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FuzzyPSReg: Strategies of Fuzzy Cluster-based
Point Set Registration

Qianfang Liao, Da Sun, and Henrik Andreasson

Abstract—This paper studies the fuzzy cluster-based point
set registration (FuzzyPSReg). First, we propose a new metric
based on Gustafson-Kessel (GK) fuzzy clustering to measure the
alignment of two point clouds. Unlike the metric based on fuzzy
c-means (FCM) clustering in our previous work, the GK-based
metric includes orientation properties of the point clouds, thereby
providing more information for registration. We then develop the
registration quality assessment of the GK-based metric, which is
more sensitive to small misalignments than that of the FCM-
based metric. Next, by effectively combining the two metrics, we
design two FuzzyPSReg strategies with global optimization: i).
FuzzyPSReg-SS, which extends our previous work and aligns two
similar-sized point clouds with greatly improved efficiency; ii).
FuzzyPSReg-O2S, which aligns two point clouds with a relatively
large difference in size and can be used to estimate the pose of an
object in a scene. In the experiment, we use different point clouds
to test and compare the proposed method with state-of-the-art
registration approaches. The results demonstrate the advantages
and effectiveness of our method.

Index Terms—point set registration, fuzzy clusters, registration
quality assessment, 3D point clouds, object pose estimation.

I. INTRODUCTION

POINT set registration finds the optimal spatial transfor-
mation to align two sets of points (point clouds). It

is an essential technique in many areas, such as computer
vision, pattern recognition, image processing, and robotics.
This study focuses on 3D rigid point set registration, where
the transformation consists of 3D rotation and translation.

To develop an effective registration method, the first task is
to select a metric that can correctly measure the alignment of
point clouds. Various metrics have been proposed, such as the
iterative closest point (ICP) [1] and its variants [2]–[5], point
correspondence-based metrics [6]–[8], probability distribution-
based metrics [9]–[13], neural network-based metrics [14]–
[17], and fuzzy cluster-based metrics [18]. Optimizing the
metric to derive the optimal transformation is another major
task. Different optimization algorithms are available, including
local optimizations like singular value decomposition [1],
gradient-based algorithms [9], [12], expectation-maximization
(EM) [10], [13], etc., and global optimizations like stochastic
algorithms [19], [20], deterministic branch-and-bound (BnB)
algorithms [6], [18], [21], correspondence-based algorithms
[6]–[8], etc. It is non-trivial to achieve high robustness and
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efficiency for registration. To this end, many techniques have
been studied, such as data structures (e.g., kd-tree) to speed
up the nearest neighbor search [21], [22], outlier trimming
to suppress noises [2], and automatic registration quality
assessments to reduce time and computational costs [18].

Most existing registration methods aim to align two point
clouds with sufficient overlaps, meaning that the point clouds
must have similar sizes. These methods may not be suitable
for applications that need to align two point clouds with a
relatively large size difference, like aligning an object model to
a relatively large scene scan to estimate the pose of the object
in the scene. Existing studies of object pose estimation are
usually devoted to providing a good precondition/initialization,
like a coarse alignment or sufficient correspondences between
point clouds, for registration methods to complete the task. For
example, with RGB-D data, some methods [23]–[25] employ
deep learning to encode features for object detection, and some
methods [26]–[29] utilize specified features (e.g., ellipses) to
recognize objects. However, in many scenarios (e.g., underwa-
ter exploration), color cues are unreliable or even unavailable.
Then, these methods generally cannot work with depth data
alone since depth data are texture-less and miss some crucial
information for their feature extractions in contrast to color
images. Some techniques can be found that extract features
from depth-only data, which also include deep learning (e.g.,
3D ShapeNet [30], PointNet [31], and those used by neu-
ral network-based registration methods [14]–[17]) and hand-
crafted feature descriptors (e.g., Hough transform [32], spin
images [33], and fast point feature histograms (FPFH) [34]).
Deep learning is popular and has demonstrated its viability
in many perception applications. However, it requires a long
training phase, and its performance is restricted by the training
data. Handcrafted features are generally designed to work with
relatively clean range data like laser scans, and may not work
very well with the scans collected by commodity depth sensors
[35]. In addition, the 3D information provided by handcrafted
features may be relatively uninformative (many flat surfaces
or similar curves). Consequently, one may not find a sufficient
number of reliable features [35]. The above facts motivate us
to develop effective strategies to align point clouds of both
similar and different sizes, which can achieve high accuracy
at low or acceptable costs, work with depth data collected by
commodity sensors, and neither require long-time training nor
rely on handcrafted feature extractions.

This paper studies the fuzzy cluster-based point set regis-
tration (FuzzyPSReg). In our recent work [18], a registration
metric based on fuzzy c-means (FCM) clustering [36] is
designed and is minimized by a global optimization algo-
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rithm to align point clouds. Besides, the registration quality
assessment of the FCM-based metric is proposed to boost
computational efficiency. In this study, first, we design a new
metric based on a different fuzzy clustering: Gustafson-Kessel
(GK) method [37]. Unlike the FCM-based metric, the GK-
based metric includes fuzzy covariance matrices to provide
orientation information for registration. Afterward, we develop
the registration quality assessment of the GK-based metric,
which is more sensitive to small misalignments than that of the
FCM-based metric in [18]. Next, by effectively combining the
two fuzzy cluster-based metrics, we develop two FuzzyPSReg
strategies. The first strategy aligns two point clouds with simi-
lar sizes and is called FuzzyPSReg-SS (registering similar-sized
scans). FuzzyPSReg-SS integrates the GK-based metric into
the global registration method of [18] and greatly improves
computational efficiency. The second strategy aligns point
clouds with a relatively large size difference and can be used
for object pose estimation. We call it FuzzyPSReg-O2S (regis-
tering an object to a scene). FuzzyPSReg-O2S is designed as
a process of elimination that (iteratively) selects possible solu-
tions using multi-start optimization algorithms and then checks
whether any solution gives the correct alignment using the
registration quality assessments. It also employs FuzzyPSReg-
SS for orientation correction or further refinement. In addition,
it includes human-computer collaboration and provides shared
autonomy to complete tasks without putting a heavy burden
on users. The FuzzyPSReg strategies work well with the data
collected by commodity depth sensors and do not require
long-time training or handcrafted feature extractions. In the
experiments, different point clouds are employed to test and
compare the proposed method with state-of-the-art registration
techniques. The results demonstrate the accuracy, robustness,
and effectiveness of our method.

The rest of this paper is organized as follows. Section
II reviews the related work. Section III presents the fuzzy
cluster-based metrics. Section IV describes FuzzyPSReg-SS
and FuzzyPSReg-O2S. In Section V, experimental results are
given. Finally, Section VI makes some conclusions.

II. RELATED WORK

In this section, we review some relevant point set registra-
tion methods. ICP [1] is the best-known method in this area.
Starting from an initial estimate, it performs in a direct and
intuitive way that iteratively minimizes the distances between
the closest points of two point clouds until convergence.
Currently, various modifications and extensions of ICP can
be found, including revised metrics for higher accuracy and
robustness, like the generalized expression [3], the lp-norm
distance loss [4], the robust version via Welsch’s Function
[5], etc.; different approaches for better convergence, like the
EM algorithm [38], the Levenberg-Marquardt algorithm [22],
the Anderson acceleration [5], [39], etc.; and outlier handling
schemes for noise reduction, like the trimmed ICP [2]. The
limitation of these ICPs lies in the local optimizations that
will fail without a good initial estimate. To overcome this
limitation, global optimizations have been developed without
relying on initial estimates, such as genetic algorithms [19]
and BnB-based algorithms [21].

Some studies have investigated correspondence-based regis-
tration. They use feature descriptors [33], [34] to build corre-
spondences between two point clouds, and then optimize the
correspondence-based metric to obtain the correct transforma-
tion. For example, in [6], a BnB-based algorithm is designed
to globally minimizes the distances between correspondences
to align point clouds; in [7], a correspondence-based metric
is developed based on the Geman-McClure estimator, and the
graduated non-convexity is employed to achieve the global
optimization for registration; and in [8], an approach called
TEASER++ is proposed that uses a decoupling scheme to
globally minimizes the truncated least squares distances be-
tween correspondences to realize point cloud matching.

Unlike the above methods taking point distances between
two point clouds as the metric, some other methods represent
one or each of the point clouds by a certain model and then
optimize the model-based metric to achieve the alignment.
Probability distribution-based models, like the Gaussian mix-
ture model (GMM) and the normal distributions transform
(NDT), are widely used to represent point clouds in these
methods, such as the coherent point drift [10], GMM-Reg
[11], JRMPC (joint registration of multiple point clouds)
[13], the point-to-distribution NDT [9] and the distribution-
to-distribution NDT [12]. As deep learning became popular,
neural networks have emerged to describe point clouds for
registration. For example, PointNetLK [14] uses PointNet to
encode point clouds and applies a modified L&K algorithm
for registration. 3DSmoothNet [15] matches point clouds with
a siamese deep learning architecture and fully convolutional
layers. 3DRegNet [16] utilizes a neural network to identify
inliers from a set of correspondences between two scans and
then calculates the transformation for scan alignment. The
feature-metric registration (FMR) [17] trains a neural network
to extract features from point clouds, and then minimizes the
feature-metric projection error to realize registration without
correspondences. As described before, the main problem of
the deep learning-based methods is that they need long-time
training and cannot guarantee the generalization of the trained
neural network to match unseen point clouds. In our recent
work [18], different from the above methods, fuzzy clusters
are used to describe each point cloud and then form the FCM-
based metric. In addition, an efficient optimization algorithm is
designed to globally minimize the FCM-based metric for reg-
istration. Unlike ICPs, the FCM-based metric is more robust to
noise, has a broader convergence basin, and does not need to
search for the nearest neighbors. Unlike the correspondence-
based approaches, the FCM-based metric is a correspondence-
free method and saves the correspondence construction. Unlike
the probability-based metrics, the FCM-based metric does not
involve expensive calculations (exponentials, etc.), and thus its
implementation is simpler and more cost-effective. Unlike the
deep learning methods, the FCM-based metric neither needs
any training phase nor suffers from the generalization issue.

Most existing registration methods, including ours in [18],
are designed to register similar-sized point clouds and are
generally not suitable for aligning point clouds with a rel-
atively large difference in size. For this problem, similar to
the object pose estimation methods mentioned before, some
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learned or handcrafted feature-based registration approaches
may be applied when the features provide good preconditions.
Nevertheless, as described before, the learned or handcrafted
features may not provide a good precondition for every point
cloud pair. Therefore, alternative strategies are desired.

III. FUZZY CLUSTER-BASED REGISTRATION METRICS

Fuzzy clusters are effective and robust to model various
systems and data, including 3D scans for registration [18].
Given two 3D point clouds/range scans: One is the fixed set
denoted as PF = {pFi, i = 1, · · · , NPF

} and the other is
the moving set denoted as PM =

{
pMj , j = 1, · · · , NPM

}
,

where pFi,pMj ∈ R3 are point coordinates, and NPF
and

NPM
are point numbers, a rigid point set registration must

find the 3D transformation λ = (r, t) ∈ R6, where r, t ∈ R3

are rotation and translation parameters, respectively, such
that the transformed moving set, denoted by T (λ,PM ) ={
T (λ,pMj), j = 1, · · · , NPM

}
, can be correctly aligned with

PF . The transformed point T (λ,pMj) is derived by:

T (λ,pMj) = R(r) · pMj + t (1)

where R(r) ∈ SO(3) is the rotation matrix. In this study, r
is expressed by the axis-angle representation, where the axis
is r/‖r‖ and the angle is ‖r‖. In this section, first, we briefly
introduce the FCM-based registration metric developed in our
previous work [18]. Afterward, we propose a new registration
metric based on GK clustering [37]. Finally, we present a
theoretical discussion on the two fuzzy cluster-based metrics.

A. The FCM-based registration metric

Given a 3D point set P =
{
pj ∈ R3, j = 1, · · · , NP

}
,

we suppose that it is described by NC fuzzy clusters,
whose centers/prototypes/centroids are denoted as C ={
ci ∈ R3, i = 1, · · · , NC

}
. FCM clustering [36] locates C by

iteratively minimizing the following objective function:

min
C

{
Jfcm(P,C) =

∑NP

j=1

∑NC

i=1
µci(pj)

m ·
∥∥pj − ci∥∥2}

(2)
where m > 1 controls the fuzziness of fuzzy clusters: A
greater m leads to a fuzzier partition, and a general choice
is m = 2; µci(pj) denotes the fuzzy membership of pj in the
fuzzy cluster centered at ci, which satisfies 0 ≤ µci(pj) ≤ 1

and
∑NC

i=1 µci(pj) = 1, and is calculated by:

µci(pj) =


1, if

∥∥pj − ci∥∥ = 0

0, if ∃k 6=i

∥∥pj − ck∥∥ = 0
1∑NC

k=1

(
‖pj−ci‖2
‖pj−ck‖2

) 1
m−1

, else

(3)
In our previous work [18], based on the fuzzy cluster centers

of PF and PM derived by FCM clustering, denoted as CF =
{cFi, i = 1, · · · , NCF

} and CM = {cMj , j = 1, · · · , NCM
},

respectively, a metric is designed to measure the alignment
of PF and PM using the following logic: When PF and
T (λ,PM ) are aligned, in their overlapping region, the points
or fuzzy cluster centers of T (λ,PM ) describe the same spatial

properties/surfaces as the points of PF do. As a result, the
points or fuzzy cluster centers of T (λ,PM ) in the overlapping
region can be regarded as the elements of PF ’s fuzzy clusters,
and thus their associated FCM clustering objective function
with respect to CF in the form of (2) is minimized. The FCM-
based registration metric is given in (4), minimizing which can
derive the transformation λ to align PF and PM [18]:

min
λ

{
Jfcm(λ,C′M ,CF ) =

∑NC′
M

j=1
Jfcm(λ, c′Mj ,CF ) =∑NC′

M

j=1

∑NCF

i=1
µcFi

(T (λ, c′Mj))
m ·
∥∥T (λ, c′Mj)− cFi

∥∥2}
(4)

where µcFi
(T (λ, c′Mj)) denotes the fuzzy membership grade

of T (λ, c′Mj) in the fuzzy cluster centered at cFi; C′M ={
c′Mj , j = 1, · · · , NC′M

}
⊆ CM is selected in the following

way [18]: When PM is fully overlapped by PF , C′M = CM .
When PM is partially overlapped by PF , we estimate the
non-overlapping portion of PM to have a trimming ratio
ξ ∈ (0, 1) and NC′M

= NCM
·(1−ξ); then, at each calculation

of a new transformation, C′M is composed of NC′M
ele-

ments in CM having the smallest per-element distance losses
Jfcm(λ, cMj ,CF ), where λ is the current transformation.

Another contribution of [18] is a registration quality assess-
ment: The two point clouds can be considered as aligned or
coarsely aligned if the following condition is satisfied:

ρfcm(λ) =
Jfcm(λ,C′M ,CF )

Jfcm(PF ,CF )
< 1 (5)

where Jfcm(λ,C′M ,CF ) and Jfcm(PF ,CF ) are average per-
element distance losses calculated by:{

Jfcm(λ,C′M ,CF ) = Jfcm(λ,C′M ,CF )/NC′M

Jfcm(PF ,CF ) = Jfcm(PF ,CF )/NPF

which indicate the disposition and dispersion of the elements
around the fuzzy cluster centers CF [18]. The ratio ρfcm(λ) <
1 means that the disposition and dispersion of T (λ,C′M )
around CF are similar to that of the points of PF around CF

[18]. Consequently, the two point clouds, PF and T (λ,PM ),
can be regarded as aligned or at least coarsely aligned.

Remark 1. When the number of fuzzy clusters, NCF
, is

close to or equal to the number of points, NPF
, the value of

Jfcm(PF ,CF ) will be close to or equal to 0. In this case,
Jfcm(PF ,CF ) cannot correctly describe the disposition and
dispersion of the points of PF around CF since there are
not sufficient points in each fuzzy cluster. Hence, the quality
assessment (5) should be applied when NCF

is much smaller
than NPF

[18], such that Jfcm(PF ,CF ) is valid.
The FCM-based metric utilizes a weighted sum of Euclidean

distances between the two point sets’ fuzzy cluster centers to
measure the alignment, where one-to-all correspondences are
employed. Next, we design a new fuzzy cluster-based metric
using Mahalanobis distances for the measurement.

B. The GK-based registration metric

In this section, we present a new registration metric based
on GK fuzzy clustering [37]. Unlike FCM clustering, GK
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clustering uses adaptive distance norm. For a 3D point set P,
GK clustering locates NC fuzzy cluster centers C by iteratively
minimizing the following objective function:

min
C

{
Jgk(P,C) =

∑NP

j=1

∑NC

i=1
µci(pj)

m ·
∥∥pj − ci∥∥2Ai

}
(6)

where m > 1;
∥∥pj − ci∥∥2Ai

= (pj − ci)TAi(pj − ci) is the
Mahalanobis distance between pj and ci; Ai, as an element
of A =

{
Ai ∈ R3×3, i = 1, · · · , NC

}
, denotes the norm-

inducing matrix of the ith fuzzy cluster and is calculated by:

Ai = det(Ki)
1/3 ·K−1i (7)

where Ki ∈ R3×3 is the fuzzy covariance matrix of the ith
fuzzy cluster, and is calculated by:

Ki =

∑NP

j=1 µci(pj)
m · (pj − ci) · (pj − ci)T∑NP

j=1 µci(pj)
m

(8)

The objective function of GK clustering in (6) shares the
same form of the objective function of FCM clustering in (2),
except that Mahalanobis instead of Euclidean distances are
used. Also, the fuzzy membership grades µci(pj) in (6) and
(8) are calculated by (3) with each Euclidean distance ‖·‖
replaced by the corresponding Mahalanobis distance ‖·‖Ai

.
Using the similar logic of the FCM-based metric (4), we
develop the following GK-based registration metric:

min
λ

Jgk(λ,P′M ,CF ) =

NP ′
M∑

j=1

Jgk(λ,p′Mj ,CF ) =

NP ′
M∑

j=1

NCF∑
i=1

µcFi
(T (λ,p′Mj))

m ·
∥∥T (λ,p′Mj)− cFi

∥∥2
AFi


(9)

where AFi ∈ AF is the norm-inducing matrix of the ith
fuzzy cluster of PF ; µcFi

(T (λ,p′Mj)) is calculated in the way
of (3) with each ‖·‖ replaced by the corresponding ‖·‖AFi

;
P′M =

{
p′Mj , j = 1, · · · , NP ′M

}
⊆ PM is determined in a

way similar to that of selecting C′M described in Section III.A:
When PM is fully overlapped by PF , P′M = PM . When PM

is partially overlapped by PF , we estimate a trimming ratio
ξ ∈ (0, 1) for PM to have NP ′M

= NPM
·(1−ξ); then, at each

calculation of a new transformation, P′M is composed of NP ′M
points in PM having the smallest per-element distance losses
Jgk(λ,pMj ,CF ), where λ is the current transformation.

The GK-based registration metric in (9) is a weighted
sum of adaptive distances between PF ’s fuzzy cluster centers
and PM ’s points. Similar to the FCM-based metric (4), it
utilizes one-to-all correspondences with fuzzy membership
grades as the weights. Also, we can have a registration quality
assessment for the GK-based metric (9). Similar to (5), a ratio,
denoted by ρgk(λ), is calculated as follows:

ρgk(λ) =
Jgk(λ,P′M ,CF )

Jgk(PF ,CF )
=
Jgk(λ,P′M ,CF )/NP ′M

Jgk(PF ,CF )/NPF

(10)

An important difference between ρgk(λ) of (10) and
ρfcm(λ) of (5) is that in (5), the numerator Jfcm(λ,C′M ,CF )

is an average center-to-center distance loss, and the denom-
inator Jfcm(PF ,CF ) is an average point-to-center distance
loss; while in (10), both of the numerator and denominator
are average point-to-center distance losses. Due to this fact,
the registration quality assessment using ρgk(λ) is different
from (5): PF and T (λ,PM ), can be regarded as aligned if:

ρgk(λ) ≤ 1 + ∆J (11)

where ∆J > 0 is a small number. The reason is as follows:
When PF and PM are aligned by λ, their points in the overlap-
ping region describe the same surfaces/spatial properties, and
thus the points of T (λ,P′M ) and PF are very similar in terms
of the disposition and dispersion around CF . Consequently,
the ratio of their average per-element distance losses with
respect to CF , ρgk(λ), is around 1 to have ρgk(λ) ≤ 1 + ∆J .
On the other hand, fuzzy cluster centers of a point cloud are
generally located at the representative positions, and thus each
T (λ, c′Mj) is generally near a cFi when the two point clouds
are aligned [18]. As a result, the average per-element distance
loss of T (λ,C′M ) with respect to CF is smaller than that of
the points pFi with respect to CF to have ρfcm(λ) < 1.

Remark 2. As stated in [18], the FCM-based registration
quality assessment (5) may not work in the following cases:
i). NC′M

is too small; ii). the trimming ratio ξ is chosen to be
too large; and iii). the two scans have a large size difference
or a small overlap ratio. Similarly, the GK-based registration
quality assessment (11) may be affected in cases ii) and iii).
To deal with these issues, some choices and assumptions are
made in [18]: For case i), a generally safe choice for 3D range
scan registration is given as NC′M

≥ 50; for case ii), ξ can be
manually determined to be an appropriate value; and for case
iii), an assumption is made that the overlap of the two scans
is at least 50%. However, the assumption for case iii) may
not hold in some applications. For example, when aligning
an object model with a relatively large scene scan for object
pose estimation, the scene scan can be several times greater
than the object model. In this situation, when the two point
clouds are aligned, (5) or (11) will be satisfied; but when a
transformation λ satisfies (5) or (11), the two point clouds may
not be correctly aligned. In Section IV, a strategy is developed
to resolve this problem.

C. Discussion of the two fuzzy cluster-based metrics

In this section, we present the mathematical analysis and
theoretical comparison of the two fuzzy cluster-based metrics.

Mathematical analysis of the metrics. The following two
lemmas from [40] will be used in the analysis:

Lemma 1: Given a set of real numbers di ≥ 0 for i =
1, · · · , N − 1, and a variable dN ≥ 0, then,

J =

(∑N−1

i=1
d−vi + d−vN

)−1/v
, v ≥ 1 (12)

decreases as dN decreases.
Lemma 2: If di ≥ 0 for i = 1, · · · , N , and v ≥ 1, then,

min
i∈{1,··· ,N}

di
N1/v

≤
(∑N

i=1
d−vi

)−1/v
≤ min

i∈{1,··· ,N}
di (13)
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By submitting the fuzzy membership calculation (3) to (4),
we can rewrite the FCM-based metric in (4) to be:

Jfcm(λ,C′M ,CF ) =
∑NC′

M

j=1
Jfcm(λ, c′Mj ,CF )

=
∑NC′

M

j=1

(∑NCF

i=1

(
‖T (λ, c′Mj)− cFi‖2

) 1
1−m

)1−m

(14)
By denoting D2

ji(λ) = ‖T (λ, c′Mj) − cFi‖2 and Jfcmj =
Jfcm(λ, c′Mj ,CF ), we have the following equation from (14):

Jfcmj =

(∑NCF

i=1
D2

ji(λ)
1

1−m

)1−m

(15)

By setting v = 1/(m − 1), according to Lemmas 1 and 2,
we can know that Jfcmj decreases as D2

ji(λ) decreases, and
satisfies the following when m ∈ (1, 2]:

min
i∈{1,··· ,NCF

}

D2
ji(λ)

Nm−1
CF

≤ Jfcmj ≤ min
i∈{1,··· ,NCF

}
D2

ji(λ) (16)

From (16), if m → 1+, then Jfcmj → min
i∈{1,··· ,NCF

}
D2

ji(λ).

Thus, the per-element distance loss Jfcmj can be consid-
ered as an approximation of the minimum of D2

ji(λ), i =
1, · · · , NCF

. Then, the FCM-based metric, Jfcm(λ,C′M ,CF ),
can be considered as an alternative measure of J(λ) in
(17) to calculate λ for point set registration and satisfies
J(λ)/Nm−1

CF
≤ Jfcm(λ,C′M ,CF ) ≤ J(λ).

J(λ) =
∑NC′

M

j=1

(
min

i∈{1,··· ,NCF
}
D2

ji(λ)

)
(17)

Note that when the trimming ratio ξ is zero that C′M = CM ,
J(λ) in (17) is the standard ICP metric for CF and CM ; and
when ξ > 0 that C′M is a subset of CM , J(λ) in (17) is the
metric of the trimmed ICP [2] for CF and CM .

Similarly, we can rewrite the GK-based metric in (9) to be:

Jgk(λ,P′M ,CF ) =
∑NP ′

M

j=1
Jgk(λ,p′Mj ,CF )

=
∑NP ′

M

j=1

(∑NCF

i=1

(
‖T (λ,p′Mj)− cFi‖2AFi

) 1
1−m

)1−m

(18)
By denoting D2

jAi(λ) = ‖T (λ,p′Mj)− cFi‖2AFi
and Jgkj =

Jgk(λ,p′Mj ,CF ), we have the following equation from (18):

Jgkj =

(∑NCF

i=1
D2

jAi(λ)
1

1−m

)1−m

(19)

According to Lemmas 1 and 2, Jgkj decreases as D2
jAi(λ)

decreases, and satisfies the following when m ∈ (1, 2]:

min
i∈{1,··· ,NCF

}

D2
jAi(λ)

Nm−1
CF

≤ Jgkj ≤ min
i∈{1,··· ,NCF

}
D2

jAi(λ) (20)

Then, the GK-based metric, Jgk(λ,P′M ,CF ), can be consid-
ered as an alternative measure of JAF

(λ) in (21) to calculate
λ for point set registration and satisfies JAF

(λ)/Nm−1
CF

≤
Jgk(λ,P′M ,CF ) ≤ JAF

(λ).

JAF
(λ) =

∑NP ′
M

j=1

(
min

i∈{1,··· ,NCF
}
D2

jAi(λ)

)
(21)

Fig. 1. FCM and GK clustering for the bunny model in (a). Their fuzzy cluster
numbers are equal, 50. (b) and (c) show the fuzzy cluster centers (marked by
blue “∗”) derived by the two clustering algorithms, together with the points
of the model (in red) whose largest fuzzy membership grades are greater than
0.5. These points can reflect the shapes and main ranges of the clusters.

Different from the point-to-point ICP metric in (17), JAF
(λ)

in (21) can be regarded as the point-to-plane ICP metric [3]
including the orientation information of the fixed set.

Compared with the ICP metrics, the FCM- and GK-based
metrics have the following advantages: ii). They have regis-
tration quality assessments; ii). they are differentiable such
that the gradient-based algorithms (e.g., quasi-Newton) can
be applied for optimization; and iii). they are weighted sums
of distances using one-to-all correspondence, which avoid
the nearest correspondence search, smooth out the function
landscape, and widen the convergence basin. Consequently,
the two fuzzy cluster-based metrics are more robust to a poor
initialization in local optimization, and can converge to the
optima with fewer steps in global optimization.

Comparison of the metrics. The main difference between
the two fuzzy clustering algorithms is that FCM imposes a
spherical shape on the clusters regardless of the actual point
distributions, while GK using adaptive distances can detect
clusters of different shapes and orientations, and thus can
describe the spatial/geometric properties of a range scan more
accurately. In Fig. 1, the Stanford bunny [41] is taken as an
example to show the results of the two fuzzy clustering algo-
rithms. With the same fuzzy cluster numbers, GK clustering
describes the shape of the bunny better than FCM does.

The above difference leads to different usages of the two
fuzzy cluster-based metrics. For the FCM-based metric, its
registration accuracy is related to the number of fuzzy clusters.
When the point clouds are described by dozens of fuzzy
clusters, the FCM-based metric usually only gives a coarse
alignment (this is a trade-off issue and will be described
in the next section). From (14), the FCM-based metric is
composed of Euclidean distances between CF and T (λ,CM ).
Thus, it can directly take a relatively large number (e.g.,
thousands) of points of each point cloud as the fuzzy cluster
centers to perform a fine registration and achieve a precise
alignment [18]. For the GK-based metric, it cannot directly
take the points of PF as the fuzzy cluster centers due to the
unknown norm-inducing matrix of each point. Therefore, when
using the GK-based metric (9) for registration, one needs to
apply GK clustering to PF to derive the fuzzy cluster centers
and the norm-inducing matrices. However, with the norm-
inducing matrices, the GK-based metric can provide an exact
alignment when PF is described by only dozens of fuzzy
clusters. In addition, the time costs can be much lower than
that of the fine registration of the FCM-based metric. Note that
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Fig. 2. Registration quality assessments of the two fuzzy cluster-based
metrics. (a). Two aligned bunny point clouds, where PF (red) fully overlaps
PM (blue). (b). A misalignment is produced by moving PM along the z-
axis. (c). ρfcm(λ) and ρgk(λ) of the misaligned point clouds in (b) under
different translations along the z-axis, where the number of fuzzy clusters
for a point cloud is 50. From (c), when the translation is greater than 0.032,
ρfcm(λ) > 1; and when the translation is greater than 0.006, ρgk(λ) > 1.
Thus, ρgk(λ) is more sensitive to small misalignments than ρfcm(λ) .

the accuracy of the GK-based metric using dozens of fuzzy
clusters to describe PF may not be as high as that of the FCM-
based metric using thousands of points as the fuzzy cluster
centers of PF and PM . Hence, for the applications needing
sequential registration, such as 3D model reconstruction from
a batch of partial scans, the GK-based metric may lead to
a greater cumulative error than the FCM-based metric does.
Nevertheless, this study focuses on pair-wise registration, and
the cumulative error handling is not considered here.

Besides, since FCM clustering imposes a spherical shape
on the clusters, the average distance losses Jfcm(PF ,CF )
utilizes equal weights to describe the point dispersion in all
directions around CF . By contrast, the average distance losses
Jgk(PF ,CF ) of GK clustering gives different weights to the
point dispersion in different directions around CF using norm-
inducing matrices (fuzzy covariances). In a surface scan, the
point dispersion generally varies greatly in different directions.
Taking a plane scan as an example, the points are unlikely
to be dispersed in the normal direction of this plane. In this
case, FCM still uses spheres to describe the plane, whereas
GK can detect the plane shape since the eigenvalue of the
fuzzy covariance matrix in the normal direction will be much
smaller than that in other directions. As a result, when aligning
two plane scans, compared with the FCM-based metric, the
GK-based metric will produce a much greater distance loss
for a small misalignment in the normal directions of the two
planes. Therefore, the GK-based quality assessment in (11) can
be more sensitive to small errors than the FCM-based quality
assessment in (5). An example is shown in Fig. 2.

On the other hand, compared with the FCM-based metric,
the GK-based metric has some shortages. First, the time cost
of GK fuzzy clustering is generally higher than that of FCM
clustering due to the calculation of norm-inducing matrices.
Second, the convergence basin of the GK-based metric may
not be as broad as that of the FCM-based metric, which makes
a good initialization more important to the GK-based metric in
local optimization. Nevertheless, the GK-based metric has a
broader convergence basin when compared with some other
state-of-the-art methods, such as the fast and robust ICP
(FRICP) [5], NDT [12], and JRMPC [13]. The above will
be demonstrated by the tests in Section V.A.

IV. FUZZYPSREG STRATEGIES

In this section, the two fuzzy cluster-based metrics in (4)
and (9) are effectively combined to develop FuzzyPSReg-SS
and FuzzyPSReg-O2S. FuzzyPSReg-SS improves the FCM-
based registration method of our previous work [18] to align
two similar-sized point clouds, and FuzzyPSReg-O2S aligns
two point clouds with a relatively large difference in size.

A. FuzzyPSReg-SS

Before presenting FuzzyPSReg-SS, we introduce a trade-
off issue existing in the registration using the FCM-based
metric (4): When the fuzzy cluster numbers of PF and PM ,
NCF

and NCM
, are relatively small (e.g., less than 100), the

registration takes low time and computational costs, but only
coarsely aligns the point clouds; when NCF

and NCM
are

relatively large (e.g., thousands), the registration can achieve
high accuracy but is computationally expensive. Also, we
briefly introduce our previous registration method in [18]. It is
a coarse-to-fine method using the FCM-based metric (4) that
can globally align two point clouds with sufficient overlaps.
The method includes the following three steps:

Step i). Fuzzy clustering. FCM clustering is applied sepa-
rately to PF and PM to derive CF and CM to compose the
FCM-based metric (4), where NCF

and NCM
are equal and

chosen to be relatively small numbers (e.g., less than 100).
Step ii). Coarse registration. A deterministic optimization

algorithm, combining BnB-based global search and gradient-
based local convergence, is applied to the FCM-based metric to
derive the global minimum. It utilizes the registration quality
assessment (5) to evaluate the quality of the solution. The
minimum gives a coarse alignment of PF and PM since the
point clouds are described by small numbers of fuzzy clusters.

Step iii). Fine registration. A relatively large number (e.g.,
more than 1000) of points of each point cloud are directly
taken as the fuzzy cluster centers to update the FCM-based
metric, where NCF

and NCM
do not need to be equal. Then,

the gradient-based algorithm is applied to the updated metric
to refine the coarse alignment and give a precise result.

The above coarse-to-fine method effectively addresses the
trade-off issue of the FCM-based metric: The coarse regis-
tration roughly aligns the two point clouds at a low cost,
posing a good initialization for the fine registration. Then,
the fine registration using local optimization can achieve the
exact alignment at an acceptable cost. In addition, in the
coarse registration, NCF

and NCM
are usually much smaller

than NPF
and NPM

of the two point clouds. Consequently,
the registration quality assessment (5) is valid according to
Remark 1. By using ρfcm(λ) of (5) to detect whether a
good solution is obtained during the global optimization, the
computational efficiency can be greatly improved [18].

To further improve the efficiency, we extend our previous
work [18] to develop FuzzyPSReg-SS that combines the FCM-
and the GK-based metrics to align point clouds regardless of
the initialization. As presented in Algorithm 1, line 1 performs
the same FCM clustering described in Step i) above; lines 2-
4 perform the same coarse registration described in Step ii);
while lines 5 and 6 carry out a different fine registration from
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Algorithm 1: FuzzyPSReg-SS
Input: PF , PM , NCF

, NCM
, and an estimated

trimming ratio ξ, where NCF
= NCM

.
Output: λ∗ = (r∗, t∗) moving PM to align with PF .

1 Apply FCM clustering separately to PF and PM to
derive NCF

fuzzy cluster centers CF and NCM
fuzzy

cluster centers CM , as well as the average distance
loss of PF , Jfcm(PF ,CF ).

2 Taking zero as the initial estimate, apply the
gradient-based algorithm to the FCM-based metric
Jfcm(λ,C′M ,CF ), where NC′M

= NCM
· (1− ξ), to

obtain a transformation and let it be λ∗.
3 if ρfcm(λ∗) > 1 then
4 Apply the deterministic global optimization

algorithm developed in [18] to Jfcm(λ,C′M ,CF )
to obtain a new transformation and let it be λ∗.

5 Taking CF as the initialization, apply GK clustering to
PF to derive new fuzzy cluster centers CF and the
associated AFi, i = 1, · · · , NCF

.
6 Taking λ∗ as the initial estimate, apply the

gradient-based algorithm to the GK-based metric
Jgk(λ,P′M ,CF ), where NP ′M

= NPM
· (1− ξ), to

obtain a refined transformation and let it be λ∗.

Step iii): GK clustering is applied to the fixed set to derive
new fuzzy clustering results; then, the GK-based metric (9)
replaces the FCM-based metric (4) in the local optimization
to refine the coarse registration result.

Discussion of FuzzyPSReg-SS. As stated in Section III.C,
different from the FCM-based metric, the GK-based metric can
give an exact alignment when the fixed set PF is described
by only dozens of fuzzy clusters. In addition, the time and
computational costs of the registration using the GK-based
metric are much lower than that of the fine registration of the
FCM-based metric. Therefore, the efficiency of FuzzyPSReg-
SS is improved when compared with our previous method in
[18]. Besides, in line 5 of Algorithm 1, the GK clustering
applied to PF takes the fuzzy cluster centers derived by
FCM clustering as the initialization. Unlike the general GK
clustering procedure that randomly initializes the fuzzy cluster
centers, taking FCM clustering results as the initialization
allows the objective function of GK clustering (6) to converge
to the minimum in fewer iterations. Consequently, the online
calculating costs of FuzzyPSReg-SS are further reduced.

On the other hand, same as [18], FuzzyPSReg-SS needs the
two point clouds to have similar sizes and a sufficient overlap.
In the next section, we present FuzzyPSReg-O2S to align two
point clouds with a relatively large difference in size.

B. FuzzyPSReg-O2S

Some applications need to align a small point cloud with
a relatively large point cloud. For example, to estimate the
pose of an object in a scene, the object model, denoted as
Po, needs to be aligned with the scene scan, denoted as
Ps. In these applications, FuzzyPSReg-SS, as well as many
existing registration methods, may not directly work for the

Fig. 3. Two bounding boxes of a point cloud. The side length of the basic
bounding box (in cyan) along the i-axis (i = x, y, z), denoted as li, is defined
as the distance between the maximum and minimum values of this point cloud
on the i-axis. The enlarged bounding box (in magenta) is a concentric cuboid
of the basic bounding box, and its side length along the i-axis, denoted as l′i,
is calculated by l′i = li + 2×∆li, where ∆li = 0.1× li.

alignment. Besides, the scene is usually cluttered with other
items, producing outliers in the scene scan. In addition, Ps

is usually taken by a depth sensor and only shows the view
from the sensor’s angle, meaning that Ps is a partial scan of
the scene that only contains a part of the object’s surface. On
the other hand, Po can be a full model of the object derived
from the CAD model or reconstructed from a batch of partial
scans of the object. Therefore, besides the size difference, it
is common that Ps and Po partially overlap each other.

In this section, we introduce FuzzyPSReg-O2S that com-
bines the two fuzzy cluster-based metrics to align the full
model of an object, Po, with a partial scan of the scene contain-
ing this object, Ps. We first define the following registration
quality assessment extended from (11):

Extended registration quality assessment: Define two
numbers ∆J1 and ∆J2, where 0 < ∆J1 < ∆J2, and define a
variable qgk(λ) = {−1, 0, 1} to indicate different assessment
results. Given λ for PF and PM , qgk(λ) is derived by:

qgk(λ) =


−1, if ρgk(λ) > 1 + ∆J2

0, if 1 + ∆J1 < ρgk(λ) ≤ 1 + ∆J2

1, else

(22)

where ρgk(λ) is calculated by (10); ∆J1 is a small value, and
∆J2 is a relatively greater number. The usage of this extended
quality assessment will be explained later.

In addition, we define the basic and enlarged bounding
boxes for a point cloud, which will be used by FuzzyPSReg-
O2S. The definition is shown in Fig. 3.

Now we present FuzzyPSReg-O2S. To align Po and Ps, we
need to resolve a global optimization problem with multiple
local optima. For this issue, FuzzyPSReg-O2S is designed as
a process of elimination running in a repeatable coarse-to-
fine fashion. Algorithm 2 and the following steps describe the
process. Further explanations are in the discussion given later.

Step 1. Fuzzy clustering of the object model. This step,
relating to lines 1-2 of Algorithm 2, is used to obtain both
FCM and GK clustering results of the object model Po. A
relatively small number (e.g., in [50, 100]) is chosen as the
fuzzy cluster number NCo

for Po. Afterward, FCM clustering
is applied to Po to derive NCo

fuzzy cluster centers, denoted
as C(fcm)

o =
{
c
(fcm)
oi , i = 1, · · · , NCo

}
, and the average dis-

tance loss Jfcm(Po,C(fcm)
o ). Next, GK clustering is applied
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Algorithm 2: FuzzyPSReg-O2S
Input: The object model Po, the scene scan Ps, the

number of fuzzy clusters for Po, NCo
, and the

number of fuzzy clusters for Ps, N
C

(1)
F

.
Output: λ∗ = (r∗, t∗) moving Po to align with Ps.

1 Apply FCM clustering to Po to obtain NCo
fuzzy

cluster centers C(fcm)
o and Jfcm(Po,C(fcm)

o ).
2 Apply GK clustering to Po to obtain NCo

fuzzy cluster
centers C(gk)

o , Ao, and Jgk(Po,C(gk)
o ).

3 while True do
4 if the number of points in Ps is below NPs

then
5 Re-scan the scene to collect a new Ps.

6 Set P(1)
F = Ps, P(1)

M = Po, and C(1)
M = C(fcm)

o .
7 Apply FCM clustering to P(1)

F to obtain N
C

(1)
F

fuzzy cluster centers C(1)
F and Jfcm(P(1)

F ,C(1)
F ).

8 Apply the multi-start optimization to the metric
Jfcm(λ,C′(1)M ,C(1)

F ) with the trimming ratio ξ1
(ξ1 = 0.4) to derive λ(1) and the segment Pλ(1) .

9 if ρfcm(λ(1)) > 1 then
10 Remove Pλ(1) from Ps.
11 else
12 Set P(2)

F = Po, P(2)
M = T (λ

(1)
inv,Pλ(1)),

C(2)
F = C(gk)

o , A(2)
F = Ao, and

Jgk(P(2)
F ,C(2)

F ) = Jgk(Po,C(gk)
o ).

13 Apply the multi-start local optimization to the
metric Jgk(λ,P′(2)M ,C(2)

F ) with the trimming
ratio ξ2 (ξ2 = 0) to derive λ(2).

14 if qgk(λ(2)) = 1 then
15 Calculate λ∗ by (24), and break.

16 if qgk(λ(2)) = −1 then
17 Remove Pλ(1) from Ps.
18 else
19 The user is involved to check the result.
20 if λ(1) gives a wrong position then
21 Remove Pλ(1) from Ps.
22 else
23 Calculate λ(1,2) by (24), and derive the

segment Pλ(1,2) . Then, set P(3)
F = Po

and P(3)
M = T (λ

(1,2)
inv ,Pλ(1,2)), and

apply FuzzyPSReg-SS to P(3)
F and

P(3)
M with the user-defined ξ3 to derive
λ(3). Finally, calculate λ∗ and break.

to Po to derive another group of NCo
fuzzy cluster centers,

denoted as C(gk)
o =

{
c
(gk)
oi , i = 1, · · · , NCo

}
, and the norm-

inducing matrices Ao = {Aoi, i = 1, · · · , NCo
}, as well as

the average distance loss Jgk(Po,C(gk)
o ).

Step 2. Coarse registration. This step, relating to lines 3-10
of Algorithm 2, is used to find a rough pose of the object in the
scene. If the number of points in the scene scan Ps is smaller
than a predefined threshold NPs

, we will collect a new scene

scan as Ps. In this step, a registration is performed using the
FCM-based metric (4), where the fixed and moving sets, as
well as their fuzzy cluster centers, are denoted as P(1)

F , P(1)
M ,

C(1)
F , and C(1)

M , respectively. We let P(1)
F = Ps and P(1)

M = Po.
For P(1)

F , FCM clustering is applied online to derive C(1)
F =

{c(1)Fi , i = 1, · · · , N
C

(1)
F

} and Jfcm(P(1)
F ,C(1)

F ), where N
C

(1)
F

is selected as a relatively small number (e.g., in [50, 100]). For
P(1)
M , we have C(1)

M = C(fcm)
o from Step 1. Since P(1)

F and P(1)
M

partially overlap each other as described before, trimming is
applied. The trimming ratio, denoted as ξ1, is selected as ξ1 =
0.4 in this study. Then we have the FCM-based registration
metric Jfcm(λ,C′(1)M ,C(1)

F ), and apply the following multi-
start optimization to the metric:
i). Initialize Nλ transformations λi = (ri, ti), i = 1, · · · , Nλ,

and calculate the distance loss Jfcm(λi,C′(1)M ,C(1)
F ) of

each λi. These λi can be randomly generated as follows:
The rotation ri is selected in [−π, π]3 (the entire 3D
rotation space), and the translation ti is selected according
to the basic bounding box of P(1)

F .
ii). From the Nλ initial λi, pick out Nλf

transformations
with the lowest distance losses. Then, refine each of them
by applying the gradient-based optimization algorithm
to the metric Jfcm(λ,C′(1)M ,C(1)

F ) to have Nλf
refined

transformations and their distance losses.
iii). Denote the refined transformation with the lowest distance

loss as λ(1) = (r(1), t(1)), and denote the part of Ps lying
in the basic bounding box of T (λ(1),Po) as Pλ(1) . If λ(1)

satisfies (5) that ρfcm(λ(1)) < 1, then Step 2 is complete.
Otherwise, remove Pλ(1) from Ps to repeat Step 2.

Step 3. Fine registration. This step, relating to lines 11-13 of
Algorithm 2, is used to refine the coarse result of Step 2. In this
step, a registration is performed using the GK-based metric (9),
where the fixed and moving set are denoted as P(2)

F and P(2)
M ,

respectively. We let P(2)
F = Po and P(2)

M = T (λ
(1)
inv,Pλ(1)),

where λ(1)
inv = (r

(1)
inv, t

(1)
inv) denotes the inverse transformation

of λ(1) = (r(1), t(1)), and is calculated by:{
R(r

(1)
inv) = R(r(1))−1

t
(1)
inv = −R(r

(1)
inv) · t(1)

(23)

For P(2)
F , we already have its fuzzy cluster centers C(2)

F =

C(gk)
o , norm-inducing matrices A(2)

F = Ao, and average dis-
tance loss Jgk(P(2)

F ,C(2)
F ) = Jgk(Po,C(gk)

o ) from Step 1. If
λ(1) moves the object model to a correct position, then P(2)

M ,
the transformed Pλ(1) , is a partial scan of the object. Thus,
ideally, this step performs a partial-to-full registration, where
the trimming ratio, denoted by ξ2, can be set as zero. Then
we have the GK-based metric Jgk(λ,P′(2)M ,C(2)

F ), and apply
the following multi-start local optimization to the metric:
i). Specify Nr rotations ri, i = 1, · · · , Nr, including zero
ri = (0, 0, 0), to have Nr initial estimates λi = (ri, ti),
where ti = (0, 0, 0) for i = 1, · · · , Nr.

ii). For each λi (i = 1, · · · , Nr), refine it through applying
the gradient-based optimization algorithm to the metric
Jgk(λ,P′(2)M ,C(2)

F ) to obtain its refined transformation and
the associated distance loss.
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iii). From the Nr refined transformations, select the one with
the lowest distance loss to be λ(2) = (r(2), t(2)).

Step 4. Registration quality assessment. This step, relating
to lines 14-21 of Algorithm 2, is used to check the accuracy
of λ(2) and then take corresponding actions. In Step 3, the
size difference between P(2)

F and P(2)
M is not large, and thus the

registration quality assessments in (11) and (22) can be applied
to evaluate the quality of λ(2). We calculate ρgk(λ(2)) by (10)
and then qgk(λ(2)) by (22). A human-computer shared method
is used to deal with the three possible values of qgk(λ(2)).
This method together with the explanation of the extended
registration quality assessment are presented as follows:
i). qgk(λ(2)) = 1. In this case, ρgk(λ(2)) is smaller than

1 + ∆J1. According to (11), T (λ(2),P(2)
M ) and P(2)

F are
correctly aligned. Hence, Po and Ps are correctly aligned
based on λ(1) and λ(2). Note that λ(1) moves Po to Ps,
and λ(2) moves Ps to Po since P(2)

M is a part of Ps. By
combining λ(1) and inverse λ(2) using (24), we have the
transformation, denoted as λ(1,2) = (r(1,2), t(1,2)), moving
Po to Ps, and the final result λ∗ = λ(1,2).{

R(r(1,2)) = R(r(1)) ·R(r(2))−1

t(1,2) = t(1) −R(r(1,2)) · t(2)
(24)

ii). qgk(λ(2)) = −1. In this case, ρgk(λ(2)) exceeds 1 + ∆J2,
which means the distance loss Jgk(λ(2),P′(2)M ,C(2)

F ) is too
large compared to Jgk(P(2)

F ,C(2)
F ). This case indicates an

erroneous result that λ(1) moves the object to a wrong
place and Pλ(1) is not a part of the object. Thus, we remove
Pλ(1) from Ps and repeat Steps 2-4 with the pruned Ps.

iii). qgk(λ(2)) = 0. In this case, ρgk(λ(2)) is greater than
1 + ∆J1 but does not exceed 1 + ∆J2, which has two
possibilities: One is that λ(1) moves the object to a wrong
place, and the other is that λ(1) gives an acceptable
position but the pose needs further correction. To deal with
this uncertainty, the user is involved to check the result.
For the former possibility, same as that of qgk(λ(2)) = −1,
the scene scan is pruned to repeat Steps 2-4. For the latter
possibility, the following Step 5 is applied.

Step 5. Pose correction using FuzzyPSReg-SS. This step,
relating to lines 22-23 of Algorithm 2, is used to correct
the result passed from Step 4. When this step is applied,
the transformation λ(1,2) calculated by (24) moves Po to
an acceptable position in Ps as stated in Step 4. Then, we
segment the part of Ps lying in the enlarged bounding box
of T (λ(1,2),Po) and denote this part as Pλ(1,2) . This step
performs a registration, where the fixed and moving sets are
denoted as P(3)

F and P(3)
M , respectively. We let P(3)

F = Po

and P(3)
M = T (λ

(1,2)
inv ,Pλ(1,2)), where λ(1,2)

inv is the inverse
transformation of λ(1,2) and calculated using the way in (23).
Since P(3)

F and P(3)
M have similar sizes, we use FuzzyPSReg-

SS to achieve the registration. For P(3)
F , the FCM and GK

clustering results have been obtained in Step 1. For P(3)
M ,

FuzzyPSReg-SS will apply FCM clustering online to derive
its fuzzy clusters, where the fuzzy cluster number is chosen
to be NCo . In addition, P(3)

F and P(3)
M may partially overlap

each other. Since the user has been involved, s/he is asked

to select a trimming ratio, denoted as ξ3, for this registration.
After applying FuzzyPSReg-SS, a transformation, denoted as
λ(3) = (r(3), t(3)), is derived to align P(3)

F and P(3)
M . Then,

the final result λ∗ = (r∗, t∗) is calculated by (24) with λ(1),
λ(2), and λ(1,2) replaced by λ(1,2), λ(3), and λ∗, respectively.

Discussion of FuzzyPSReg-O2S. FuzzyPSReg-O2S effec-
tively combines the two fuzzy cluster-based metrics to align
two point clouds with a relatively large difference in size. It
may need several rounds of the coarse-to-fine registration to
obtain the alignment. We will take the processes shown in
Figs. 15 and 16 as examples in the following discussion.

In Step 1, the fuzzy clustering of the object model Po can
be performed offline and does not take up the online costs. In
Step 2, the two point clouds, P(1)

F = Ps and P(1)
M = Po, are

described by relatively small numbers of fuzzy clusters, such
as N

C
(1)
F

= N
C

(1)
M

= 50 in Figs. 15 and 16. Besides, the FCM-
based metric is used for their registration. Hence, the online
computational cost is low, and the result is a coarse alignment
if λ(1) is a correct solution. To further reduce the cost, we
can down-sample Ps for its online FCM fuzzy clustering.
Generally, the depth sensor used to collect Ps is installed above
the scene and facing downwards, which can view about half
of the object’s surface. Thus, the trimming ratio ξ1 can be
around 0.5. According to [18], it is better to choose a slightly
smaller trimming ratio for global search. Therefore, ξ1 = 0.4
is used in this study. If Po is a partial instead of full model of
the object, or Ps is a full map instead of a partial scan of the
scene, users can select an appropriate ξ1 according to actual
conditions. For example, when Po is similar to the part of the
scene scan corresponding to the object, ξ1 can be zero. In the
multi-start optimization, the initial transformations are selected
by a uniform random number generator, and thus they are
evenly distributed in the range of the scene. Owing to the broad
convergence basin of the FCM-based metric [18], it is likely to
locate a rough position of the object by refining some selected
initial transformations, like Fig. 15(B). If some possible poses
of the object in the scene are already known, the initial λi

can be manually determined. According to Remark 2, (5) is a
necessary condition for a correct solution. If (5) is not satisfied,
it means that λ(1) moves Po to a wrong place. Hence, we prune
this wrong place and repeat Step 2 with the pruned Ps, which
can prevent this misalignment from happening again. If λ(1)

satisfies (5), it implies that Po may move to the correct place.
The following steps will perform a check.

In Step 3, the GK-based metric is used for the refinement.
Although P(2)

F = Po is described by a relatively small
number of fuzzy clusters (NCo

), according to Section III.C,
the refinement can give a satisfactory result if λ(1) is a good
solution, and the computational cost is low. We can down-
sample P(2)

M = T (λ
(1)
inv,Pλ(1)) for the refinement to further

reduce the cost. Besides, the quality assessment of the GK-
based metric in (11) is more sensitive to small misalignments,
and thus can provide a better evaluation (used in the next step)
when compared with that of the FCM-based metric in (5).
Note that λ(1) from Step 2 may give an acceptable position
but an incorrect orientation of the object, like Fig. 15(B), and
the incorrect orientation may be outside the convergence basin
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of the GK-based metric using zero as the initialization, like
Fig. 15(C). Hence, in the multi-start local optimization, in
addition to zero, we also apply several different rotations as
the initial transformations for the refinement to help correct the
orientation. As shown in Fig. 15(C), Nr = 4 initial rotations
are applied, and r2 = (π, 0, 0) gives a good result. The Nr
rotations can be manually selected according to the shape of
the object. In the experiment, we will specify the Nr rotations
used by each object. Note that in the fine registration of Step
3, the trimming ratio is ξ2 = 0. As shown in Fig. 15(C),
although some outliers are included into P(2)

M , the GK-based
metric with zero trimmings can still provide a good result.

In Step 4, using the extended quality assessment (22), the
accurate results with qgk(λ(2)) = 1 and inaccurate results with
qgk(λ(2)) = −1 can be automatically detected. For uncertain
results with qgk(λ(2)) = 0, the user will be involved to check.
When the result is erroneous, like Round 2 of the second
row in Fig. 16, the user will choose to prune the scan and
perform a new round of the coarse-to-fine registration. When
the uncertain result gives an acceptable position of the object,
such as that shown in Fig. 15(D) and Round 3 in Fig. 16, the
user will choose to go to Step 5, where FuzzyPSReg-SS is
applied for orientation correction or further refinement.

In the registration of Step 5, the fixed set is P(3)
F = Po, and

the moving set is a new segment P(3)
M = T (λ

(1,2)
inv ,Pλ(1,2)). To

include more points corresponding to the object into Pλ(1,2) ,
the enlarged bounding box of the object is used for the
segmentation. In this way, more outliers may also be included
into Pλ(1,2) . For example, compared to Pλ(1) derived by the
basic bounding box in Fig. 15(B), Pλ(1,2) derived by the
enlarged bounding box in Fig. 15(D) includes all the points of
the object (the power drill) in the scene scan but also contains
more outliers (corresponding to the scissors). To address this
issue, the user is asked to selected the trimming ratio ξ3 since
s/he has been involved in checking. Note that FuzzyPSReg-
SS performs robustly when the trimming ratio varies in a
relatively large interval (a test is shown in Fig. 11). Therefore,
the user can roughly choose ξ3 for FuzzyPSReg-SS to align
P(3)
F and P(3)

M . As shown in Figs. 15 and 16, FuzzyPSReg-SS
using user-defined ξ3 provides accurate results. To improve
efficiency, P(3)

M can be down-sampled for the registration.
Regarding the extended registration quality assessment (22),

if ∆J1 is chosen to be overlarge, it will give a false positive
evaluation; if ∆J2 is chosen to be too small, the part of the
object may be pruned from the scene scan. When ∆J1 is
chosen to be too small or ∆J2 is chosen to be too large, the
frequency of involving the user in checking will increase, but
the alignment result will not be affected.

V. EXPERIMENT

This section tests and compares the proposed method1 with
state-of-the-art registration techniques. In each test, we denote
the ground truth transformation as λgt and define the error
of the result λ to be: ελ = ‖λ− λgt‖. A rotation error of 1
degree will cause an increment of ελ to be 0.0175. For the

1Source code is at https://gitsvn-nt.oru.se/qianfang.liao/FuzzyPSReg

two fuzzy clustering algorithms and the two fuzzy cluster-
based metrics, we choose m = 2. The fuzzy clustering in
the two FuzzyPSReg strategies is performed in the following
way: FCM clustering uses random initialization and runs 100
iterations to minimize its objective function (2); GK clustering
takes the FCM clustering results as the initialization and runs
30 iterations to minimize its objective function (6). Other
parameter settings are as follows: In FuzzyPSReg-SS, NCF

and NCM
will be specified in each test. To improve efficiency,

PF and PM may be down-sampled for the fuzzy clustering and
the fine registration. The parameters will be specified when the
down-sampling is applied. In FuzzyPSReg-O2S, for Step 1, we
choose NCo = 50. For Step 2, we set the threshold NPs

as
3000. Ps is down-sampled for its online FCM clustering using
box grid filter with the grid step as 0.005 m, and N

C
(1)
F

= 50.
In the multi-start optimization, Nλ = 100 and Nλf

= 10.
For Step 3, the Nr rotations ri of each object in the multi-
start local optimization will be given. P(2)

M is down-sampled
for each refinement using box grid filter with the grid step as
0.005 m. For Step 4, we choose ∆J1 = 0.05 and ∆J2 = 2
for the extended registration quality assessment. For Step 5,
P(3)
M is down-sampled for FuzzyPSReg-SS using box grid filter

with the grid step as 0.005 m. All the tests are implemented
on a computer with the Intel Core i9-8950HK CPU.

A. Tests of local convergences

In this section, we compare the local convergence basins of
the two fuzzy cluster-based metrics and three state-of-the-art
registration methods: FRICP [5], JRMPC [13] and NDT [12].
Three range scan pairs selected from the challenging data set
[42] are employed for the tests, as shown in the first row of Fig.
4. In each pair, the fixed set (red) and the moving set (blue)
have around 15,300 and 12,300 points, respectively, and they
are normalized with the same scaling factor to fit the cube
[−1, 1]3. In each test, the moving set rotates about the z-axis
by an angle θ (as shown in Fig. 4) to deviate from its alignment
with the fixed set. Then, we apply each of the five registration
methods using local optimization to this misalignment to see
whether the two point clouds can be registered.

To test the FCM-based metric (4), the coarse-to-fine method
in [18] is applied using local optimization only: First, each
scan is described by 80 fuzzy clusters through FCM clustering,
where random initialization is utilized and the iteration number
is 100. Afterward, the gradient-based optimization algorithm is
applied to the FCM-based metric with zero as the initialization
to derive a coarse alignment. Next, each scan is down-sampled
to around 2000 points, and these points are directly taken as
the fuzzy cluster centers to update the metric. Finally, the
gradient-based algorithm is applied to the updated FCM-based
metric to refine the coarse alignment. To test the GK-based
metric (9), first, the following two steps are applied to derive
the GK clustering results of PF : Step i). FCM clustering is
applied to PF with NCF

= 80, where random initialization
is employed and the iteration number is 70; Step ii). taking
the FCM clustering results of PF as the initialization, GK
clustering is applied to PF with NCF

= 80, where the iteration
number is 30. The total iteration number of fuzzy clustering in
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Fig. 4. Local convergence tests for five registration metrics: FRICP [5], JRMPC [13], NDT [12], the FCM-based metric [18] and the proposed GK-based
metric. The first row shows the three scan pairs from [42], where Pairs 1, 2, and 3 belong to the data sets named “Stairs”, “Mountain plain”, and “Gazebo in
summer”, respectively; the second row shows the registration errors, where the inset plots are the enlarged figures; the third row shows ρfcm(λ) and ρgk(λ)
of the FCM- and GK-based metrics; the fourth row shows the time costs; and the fifth row shows the optimization time of the FCM- and GK-based metrics.

these two steps is 70+ 30 = 100, which is the same as that to
test the FCM-based metric. Consequently, we can give a fair
comparison between the two fuzzy cluster-based metrics. After
fuzzy clustering, we down-sample PM to around 2000 points,
and form the GK-based metric based on the GK clustering
results of PF and the down-sampled PM . Finally, the gradient-
based algorithm is applied to the GK-based metric with zero
as the initialization to derive a transformation for PM .

The other three metrics also take zero as the initialization
of their local optimizations in each test. For FRICP, its robust
point-to-point metric using Welsch’s function and Anderson
acceleration is applied; for JRMPC [13], the number of com-
ponents is selected as 200, and the other parameters use the
default setting; and for NDT [12], the grid steps are selected
between 0.03 and 0.06 such that the fixed set and the moving
set have around 500 and 450 components, respectively.

To give a fair comparison, the point clouds are not down-
sampled in the fuzzy clustering when testing the two fuzzy
cluster-based metrics. Besides, no trimming is applied in these
tests. The results of the registration under different θ are shown
in the second to the fifth rows of Fig. 4.

From the second row of Fig. 4, the FCM-based metric
gives the broadest convergence basin among the five metrics.
In addition, its accuracy is comparable to FRICP and better
than the other three metrics. Although the GK-based metric
does not yield a convergence basin as broad as that of
the FCM-based metric, and its accuracy based on 80 fuzzy
clusters generally cannot be as high as that of the FCM-based
metric using the coarse-to-fine method, it outperforms FRICP,
JRMPC, and NDT in terms of convergence basin with fewer
components, and its results within the convergence basin can
be considered as satisfactory alignments (the rotation errors

are below 0.6 degree). Note that JRMPC cannot give correct
alignments for Pair 1 and Pair 2 in all the tests.

From the third row of Fig. 4, ρfcm(λ) is smaller than
1 within the convergence basin of the FCM-based metric,
and ρgk(λ) is a little greater than 1 within the convergence
basin of the GK-based metric. The reason for ρgk(λ) being
greater than 1 is that the two scans of each pair partially
overlap each other, but no trimming is used in the registration.
As a result, when they are aligned, the non-overlapping part
of the moving set, although takes up a small portion, will
lead to an average distance loss Jgk(λ,P′M ,CF ) greater than
Jgk(PF ,CF ), where P′M = PM due to the zero trimming.

From the fourth row of Fig. 4, the GK-based metric requires
low time costs. Especially for Pair 2, it takes the lowest time
costs among the five metrics. The fifth row (last row) of Fig. 4
shows the time that the two fuzzy cluster-based metrics spend
on optimization. The coarse registration of the FCM-based
metric requires very low time costs and the fine registration
of the FCM-based metric needs relatively high time costs.
In addition, the optimization time of the GK-based metric
is much shorter than the fine registration time of the FCM-
based metric. Taking Pair 2 in Fig. 4 as an example, the fine
registration time of the FCM-based metric is about 5 s, while
the optimization time of the GK-based metric is less than 0.5
s in some test cases. The total time used by the FCM- or
GK-based metric for registration, as shown in the fourth row
of Fig. 4, is the sum of the optimization time and the fuzzy
clustering time. For a fixed set with around 15,300 points,
FCM clustering takes about 1.4 s, and GK clustering takes
about 1.9 s including the time of FCM clustering to derive
the initialization. For a moving set with around 12,300 points,
FCM clustering takes about 1.2 s. If the point clouds are down-



12

TABLE I
REGISTRATION COMPARISONS AMONG 3DREGNET, TEASER++, AND FUZZYPSREG-SS USING THE SUN3D DATA

Scene 3DRegNet TEASER++ FuzzyPSReg-SS
no. ελ (mean / max) time (mean / max) ελ (mean / max) time (mean / max) ελ (mean / max) time (mean / max)
1 0.1262 / 0.3982 0.0305 / 0.3812 s 0.1068 / 0.3432 1.4409 / 2.3149 s 0.0751 / 0.2990 0.7094 / 0.9167 s
2 0.1117 / 0.3526 0.0281 / 0.3965 s 0.0898 / 0.2841 1.4012 / 2.7066 s 0.0571 / 0.2535 0.8514 / 1.1460 s
3 0.2347 / 0.4230 0.0279 / 0.3946 s 0.0794 / 0.3009 1.5162 / 2.7716 s 0.0381 / 0.2157 0.8562 / 1.4371 s
4 0.2000 / 0.3869 0.0286 / 0.3971 s 0.0545 / 0.2247 1.5707 / 2.8370 s 0.0257 / 0.1564 0.8631 / 1.1780 s
5 0.3509 / 0.7082 0.0279 / 0.3987 s 0.1022 / 0.4308 1.4533 / 2.8113 s 0.0650 / 0.2731 0.8565 / 1.2885 s
6 0.3319 / 0.5969 0.0285 / 0.3964 s 0.0848 / 0.2971 1.5405 / 2.7328 s 0.0424 / 0.2780 0.8332 / 1.1253 s
7 0.5662 / 0.8124 0.0276 / 0.3910 s 0.0873 / 0.3767 1.3981 / 2.7796 s 0.0472 / 0.3108 0.7893 / 1.1673 s
8 0.5368 / 0.7557 0.0282 / 0.3962 s 0.1098 / 0.3531 1.5554 / 2.6803 s 0.0638 / 0.3189 0.8882 / 1.2913 s
9 0.6944 / 0.8835 0.0286 / 0.3935 s 0.0834 / 0.3582 1.4769 / 2.3864 s 0.0456 / 0.2026 0.7145 / 0.9787 s
10 0.6932 / 0.8638 0.0290 / 0.3868 s 0.0815 / 0.2614 1.4273 / 2.4202 s 0.0526 / 0.1989 0.8764 / 1.1157 s
11 0.0782 / 0.1702 0.0419 / 1.2575 s 0.0756 / 0.1646 1.5059 / 2.2383 s 0.0476 / 0.1332 0.7324 / 1.0209 s
12 0.1051 / 0.3069 0.0284 / 0.3856 s 0.0851 / 0.2566 1.4965 / 2.6743 s 0.0466 / 0.2149 0.8353 / 1.1707 s
13 0.1059 / 0.2416 0.0288 / 0.3906 s 0.0727 / 0.2470 1.5639 / 2.8206 s 0.0398 / 0.1813 0.7993 / 1.0584 s

sampled for the fuzzy clustering, the two fuzzy cluster-based
metrics can achieve the same results with reduced time costs.

B. Tests of FuzzyPSReg-SS

In this section, we test and compare FuzzyPSReg-SS with
two recently developed registration methods: 3DRegNet [16]
and TEASER++ [8]. In [16], 13 different scenes are selected
from the SUN3D data set [43] to train and test 3DRegNet,
where 10 scenes are used for training and 3 scenes are used for
testing. The 13 scenes contain more than 3700 different point
cloud pairs. For each pair, about 3000 point correspondences
are extracted using FPFH features [34], where the number of
outliers is about 50% of the total matches [16]. An example
is shown in Fig. 5. In this section, all the point cloud pairs of
the 13 scenes are employed to test the registration methods.
For the first test, we make some changes to the initial poses of
some moving sets: From the 13 scenes, we select 10 scenes,
where 9 scenes belong to the training data in [16] and 1 scene
belongs to the testing data in [16]; then, we divide the selected
10 scenes into 5 groups, each of which has 2 scenes. In the ith
group (i = 1, · · · , 5), the moving set of each pair rotates about
the z-axis by i × 10 degrees. The remaining 3 scenes keep
unchanged. Afterward, we apply 3DRegNet, TEASER++, and
FuzzyPSReg-SS to align each point cloud pair.

To test 3DRegNet, the trained model given by [16] is
used. To test TEASER++, the noise bound is chosen as
0.25 m, and the other parameters use the default setting.
Note that 3DRegNet and TEASER++ are correspondence-
based registration methods, and we employ the corresponding
points given by [16] for their tests; while FuzzyPSReg-SS does
not require knowing the correspondences between two point
clouds. To perform a fair comparison, FuzzyPSReg-SS is also
applied to the corresponding points in the following way: For
each pair, we let PF and PM be the corresponding points of the
two point clouds, respectively, and choose NCF

= NCM
= 50

for their fuzzy clustering. Besides, neither down-sampling nor
trimming of points is applied. Table I presents the results. Note
that Scenes 1, 12, and 13 are the testing data in [16], and the
rest of the scenes are the training data in [16]. As stated before,
Scenes 1-10 are selected and divided into 5 groups, and the
initial poses of their moving sets are changed. Scene 2i − 1
and Scene 2i constitute the ith group, i = 1, · · · , 5. The point

Fig. 5. A point cloud pair from the SUN3D data set [43] used in the tests
of Section V.B. The corresponding points are obtained from [16], where the
number of outliers takes up about 50% of the total matches. Note that the
RGB information is not used in any registration methods of this paper.

Fig. 6. Registration results of the three methods for the point cloud pair
shown in Fig. 5. 3DRegNet cannot align the two point clouds. TEASER++
leaves a small misalignment as marked by the green ellipses. FuzzyPSReg-SS
achieves a precise alignment. This figure uses a different view from that of
Fig. 5 in order to clearly show the small misalignment of TEASER++.

cloud pair in Fig. 5 belongs to Scene 7 (the 4th group), and
its registration results are shown in Fig. 6.

In Table I, from Scene 1 to Scene 10, as the angle between
the initial poses of the two point clouds grows, the error
of 3DRegNet increases. For the remaining 3 scenes that
are unchanged, the initial pose difference of the two point
clouds in each pair is relatively small. 3DRegNet achieves the
average and maximum errors for Scene 11 lower than 0.1 and
0.2, respectively, and provides greater average and maximum
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Fig. 7. Registration results of TEASER++ and FuzzyPSReg-SS for the six pairs shown in Fig. 8 with random initial poses.

TABLE II
REGISTRATION ERRORS ελ AND TIME COSTS OF TEASER++ AND FUZZYPSREG-SS IN FIG. 7

TEASER++ (0.25 m) TEASER++ (0.07 m) FuzzyPSReg-SS (correspondences) FuzzyPSReg-SS (point clouds)
Pair ελ time ελ time ελ time ελ time
no. (mean / max) (mean / max) (mean / max) (mean / max) (mean / max) (mean / max) (mean / max) (mean / max)
1 0.0698 / 0.0699 1.53 / 1.57 s 0.0685 / 0.0689 24.8 / 25.6 s 0.0194 / 0.0214 1.07 / 2.35 s 0.0207 / 0.0248 1.29 / 2.37 s
2 0.0980 / 0.1019 2.00 / 2.03 s 0.0978 / 0.1018 15.2 / 15.4 s 0.0144 / 0.0189 1.18 / 2.65 s 0.0160 / 0.0226 1.26 / 2.92 s
3 0.0527 / 0.0588 1.25 / 1.29 s 0.0521 / 0.0582 14.3 / 14.7 s 0.0147 / 0.0175 0.71 / 1.27 s 0.0162 / 0.0198 1.08 / 1.72 s
4 0.2373 / 0.2521 1.84 / 1.89 s 0.2378 / 0.2525 12.8 / 13.0 s 0.0461 / 0.0514 0.98 / 1.35 s 0.0463 / 0.0509 1.20 / 1.86 s
5 0.1458 / 0.1526 1.58 / 1.66 s 0.1452 / 0.1519 18.6 / 19.3 s 0.0216 / 0.0246 1.09 / 2.93 s 0.0258 / 0.0358 1.45 / 2.52 s
6 0.0410 / 0.0427 1.53 / 1.62 s 0.0410 / 0.0428 11.3 / 11.5 s 0.0093 / 0.0110 1.18 / 2.79 s 0.0112 / 0.0135 1.39 / 4.31 s

Fig. 8. Six pairs selected from the SUN3D data set [43]. Fixed sets are in
red and moving sets are in blue. In each pair, the two scans partially overlap
each other. The first row shows the point clouds (each contains about 300,000
points) and the second row shows the corresponding points given by [16].

errors for Scenes 12 and 13 because Scene 11 is included
in its training data while Scenes 12 and 13 are not. These
results demonstrate that the convergence basin of 3DRegNet
is relatively narrow, and the performance is restricted by its
training data. For each scene, including Scene 11, although
3DRegNet requires the lowest time cost, it gives the largest
average and maximum errors among the three methods. In
addition, it requires a long training phase to obtain the neural
network. For TEASER++, owing to its global optimization, it
can align all the pairs regardless of their initial poses. However,
it may not give a precise alignment, as the example shown in
Fig. 6. For all the scenes, FuzzyPSReg-SS achieves the highest
accuracy, and its time costs are lower than that of TEASER++.

In the first test, FuzzyPSReg-SS does not use global opti-
mization, because the initial pose differences of all the pairs
are within the local convergence basins of the fuzzy cluster-
based metrics. To further test FuzzyPSReg-SS, we select six
pairs from the 13 scenes to perform the second test. Fig. 8

shows the point clouds and corresponding points given by [16]
of the six pairs. In the second test, we randomly choose 50
initial poses for the moving set of each pair and then apply
TEASER++ and FuzzyPSReg-SS to align it with the fixed set.

Note that in the first test, TEASER++ gives similar results
under different noise bounds, but takes much lower time costs
when using a relatively large noise bound like 0.25 m. Hence,
we choose 0.25 m as its noise bound in the first test. However,
the 13 scenes of the SUN3D data are indoor scans, where the
maximum distance between true corresponding points when
the point clouds are aligned is relatively small and usually does
not exceed 0.07 m. Therefore, in the second test, we apply
TEASER++ twice to each pose of each pair using different
noise bounds: 0.25 and 0.07 m. We also apply FuzzyPSReg-SS
twice in different ways: The first way is to apply FuzzyPSReg-
SS to the corresponding points same as the first test; and the
second way is to apply FuzzyPSReg-SS to the point clouds.
As shown in Fig. 8, a point cloud contains around 300,000
points. For efficiency, we down-sample each point cloud to
about 5000 points for the fuzzy clustering of FuzzyPSReg-SS,
where NCF

= NCM
= 50, and down-sample each moving set

to about 3000 points for the fine registration of FuzzyPSReg-
SS. No trimming is used in FuzzyPSReg-SS.

Fig. 7 and Table II show the results. TEASER++ gives
similar errors under the two noise bounds, but takes a much
longer time when the noise bound is smaller (0.07 m). Com-
pared with TEASER++ using 0.25 m as the noise bound,
although the maximum time costs of FuzzyPSReg-SS are
greater for five out of the six pairs (excluding Pair 4), the
average time costs of FuzzyPSReg-SS are smaller for all the
pairs. In addition, the time costs of FuzzyPSReg-SS are much
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Fig. 9. Registration results of TEASER++ and FuzzyPSReg-SS for Pair 4 (in
the first row) and Pair 5 (in the second row). As marked by the green ellipses,
apparent misalignments remain in the results of TEASER++. Using the fuzzy
clustering results of FuzzyPSReg-SS, we also calculate ρgk(λ) of λ derived
by TEASER++, which is greater than ρgk(λ) derived by FuzzyPSReg-SS.

Fig. 10. Registration results of TEASER++ (using different noise bounds)
and FuzzyPSReg-SS applied to the corresponding points of Pair 1 (in the first
row) and Pair 2 (in the second row). The order of the points in each moving
set (in blue) is randomly permuted.

lower than that of TEASER++ using the more reasonable
noise bound, 0.07 m. Also, FuzzyPSReg-SS achieves higher
accuracy than TEASER++ does. We choose Pairs 4 and 5
of Fig. 8 as examples to give more details. As shown in
Fig. 9, each scan contains a relatively large plane (wall or
ceiling), and the planes of the two scans in each pair have
similar areas and shapes but partially overlap each other.
In this case, although other parts of the scans (such as
the parts marked by green ellipses in Fig. 9) take much
smaller portions than the planes do, they are key factors
to determine a precise alignment. The registration metric of
TEASER++ is the truncated point-to-point distances, formed
based on the maximum clique of inliers found from the given
correspondences. With this design, TEASER++ treats incorrect
correspondences on the planes as inliers while excluding true
correspondences on the small parts. As a result, it ignores the
key factors and leaves a misalignment as shown in Fig. 9. By
contrast, the GK-based metric (9) utilizes the adaptive distance
norm, where different weights are applied to the distances
in different directions. According to Section III.C, with the
GK-based metric, the distance between two planes in their

normal directions has a greater weight and leads to a greater
distance loss when compared with other directions. Thus, for
the small but key parts of the scans, the GK-based metric
highlights their misalignment. From Fig. 9, ρgk(λ) of the
transformation λ given by TEASER++ is much greater than
that given by FuzzyPSReg-SS. These results indicate that the
GK-based metric is a more accurate measure for point cloud
alignment than the metric of TEASER++, and FuzzyPSReg-
SS provides a more precise scan matching than TEASER++
does. Note that the scans of each pair in Fig. 9 partially overlap
each other, but no trimming is applied in the registration. Thus,
ρgk(λ) of FuzzyPSReg-SS may not be very close to 1, because
the non-overlapping part increases the distance loss.

In most cases of Fig. 7 and Table II, the time costs of
FuzzyPSReg-SS applied to point clouds are slightly higher
than that applied to corresponding points. The reason is that
for each point cloud, its down-sampled points are more than
its corresponding points. Then, a longer time is needed for
the fuzzy clustering and fine registration. In this test, when
FuzzyPSReg-SS is applied to corresponding points, the aver-
age time for fuzzy clustering is about 0.43 s and the average
time for fine registration is about 0.32 s; when FuzzyPSReg-SS
is applied to down-sampled point clouds, the average time for
fuzzy clustering is about 0.66 s and the average time for fine
registration is about 0.33 s. The time for coarse registration
(global search) varies with different initial poses.

It is claimed in [8] that TEASER++ can solve problems
without correspondences. Thus, we use the corresponding
points of Pairs 1 and 2 of Fig. 8 to perform the third test,
where the order of the points in each moving set is randomly
arranged. In this test, the ground truth alignments of the two
pairs are used as their initial poses. For TEASER++, three
different noise bounds, 0.25, 0.07, and 0.03 m, are tried. For
FuzzyPSReg-SS, the parameter setting is the same as that in
the previous tests. The results are shown in Fig. 10. Different
from the second test, in this test, TEASER++ using a greater
noise bound takes a longer time for registration. In addition,
for both pairs, TEASER++ gives erroneous transformations
regardless of the noise bound. By contrast, the results of
FuzzyPSReg-SS are accurate and not affected by the order
of points in the moving set, because FuzzyPSReg-SS does not
rely on or need to know point correspondences.

In the previous tests, the point clouds in each pair partially

Fig. 11. Registration results of FuzzyPSReg-SS with different trimming ratios
for two scan pairs from the challenging data set [42]. The overlap ratios of the
scans in the first row and the second row are about 80% and 90%, respectively.



15

Fig. 12. Six scenes selected from the YCB-Video data set [23]. The first and the second rows respectively show the pictures and the scene scans (point
clouds). For each scene, we select one or two objects, and apply registration methods to align the model of each object with the scene scan for tests. The
selected objects are marked in the scene scans (the second row). Note that the color images are not used in the registration tests.

Fig. 13. Full models of the eight objects in the six scenes of Fig. 12.

overlap each other, and FuzzyPSReg-SS aligns them without
trimming. To test the robustness of FuzzyPSReg-SS with
respect to the trimming ratio, we apply FuzzyPSReg-SS using
different trimming ratios to align two scan pairs selected from
the challenging data set [42], as shown in Fig. 11. Each of the
scans contains hundreds of thousands of points. To improve
efficiency, each scan is down-sampled to around 5000 points
for the fuzzy clustering, where NCF

= NCM
= 100; and each

moving set is down-sampled to around 2500 points for the fine
registration. The results in Fig. 11 show that FuzzyPSReg-SS
gives accurate alignments for the two pairs when the trimming
ratios are between [0, 0.38] and [0, 0.36], respectively. This
test demonstrates that FuzzyPSReg-SS performs robustly when
the trimming ratio varies in a relatively large interval.

C. Tests of FuzzyPSReg-O2S

In this section, we test and compare FuzzyPSReg-O2S with
TEASER++ [8] and another recently developed learning-based
method: feature-metric registration (FMR) [17]. Six scenes
and eight objects, selected from the YCB-Video data set [23],
are used for the tests, as shown in Figs. 12 and 13. In each
case of the tests, the registration methods are applied to align
the model of an object with a scene scan containing this
object. The objects are marked in the scene scans of Fig.
12. To test TEASER++, the FPFH feature descriptor [34] is
used to establish putative correspondences between the object
model and the scene scan. The noise bound of TEASER++ is

Fig. 14. Registration results of TEASER++ [8] and FMR [17] for the three
cases of Scene 1 and Scene 2. FPFH features [34] are used to build point
correspondences of each pair, where inliers are in green and outliers are in
orange. TEASER++ is applied to the correspondences while FMR is applied
to the point clouds without needing to know correspondences. In the three
cases, TEASER++ and FMR do not provide correct alignments.

TABLE III
Nr ROTATIONS (ri , i = 1, · · · , Nr ) USED BY EACH OBJECT IN THE

MULTI-START LOCAL OPTIMIZATION OF FUZZYPSREG-O2S

Object r1 r2 r3 r4
Power drill (Nr = 4) (0,0,0) (π,0,0) (0,π,0) (0,0,π)

Scissors (Nr = 3) (0,0,0) (π,0,0) (0,π,0) –
Banana (Nr = 4) (0,0,0) (π,0,0) (0,π,0) (0,0,π)

Large clamp (Nr = 2) (0,0,0) (π,0,0) – –
X-large clamp (Nr = 2) (0,0,0) (0,π,0) – –

Bowl (Nr = 2) (0,0,0) (π,0,0) – –
Mug (Nr = 3) (0,0,0) (π/2,0,0) (0,π/2,0) –

Mustard bottle (Nr = 2) (0,0,0) (π,0,0) – –

set as 0.02 m. To test FMR, its model trained based on the
ModelNet40 data set [30] is utilized. For FuzzyPSReg-O2S,
the Nr rotations used by each object in the multi-start local
optimization of the fine registration are given in Table III.

The three cases of Scenes 1 and 2 are employed for the first
test, and the results are shown in Figs. 14, 15, and 16. From
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Fig. 15. Process of FuzzyPSReg-O2S aligning the power driller’s model (in blue) with Scene 1’s scan (in red). (A). The initial poses of Po and Ps. (B). The
coarse registration result, where ρfcm(λ(1)) < 1. The part of the scene scan lying in the basic bounding box of the transformed object model, Pλ(1) , is
segmented for the fine registration. (C). The fine registration result, where the refined transformation with r2 as the initialization gives the lowest distance loss
and is selected as λ(2). (D). λ(2) gives qgk(λ(2)) = 0 according to (22), and the user is involved to check the result. The user chooses to run FuzzyPSReg-SS.
Then, the enlarged bounding box of the transformed model is applied to derive a new segment, Pλ(1,2) , and the user chooses ξ3 = 0.35. (E). FuzzyPSReg-SS
gives a more precise alignment. (F). The final poses of the two point clouds. The time costs for the coarse registration, the fine registration, and FuzzyPSReg-SS
are 0.20 s, 1.56 s, and 0.25 s, respectively. The total time cost of this case (excluding the checking time taken by the user) is 2.01 s.

Fig. 16. Registration results of FuzzyPSReg-O2S. In the first row, the scissors’ model is aligned with Scene 1’s scan. In the second row, the X-large clamp’s
model is aligned with Scene 2’s scan. In each case, three rounds of the coarse-to-fine registration are utilized, and FuzzyPSReg-O2S gives a correct alignment.
Excluding the checking time taken by the user, the time costs of FuzzyPSReg-O2S in the cases of the first and second rows are 5.39 and 8.31 s, respectively.

Fig. 14, in each case, hundreds of point correspondences are
built based on FPFH features, where the inlier ratios are at a
very low level. TEASER++ does not align the object model
with the scene scan. Besides, FMR, which is directly applied to
the point clouds without needing to know the correspondences,
also fails to register the point clouds.

By contrast, Figs. 15 and 16 show that FuzzyPSReg-
O2S aligns the point clouds in each case. From Fig. 15,
FuzzyPSReg-O2S correctly aligns the power drill with Scene 1
using only one round of the coarse-to-fine registration. The re-
sult of the coarse registration, λ(1), achieves ρfcm(λ(1)) < 1.
As shown in Fig. 15(B), λ(1) finds an acceptable position
of the power drill. Then, the part of the scene scan lying in
the basic bounding box of the transformed power drill is seg-
mented to perform the fine registration. In the fine registration
shown in Fig. 15(C), the refined pose using r2 = (π, 0, 0)
as the initialization gives the lowest distance loss and thus

is chosen as λ(2). From Fig. 15(D), the power drill’s model
is well aligned with the segment after the fine registration.
However, due to the fact that the segment includes a non-
negligible part of outliers (corresponding to the scissors),
ρgk(λ(2)) is small than 1 + ∆J2 but greater than 1 + ∆J1,
and leads to qgk(λ(2)) = 0 according to (22) in the extended
registration quality assessment. As a result, the user is involved
in checking and then makes a decision to run FuzzyPSReg-
SS. Next, the enlarged bounding box of the transformed power
drill is used to obtain a new segment from the scene scan,
and FuzzyPSReg-SS is applied to further refine the alignment
of the power drill’s model and the new segment, where the
trimming ratio ξ3 = 0.35 is roughly chosen by the user.
Afterward, a more precise registration is obtained and is taken
as the final result as shown in Figs. 15(E) and 15(F).

From Fig. 16, in each of the two cases, FuzzyPSReg-O2S
takes three rounds of the coarse-to-fine registration. In the case
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Fig. 17. Registration results of FuzzyPSReg-O2S for Scenes 3 and 4 of Fig. 12. Excluding the user’s checking time, the time costs of the cases in rows 1-4
are 11.32, 2.77, 3.90, and 4.27 s, respectively. In the cases shown in rows 2 and 4, due to the symmetries of the objects (the mustard bottle and the X-large
clamp), FuzzyPSReg-O2S gives the poses with rotation errors of approximately 180◦ compared to the ground truths. We consider them as correct alignments.

Fig. 18. Registration results of TEASER++ [8] and FMR [17] for the four
cases in Scene 3 and Scene 4. Among the point correspondences derived by
FPFH features, the inliers are in green and the outliers are in orange. In the
four cases, TEASER++ and FMR do not provide correct alignments.

shown in the first row of Fig. 16, the scissors’ model is moved
to incorrect positions in Rounds 1 and 2. The quality assess-
ment detects the incorrectness and gives qgk(λ(2)) = −1.
Thus, the scene scan is pruned automatically to proceed with
the next round of the coarse-to-fine registration. In Round
3, a rough position of the scissors is found in the coarse
registration. Then, the multi-start local optimization in the
fine registration using r3 = (0, π, 0) as the initialization

gives a refined pose with the lowest distance loss, and gives
qgk(λ(2)) = 0. Subsequently, the user checks the result and
chooses to run FuzzyPSReg-SS with ξ3 = 0.1. After applying
FuzzyPSReg-SS, a more accurate alignment is obtained to be
the final result. Note that same to the case shown in Fig. 15, in
this case, FuzzyPSReg-SS uses local optimization alone for the
registration since the two point clouds have been well aligned
by the coarse-to-fine registration. In addition, in Round 2, part
of the points corresponding to the scissors in the scene scan
is pruned. Nevertheless, the following Round 3 together with
FuzzyPSReg-SS still provides a correct alignment. In the case
shown in the second row of Fig. 16, the registration process
is similar to that in the first row, and the main differences are
the following: i). In Round 2, the result is qgk(λ(2)) = 0, and
thus the user is involved to check. Since the X-large clamp
is aligned to the wrong place, the user chooses to prune the
scene scan and perform a new round. ii). Round 3 gives an
acceptable position but an incorrect orientation of the X-large
clamp, and the incorrectness is out of the local convergence
basin of the fuzzy cluster-based registration metrics. To correct
the orientation, FuzzyPSReg-SS utilizes both of its global and
local optimizations for the registration, and thus takes a longer
time compared to the previous two cases.

The four cases of Scenes 3 and 4 are employed for the
second test, and the results are shown in Figs. 17 and 18.
Similar to the first test, TEASER++ and FMR do not align
the point clouds. From Fig. 17, in the cases shown in the
first, third, and fourth rows, after one or several rounds
of the coarse-to-fine registration, FuzzyPSReg-O2S utilizes
FuzzyPSReg-SS to correct or further refine the pose. In the
case shown in the second row, FuzzyPSReg-O2S takes two
rounds of the coarse-to-fine registration to locate the object
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Fig. 19. Registration results of FuzzyPSReg-O2S for Scenes 5 and 6 of Fig. 12. Excluding the user’s checking time, the time costs of the cases in rows 1-4
are 2.58, 3.43, 2.72, and 7.82 s, respectively. In the case shown in row 3, due to the symmetry of the object (the bowl), FuzzyPSReg-O2S gives a pose with
a rotation error when compared to the ground truth. We consider it as a correct alignment.

Fig. 20. Registration results of TEASER++ [8] and FMR [17] for the four
cases in Scene 5 and Scene 6. Among the point correspondences derived by
FPFH features, the inliers are in green and the outliers are in orange. In the
four cases, TEASER++ and FMR do not provide correct alignments.

pose, and the quality assessment gives qgk(λ(2)) = 1. Thus, it
does not apply FuzzyPSReg-SS. Note that in the cases shown
in the second and fourth rows of Fig. 17, due to the symmetries
of the objects (the mustard bottle and the X-large clamp),
FuzzyPSReg-O2S gives the poses with rotation errors of about
180◦ compared to the ground truths. These results are regarded
as correct alignments in this study. Therefore, FuzzyPSReg-
O2S aligns the point clouds in every case of this test.

The four cases of Scenes 5 and 6 are employed for the
third test, and the results are shown in Figs. 19 and 20. For all
the cases, TEASER++ and FMR still do not provide accurate
results. From Fig. 19, in the cases shown in the first, third, and
last rows, FuzzyPSReg-O2S respectively takes one, two, and
four rounds of the coarse-to-fine registration to obtain a rough
pose of the object, where qgk(λ(2)) = 0. Then, FuzzyPSReg-
SS refines the rough poses. In the case shown in the second
row, FuzzyPSReg-O2S finds the correct pose of the object in
two rounds of the coarse-to-fine registration, and the result
gives qgk(λ(2)) = 1. Thus, it does not apply FuzzyPSReg-SS.
Note that in the case shown in the third row of Fig. 19, due to
the symmetry of the object (the bowl), FuzzyPSReg-O2S gives
a pose with a rotation error compared to the ground truth. We
also consider it as a correct alignment. Thus, FuzzyPSReg-
O2S gives correct results in every case of this test.

Next, we conduct a multi-trial test for FuzzyPSReg-O2S,
using the following four cases selected from Fig. 12: Case
1. the scissors and Scene 1; Case 2. the X-large clamp and
Scene 2; Case 3. the mustard bottle and Scene 3; Case 4. the
power drill and Scene 4. For each case, we perform 10 trials of
FuzzyPSReg-O2S to align the point clouds, and the results are
shown in Fig. 21. For Cases 1, 2, and 4, the user is involved
in checking in every trial; while for Case 3, three trials do not
include the user’s checking. In some trials of Cases 2 and 4,
FuzzyPSReg-SS is applied to correct the object pose using the
global optimization and thus may need more time. In all the
trials, FuzzyPSReg-O2S correctly aligns the point clouds.

In the above tests, compared with TEASER++ and FMR,
FuzzyPSReg-O2S takes a longer time in calculation but pro-
vides accurate registration results. Also, it neither relies on
correspondences nor needs a long training phase. Besides, it
does not put a heavy burden on the user. In some cases, such
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Fig. 21. Multi-trial results of FuzzyPSReg-O2S for the four selected cases.

as aligning the mustard bottle with Scene 3 and aligning the
large clamp with Scene 5, FuzzyPSReg-O2S can locate the
object pose without involving the user. On the other hand,
FuzzyPSReg-O2S has some limitations, which also exist in
many other methods using depth-only data. First, it does
not deal with the symmetry of the object and may give a
rotation error compared to the ground truth when the object is
symmetrical in shape, such as in some cases shown in Figs. 17
and 19. Second, it may not handle an overlarge size difference
between the point clouds. For example, in Scene 2 or 5 of
Fig. 12, it is difficult for FuzzyPSReg-O2S to align the marker
pen’s model with the scene scan. Third, it may not work when
the part of the scene scan corresponding to the object takes
up a too-small portion of the object’s surface. For example,
when the object is severely occluded or the sensor does not
capture enough depth information of the object, it is hard for
FuzzyPSReg-O2S to locate the object pose. In future work,
we plan to include the texture information of the point clouds
in their registration to handle the limitations and improve the
recognition capability.

VI. CONCLUSION

This paper studies FuzzyPSReg. First, by extending the
FCM-based registration metric of our previous work, we
develop the GK-based metric. Then, we develop the registra-
tion quality assessment of the GK-based metric. Afterward,
we present the mathematical analysis and comparison of
the two fuzzy cluster-based metrics. Next, two FuzzyPSReg
strategies are proposed by effectively combining the two
metrics. FuzzyPSReg-SS aligns similar-sized point clouds
and makes a great improvement in computational efficiency
when compared with the global registration method in our
previous work. FuzzyPSReg-O2S aligns two point clouds with
a relatively large size difference and can be used for object
pose estimation. FuzzyPSReg-O2S involves human-computer
collaboration and provides shared autonomy to complete tasks
without putting a heavy burden on users. Different point clouds
are used to test and compare the proposed method with state-
of-the-art registration approaches. The experimental results
demonstrate the advantages and effectiveness of our method.
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