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Learning to Propagate Interaction Effects for
Modeling Deformable Linear Objects Dynamics

Yuxuan Yang, Johannes A. Stork, and Todor Stoyanov

Abstract— Modeling dynamics of deformable linear objects
(DLOs), such as cables, hoses, sutures, and catheters, is an
important and challenging problem for many robotic manipu-
lation applications. In this paper, we propose the first method
to model and learn full 3D dynamics of DLOs from data.
Our approach is capable of capturing the complex twisting
and bending dynamics of DLOs and allows local effects to
propagate globally. To this end, we adapt the interaction
network (IN) dynamics learning method for capturing the
interaction between neighboring segments in a DLO and
augment it with a recurrent model for propagating interaction
effects along the length of a DLO. For learning twisting and
bending dynamics in 3D, we also introduce a new suitable
representation of DLO segments and their relationships. Unlike
the original IN method, our model learns to propagate the
effects of local interaction between neighboring segments to
each segment in the chain within a single time step, without
the need for iterated propagation steps. Evaluation of our
model with synthetic and newly collected real-world data shows
better accuracy and generalization in short-term and long-
term predictions than the current state of the art. We further
integrate our learned model in a model predictive control
scheme and use it to successfully control the shape of a DLO.
Our implementation is available at https://gitsvn-nt.
oru.se/ammlab-public/in-bilstm.

I. INTRODUCTION

Many robotic manipulation applications such as inserting
and threading a needle [1], [2], surgical suturing [3], [4], or
controlling the shape of a rope [5], [6] rely on deformable
linear object (DLO) dynamics [7]. Modeling DLO dynamics
in 3D space, even without contact with the environment, is
challenging due to complex twisting and bending dynamics.
As seen in Fig. 1, DLOs can not only move in all three
directions in space, but additionally bend along their length
and twist around their axis, while building up and releasing
tension due to external forces. For this reason, accurate and
robust modeling of DLO dynamics is still a key problem in
robotics and subject to ongoing research [8].

In this paper, we present a novel, data-driven model for
learning full 3D dynamics of DLOs from data. Learning
DLO dynamics from data [9] instead of using analytical
physics-based models [10] has an advantage that no ana-
lytical parameters have to be identified, computation is often
much faster, and learned differentiable models can be used in
model-based control methods. Challenges are that the model
has to capture the complex twisting and bending dynamics
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den. This work was partially supported by Vinnova / SIP-STRIM projects
2019-05175 and 2017-02205, and was partially supported by the Wallenberg
AI, Autonomous Systems and Software Program (WASP) funded by the
Knut and Alice Wallenberg Foundation.

Fig. 1. DLOs have complex dynamics with bending (along the DLO) and
twisting (around the internal axis) that pose challenges to model learning.
Here, the indicated attached frame moves in 3D space and rotates around
all three axes due to a manipulation action applied at a distant segment.
Equally distributed markers on the DLO are for estimating the DLO’s state.

and has to allow the effects of manipulating one segment of
the DLO to propagate across all segments.

For our model, we extend prior work and combine the
interaction network (IN) [11] method, which learns local
interaction dynamics between neighboring segments in a
DLO, with the idea of using a recurrent model [9] for
learning to propagate these local interaction effects to other
segments along the length of a DLO. The IN method imple-
ments a physics-derived inductive bias which assumes that
overall dynamics is made up of local interaction effects [12],
while the recurrent model allows local interaction effects to
reach distant segments within one time step. The latter is
particularly important for modeling stiff DLOs and otherwise
difficult to achieve with discrete time steps.

Our main contribution is the first data-driven model of
DLO dynamics that accurately captures twisting and bending
in 3D, while state-of-the-art approaches operate only on
2D [9], [11], [13] or only capture DLO position not orienta-
tion in 3D [14]. For this, we make two advances over the state
of the art: 1) We introduce a new representation of DLO seg-
ments and their relationships to capture twisting and bending
in 3D. 2) We extend prior work by combing two existing
models of DLO dynamics to a new model, which removes
the need for computationally demanding iterated interaction
computation. We train and evaluate our model using both
a simulation and a newly collected real-world dataset, and
demonstrate experimentally that our approach can achieve
better accuracy and generalization than the current state of
the art. We demonstrate the utility of our approach for shape
control of a DLO by integrating the learned dynamics model
in a model predictive control framework. In this work, we
only consider DLOs with one end fixed and the other end
controlled by a robot in an otherwise empty workspace.



II. RELATED WORK

Our work builds on existing approaches for modeling
DLOs from the fields of computational physics, computer
graphics, and interaction control. Current approaches are ei-
ther analytical physics-based or data-driven and use different
representations to model the complex dynamics of DLOs.

A. Analytical Physics-based Models

Analytical computational physics models explicitly track
the forces between different segments of a DLO and nu-
merically integrate the resulting accelerations to recover the
state. These models are usually targeted at either physically
accurate or visually-plausible simulations but in both cases,
parameter identification and simplified dynamics can lead
to errors. Physically accurate simulations are mostly based
on finite element [15] or finite difference methods [16]–
[19] and are particularly time-consuming because of the
number of small computation steps that are required for
stability and accuracy. Visually-plausible simulations are
popular in computer graphics and instead aim at simple but
fast computation. Position-based dynamics (PBD) [20] is
such an approach and uses particles with constraints to model
deformable objects and fluids. For DLOs, PBD has been
extended to account for twisting [21], [22], stiffness [23],
and physically meaningful parameterization [19]. We take
an approach similar to PBD methods [21], [22] based on
an explicitly discretized Cosserat rod [3] parameterization,
however, instead of modeling constraints between segments,
we learn how segments influence each other from data.

B. Data-driven Models

Data-driven models are learned directly from observations
and have the potential of being accurate and computationally
light enough for use in robot control and planning [24].
While theoretically well-motivated learning methods for
Hamiltonian [25]–[28] and Lagrangian mechanics [29], [30]
have recently been proposed, the practical relevance of
these methods remains limited due to restrictive assump-
tions [29]. Instead, combining neural networks and composi-
tional modeling allows learning of complex dynamics from
data [31]. Our approach extends the interaction networks (IN)
method [11] for modeling DLOs. INs can also model mass-
spring systems, rigid and deformable bodies, and fluids [12],
[13], [32]–[35]. In the context of DLOs, INs can utilize
a graph network [36] to learn pair-wise local interactions
between different segments of a DLO. One of the challenges
of this approach is propagating the effects of interactions
across the object, especially in the case of a long DLO [9].
This issue has been targeted repeatedly [13], [34], [35]
by introducing different means of propagating interaction
further. PropNet [13] is tested on 2D ropes and shows a better
performance than original IN [11]. However, in practice,
interactions between distant segments remain challenging
to predict, leading to errors where local information is not
sufficient for modeling dynamics [9].

Most similar to our approach are works that learn IN mod-
els of DLO dynamics in two dimensions only [13], which is

Fig. 2. Geometry of a DLO, pi and pi+1 are the two endpoints of ith
segment, Ci is a reference frame fixed to the center of ith segment with
basis vectors xi,yi, zi.

too limited for most real-world robotics applications [37], or
directly use a recurrent model architecture for propagating
interaction effects across the DLO [9]. In contrast to [13], we
consider translation-invariant dynamics in three dimensions,
which increases the number of state dimensions but enables
bending and twisting dynamics. Different from [9], we
integrate the recurrent model into an IN model to leverage
both compositional modeling of DLO dynamics from IN and
learning to propagate interaction from recurrent models.

III. LEARNING TO PROPAGATE INTERACTION EFFECTS

Our goal is to learn a model f for predicting the fu-
ture state xt = f(xt−1) of a DLO, given the prior state
xt−1, from data. In this formulation, the next state xt is
predicted only from the prior state xt−1, which makes the
choice of state representation crucial. We defer the discussion
of our state and relationship representations to Sec. III-B
and first consider a DLO as a finite set of neighboring
segments (as seen in Fig. 2) encoded in xt. We refer to
xt = f(xt−1) as one-step prediction and to the sequence
xt, f(xt), f(f(xt)), . . . as a rollout. Accurate rollouts are
particularly important for robotic manipulation with control
or planning. We next outline how the IN [11] method
learns DLO dynamics from data (Sec. III-A), discuss our
new representation of DLO segments and their relationships
(Sec. III-B) and present our new model of DLO dynamics
for learning to propagate local interaction effects to reach
distant segments (Sec. III-C). Finally, we explain how our
model is conditioned on control inputs (Sec. III-D).

A. Interaction Networks Method

Our model of DLO dynamics is based on the IN method
[11], which is a generic dynamics model for particle-based
systems represented by a directed graph, G = (V,E). The
vertices v ∈ V represent the particles and the edges e ∈ E
represent their relationships. The IN method is based on a
physics-derived inductive bias. The assumption is that the
overall dynamics of the particle-system is made up of local
interactions between related particles according to G [12].
As seen in Fig. 3(a), the graph for a DLO would look like a
chain with edges between neighboring vertices representing
different segments of the DLO.

For the IN dynamics model, vertices vi ∈ V are repre-
sented by the particle encoding vi = (si,a

v
i ) consisting of a

particle state si ∈ S and particle attributes avi ∈ Av , while
directed edges eij ∈ E are represented by the relationship
encoding eij = η

(
vi,vj ,a

e
ij

)
computed from the two

particle encodings and some relationship attributes aej ∈ Ae.
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Fig. 3. Schema of (a) an interaction network (IN), (b) bidirectional LSTM, (c) IN-biLSTM (our method), for a DLO. The vertices correspond to Cosserat
rod segments and neighboring segment are connected by edges. fe is the relation-centric network and fv is the object-centric network.

For details on representation and encodings see Sec. III-B
below. In the relationship represented by the directed edge
eij , vi is the receiver and vj the sender. The attribute spaces
Av and Ae can be used to express material properties or
different interaction types. The dynamics model f learned
by the IN method, therefore, maps a state

xt−1 = ({vi,t−1|vi ∈ V }, {eij,t−1|eij ∈ E}) (1)

consisting of particle encodings vi,t−1 and relationship en-
codings eij,t−1 at time step t − 1 to the next state xt

with particle encodings vi,t and relationship encodings eij,t.
While in general the attributes and also the graph G can
change, e.g. to model self-collision [11], [13], [34], [35],
we only describe the case where everything but the particle
states si is kept constant.

The IN method learns two mappings fe and fv to construct
the dynamics model f from above. As seen in Eq. (2), the
mapping fe maps relationship encodings to a feature space
and the features belonging to the same receiver are aggre-
gated. In Eq. (3), the mapping fv maps aggregated features,
ki, and particle encodings to predict future particle encodings
(equal to particle states if the attributes are constant).

ki =
∑

eij∈E
fe(eij,t−1) (2)

v̂i,t = fv(vi,t−1,ki) (3)

The mappings fe and fv are referred to as relation-centric
network and object-centric network, respectively, in [11].

Fig. 3(a) illustrates the compositional structure of f and
shows that the overall dynamics modeled by f are made
up from local interactions learned by fe and fv . More
clearly, all dynamics are expressed as particles changing
their state due to influences from related particles. While
this inductive bias is intentional, it makes capturing global
effects difficult and therefore methods for propagating local
influences further have been proposed [13], [34], [35]. In
Sec. IV we compare against such methods and demonstrate
experimentally that these are insufficient for the purpose of
capturing the dynamics of a DLO. Moreover, if attributes are
kept constant, the model f has the previous particle states
si,t−1 which directly determine the following particle states
si,t. Obviously, the representation for si and the relationships
encoding function η are therefore important for the range
of dynamics the model can capture. In the next section, we
present our representations for learning the complex twisting
and bending dynamics in 3D.

B. Representation of DLO in 3D

Our representation is based on Cosserat theory [3], which
defines DLOs as a sequence of orthonormal frames on a
smooth curve where always one basis vector is parallel to
the tangent. Concretely, we employ a discrete formulation of
Cosserat rods for DLOs [15], [18], [22], [38] that represents
DLOs as a series of N linear cylindrical segments, as
depicted in Fig. 2. Each segment has an individual coordinate
frame Ci at the center and neighboring segments share
endpoints.

Prior approaches largely learn DLO dynamics in the 2D
plane [9], [11], [13], which makes S = R2 a natural choice
for the particle state space. However, for full 3D dynamics,
simply extending the particle state space to S = R3 is
insufficient because this cannot capture the twisting and
bending seen in Fig. 1. For this, the orientations of the
segment frames need to be reflected in particle states. We
explore two different options to achieve this.

Particle State: Position and Quaternion. In the first
option, each segment corresponds to one of N particles in
the dynamic model and neighboring segments are connected
by edges in both directions. The particle state is defined
as sPQ

i = (pC
i ,q

C
i , ṗ

C
i ,ωi), with pC

i , ṗ
C
i ∈ R3 being

the position and velocity of the segment’s coordinate frame
Ci. Symbols qi ∈ H and ωi ∈ R3 are the orientation
of the segment’s reference frame as a unit quaternion and
angular velocity, respectively. We denote this encoding as
PQ (Position and Quaternion).

While the PQ encoding is sound in terms of representation
power, there are several issues that make it a problematic
choice. First, the discontinuities in 3D/4D representations of
orientation (e.g., Euler angles or quaternions) can result in
a step response when calculating loss functions and back-
propagating gradients in neural network function approxi-
mators [39]. In addition, the PQ encoding overparameterize
the real DLO state and can represent invalid DLO states in
which endpoints of neighboring segments are not in the same
location.

Particle State: Position and Twist Angle. Our solution
is inspired by parameterization commonly used in robotics
for Kinematic chains and ensures that endpoints neighboring
segments always overlap. For this, we impose a constraint on
the parameterization that fixes the Z-axis of each segments’
reference frame to always point along the line pi−1pi. In the
dynamics model, we use the N + 1 segment endpoints for
particles with state sPT

i,t = (pi, ψ, ṗi, ψ̇i), where pi, ṗi ∈ R3
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Fig. 4. A force is applied to one end of a DLO, in reality (left), a sequence
of particles will move. By contrast, when IN is used to model it (right), only
the nearest particle will move

are the position and velocity of individual endpoints. With
one axis fixed by the endpoint positions, the twist angle
ψi ∈ R is then sufficient to encode the full orientation
of Ci. This position and twist angle (PT) encoding is a
minimum explicit description for DLOs [40]. We convert
between rotation matrix and twist representations with a
straight-forward approach using the tilt-and-torsion Euler
angle formulation [41]. Note that for numerical reasons we
encode the overall accumulated twist along the chain.

Relationship Representation. It is common to define the
relationship encoding function η as a concatenation of the
particle encodings of both receiver and sender, i.e. eij =(
vi,vj ,a

e
ij

)
[9], [11], [13]. We call this absolute encoding.

However, this encoding is not translation invariant and the
dynamics model f cannot learn to predict identical DLO
dynamics at different positions without additional training
data. Instead, we define translation invariant relationship
encoding (or relative encoding) functions η. For the PQ
representation, we define

eij = (pC
i − pC

j , q̄
C
i q

C
j , ṗ

C
i − ṗC

j ,ωi −ωj) (4)

where q̄ is the conjugate of q. For the PT representation, we
define

eij = (pi − pj , ψi − ψj , ṗi − ṗj , ψ̇i − ψ̇j) (5)

In our experiments in Sec. IV-C and IV-D, we find that the
latter approach leads to better results.

C. Recurrent Model of Interaction Effect Propagation

In the original IN, only local information in the graph is
considered at every time step which makes learning longer-
reaching interactions difficult. For example, as shown in
Fig. 4. To improve the IN effect propagation, other works
[13], [35] introduce iterating procedures for instantaneous
effect propagation in a single time step. The number of
iterations is a hyperparameter which needs to be tested and
decided case by case. More iterations make the training
process harder because of heavier computation burden and
the more complex model. Therefore, this approach is not
suitable for long objects like DLOs.

Inspired by the work of Yan et al. [9], depicted in 3(b), we
use a bidirectional LSTM (bi-LSTM) [42] for effect propa-
gation. Here LSTM is used spatially, which perfectly fits the
linear DLO structure. Each vertex in a DLO is assumed to
have an identical dynamics so we can use an LSTM cell [43]
recurrently along the chain. Instead of setting an iteration
hyperparameter, the LSTM learns how the effects propagate
along the DLO from data. In position-based dynamic models
of DLO, a bilateral interleaving order is used to improve
stability [21], [22]. Similarly, we choose bi-LSTM where
the propagation runs in both directions simultaneously.

The structure of the model is shown in Fig. 3(c). We
propagate aggregated features ki of each vertex to all the
other vertices using an m-layer LSTM, fLSTM , along two
directions.

(hl
i, c

l
i) = fLSTM (ki,h

l
i−1, c

l
i−1) (6)

(hr
i , c

r
i ) = fLSTM (ki,h

r
i+1, c

r
i+1) (7)

where (hl
0, c

l
0) = fLSTM (k0,0,0) and for the last vertex

(hr
N , c

r
N ) = fLSTM (kN ,0,0), hi and ci are the hidden

state vectors and the cell state vector in the LSTM with
superscripts l and r indicating the direction of propagation.

We concatenate the last-layer hidden state vectors hl,m
i

and hr ,m
i as propagated features which have effect informa-

tion from all vertices and use them as the second input of
fv in Eq. (3) instead of the aggregated features, ki.

D. Control-conditioned Dynamics

Above, we considered the dynamics model f without any
external influences on the DLO such as control. However,
for manipulation we want to predict future DLO states when
segments of the DLO are controlled by a robot or physically
constrained in place. Both our model and the IN method
allow for conditioning the model on control by exploiting
different constant particle and relationship attributes. Here
we detail the approach for a case in which the first particle
is fixed to a wall and the last particle’s state is controlled by
a robot as used in our experiments in Sec. IV.

First, we divide the particles V into VC (externally con-
trolled by the robot or the environment), and all remaining
free particles V̄ . The control conditioned dynamics model fC
inputs the state x̄t−1 of the free particles V̄ and the controlled
particles’ (externally forced) states as control input. The
model fC then constructs a new and complete state x∗t−1 as
the union of the free particle states and the forced controlled
particle states, where an indicator variable in the particle
attributes avi is used to determine if a particle is free to
move. Finally, it applies the general dynamics model f to
the complete state x∗t−1 for prediction. To learn control-
conditioned dynamics from data without observed control
commands, the controlled particles’ input and target states
can be set to the observed values in the next time step, which
is what we do in Sec. IV.

IV. EXPERIMENTS AND RESULTS

A. Data Generation and Collection

Synthetic Data. We generate data from simulation using
the physics-engine Bullet [44]. In the simulation, a 3.36-
meter DLO is modeled by 16 segments (cylinders), where
each pair of segments is connected by a special 6D spring,
which enables stretch, shear, bend, and twist deformations.
We generate 3000 rollouts over 300 time steps each, by
keeping one end of the DLO fixed and applying random
controls to the other end. The interval between steps is 1/60s.

Real-world Data. We also collect motion data for a 0.9-
meter real DLO (a stiff hydraulic fluid hose) to validate the
effectiveness of the model for a real DLO. Similar to the
synthetic data, one end of the DLO is fixed and the other



end is manipulated by a Franka Panda robot arm, as shown
in Fig. 1. The DLO is discretized into nine segments on the
centers of which we mounted holders with attached Aruco
markers [45]. The poses of the markers are estimated from
images captured by a Microsoft Kinect. The segments’ poses
are transformed from corresponding markers’ poses. The
images are captured at 20 frames per second. 1000 rollouts
data are collected and each rollout lasts 4 seconds. We use a
Kalman Filter [46] to filter out noise in the observed markers’
positions and orientations over time.

B. Training Details

We implement the model in PyTorch. Adam [47] is the
optimizer with a fixed learning rate 1 × 10−4. For training
on synthetic data, the batch size is 512, while for real-world
data, the batch size is 128. The data are split into training
and validation with a 90-10 split. All models are trained on
a one-step prediction task with an L2 loss on the respective
particle state encoding for free particles in subsequent time
steps. In order to make the models more robust to noise in
the inputs (as can be expected when model predictions are
fed-back as inputs during rollout), we augment the training
data with additive white Gaussian noise.

The mapping fe is implemented as a 4-layer fully con-
nected neural network, while fv is decomposed into a state
encoder and an effect predictor, same as in Interaction Net-
works. Each of these networks is 4-layer and fully connected.
In all cases we use hidden layers of width 150 units. ReLU
activation is used except for the output of the effect predictor.
2-layer bi-LSTM model with 150-dimensional hidden state
vectors is used unless otherwise specified.

C. Long-term Prediction

When a learned model is used in simulation or model
predictive control, long-term prediction performance is im-
portant. To test this performance, we use learned models
to predict a sequence of a DLO’s future state through 300
iterations which is equivalent to a 5-second time span.

For the long-term prediction results, errors consist of
error in position and error in orientation. Position error is
the average Euclidean distance between particles’ predicted
positions and corresponding ground truth during a rollout.
The difference in orientation is computed by [48]

Φ(R1, R2) = ‖ log(R1R
T
2 )‖ (8)

where matrix logarithm log(R) gives the skew-symmetric
matrix which encodes rotation axis and angle, and ||.|| gives
the absolute value of the rotation angle from R2 to R1. The
value is in the range [0, π). The errors in orientation are the
average difference between predicted orientations and ground
truth orientations. Data with PT representation are converted
to PQ representation for comparison.

As shown in Table I, models of PropNet, in general,
generate larger errors. The models with 15-step propagation,
in theory, should propagate effect through the whole DLO
leading to a better performance, but the improvement in

long-term prediction is limited while more time is needed in
training and prediction because of more layers in the models.

IN-biLSTM (rel-PT) and bi-LSTM (abs-PQ) have similar
good performance with respect to the RMSE and median
error in position and orientation. However, the latter can
predict unrealistic states with some parts of a DLO dis-
connecting as shown in Fig. 5(b). By contrast, although
the former generates long-term prediction results with large
errors occasionally, the results keep being visually plausible,
as shown in Fig. 5(c). Due to the relative coding, our
approach IN-biLSTM(rel-PT) is translation invariant, while
the performance of a baseline bi-LSTM(abs-PQ) drops when
a constant translational offset is added to every segment of
a DLO, as shown in Table II.

Our approach, IN-biLSTM(rel-PT), is tested in learning
the dynamics of a real DLO. For 80-step (equals to 4s)
forward prediction test on 100 cases, the results are RMSE
of 2.0943× 10−2m and median error of 1.6976× 10−2m in
position and RMSE of 2.2615× 10−1rad and median error
of 2.1795×10−1rad in orientation. An example is shown in
Fig. 6.

TABLE I
LONG-TERM PREDICTION PERFORMANCE OF DIFFERENT MODELS

Method a m b Position error (m) Orientation error (rad)
RMSE Median RMSE Median

PropNet(rel-PQ) 3 0.4952 0.4145 0.7008 0.5832
PropNet(rel-PT) 3 0.2880 0.1994 0.4542 0.3281
PropNet(rel-PQ) 15 0.5278 0.2286 0.4774 0.2743
PropNet(rel-PT) 15 0.2296 0.1031 0.3772 0.1902
bi-LSTM(abs-PQ) 2 0.1266 0.0475 0.1844 0.0637
bi-LSTM(abs-PT) 2 0.2122 0.1282 0.3283 0.2046
IN-biLSTM(rel-PQ) 2 0.4289 0.2313 0.3685 0.1871
IN-biLSTM(rel-PT) 2 0.1346 0.0483 0.2268 0.0762

a PT and PQ indicate the representation the model trained on. The relative
encoding and absolute encoding are abbreviated as rel and abs, respectively.
b m represents propagation steps in PropNet or the number of LSTM layers
in LSTM-related methods.

TABLE II
PERFORMANCE OF BI-LSTM AFFECTED BY

TRANSLATIONAL OFFSETS

σ a Position error (m) Orientation error (rad)
RMSE Median RMSE Median

0 0.1266 0.0475 0.1844 0.0637
0.1 0.1456 0.0903 0.1918 0.0786
0.3 0.2728 0.2531 0.2572 0.1754
1.0 0.7715 0.7581 0.5539 0.4750

a The standard deviation in N (0, σ2) where random
translational offsets (in meter) are sampled from.

Using a trained network for forward prediction is faster
than the analytic physics simulator used (Bullet). On a
laptop with Inter i9-9980HK and GTX1650, a 5-second
DLO simulation is generated in about 2.5 seconds using the
C++ version of Bullet. By contrast, 1.2 seconds are needed
for the same simulation based on a learned model of IN-
biLSTM(rel-PT).

D. Ablation Studies

Ablation studies are provided to show how the number
of LSTM layers and choice of DLO representation influence
the final performance. More layers of LSTM have more pa-
rameters and, in general, have larger capacity to approximate



Fig. 5. Qualitative results in simulation. The objects in blue are forward
predictions, the objects in semi-transparent red are the ground truth. Time
interval of 1/60s is between steps. a) a rollout prediction by IN-bi-LSTM(rel-
PT); b) a rollout prediction of largest error in validation dataset by bi-
LSTM(abs-PQ); c) a rollout prediction of largest error in validation dataset
by IN-biLSTM(rel-PT).

Fig. 6. Qualitative results in forward simulation of a real DLO. The ground
truth is in semi-transparent red while forward prediction is in blue.

complex dynamics. We test IN-biLSTM with 1, 2, 3 layers
of bi-LSTM cells in long-term predictions, the results of
which are shown in Table III. As expected, more layers of
LSTM cells can approximate the dynamics of a DLO better.
Although the three-layer model has the best results with the
smallest errors, in practice the improvement is not notable
and comes at a cost of increased computational demand both
in training and prediction. As a trade-off between efficiency
and accuracy, we choose a two-layer bi-LSTM as a backbone
for the shape control task in Sec. (IV-E).

To validate how different DLOs representations and rela-
tionship encodings influence the model performance in long-
term prediction, we tested four different options, as shown in
Table IV. Results indicate our proposed relative PT encoding
works the best in long-term forward prediction. Compared
to PT representation, PQ representation which is redundant
requires models to learn more constraints. Relative encoding
helps the model approximate the dynamics better in the case
of PT representation. The inductive bias inherent in this
encoding: namely, that the dynamics are invariant to spatial
position; likely results in predictions that are more consistent
with the underlying physics.

E. Shape Control Task Using a Learned Model

Finally, we evaluate our models in a shape control task:
i.e., achieving a desired DLO state. The learned neural net-
work models are differentiable, thus we can use them directly
in model predictive control. Control inputs are optimized by
minimizing a loss between a target state and the state from
forward simulation. In the task, the DLO has one end fixed
and has the other end controlled. Similar to Li et al. [13],
we choose model predictive control (MPC) with shooting
methods for the control task. Given an initial state x0, a
dynamics model f and a goal state xg . Through forward
simulation xt+1 = f(xt), we can have a set of predicted

TABLE III
LONG-TERM PREDICTION PERFORMANCE OF IN-BILSTM(REL-PT)

WITH DIFFERENT NUMBERS OF LSTM LAYERS

The number Position error (m) Orientation error (rad)
of layers RMSE Median RMSE Median

1 0.4440 0.0735 0.3894 0.2277
2 0.1346 0.0483 0.2268 0.0762
3 0.1137 0.0410 0.1862 0.0656

TABLE IV
LONG-TERM PREDICTION PERFORMANCE OF IN-BILSTM ON DATA

WITH DIFFERENT ENCODINGS

Method Position error (m) Orientation error (rad)
RMSE Median RMSE Median

IN-biLSTM(rel-PT) 0.1346 0.0483 0.2268 0.0762
IN-biLSTM(abs-PT) 0.3071 0.1162 0.3684 0.1794
IN-biLSTM(rel-PQ) 0.4289 0.2313 0.3685 0.1871
IN-biLSTM(abs-PQ) 0.2040 0.1231 0.2390 0.1247

TABLE V
PERFORMANCE OF SHAPE CONTROL TASK

Method Position error (m) Orientation error (rad)
RMSE Median RMSE Median

IN-biLSTM(rel-PT) 0.2154 0.1104 0.0253 0.0121

Fig. 7. Qualitative results of MPC control. The semi-transparent red DLO
is the target configuration and the blue DLO is controlled by the green
segment (one end of the DLO on the left side) to reach the target.

states as X = {xi}i=1...t. Gradients with respect to the
control commands can be backpropagated from loss function
L(xt,xg) and used for optimizing control commands by
stochastic gradient descent (SGD).

Our best model, IN-biLSTM(rel-PT), is used in MPC for
evaluation. We test the shape control task in simulation. To
guarantee a chosen initial state and target state are valid
and reachable, we randomly select them from the validation
dataset. We test 100 cases and results are shown in Table V.
Errors are reported by the differences between the target state
and the actual state of particles. Fig. 7 shows an example.

V. CONCLUSION

We have presented the first learnable model to approximate
the dynamics of DLOs in three dimensions with bending and
twisting behaviors. A bi-LSTM module in the model helps
learn how effects propagate along a DLO and improves the
long-term prediction performance. We also demonstrated that
the model approximates the dynamics of DLOs better by
leveraging a special-purpose position and twist representation
with relative encoding. We validated the learned dynamics
models in an MPC schema for achieving a desired DLO
shape. As future work, more efficient and general effect-
passing methods will be explored because bi-LSTM will
be time-consuming for a long chain. Another aspect is to
explore more powerful inductive biases for learning from
translational and rotational invariance which exists in the
dynamics.
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[45] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.
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