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Abstract

Reinforcement Learning (RL) has the potential of solving complex continuous
control tasks, with direct applications to robotics. Nevertheless, current state-
of-the-art methods are generally unsafe to learn directly on a physical robot as
exploration by trial-and-error can cause harm to the real world systems. In this
paper, we leverage a framework for learning latent action spaces for RL agents
from demonstrated trajectories. We extend this framework by connecting it to a
variable impedance Cartesian space controller, allowing us to learn contact-rich
tasks safely and efficiently. Our method learns from trajectories that incorporate
both positional, but also crucially impedance-space information. We evaluate our
method on a number of peg-in-hole task variants with a Franka Panda arm and
demonstrate that learning variable impedance actions for RL in Cartesian space
can be safely deployed on the real robot directly, without resorting to learning in
simulation and a subsequent policy transfer.

1 Introduction

Reinforcement Learning (RL) has been a promising framework to automatically fulfill complex
continuous control tasks, yet contact-rich behaviors are hard learning problems, because current
state-of-the-art methods are generally not safe to learn directly on a physical robot and require a vast
amount of interaction experience. When it comes to learning how to solve a challenging real world
task with a robot, trial-and-error learning is critically unsafe as random exploration can harm the
environment or the robot itself. Despite their widespread relevance, tasks requiring controlling a robot
in contact with the environment still pose a challenge to autonomous manipulation. In previous work,
this problem has been solved by RL in simulation and transfer to reality [[14], exploration with safety
constraints [25] and learning from demonstration [17]]. In order to guarantee safety in contact-rich
tasks, we take advantage of variable impedance actions for RL to predict contact stiffness between
the real robot and the environment.

When learning a policy through RL while using a simple controller, the policy would need to exhibit
impedance behavior when coming in contact. This is a rather difficult behavior to learn for a RL
algorithm because of the sudden change in dynamics. On the other hand, applying RL with a
hand-tuned fixed stiffness impedance controller can solve the contact-rich task, but depending on
the necessary softness of the contact, this can influence the behavior during free-space motion and
alignment. Considering a policy with a task involving multiple steps, different stiffnesses for each
step can be required.

In this paper we present an efficient RL framework that performs well on challenging contact-rich
tasks that were previously not considered, failed on real robots [[L6] or require simulation to reality
transfer [[14]. We validate the successful application of our method to tasks that contain a combination
of free-space motion, manipulation of constrained mechanisms and contact-rich manipulation.
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The main contributions of this paper are: (1) we leverage a framework for learning latent action spaces
for RL agents from demonstrated trajectories and integrate it with a variable impedance Cartesian
space controller; (2) our method extends the action space of this RL framework by incorporating
variable impedance, allowing us to learn contact-rich manipulation tasks safely and efficiently;
(3) we evaluate our method on a number of peg-in-hole task variants with a Franka Panda arm
and demonstrate that learning variable impedance actions for RL in Cartesian space can be safely
deployed on the real robot directly, without resorting to learning in simulation and a subsequent
policy transfer.

2 Related Work

Compliant robot control allows for uncertanties when interacting through contact with the envi-
ronment. Impedance control [9]] presents an avenue for safe contact-rich manipulation. Variable
impedance actuators, compliance and admittance control were summarized in [4, [24]] with a focus
on safe human-robot interaction and interaction through contact forces with the environment. This
paper focuses on the learning aspect for variable impedance control and possible ways to approach
this problem. Variable impedance control, that is, control with a time-dependent stiffness profile,
has also been explored as an action space for reinforcement learning [[14]. The resulting framework
— Variable Impedance Control in End Effector Space (VICES) — was shown to enable faster and
more easily transferrable learning of tasks involving contact, in comparison to action spaces relying
on joint-space kinematic and dynamic control or fixed stiffness Cartesian space impedance control.
Similar to [14], we also rely on variable stiffness impedance control, but allow for general task space
control (e.g., relative to an arbitrary frame) and for fixing as constants parts of the task space and
stiffness parameters.

A common approach to enabling RL on physical systems is to first train in a simulated version of
the environment where safety and sample efficiency are not of critical importance. The learned
policies can then be transferred to the real system via domain adaptation [1, 5] and dynamics
randomization [3} [15, 21]]. However, in domain adaptation an amount of real world samples are
needed to update the simulation system to match the real one, while dynamics randomization requires
a variety of simulated environments with randomized properties to train a model that can work across
all of the environments. Another choice is to leverage safety constraints to restrict the RL exploration
during trial-and-error learning [25]. Although this method can reduce collisions, it still requires
learning in simulation and safety constraints need to be pre-defined in advance.

Instead of focusing on simulation to reality transfer and solving the hurdles that come with it, we
focus on the possible ways to re-use previous real experience to learn in reality directly. To improve
on this issue we investigate learning an embedding for skills in a continuous space with latent variable
models [[7, [13}23]]. The performance can be improved by narrowing down the latent search space
by learning behavior priors [20]. We base our work on the idea of skill priors [16] — a framework
for learning a low-dimensional embedding space for generating action sequences, along with a
set of task-relevant prior distributions within that latent space. Learning prior and representation
facilitates transfer of a learned skill to another task from a potentially large offline dataset to enhance
learning efficiency. Unlike [16] which demonstrates the utility of the learned skill priors for learning
long-horizon tasks in simulation, we concentrate on shorter but more complex and higher-dimensional
tasks. Our approach is able to learn safely on the target physical system directly and consumes a
fraction of the interaction samples considered in [[16].

3 Approach

In this paper we consider an agent that acts according to a policy 7y (a|s) which maps an action a € A
for each state s € S. The agent is trained based on a reward signal r € R and aims to maximize the
expected return:
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where T is the state-action trajectory and 7' € (0, 1] is the discount rate at time ¢. For a robot with
k joints, the observation vector s; is composed of (a) joint positions ¢ € R* and joint velocities
g € R”, (b) end-effector position offset e € R3 and rotation 6, in the z direction with respect to the
world frame, and (c) the environment contact force F.,; € R3.

3.1 Cartesian Impedance Control

To implement contact-rich tasks, we use a Cartesian impedance controller [9]]. In Cartesian impedance
control, the robot end-effector dynamics are modelled as a mass-spring-damper system:

Fa:K(w—wd)ﬂ-D(ﬁ—i'Bd)ﬁ-M(i—iid), 2)
where F', € R5%6 is the contact wrench with the environment, = and x4 are the current Cartesian
pose and the desired pose of the robot end-effector. K € R6*6, D € R6%6 and M € R%*6 are the
stiffness, damping and mass matrices of the system respectively.

Impedance control can be applied in Cartesian space to make the robot end-effector interact with the
environment [2]. Standard impedance control uses constant or variable stiffness to command the
system, but a pre-defined impedance behavior needs to be realized. We combine variable impedance
control with the RL method by incorporating stiffness terms into the RL action space as described in

Sec.3.2

3.2 Variable Impedance Action Space

In many tasks where the robot needs to interact physically with the environment, impedance control
enables the manipulator to behave safely by balancing the contact stiffness and desired position of
the task. The concept of variable impedance control was firstly proposed in [[10]. Tsumugiwa et al.
used a recursive least-square method to apply variable impedance control [22] by tuning the stiffness
coefficient. Considering the flexibility and safety of variable impedance, we propose to let the RL
agent predict the stiffness when the robot performs contact-rich tasks.

To train RL policy on the real robot directly, the system stiffness term K in equation (2)) is incorporated
into the agent action. According to [[14], variable stiffness impedance control can enable the learned
RL policy to adapt to the contacting environment while following the predicted Cartesian position
for the robot end-effector. Therefore, we extend the policy action as the combination of end-effector
pose £ € SE(3) in Cartesian space and variable stiffness matrix K € R6*®, Stiffness matrix K
contains 6-dimensional end-effector stiffness coefficients. One extra null-space stiffness coeffcient
for the redundant robot is set as a constant value.

While a full Cartesian action space is possible, as for example in [14], we note that in some cases the
task space may allow for a reduced action space. In our evaluations we consider a number of sample
peg-in-hole insertion tasks wherein the end-effector is vertical to the xy plane. Therefore, we ignore
rotation around the = and y axes of the end-effector frame and the corresponding variable stiffness
components by setting these components to desired constant values. Our 8-dimensional action space
is thus composed of:

o end-effector translations € R? in Cartesian space,
e rotational angle 6, € R around the z axis,

e the diagonal coefficients k € R* that determine the variable stiffness matrix K for the
corresponding four Cartesian components.

We simplify the end-effector rotation matrix by only considering the rotational angle 6, as we found
the parameter to be particularly relevant when adapting the learned policy in some of our evaluations.
To train the latent model, the action sequence is mapped to a posterior distribution ¢(z|a) over
embedding space by the skill encoder (Appendix [A.T)). The action normalization is applied because
the scales of variable stiffness and position command values in our RL action space are different,
which can lead to the stiffness component dominating the loss function.

4 Evaluation

We evaluated our method on an instance of a contact-rich task and conducted three peg-in-hole
insertion experiments to evaluate the adaptation ability of our method using the Franka Panda arm.
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Figure 1: Reinforcement learning curves for three experiments: [(a)] traing results for different target
offset positions in circular peg insertion task; [(b)]comparison for learning curves from scratch in
three different shape peg-in-hole experiments; [(c)|learning curves for different initial angles between
the peg and the target workpiece when the trained policy in circular peg-in-hole task is adapted on
the other two insertion experiments.

We also evaluate on several variations of the task in order to prove generalization. We validated
that our skill prior RL method with variable impedance action space can train the real robot directly
without training in simulation and the learned policy can be adapted to new contact-rich skills.

4.1 Peg-in-hole Learning from Scratch

We evaluated skill prior RL training on three peg-in-hole insertion tasks on the real robot Franka
Panda directly, without resorting to pre-training in simulation. We collected 200 example trajectories
to train the skill prior and subsequently used the learned skill prior to train SAC on the real Franka
Panda arm. We trained 3 times for each case and plotted the mean and standard deviation for the
episode reward in Figure

The training rewards for the first experiment of inserting a circular peg are shown in Figure[I(a)l The
skill prior RL can generalize to different target positions. However, as the skill prior was trained
with a fixed position, it takes more episodes to finish the first insertion task for different positions.
Before the RL policy was trained on the real robot, we did not do any RL training in simulation,
demonstrating that our skill prior RL using variable impedance in Cartesian space can be applied to
contact-rich tasks safely without simulation to reality [26] domain transfer.

We compared the training results learned from scratch of three different shape pegs. For the training
results shown in Figure[T(b)] all target pegs are placed with 3cm position offset from the place where
the circular hole was during dataset collection. We can see that the skill prior RL policy accumulated
episode rewards successfully in circular peg-in-hole task, while the RL policy struggled when learning
from scratch in the square and triangular peg insertion experiments. We speculate that this is due to
the fact that we did not include any trajectory for square and triangular pegs in our insertion skill
prior training dataset.

4.2 Adapting Learned Policy

In the last experiment, we adapted the learned RL policy from circular insertion task to insert into
holes of two other shapes — square and triangular. For each experiment, we tested with two initial
relative angles between the peg and the target workpiece. The learning curves are shown in Figure|I(c)
The RL policy learned in circular peg insertion experiment can generalize well in similar peg-in-hole
tasks if the initial angle is smaller than 5°. As comparison, when the initial angle is larger than
10°, the learned RL policy in the circular peg experiment failed to finish new square and triangular
insertion tasks shown by green and red lines in Figure

We count the emergency stop events and keep monitoring the contact force between the end-effector
and the environment. In all experiments, zero emergency stop or excessive contact force event
occurred because the skill prior guides learning variable impedance actions for the RL agent and the
learned policy will adjust the contact stiffness when the end-effector interacts with the environment.
In our experiments we tried to compare our method against some RL baselines. We found that none
of state-of-the-art RL methods, such as Proximal Policy Optimization (PPO) [19] and SAC [6]], can
be applied directly to contact-rich manipulation tasks on a real robot without simulation to reality



transfer. Extending SAC by learning variable impedance actions also leads to collision or emergency
stop when applied on the real robot.

5 Conclusion and Future Work

We have presented an approach that incorporates variable impedance in Cartesian space into the
action space of a RL framework that learns latent embeddings from demonstrated trajectories. Our
approach learns prior knowledge over the specific skill and a latent space that can be further decoded
into real robot command sequences. We evaluated our method on three peg-in-hole insertion tasks
with a Franka Panda arm and show that our skill prior RL using variable impedance in Cartesian
space can be safely deployed on the real robot without simulation to reality domain transfer and it
accelerates the adaptation of the learned policy over similar contact-rich skills. For future work, we
intend to explore additional perception modalities and add visual information as one part of RL state
space to improve the generalization ability and robustness of the policy.
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A Appendix

A.1 Reinforcement Learning with Skill Priors

We adapt the Skill Prior RL (SPiRL) [16] framework to solve robot contact-rich tasks (e.g. peg-in-
hole) by learning jointly a latent representation of skills and the prior over this latent space. We use a
modified variational autoencoder (VAE) [12] model to learn a low-dimensional skill latent space Z
from a dataset of pre-collected contact-rich trajectories. The VAE model consists of a skill encoder
q(z|a) that outputs the latent representation z of a skill and a decoder p(a|z) that predicts a sequence
of actions @ = {a¢, -+ , az+g—1 } that the skill embedding z represents, where H € N is the action
horizon. As described in [T6]], a skill prior model p4 (z|s:) is used to generate a prior distribution
over the latent space Z based on the state s;. This distribution serves as guidance for the policy to
determine which skills are worth exploring. Following [18]] we maximize the evidence lower bound
(ELBO):

logp(a) > Eqllog p(alz) — 5 (log q(z|a) — log p(2))], 3)

where (3 is a hyperparameter used to tune the regularization term.
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Figure 2: Skill prior RL framework: once the skill prior and the skill decoder block in the diagram
are learned, a skill policy is trained using RL to generate embedding action z that can be decoded
into a sequence of real robot action commands.

We follow the skill prior RL (SPiRL) algorithm described in [[16] that maximizes the expected return
along with the policy’s entropy term that penalizes divergence from action prior depicted in Figure 2]
We add the normalization operation for the reconstructed action sequence due to the variable stiffness
scale. As we train our skill policies directly on the real robot, we keep monitoring the contact force
between the end-effector and the environment and reset the system if any constraint is violated. Such
reset events are undesireable as they slow down learning and are potentially dangerous to the robot.
Thus, one of the goals of our approach is to minimize the number of reset events that occur during
training.

A.2 Experimental Setup

We implemented contact-rich tasks with three different shapes of pegs and workpieces including
circular, triangular and square. To train the skill prior in advance, we collected 200 insertion
trajectories for the circular hole using a finite state machine that divides each trajectory into downward
reaching, spiral motion alignment and insertion.

For training the skill embedding variable, the encoder and decoder of the VAE model are implemented
as a long short-term memory (LSTM) [8] of 128 hidden units. The latent variable z is embedded as
the Gaussian posterior distribution of different dimensions. The skill prior is represented as a 5-layer
fully-connected network. Adam [11] is used to optimize the neural network model. We tuned some
hyperparameters in our experiments and chose the regularization weight 3 in equation (3) as 5e-5
and the learning rate as le-3.



We use the skill prior SAC [[16] implementation to predict the latent action with RL discount factor
0.99 and batch size 128. The reward function is simply defined as:

i 10, ife, < hyg
" | —d, otherwise

“4)

where e, is the end-effector position in the z direction, h, is the hole height and d is end-effector
distance to the hole.
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