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EXPERIMENTAL VALIDATION OF DOMAIN KNOWLEDGE ASSISTED ROBOTIC
EXPLORATION AND SOURCE LOCALIZATION

Thomas Wiedemann, Dmitriy Shutin
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German Aerospace Center
Oberpfaffenhofen, Germany

ABSTRACT

In situations where toxic or dangerous airborne material is
leaking, mobile robots equipped with gas sensors are a safe
alternative to human reconnaissance. This work presents the
Domain Knowledge Assisted Robotic Exploration and Source
Localization (DARES) approach. It allows a multi-robot sys-
tem to localize multiple sources or leaks autonomously and
independently of a human operator. The probabilistic ap-
proach builds upon domain knowledge in the form of a phys-
ical model of gas dispersion and the a priori assumption that
the dispersion process is driven by multiple but sparsely dis-
tributed sources. A formal criterion is used to guide the robots
to informative measurement locations and enables inference
of the source distribution based on gas concentration mea-
surements. Small-scale indoor experiments under controlled
conditions are presented to validate the approach. In all three
experiments, three rovers successfully localized two ethanol
sources.

Index Terms— mobile robot olfaction, gas source local-
ization, Bayesian inference, swarm exploration.

1. INTRODUCTION

Mobile robotic platforms, like rovers and Unmanned Aerial
Vehicles (UAVs), are the means of choice when it comes to
exploration missions in hazardous environments. For exam-
ple, in disaster relief scenarios or Chemical, Biological, Ra-
diological and Nuclear (CBRN) events, mobile robots can
be dispatched to survey an area of interest and provide an
overview of the current situation. There it is important to ex-
plore the environment as fast as possible and provide reliable
information early enough to civil protection agencies and first
responders. It is obvious that while a single robot would need
a certain time to explore a region of interest, multiple robots
can accomplish the same task faster.

However, the deployment of multiple robots brings along
several challenges. Whereas a single robot can be easily tele-
operated, steering and coordinating many robots in real-time
is a too complex task for a single operator or even for a team
of coordinators. In addition, in disaster scenarios, very few
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Fig. 1: Robotic gas source localization scenario

human resources are available for controlling robots. Auton-
omy, on the other hand, allows to address these challenges:
through cooperation, the robots can coordinate themselves
and accomplish the exploration task independently of an op-
erator. One of the key elements required to implement such
an autonomous multi-robot system is an exploration strategy
— an algorithm that allows the robots to decide where to col-
lect information or measurements.

In this paper, we consider the task of exploring the disper-
sion of a toxic or dangerous airborne trace substance (referred
to as “gas” in the latter) leaking from an unknown number of
sources (see Fig. 1). Our goal is to localize the sources us-
ing gas concentration measurements taken by in-situ sensors
mounted on the robots. This paper shortly presents our Do-
main Knowledge Assisted Robotic Exploration and Source
Localization (DARES) strategy developed in [1]. As the main
contribution, the paper presents results of an evaluation of
the DARES approach in experiments under laboratory con-
ditions. In contrast, our previous work studied the approach
only in simulations.

2. DOMAIN KNOWLEDGE ASSISTED ROBOTIC
EXPLORATION AND SOURCE LOCALIZATION

In the past, many gas source localization strategies for robotic
applications were based on the idea that the gas concentra-



tion rises monotonously with proximity to a source. These
approaches are often referred to as chemotaxis [2, 3]. Us-
ing chemotaxis a robot tries to follow the gradient of the gas
concentration. Such approaches are often supported by ad-
ditional information like airflow or wind [4]. However, the
monotonicity of the concentration distribution does not hold
in many real-world environments, since gas dispersion is dis-
turbed by turbulence [5]. Over time, more sophisticated gas
source localization strategies have emerged. They take into
account more complex mathematical models of the gas dis-
persion process [6, 7, 8]. These strategies aim at maximiz-
ing the information gain obtained with collected measurement
data. Consequently, these methods are termed inforaxis [9].
The proposed DARES approach likewise follows an infotac-
tic concept.

Our key idea is to assist the robots by a priori available
domain knowledge about the gas dispersion process. With
this additional information, the robots can localize the sources
faster, i.e. with fewer measurements, as shown in [10]. In par-
ticular, we assist the robots by providing a physical descrip-
tion of gas dispersion in terms of a Partial Differential Equa-
tion (PDE). Additionally, since the exact number of sources is
assumed as unknown, we endow the model with an assump-
tion that the sources are sparsely distributed. This weak as-
sumption turned out to be very beneficial in order to localize
the sources [1].

In what follows we explain how to encode our knowledge
and assumptions in a probabilistic gas dispersion model suit-
able for estimating the sources from concentration measure-
ments. Afterward, the model is used to design an exploration
strategy that guides the robots to informative measurement
locations with the objective to reduce the uncertainty of the
estimates.

2.1. Probabilistic Gas Dispersion Model

From physics it is known that the gas dispersion process over
some domain of interest {2 can be approximated by the (sta-
tionary) advection-diffusion PDE [11]:

~Vif(x) +v(x) Vi(x) = ux), zcQ (1)
st. f(®) = 0, xe€d )

where f(z) = 0 is a boundary condition on the boundary 0.

Here, we restrict ourselves to the static two dimensional
case (2 C R?), where function f(x) denotes the gas con-
centration at location . The right-hand side of (1) models
the source distribution. More precisely, the function u(x)
represents the source strength or amount of material inflow
at a location x. Furthermore, the vector-valued functions
v(x) € R? describes the two components of the airflow field
at a location x.

However, estimation of a function u(x), which in gen-
eral requires application of calculus of variations, cannot be
solved analytically. Instead we approximate (1) numerically

using Finite Element Method (FEM) [1]. To this end, the con-
tinuous environment 2 is discretized using a finite number of
N nodes spanning a mesh. The continuous functions f,u, v
are approximated by a finite number of linear shape functions
— finite elements — that linearly interpolate between the mesh
nodes.!. Thus the numerical approximations of the continu-
ous functions can be fully parameterized by the values at the
mesh nodes. The values at the mesh nodes are aggregated in
vectors f,u, ¥,y € RY corresponding to discretization of
the continuous functions f, u, and v, respectively. Thus, the
variational problem (1) can be equivalently represented with
a system of N 4 B algebraic equations:

L

where r;(f) =0,i =N +1,..., N + B, represent B equa-
tions obtained after discretization of the boundary condition
(2) at 092. Essentially, B is the number for of nodes in the
mesh that are located at the border of €.

We now cast the deterministic model (3) into a proba-
bilistic setting. Instead of demanding r; to be exactly zero,
we assume that the equations only hold with a certain preci-
sion 7. The derivations (or residuals) of individual equations
are assumed to be spatially and temporally white zero-mean
Gaussian samples. This assumption results in the following
conditional probability density function for the gas concen-
tration given the source distribution and airflow field:

0, i=1,...,N .
0, i=N+1,...,N+B

N+B )
p(f'“ai)l,'f)Q) X H eff(f:u;’le’uﬂ . 4)

=1

Furthermore, we assume the L robots to be equipped with
in-situ gas sensors. Each robot takes K; noisy concentra-
tion measurements at different locations. Thus, the likelihood
function of our model can be defined as:

L
s walf) o [Leww (- 5uMTf =wl?) .

where y, € R¥:, | = 1,..., L, are measurements taken by
the robot I, M; € {0,1}%:*¥ is a binary selection matrix
that “picks” elements in f corresponding to the location of
the robot when the measurement was taken. Besides, 7, is
the sensor measurement noise precision.

We aim at a Bayesian inference approach, and therefore
we also need to define the prior distribution for the airflow
p(v1,v2), as well as the source prior distribution p(u). What
concerns the airflow prior, in this work we assume it to be a
multivariate Gaussian:

p(v1,2) = p(v1)p(v2) = N(vi|tty1, o) N (V2| 2, Tuo)

!"These are also known as Lagrange elements of first-order
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Fig. 2: The figure shows in (a) the experimental setup in the laboratory. The robots are indicated with A. The two sources
are hanging from the ceiling (indicated with B) so that the robots can drive below without collision. The artificial airflow is
generated by fan C. As an overlay, the estimated gas concentration after 12min in one experimental run is shown. The error in
the estimated source distribution is plotted in (b) over time and averaged over three experiments.

where p,,;, X5, 7 = 1,2 are fixed design parameters. Prac-
tically, these can be set from, e.g., weather forecast or de-
termined using anemometer sensors in the field. The mod-
eling of a source prior is a bit more involved. To incorpo-
rate the sparsity assumption we use Sparse Bayesian Learn-
ing and represent p(w) using a hierarchical prior. The model
is augmented with hyperparameters «, such that p(u, a) =
p(ula)p(a) = N(u|0,diag{a}1)Ga(a), where Ga(a) is
a Probability Density Function (PDF) of a Gamma distribu-
tion. The hyperparameters « are estimated alongside other
parameters. Based on equation (4) and (5) our Bayesian in-
ference approach gives us the posterior

U, V1, V2, Yy, ..., x
p(f 1,V2, |y, Yr) ©)

P(Y1s- -yl Fp(flu, 01, 92)p(01, 02)p(ula)p(er).

To maximize this posterior we represent it using a factor
graph and perform inference using message passing, which
can also be implemented in a distributed setting over the
network of robots. Due to space constraints, we refer the
reader to our works [12, 10] where the inference algorithm is
described in more detail. In our setup, each robot calculates
messages of a partition of the whole graph and shares the
results with the other robots.

2.2. Exploration Strategy

The maximum of the posterior (6) provide us the source dis-
tribution u based on gas concentration measurements y;, [ =
1,..., L, taken by robots. In order to achieve a high level of
autonomy, however, an intelligent sampling strategy is needed
that will guide robots to new, informative sampling locations.

For this purpose, we propose an uncertainty-driven explo-
ration strategy, where the new measurements are taken at lo-
cations that maximally reduce the uncertainty of the obtained
estimates. To this end, a gauge for the spatial uncertainty is
needed with respect to different locations in the environment.
Here the probabilistic inference approach becomes use-
ful. Recall, that f represents a concentration value at each
discretized location of the environment {). We can calculate a
marginal distribution for each entry f;,i =1,..., N, of f:

p(fi)Oc/'''\/p(fv1"7@17627a|y1a~~.7yL)d'\J.fiz

N(f”ﬂfi,a'?i);i = 1, .. .,N
(7

where we use the notation [---[d ~ f; to indicate a
marginalization operation over all variables except for f;.
The proposed idea approximates p(f;) with a Gaussian distri-
bution and uses the variance ‘7)2‘1- as a gauge of concentration
uncertainty.

Robots are then sent to locations with the highest vari-
ance, i.e. with the highest uncertainty, which in turn implies
the highest Shannon entropy of the concentration value. Tak-
ing a measurement at this location would reduce the total con-
centration uncertainty the most.

3. EXPERIMENTAL EVALUATION

We evaluated our approach in experiments under laboratory
conditions as shown in Figure 2. We placed two Petri dishes
hanging from the ceiling and filled with ethanol modeling
2 sources. They acted as sources of ethanol vapor in our
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Fig. 3: The figure depicts a snapshot of an exploration experiment after 12man (corresponding to Figure 2). In (a) the estimated
gas concentration is shown. Besides, the white stars indicate all measurement locations. In (b) the estimated source distribution
(spatial source strength) is plotted, where the white crosses indicate the actual position of the ethanol sources. In (c) the artificial
airflow field generated by fans and used in the inference approach is shown.

experiments. Above the culture dishes, fans were mounted
blowing air downwards to accelerate evaporation and disper-
sion. Three small robots were deployed in the experiment.
The robots were equipped with Photoionization detectors (al-
phasense PID-AH2) to measure the ethanol concentration in
the room. Also, the robots make use of a camera tracking sys-
tem for precise indoor localization and can move to desired
waypoints enabled by a robotic path planner. We generated
an artificial airflow in the room using multiple fans. The air-
flow turned out to be long-term stable and was sampled before
the experiments using multiple anemometers. The measured
spatial airflow field, as depicted in Figure 3c, was used as the
airflow prior in the inference approach (6). Namely, based
on the measurements the parameters p,;, %5, j = 1,2,
of the airflow prior were computed. To evaluate the explo-
ration strategy, we compare the estimated source distribution
u to the ground truth source distribution u4; by means of the
Earth Mover’s Distance (EMD) [13]. Vector uy; is an all-
zero vector, with an exception of locations corresponding to
sources. Note that in reality, the actual source inflow rate is
unknown. Therefore, we set the elements in uy; correspond-
ing to sources to 1 and normalized the estimated source distri-
bution to 1, too, before comparison. The resulting EMD per-
formance is plotted in Figure 2b and averaged over three ex-
perimental runs. It can be seen that by intelligently sampling
the gas concentration the robots successively reduce the er-

ror in the estimated source distribution. Figure 3b also shows
the estimated source distribution after 12msn for one experi-
ment. There, the two peaks in the estimated source distribu-
tion nearly perfectly match the actual position of the ethanol
sources indicted by the two crosses.

4. CONCLUSION

The paper shortly summarizes the DARES approach towards
a exploration of gas sources. Based on a physical model of
gas dispersion and the assumption that the dispersion process
is driven by multiple sparsely distributed sources, a proba-
bilistic model was formulated. The model is the foundation
of a Bayesian inference approach to estimate the source dis-
tribution based on gas concentration measurements taken by
robots. Further, the model is used to derive an exploration
strategy that autonomously guides the robots to informative
measurement locations. The DARES approach has been eval-
vated in small-scale experiments in an indoor environment
under controlled conditions. There it has been shown that the
robots are able to successfully localize ethanol vapor sources.
In the future, the DARES approach needs to be evaluated also
in a more challenging environment, for example in outdoor
scenarios.
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