthetic scene point
sets containing 5 million ground-truth grasps of 10 objects from the YCB
benchmark set [12] in just a day. There are 90k training samples and 10k test
samples, where the training samples are generally divided into the train split
(75k samples) and the validation split (15k samples). The 10 objects are se-
lected from the YCB dataset [12] which has been commonly used in robotic
grasping research. We train the entire network (using the loss Lvotegrasp in Eq.
6.5) over 200 epochs with stochastic gradient descent using a batch size of 8
and the Adam optimizer with a learning rate of 0.001. It takes around 30 hours
for training on one Nvidia GeForce RTX 2080 Ti 10GB GPU.
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6.5.2 GraspNet-1Billion

The GraspNet-1Billion [29] consists of 97,280 RGB-D images captured from
190 cluttered scenes. The dataset provides over one billion grasp poses for 88
objects presented in the scenes. An accurate 3D mesh model of each object is
available as well. Besides, they also provide camera poses, 6D object poses,
object masks and bounding boxes for all frames. The rich annotations allow
us to generate ground truth votes and grasp configurations easily. Following
[29] we split the dataset into 100 scenes for training and 90 scenes for testing.
To evaluate model generalizability, the test sets are divided into 30 scenes with
novel objects, 30 for unseen but similar objects, and the rest for seen objects.

The proposed network is trained from scratch in an end-to-end manner.
We train the entire network (using the loss Lvotegrasp in Eq. 6.2) over 200
epochs with stochastic gradient descent using a batch size of 8 and the Adam
optimizer with a learning rate of 0.001. It takes around 80 hours for training on
one Nvidia GeForce RTX 2080 Ti 10GB GPU. For inference, the forward-pass
time of VoteGrasp for a single scene with size of 50k points is 150ms.

6.5.3 Evaluation of learning performance

We evaluate the learning performance on the synthetic test set. Average pre-
cision (AP) is used as our evaluation metric, which measures the precision of
predicted grasps. We first check whether a grasp (Gp) is true positive or not. It
is considered a true positive only if it satisties three conditions: (i) the absolute
difference of the predicted and ground-truth quality scores Δ < 0.3; (ii) distance
between predicted grasp point and ground-truth grasp point d < 0.03; (iii) it
has an IOUg of at least σ with the ground-truth grasp. The IoUg is defined as
the area of the intersection divided by the area of the union of a ground-truth
grasp and a predicted grasp (Gp) projected to (Ggt) surface:

IoUg =
area(projection(Gp)) ∩ area(Ggt)

projection(Gp)) ∪ area(Ggt)
(6.6)

area(G) is the area of the region bounded by gripper as shown in Fig. 6.5.
Table 6.2 shows learning performance of the trained model (AP) for the ten

objects from the YCB dataset as mentioned in Section 6.5.1. We observe that
we can correctly recover 30.9% and 52.7%of the original ground-truth grasps
under IOUg with threshold of σ=0.5 and σ=0.25 respectively.

6.5.4 Evaluation on GraspNet-1Billion

We follow prior work [29] and evaluate our result on the dataset using Precision@k.
This metric measures the precision of top-k ranked grasps. We first check whether
a predicted grasp (Gp) is true positive or not. It is considered a true positive only
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Figure 6.5: An example of grasp point and area of grasp area(G).

Table 6.2: Quantitative evaluation (AP) of learning performance. The table
shows the results on sythetic validation set. Note that the test set includes clut-
tered scenes.

APIoUg�0.5 APIoUg�0.25

007_tuna_fish_can 30.2 53.1
008_pudding_box 32.7 54.9
011_banana 32.6 54.3
024_bowl 33.1 55.3
025_mug 28.0 48.7
044_flat_screwdriver 30.0 52.1
051_large_clamp 30.9 52.9
055_baseball 33.4 55.7
061_foam_brick 32.2 54.0
065-h_cups 25.6 46.1
MEAN 30.9 52.7

if the grasp satisfies three conditions: (i) there is an object inside the gripper; (ii)
it is collision-free; (iii) the grasp is antipodal under a given friction coefficient
μ. The third condition is computed based on the prior works [116, 29]. We let
APμ denote the average Precision@k for k ranges from 1 to 50 given a friction
coefficient μ. We report the average of APμ with μ = {0.2, 0.4, 0.6, 0.8, 1.0},
denoted as AP.

Table 6.3 shows the performance of our approach compared to state of the
art methods. We evaluated our trained model using the implementation of the
evaluation metric shared by the authors of [29] enabling a direct comparison
with the results of related works reported in [29, 37]. From the results pre-
sented in the table, we found that all the methods overall perform better in
scenes with seen objects than scenes for novel objects. Notably, the AP score of
our method surpasses the others in all the test sets by a large margin. Even on
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Table 6.3: The table shows the results (AP) on GraspNet-1Billion test set cap-
tured by RealSense/Kinect sensors respectively. We let APμ denote the average
Precision@k for k ranges from 1 to 50 given a friction coefficient μ. We report
the average of APμ with μ = {0.2, 0.4, 0.6, 0.8, 1.0}, denoted as AP. Ours−

denotes our proposed network without context learning module.

Seen Unseen (but similar) Novel
GG-CNN [83] 15.5/16.9 13.3/15.1 5.5/7.4
Chu et al. [18] 16.0/17.6 15.4/17.4 7.6/8.0
GPD [116] 22.9/24.4 21.3/23.2 8.2/9.6
PointNetGPD [71] 26.0/27.6 22.7/24.4 9.2/10.7
GraspNet [29] 27.6/29.9 26.1/27.8 10.6/11.5
RGBD-Grasp [37] 28.0/32.1 27.2/30.4 12.3/13.1
Ours− 29.2/33.8 28.3/31.7 13.6/15.0
Ours 34.1/37.5 33.0/35.9 16.9/18.5

the scenes with novel objects, the proposed model still has an averaged 5.0%
improvement over the best baseline [37]. This implies that our model is able to
generalize and perform well on novel objects. Moreover, in order to evaluate
the robustness of algorithms towards occlusion, we perform grasp generation
under increasing levels of occlusion. To estimate the levels of occlusion, we cal-
culate the visible surface ratio of each object instance. Fig. 6.6 illustrates how
methods are influenced by different levels of occlusion. As shown, VoteGrasp
performs well even when objects are heavily occluded, while the results of the
previous approaches indicate high sensitivity to occlusion. Fig 6.7 shows exam-
ple of test scenes in GraspNet-1Billion [29] dataset. Fig. 6.8 shows qualitative
results of our predicted grasp poses.

6.5.5 Ablation Study

We validate the effectiveness of the self-attention contextual module of our net-
work by comparing it with the model that directly generates grasps without
context learning. According to results in Table 6.3, we see an improvement of
4.3%, from 31.5% to 35.8% for seen objects (averaged AP from both cam-
eras). We also observe marked improvements, from 30.0% to 34.5% with un-
seen (but similar) objects and from 14.3% to 17.7% for novel objects. It con-
firms that our method greatly benefits from the use of contextual information.
Furthermore, we evaluate the effects of the number of votes per seed J on the
performance of our model. It seems that the model tends to perform better on
seen objects with a smaller value of J, but does not generalize well for novel
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Figure 6.6: Performance of different approaches under increasing levels of oc-
clusion. Our method performs well even when objects are heavily occluded,
while the results of the previous approaches indicate high sensitivity to occlu-
sion.

(a) (b)

Figure 6.7: Example of test scenes in GraspNet-1Billion [29] dataset.

objects. We find that J = 10 votes per seed achieves the best results in scenes
with novel objects, as shown in Table 6.4.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Examples of input point clouds and predicted grasps from our pro-
posed method; (a-c-e) input point clouds in GraspNet-1Billion [29] dataset; (b-
d-f) grasps generated by VoteGrasp. Grasps are color-coded by the confidence
score. Red is the highest and blue is the lowest.
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Table 6.4: Effects of number of votes per seed to the performance of our model.
Evaluation metric is AP on GraspNet-1Billion [29].

Seen Unseen (but similar) Novel
J=1 34.8/38.0 32.6/35.5 13.2/15.6
J=5 34.5/37.8 32.8/35.6 14.5/16.9
J=10 34.1/37.5 33.0/35.9 16.9/18.5
J=15 32.4/35.1 31.3/33.7 14.0/16.6
J=20 29.1/32.2 28.0/31.1 12.2/14.0

6.5.6 Robotic Grasping Experiment

The experiments were conducted with a Franka Emika Panda robot arm with 7-
DOF, equipped with a parallel-jaw gripper as shown in Fig. 6.9. To capture the
input point clouds, we used either ASUS Xtion PRO LIVE sensor or Microsoft
Kinect sensor v2. The whole system is implemented using the ROS and MoveIt!
frameworks.

In the first test, we evaluate our netwrotk trained only on synthetic data
as described in Section 6.5.1. Thirty grasping rounds were run for each target
object. The objects are randomly placed within the workspace of the robot arm
and the camera. A grasp was considered a success if the robot could grasp and
lift the object within one attempt. As shown in Table 6.5, our model was trained
purely in simulation and works well in the real world without any extra steps.

Table 6.5: Results of real robot experiments. Our model was trained purely
in simulation. The table shows number of attempts, number of successful at-
tempts, and grasp success rate per target object.

Attempt Success Success Rate
007_tuna_fish_can 30 21 70%
008_pudding_box 30 22 73%
011_banana 30 20 67%
024_bowl 30 21 70%
025_mug 30 22 73%
044_flat_screwdriver 30 17 57%
051_large_clamp 30 20 67%
055_baseball 30 19 63%
061_foam_brick 30 23 77%
065-h_cups 30 22 73%
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Table 6.6: Results of real robot experiments. The networks were trained on
the GraspNet-1Billion dataset. The table shows number of attempts, number
of successful attempts, and grasp success rate. Methods: GPD [116], Point-
NetGPD [71], GraspNet [29], our proposed network without context learning
module (Ours−), and our method with full options (Ours).

Method Attempt Success Success Rate
GPD [116] 150 100 67%
PointNetGPD [71] 150 102 68%
GraspNet [29] 150 106 71%
Ours− 150 109 73%
VoteGrasp (Ours) 150 117 78%

In the next experiment, we evaluate the real-world grasping performance
of our method, GPD [116], PointNetGPD [71], and GraspNet [29]. For a fair
comparison, all models were trained with the GraspNet-1Billion dataset. Our
VoteGrasp framework was trained as described in Section 6.5.2. For training
GPD [116], PointNetGPD [71], and GraspNet [29], we set all hyperparameters
as in the original papers. We selected 10 known YCB objects and 15 novel
objects with shapes and sizes that fit the gripper. In each scene, we randomly
select 10-15 objects and randomly place them on the table. One hundred and
fifty grasping rounds were run for each method. We let the robot randomly
pick objects. A grasp was considered a success if the robot could grasp and lift
the object within one attempt. As shown in Table 6.6, our method outperforms
previous state-of-the-art methods with remarkable margins. The results show
that our method has a clear advantage of using the voting mechanism and the
context learning module.

The execution times of the individual components, averaged over all real
grasping rounds, are shown in Table 6.7. The numbers indicate that the pro-
posed method is almost 19 times faster on average than the previous ones.
GPD and PointNetGPD require sampling several thousand grasp candidates in
the processing stage and classifying these candidates during inference. In the
contrast, our approach directly generates grasps from votes without the grasp
sampling process. Fig. 6.9 shows the grasping experiments carried on a Franka
Emika Panda robot arm.

6.6 Conclusions

In this chapter, we introduced VoteGrasp, an end-to-end 6-DOF grasp gener-
ation network given 3D point clouds. The main contribution of this work is
to show that by taking advantage of the deep Hough voting mechanism and
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Table 6.7: Average run-time analysis of components. (ms per set of 50k points)

Processing Inference Total
GPD 6.61 2.03 8.64
PointNetGPD 5.75 2.68 8.43
GraspNet [29] 0.30 0.65 0.95
Ours− 0.30 0.10 0.40
VoteGrasp (Ours) 0.30 0.15 0.45

contextual information we are able to improve the performance of grasp gener-
ation compared with previous state-of-the-art methods. Through experiments,
we demonstrate that VoteGrasp is highly robust to clutter and occlusions. Im-
portantly, the results confirm that our proposed model is able to generalize and
perform well on novel objects. Interesting future work is to consider adding
a reachability predictor to the grasping network and discover the use of our
approach in task planning applications.



6.6. CONCLUSIONS 119

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.9: Real-world grasping experiment. (left) point clouds captured by an
ASUS Xtion PRO LIVE sensor and grasps generated by the proposed model,
red grasps are selected for execution; (right) Panda robot is grasping target
objects.





Chapter 7
Conclusions

In this dissertation we have studied a variety of directions of vision-based
perception for robot manipulation. Different components required for robot
manipulation in unstructured environments were discussed including scene re-
construction, object pose estimation, and grasp generation. In this concluding
chapter, the contributions are summarized. Then limitations of our approach
are discussed followed by a presentation of the possible societal impact this
work might have. Finally, some directions for future work are discussed.

7.1 Contributions

The principal contribution of this dissertation is the development of a num-
ber of vision-based perception methods specifically aimed towards autonomous
robotic manipulation. In this subsection we summarize the four most important
achievements of this work.

The first notable contribution of this work is the reliable camera tracking
method, proposed in Chapter 3. A key message in this contribution is that by
using only a single information channel no algorithm is completely robust to
all practical conditions. Rather, we gain robustness by adaptively integrating
cues from different channels. We demonstrated that by combining geometric,
appearance, and semantic cues in the registration process we are able to obtain
reliable camera tracking and state-of-the-art surface reconstruction.

A second important contribution of this dissertation is the proposed multi-
view object pose estimation framework in Chapter 4. We presented an ap-
proach for recognizing objects present in a scene and estimating their full pose
by means of an accurate 3D semantic reconstruction. While the main trend in
CNN-based 6D pose estimation has been to infer object’s position and orien-
tation from single views of the scene, our approach explores performing pose
estimation from multiple viewpoints, under the conjecture that combining mul-
tiple predictions can improve the robustness of the system. Rather than directly
use raw depth and color frames like previous approaches, we employ the surfel-
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splatted predicted depth and color images of our accurate reconstruction scene
model. Similarly, instead of operating on masks from segmentation, we use pre-
dicted 2D masks that are obtained by reprojecting of the current semantic map.
As a result, our object pose estimation method benefits from the use of more
accurate segmentation results as well as high-quality scene model. We demon-
strated that we can exploit multiple viewpoints around the same object and
the accurate 3D semantic reconstruction to achieve robust and stable 6D pose
estimation in the presence of heavy clutter and occlusion.

The third contribution is an end-to-end approach for object pose estima-
tion given a point cloud containing only geometric information. Our architec-
ture pools geometric features together using a self-attention mechanism and
adopts a deep Hough voting scheme for pose proposal generation. To build
robustness to occlusion, the proposed network generates candidates by casting
votes to accumulate evidence for object locations. Specifically, our model learns
higher-level features in addition to the lower-level point features by encoding
the dependency of object parts and object instances into features to boost the
performance of object pose estimation. Experimental results show our method
outperforms the state-of-the-art methods by large margins on public bench-
mark datasets.

Last but not least, this work proposed an end-to-end deep learning ap-
proach for generating 6-DOF collision-free grasps, based on 3D point cloud
observations of the scene. The core of our approach is to encode the positional
relationship between objects in the scene into features by a context learning
module. The contextual information enables our model to increase the likeli-
hood that the generated grasps are collision-free. To make the developed system
robust to occlusion, we built our approach on top of the deep Hough voting
architecture. Through experiments, we demonstrate that our method is highly
robust to clutter and occlusions. Importantly, the results confirm that our pro-
posed model is able to generalize and perform well on novel objects.

7.2 Societal and Ethical Impacts

This thesis develops algorithms that are relevant to vision-based perception for
robot manipulation. The proposed methods are essential for enabling indepen-
dent, safe and reliable operation in real-world unstructured environments. The
developed technologies can be integrated into more complex systems for appli-
cations in various fields such as manufacturing, logistics, agriculture, or health
care. These applications would create a large social impact. It is expected a
reduction in operating costs, a consistently high-quality finish for every prod-
uct produced, an improvement of working condition for employees, a reduced
waste and increased yield, and a sustainable development.

Though we are still a few years away from having a personal healthcare
companion like fictional the Baymax in the movie “Big Hero 6”, robots have
been proving very useful in the medical sector. During the current pandemic,
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we have seen robots become essential workers in the COVID-19 response. They
are deployed to deliver food and medicine to patients with COVID-19, sanitize
hospitals, as well as help with social distancing. Besides positive impacts, there
are also social and ethical challenges that arise with the development of robotic
systems such as the future of the professions [113], unemployment [118], the
use of robots in warfare [4]. Robot can not be danger by itself. It is our respon-
sibility to use technology for the right purposes.

7.3 Limitations

The proposed algorithms in this dissertation have been verified through exper-
imental validation on a number of public datasets and real robot experiments.
Despite of promising results, it is important to note that there are also some
limitations to the methods.

In Chapters 3 and 4, semantic information is a key element for improving
camera pose tracking and mapping. Deep neural network models for image
segmentation reliably producing pixel-wise semantic labels have intense com-
putational requirements. This can be only satisfied with powerful GPUs, while
mapping systems also require a high-powered GPU device to perform the pro-
cessing of enormous amounts of data. This makes it difficult to integrate the
proposed algorithm into applications with the use of an onboard perception
system, autonomous mobile robots for example. For the work presented in
this dissertation to be of practical applicability to those systems, GPU devices
should be less expensive, smaller in size, and have lower power consumption.
Such GPUs will most likely be available in the near future.

In Chapters 4 and 5, the developed object pose estimation methods are
designed to deal with known rigid objects. They can not handle deformable
objects which is important for application areas such as robotic surgery or
agriculture. In addition, the proposed algorithms tend to focus on static envi-
ronments, where the only motion is that of the camera. They might perform
poorly in dynamic scenes where objects are moving independently.

In Chapter 6, grasp configurations generated by the proposed method can
be used to pick up objects. However, manipulation is more than grasping. For
instance, picking boxes from a pallet and loading them onto another pallet
for delivery is common in logistics applications. Beyond grasp configurations,
robots also need information about the boxes and the environment from the
perception system to avoid undesirable contact with the environment and to
optimize the positions of the boxes on the new pallet. Therefore, only grasp
generation is not enough for those complex systems.

7.4 Future Research Directions

There are number of future directions we are interested in taking with the
work in this dissertation. By looking at the limitations discussed above, one
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of the most significant issues with the current approach is how to deal with
deformable objects. The object shape changes while forces are applied to the
deformable body, which results in a variety of pose and appearance. Due to
the large numbers state possibilities, estimating the pose of object or generating
grasp configurations is very challenging. One possible approach would be to
attempt to utilize multiple sensor modalities. While vision provdes global in-
formation about the shape, force and tactile sensors can cover both shape and
contact in local areas. The vision-based perception algorithms proposed in this
thesis can be a part of a more complex manipulation system for deformable
objects.

Another problem not addressed in this thesis is how to reconstruct dynamic
scenes where some object in the environment are moving. This might be pos-
sible if we extend the semantic mapping system in Chapter 4 to a dynamic
object-level SLAM framework. While maintaining a global map of the static
background, we can still track and fuse moving objects into separate maps. It
is a multi-model SLAM system where each model is tracked and fused indepen-
dently. By doing so hopefully we can model the shape of objects or track their
motion over time.

Finally, in the context of multi-view object pose estimation with limited
on-board resources, it may be interesting to investigate methods that can esti-
mate camera poses without a powerful GPU. Rather than track the motion of
camera by image registration, another possible approach would be to attempt
to estimate camera viewpoints by matching individual object pose hypotheses
across different views. We first obtain initial object candidates in single views,
and then match these object candidates across views to build a single consistent
scene. The resulting object-level correspondences could then be used to esti-
mate the relative poses between the views. Another direction for future work
on multi-view object pose estimation is to explore the next-best-view prob-
lem that maximize the object pose estimation accuracy over a given number
of views. The Deep Hough voting approaches presented in Chapters 5 and 6
might be helpful in addressing next-best-view prediction.
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