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Abstract. Humans and mobile robots while sharing the same work ar-
eas require a high level of safety especially at possible intersections of
trajectories. An issue of the human-robot navigation is the computa-
tion of the intersection point in the presence of noisy measurements or
fuzzy information. For Gaussian distributions of positions/orientations
(inputs) of robot and human agent and their parameters the correspond-
ing parameters at the intersections (outputs) are computed by analytical
and fuzzy methods. This is done both for the static and the dynamic case
using Kalman filters for robot/human positions and orientations and thus
for the estimation of the intersection positions. For the overdetermined
case (6 inputs, 2 outputs) a so-called ’energetic’ approach is used for
the estimation of the point of intersection. The inverse task is discussed,
specifying the parameters of the output distributions and looking for
the parameters of the input distributions. For larger standard deviations
(stds) mixed Gaussian models are suggested as approximation of non-
Gaussian distributions.

Keywords: human-robot systems, navigation, Gaussian noise, Kalman
filters, fuzzy modeling

1 Introduction

Human operators and mobile robots in shared work areas require a high de-
gree of system stability, safety and mutual adaptation of the behavior to ensure
a successful collaboration. A general discussion on robot-human cooperation is
presented by [11]. Task planning, navigation and obstacle avoidance were major
research activities in recent years [9, 3, 14]. Recognition of human intentions is a
core issue for reaching particular goals [19, 4, 12, 13]. The problem of intersection
of trajectories between robots and humans is addressed by [2] while describing
planned human-robot rendezvous at intersection areas. The computation of the
intersections of the intended trajectories of robot and human requires the mea-
surement and/or estimation of the the positions and orientations of robot and
human which are subject to uncertainties and observation noise and thus affect
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the accuracy of the intersection estimates. [20] and [6] discuss a high level control
strategy for a multiple target tracking approach for robots and other agents. On
the other hand, the present work focuses on the one-robot one-human scenario to
deepen the problem of accuracy and collision avoidance for short distances. Un-
certainties of more than one degree in the orientation measurements on human
and robot can lead to high uncertainties at intersection. For safety reasons and
for an effective collaboration between humans and robots, it is therefore essen-
tial to predict uncertainties at possible intersections. Positions and orientations
of human and robot are non-linearly related to the intersection coordinates but
can be linearized if we only consider the linear part of correlation between input
(positions and orientations) and output (intersection coordinates) and for small
stds at the input [16, 1]. The problem of uncertainty in human/robot systems
leads us consequently to fuzzy systems due to the human factor involved and
the issue of uncertain inputs in technical systems. We know two main directions
to deal with uncertainties at system inputs:
- processing of fuzzy inputs (fuzzy sets) in fuzzy systems [17, 10, 5].
- fuzzy reasoning with probabilistic inputs [21] and the transformation of prob-
abilistic distributions into fuzzy sets [15].
Despite the success of these approaches in fuzzy systems, these methods fail to
address the practical problem of processing a probability distribution through a
static nonlinear system, which is described both analytically and fuzzy. Dealing
with uncertain/fuzzy inputs in an analytical way is motivated by prediction of
future situations like collision avoidance or cooperation at specific work areas,
and to use this information for feed forward control actions and/or re-planning
of trajectories. Our main application is the bearing task for intersections of pos-
sible trajectories of human and robot starting from different positions for the
same ”target” (the intersection)[18]. At first we consider the static case (human
and robot standing still) in order to show the general problems and challenges.
A next step is to consider Robot and human in motion where Kalman filters
are used both for positions and orientations to suppress the measurement noise
during motion. For larger stds at the input, we introduce mixed Gaussian distri-
butions. In principle we address the following direct task: given the parameters
of Gaussian distributions at the input of a static system (human/robot), find the
corresponding distribution parameters at the output (intersection). The inverse
task reads: Given the output distribution parameters, find the input distribution
parameters. The paper is organized as follows. Section 2 describes the analyt-
ical way to the intersection problem with Gaussian noise. Section 3 deals with
the inverse problem to find the input distribution parameters for given output
parameters. Section 4 describes the local linear fuzzy approximation of the non-
linear analytical calculation. In Section 5 the two orientation inputs are extended
by another four position inputs, a so-called ”energy” approach is introduced to
solve the overdetermined problem: 6 inputs and 2 outputs In Section 6, mixed
Gaussian distributions and their contribution to the intersection problem are
presented. Section 7 deals with robot and human in motion with Kalman filters
for positions and orientations included.Section 8 deals with simulations to eval-
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uate the methods and approaches presented. Finally, Section 9 concludes the
paper.

2 Gaussian noise and the intersection problem

2.1 Computation of intersections - analytical approach

Consider two linear paths xR(t) and xH(t) intended by a robot and a human
and a possible intersection (xc, yc). xH = (xH , yH) and xR = (xR, yR) are the
position of human and robot and φH and φR their orientation angles (see Fig.
1).

Fig. 1. Human-robot scenario: geometry, extracted from [18]

From Fig.1 we get

xH = xR + dRH cos(φR + δR)

yH = yR + dRH sin(φR + δR) (1)

xR = xH + dRH cos(φH + δH)

yR = yH + dRH sin(φH + δH)

where positive angles δH and δR are measured from the y coordinates counter-
clockwise and xH , xR, φR, δH , δR, dRH and the angle γ are supposed to be
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measurable. The orientation angle φH is computed by

φH = arcsin((yH − yR)/dRH)− δH + π (2)

From fig. 1, equations (1) and (2) the intersection coordinates xc and yc are
computed by

xc =
A−B

tanφR − tanφH

yc =
A tanφH −B tanφR

tanφR − tanφH
(3)

A = xR tanφR − yR
B = xH tanφH − yH

Rewriting (3) into a matrix-vector form leads to
xc = (xc, yc)

T and xRH = (xR, yR, xH , yH)T

xc = ARH · xRH (4)

where xc = (xc, yc)
T and xRH = (xR, yR, xH , yH)T and

ARH = f(φR, φH) =

1

G

(
tanφR −1 − tanφH 1

tanφR tanφH − tanφH − tanφR tanφH tanφH

)
;G = tanφR − tanφH

The orientation angle φH can be determined by different means, for example
from a scenario recorded by human eye tracking plus a corresponding camera
picture taken from the human’s position and transmitted to the robot [14].

A Takagi-Sugeno (TS) fuzzy approximation of (4) is derived by [14]

xc =
∑
i,j

wi(φR)wj(φH) ·ARHi,j · xRH (5)

wi(φR), wj(φH) ∈ [0, 1] are normalized membership functions with
∑
i wi(φR) =

1 and
∑
j wj(φH) = 1. In the following paragraph the accuracy of the computed

intersection in the case of distorted orientation information is addressed.

2.2 Transformation of Gaussian distributions

General considerations Let be given a static nonlinear system

z = F (x) (6)

with two inputs x = (x1, x2)T and two outputs z = (z1, z2)T where F de-
notes a nonlinear system. Furthermore let two uncorrelated Gaussian distributed
inputs x1 and x2 be described by the 2-dim density
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fx1,x2
=

1

2πσx1
σx2

exp(−1

2
(
e2x1

σ2
x1

+
e2x2

σ2
x2

)) (7)

where ex1 = x1 − x̄1, x̄1 - mean(x1), σx1 - standard deviation x1 and ex2 =
x2 − x̄2, x̄2 - mean(x2), σx2

- standard deviation x2.

The goal is to find the distribution of the output signals z1 and z2 and
thus their stds and the correlation coefficient between them. For linear systems
Gaussian distributions are linearly transformed so that the output signals are
also Gaussian distributed. However this does not hold for nonlinear system in
general. Only if we assume the input stds small enough then the output dis-
tributions are nearly Gaussian distributed but with correlated components as
follows

fz1,z2 =
1

2πσz1σz2
√

1− ρ2z12
· (8)

exp(− 1

2(1− ρ2z12)
(
e2z1
σ2
z1

+
e2z2
σ2
z2

− 2ρz12ez1ez2
σz1σz2

))

ρz12 - correlation coefficient. For the connection between (7) and (8) we use a
differential approach which is described in the next paragraph.

Differential approach Function F in (6) can be described by individual smooth
and nonlinear static transfer functions where (x1, x2) = (φR, φH) and (z1, z2) =
(xc, yc)

z1 = f1(x1, x2)

z2 = f2(x1, x2) (9)

Linearization of (9) yields

dz = J̃ · dx or ez = J̃ · ex (10)

with

ez = (ez1 , ez2)T and ex = (ex1 , ex2)T (11)

dz = (dz1, dz2)T and dx = (dx1, dx2)T

J̃ =

(
∂f1/∂x1, ∂f1/∂x2
∂f2/∂x1, ∂f2/∂x2

)
(12)
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Specific approach to the intersection From (4) we derive the differen-
tial approach if the contributing agents change their directions of motion. To
quantify the uncertainty of xc for uncertain angles φR and φH or positions
xRH = (xR, yR, xH , yH)T we differentiate (4) with xRH = const.

ẋc = J̃ · φ̇

φ̇ = (φ̇R φ̇H)T ; J̃ =

(
J̃11 J̃12
J̃21 J̃22

)
(13)

where

J̃11 =
(
− tanφH 1 tanφH −1

) xRH
G2 · cos2 φR

J̃12 =
(

tanφR −1 − tanφR 1
) xRH
G2 · cos2 φH

J̃21 = J̃11 · tanφH

J̃22 = J̃12 · tanφR

Output distribution To compute the density fz1,z2 of the output signal we
invert (11) and substitute the entries of ex into (7)

ex = J · ez (14)

with J = J̃−1 and

J =

(
J11 J12
J21 J22

)
=

(
jxz
jyz

)
(15)

where jxz = (J11, J12) and jyz = (J21, J22). The entries Jij are the result of

the inversion of J̃ . From this substitution we get

fx1,x2 = Kx1,x2 · exp(−
1

2
· ez

T · (jx1,z
T , jx2,z

T ) · S−1
x ·

(
jx1,z

jx2,z

)
· ez) (16)

where Kx1,x2
= 1

2πσx1σx2
and

S−1
x =

(
1
σ2
x1

, 0

0, 1
σ2
x2

)
(17)

The exponent of (16) is rewritten into



Fuzzy Geometric Approach to Collision Estimation in HRI 7

xpo = −1

2
· ( 1

σ2
x1

(ez1J11 + ez2J12)2 +
1

σ2
x2

(ez1J21 + ez2J22)2) (18)

and furthermore

xpo = −1

2
· [e2z1(

J2
11

σ2
x1

+
J2
21

σ2
x2

) + e2z2(
J2
12

σ2
x1

+
J2
22

σ2
x2

) + 2 · ez1ez2(
J11J12
σ2
x1

+
J21J22
σ2
x2

)] (19)

Then, we compare xpo in (19) with the exponent of the output density (8)
Let

A = (
J2
11

σ2
x1

+
J2
21

σ2
x2

); B = (
J2
12

σ2
x1

+
J2
22

σ2
x2

); C = (
J11J12
σ2
x1

+
J21J22
σ2
x2

) (20)

then this comparison yields

1

(1− ρ2z12)

1

σ2
z1

= A;
1

(1− ρ2z12)

1

σ2
z2

= B;
−2ρz12

(1− ρ2z12)

1

σz1σz2
= 2C (21)

from which we finally obtain the correlation coefficient ρz12 and the stds σz1
and σz2

ρz12 = − C√
AB

;
1

σ2
z1

= A− C2

B
;

1

σ2
z2

= B − C2

A
(22)

from which yields: once we have measured the parameters of the input dis-
tribution and the mathematical expression for the transfer function F (x, y) then
we can compute the output distribution parameters directly.

3 Inverse Solution

Up to now we discussed the problem: Given the parameters of the input distri-
butions of a nonlinear system, find the parameters of the output distributions.
In practice, it might be helpful to define a specific accuracy at the intersection
and look for the necessary accuracy of the input measurements.

This inverse task we apply is similar to that we discussed in section 2.2. The
starting point is equation (11). Equations (7) and (8) describe the densities of
the inputs and the outputs, respectively. Then we substitute (11) into (8) and
discuss the exponent xpoz only:

xpoz =
−1

2(1− ρ2z12)
(ex

T J̃TS−1
z J̃ex −

2ρz12ez1ez2
σz1σz2

) (23)

where

S−1
z =

(
1
σ2
z1

, 0

0, 1
σ2
z1

)
(24)
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With

ez1ez2 = (J̃11ex1
+ J̃12ex2

) · (J̃21ex1
+ J̃22ex2

);

ex
T J̃TS−1

z J̃ex = e2x1
(
J̃2
11

σ2
z1

+
J̃2
21

σ2
z2

) + e2x2
(
J̃2
12

σ2
z1

+
J̃2
22

σ2
z2

)

+2ex1ex2(
J̃11J̃12
σ2
z1

+
J̃21J̃22
σ2
z2

) (25)

while renaming we obtain xpoz into xpox we obtain

xpoz = −1

2
(e2x1

(
J̃2
11

σ2
z1

+
J̃2
21

σ2
z2

− 2ρz12
σz1σz2

J̃11J̃21)/(1− ρ2z12)

+e2x2
(
J̃2
12

σ2
z1

+
J̃2
22

σ2
z2

− 2ρz12
σz1σz2

J̃12J̃22)/(1− ρ2z12) (26)

+
2ex1ex2

(1− ρ2z12)
· ( J̃11J̃12

σ2
z1

+
J̃21J̃22
σ2
z2

− ρz12
σz1σz2

(J̃11J̃22 + J̃12J̃21)))

Now, comparing (26) with the exponent of (7) of the input density we find
that the mixed term in (26) should be zero. Hence we obtain the correlation
coefficient and the stds of the inputs as follows

ρz12 = (
J̃11J̃12
σ2
z1

+
J̃21J̃22
σ2
z2

)
σz1σz2

(J̃11J̃22 + J̃12J̃21)
(27)

1

σ2
x

= (
J̃2
11

σ2
z1

+
J̃2
21

σ2
z2

− 2ρz12
σz1σz2

J̃11J̃21)/(1− ρ2z12) (28)

1

σ2
y

= (
J̃2
12

σ2
z1

+
J̃2
22

σ2
z2

− 2ρz12
σz1σz2

J̃12J̃22)/(1− ρ2z12) (29)

4 FUZZY SOLUTION

To avoid high costs of an on-line computation of the output distribution a TS-
fuzzy approximation of (26) is suggested by the following rules Rij provided that
an analytical representation (6) is available

Rij : IF x1 = X1i AND x2 = X2i THEN ρz12 = − Cij√
AijBij

AND
1

σ2
z1

= Aij −
C2
ij

Bij
AND

1

σ2
z2

= Bij −
C2
ij

Aij
(30)

where X1i, X2i are fuzzy terms for x1, x2, Aij , Bij , Cij are functions of predefined
variables x1 = x1i and x2 = x2i



Fuzzy Geometric Approach to Collision Estimation in HRI 9

From (30) we get

ρz12 = −
∑
ij

wi(x1)wj(x2)
Cij√
AijBij

1

σ2
z1

=
∑
ij

wi(x1)wj(x2)(Aij −
C2
ij

Bij
) (31)

1

σ2
z2

=
∑
ij

wi(x1)wj(x2)(Bij −
C2
ij

Aij
)

wi(x1) ∈ [0, 1] and wj(x2) ∈ [0, 1] are weighting functions with
∑
i wi(x1) = 1∑

j wj(x2) = 1

5 EXTENSION TO SIX INPUTS AND TWO
OUTPUTS

5.1 General approach

In the previous section we dealt with two orientation inputs and two intersection
position outputs where the position coordinates of robot and human are assumed
to be constant.

Consider again the nonlinear system

xc = F (x) (32)

where F denotes a nonlinear system.
Here we have 6 inputs x = (x1, x2, x3, x4, x5, x6)T and 2 outputs xc = (xc, yc)

T .
For the intersection problem we get x = (φR, φH , xR, yR, xH , yH) Let further
the uncorrelated Gaussian distributed inputs x1 ... x6 be described by the 6-dim
density

fxi
=

1

(2π)6/2|Sx|1/2
exp(−1

2
(ex

TSx
−1ex)) (33)

where ex = (ex1, ex2, ..., ex6)T ; ex = x− x̄, x̄ - mean(x), Sx - covariance matrix.

Sx =


σ2
x1

0 ... 0
0 σ2

x2
... 0

... ... ... ...
0 ... 0 σ2

x6


The output density is again described by

fxc,yc =
1

2πσxc
σyc
√

1− ρ2
· exp(− 1

2(1− ρ2)
(eT

xc
Sc

−1exc −
2ρexc

eyc
σxc

σyc
)) (34)
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where ρ - correlation coefficient , exc = (exc
, eyc)T and

Sc
−1 =

(
1
σ2
xc

, 0

0, 1
σ2
yc

)
(35)

In correspondence to (6) and (9) function F can be described by

xc = f1(x) (36)

yc = f2(x)

Furthermore according to (13) we have

exc = J̃ · ex (37)

with

J̃ =

(
J̃11 J̃12 ... J̃16
J̃21 J̃22 ... J̃26

)
(38)

where

J̃ij =
∂fi
∂xj

, , i = 1, 2 , j = 1, ..., 6 (39)

Inversion of (38) leads to

ex = J̃ t · exc = J · exc (40)

with the pseudo inverse J̃ t of J̃ . Renaming J̃ t into J we get

J =

J11 J12
... ...
J61 J62

 (41)

Substituting (37) into (33) we obtain

fxc,yc = Kxc
exp(−1

2
(exc

TJTSx
−1Jexc)) (42)

where Kxc represents a normalization of the output density and

Jxc
= JTSx

−1J =

(
A B
C D

)
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where

A =

6∑
i=1

1

σ2
xi

J2
i1; B =

6∑
i=1

1

σ2
xi

Ji1Ji2 (43)

C =

6∑
i=1

1

σ2
xi

Ji1Ji2; D =

6∑
i=1

1

σ2
xi

J2
i2

Substitution of (43) into (42) leads with B = C to

fxc,yc = Kxc
exp(−1

2
(Ae2xc

+De2yc + 2Cexc
eyc)) (44)

Comparison of (44) with (34) leads with (35) to

ρ = − C√
AD

1

σ2
xc

= A− C2

D
;

1

σ2
yc

= D − C2

A
(45)

which is the counterpart to the 2-dim input case (22).

5.2 Fuzzy approach

The fuzzy approach is similar to the 2-input 2-output case: The first step is to
compute values Ai, Bi and Ci from (43) at predefined positions/orientations
x = (x1, x2, x3, x4, x5, x6)Ti . Then, we formulate fuzzy rules Ri , according to
(30) and (31) with i = 1...n, l - number of fuzzy terms, k = 6 - number of
variables n = lk - number of rules.

Ri : IF xi = Xi THEN ρz12 = − Ci√
AiBi

(46)

AND
1

σ2
z1

= Ai −
C2
i

Bi
AND

1

σ2
z2

= Bi −
C2
i

Ai

where Xi are fuzzy terms for xi. From this set of rules we get again (31).

ρz12 = −
∑
i

wi(x)
Ci√
AiBi

1

σ2
z1

=
∑
i

wi(x)(Ai −
C2
i

Bi
) (47)

1

σ2
z2

=
∑
i

wi(x)(Bi −
C2
i

Ai
)

wi(x) = Π6
l=1wi(xl), wi(xl) ∈ [0, 1] are weighting functions with

∑
i wi(xl) = 1
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The challenge of this approach is the number of rules needed. Even for the
2-inputs 2-outputs case, the increase of the resolution for the same range of φR
and φH yields an increase of the number of rules. Using 7 membership functions
for φR and φH each we obtain 49 rules. Doubling of the number of membership
functions leads to to 196 rules. To avoid an ”explosion” of the number of rules
to be processed at the same time a number of sub-areas together with a small
set of rules is formulated. Then, depending on measurements of φR and φH ,
an appropriate sub-area is selected, and the corresponding set of rules will be
activated (see Fig. 2, sub-area AR, AH). So, the total number of rules could
increase whereas the number of rules to be processed for a calculation would
remain low. To avoid abrupt changes at the borderlines between the sub-areas
an overlap of these regions is recommended. Unfortunately, for 6 inputs one faces
an exponential increase in the number of rules being associated with a very high
computational burden. For l = 7 fuzzy terms for each input variable xk, k = 6 we
end up with n = 76 rules which is much to high. A limitation to an appropriate
number of variables at the input of a fuzzy system can be either heuristic or
systematic to find out the most influential input variables [8] (see Fig.2).

Fig. 2. Fuzzy sectors, extracted from [14]

5.3 The energetic approach

Simulations have shown that this method works well for certain conditions re-
garding the stds of orientations and positions of robot and human. However it
appears that a mixture of orientation angles and robot/human positions leads to
inconsistent results for stds σxc and σyc of the intersection coordinates xc. The

reason is the use of the pseudo inverse for the transformation ex = J̃ t · exc in
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(40), a least square approximation, which leads definitely to uncertainties. A way
out is to compute the variations of the intersection position from robot/human
orientations xcφ,tot and from robot/human positions xcRH,tot separately

σxcφ,tot
2 = σxcφ

2 + σycφ
2

σxcRH,tot
2 = σxcRH

2 + σycRH
2 (48)

Then both variations are summarized to

σxc tot
2 = σxcφ,tot

2 + σxcRH,tot
2 (49)

Here it should be observed that the variance of an noise error signal exc repre-
sents the noise energy per sample [7]. Due to the law of preservation of energy,
the energy of the ’input’ signal ex should be the same as that of the output
exc because of a transformation exc = J̃ · ex by which energy is neither fed-in
nor gone-away. Following this idea it is obvious to use the resulting standard
deviation

σxc tot =
√
σxcφ,tot

2 + σxcRH,tot
2 (50)

as a measure for the uncertainty of the intersection coordinates in the case of
given orientation/position uncertainties of robot and human. The input energy
Ein is computed by the energy Eφ from the orientation angles and by ERH from
the positions of robot and human

Ein = Eφ + ERH (51)

where

Eφ = r2xR
· σ2

φR
+ r2xH

· σ2
φH

(52)

and rxR
- distance robot-intersection, rxH

- distance human-intersection. Further

ERH = σ2
xR

+ σ2
yR + σ2

xH
+ σ2

yH (53)

The average standard deviation of the input signal reads

σin =
√
Eφ + ERH (54)

Since

σin = σxc tot (55)

we know the ’output’ average standard deviation just from the ’input’ average
standard deviation on the condition that we know the intersection coordinate
xc.
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6 Mixed Gaussian distributions

Gaussian input signals at nonlinear or fuzzy systems with large stds do not usu-
ally lead to Gaussian output signals. Therefore we approximate a distribution
with a large standard deviation by several distributions with small stds. In this
connection, fuzzy systems are linearized around the mean values of these distri-
butions. The following analysis shows that the previous analytical approach and
the fuzzy approximation also applies for mixed Gaussian distributions. Consider
an example of a mixture of two distributions/densities fxy1 and fxy2

fxy1 =
1

2πσx1
σy1

exp(−1

2
(
e2x1

σ2
x1

+
e2y1
σ2
y1

)) (56)

fxy2 =
1

2πσx2
σy2

exp(−1

2
(
e2x2

σ2
x2

+
e2y2
σ2
y2

)) (57)

that are linearly combined

fxy = a1fxy1 + a2fxy2 (58)

with ai >= 0 and
∑
i ai = 1 where i = 1, 2 and

ex1
= x1 − x̄1; ex2

= x2 − x̄2
ey1 = y1 − ȳ1; ey2 = y2 − ȳ2

x̄i, ȳi are the mean values of xi, yi.

The partial outputs yield

f iz1,z2 =
1

2πσiz1σ
i
z2

√
1− ρi2

· exp(− 1

2(1− ρi2)
(
eiz1

2

σiz1
2 +

eiz2
2

σiz2
2 −

2ρieiz1e
i
z2

σiz1σ
i
z2

))(59)

eiz1 = z1 − z̄i1; eiz2 = z2 − z̄i2; ρi - correlation coefficient.

From this we finally obtain the output distribution

fz1,z2 =

2∑
i=1

aif
i
z1,z2 (60)

The mixed output distribution fz1,z2 are linear combination of partial output
distributions f iz1,z2 resulting from the input distributions f ix,y. Given the mean

z̄ik, k = 1, 2 and variance σizk
2

of the partial output distributions f iz1,z2 , then
mean and variance of the mixed output distribution are
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z̄k =

2∑
i=1

z̄ik (61)

σzk
2 = a1(σzk1)2 + a2(σzk2)2 + a1a2(z̄1 − z̄2)2

from which we obtain the standard deviation σzk of the intersection straight
forward.

7 Robots and humans in motion

The previous sections dealt with the situation where robot and human are at
rest. For robot and human in motion there occur the following new aspects:

– characteristic of the trajectories (form of paths, velocities)
– change of intersection positions during motion
– filtering of the positions/orientations of robot and human
– change of the errors of positions/orientations during motion.

Without restriction of generality we assume robot and human to move on lines
with constant velocities and orientations since every smooth trajectory can be
approximated by piecewise linear trajectories with regarding constant but usu-
ally different velocities. Positions, orientations and their velocities are corrupted
with system noise and measurement noise. Therefore an appropriate discrete
Kalman filter method is applied. For robot/human we have 6 inputs
x(k) = (x, y, φ, vx, vy, ω)T each. Starting with the system equations

state equation : x(k) = A(k − 1) · x(k − 1) + w(k − 1)

measurement equation : y(k) = C(k) · x(k) + v(k)

covariance matrix of system noise : E(wwT ) = Q

covariance matrix of measurement noise : E(vvT ) = R (62)

old estimation : x̂(k − 1)

error : e = x− x̂

old error covariance matrix : P(k − 1) = E(e · eT )

A - system matrix, C - output matrix, w - system noise, v - measurement noise.
Next, the two steps ’prediction’ and ’correction’ of the Kalman filter algorithm
follow:
Prediction
This step includes the extrapolation of the state x(k) based on the previous
estimation x̂(k − 1)

x?(k) = A(k − 1) · x̂(k − 1) (63)

Furthermore, an extrapolation of matrix P(k − 1) follows

P?(k) = Q(k − 1) + A(k − 1)P(k − 1)A(k − 1)T (64)
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Correction
Computation of the Kalman filter gain K(k) based on P?(k)

K(k) = P?(k) ·C(k) · (C(k)P?(k)C(k)T + R(k))−1 (65)

Computation of the new error covariance matrix P(k) using the Kalman filter
gain K(k) and P?(k)

P(k) = (I −K(k)) ·C(k)) ·P?(k) (66)

Finally we obtain the new estimate

x̂(k) = x?(k) + K(k) · (y(k)−C(k) · x?(k)) (67)

The discrete Kalman filter will now be applied to the trajectories x(k) of the
robot and the human to see how the intersection position xc evolves. Both the
noise of robot/human positions and the noise of orientations have an impact on
the noise of the intersection. However changes in orientations due to noise have
a greater influence on the intersection that that of the positions. Therefore an
appropriate Kalman filter is definitely needed. In the connection the combina-
tion of positions and orientation angles in a common Kalman filter is of great
advantage and will be used in our analysis. An evaluation of the quality of the
filter is done by the measurement of the standard deviations of the noise at the
intersection at different segments T1, T2, ... of the trajectories which is necessary
because of different distances of the positions of the acting agents (robot and hu-
man) to the possible intersection of their trajectories (see Fig. 3). The structure
of a trajectory either of the robot and the human is described by eq.(62).

Fig. 3. Computation of the intersection during motion at different time sequences Ti

With a discrete time step ∆t = 1 the corresponding matrices read
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A(k) =


1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 ; C(k) =

(
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

)
(68)

Q(1) =


σ2
x 0 0 0 0 0

0 σ2
y 0 0 0 0

0 0 σ2
φ 0 0 0

0 0 0 σ2
vx 0 0

0 0 0 0 σ2
vy 0

0 0 0 0 0 σ2
ω

 ; Q(k > 1) =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 σ2

vx 0 0
0 0 0 0 σ2

vy 0

0 0 0 0 0 σ2
ω

 (69)

R(k) =

(
σ2
ν,x 0 0
0 σ2

ν,y 0
0 0 σ2

ν,φ

)
(70)

Fig. 4. Intersection - no Kalman filter Fig. 5. Intersection - with Kalman filter

Figures 4 and 5 show the areas of intersection with the reference trajectories
of robot and human (red lines) and the corresponding estimated trajectories
eq.(67) from the Kalman filter. In addition we see the results for the time se-
quences T1 (k=1...10,red dots) T2 (k=11...20, black dots) and T3 (k=21...30,
blue crosses). The results for the non-filtered case are quite scattered whereas
the Kalman-filtered case depicts much better results for the estimated positions
of the intersection.
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Fig. 6. Sector size: 60◦,
extracted from [18]

Fig. 7. Sector size: 30◦,
extracted from [18]

Fig. 8. Sector size: 15◦,
extracted from [18]

Fig. 9. Sector size: 7.5◦,
extracted from [18]

8 Simulation results

Gaussian input distributions The simulation results show the possibility
of predicting uncertainties at possible intersections by using analytical and /
or fuzzy models for a static situation in which robot and human are not mov-
ing (see fig. 1)). Position and orientation of robot and human are given by
xR = (xR, yR) = (2, 0)m and xH = (xH , yH) = (4, 10)m and φR = 1.78 rad,
(= 102◦), and φH = 3.69 rad, (= 212◦). φR and φHare corrupted with Gaussian
noise with standard deviations (std) of σφR

= σx1 = 0.02 rad, (= 1.1◦). The
fuzzy approach is compared with the analytical non-fuzzy approach by using
partitions of 60◦, 30◦, 15◦, 7.5◦ of the unit circle for the orientation angles, see
table 1 and figures 6-9. Notations in table 1: σz1c - std-computed, σz1m - std-
measured etc. The numbers show two qualitative results:
1. Higher resolutions lead to better results.
2. The performance with regard to a comparison between measured and com-
puted values depends on the shape of membership functions (mf’s). Lower input
std’s (0.02 rad) require Gaussian mf’s, higher input std’s (0.05 rad = 2.9◦) re-
quire Gaussian bell shape mf’s that can be explained by different smoothing
effects (see columns 4 and 5 in table 1).
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Results 1 and 2 can be explained by the comparison of the corresponding con-
trol surfaces and the measurements (black and red dots), see figures 10 - 14.
Figure 10 displays the control surfaces of xc and yc for the analytical case (4).
The control surfaces of the fuzzy approximations (5) (see [14]) are depicted in
figures 11 - 14. Starting from the resolution 60◦ (fig. 11) we see a very high
difference compared to the analytic approach (fig. 10) which decreases more and
more down to resolution 7.5◦ (fig. 14). This explains the high differences in stds
and correlation coefficients in particular for sector sizes 60◦ and 30◦.

Table 1. Standard deviations, fuzzy and non-fuzzy results, extracted from [18]

input std 0.02 Gauss, bell shaped (GB) Gauss 0.05 GB

sector size/ ◦ 60◦ 30◦ 15◦ 7.5◦ 7.5◦ 7.5◦

non-fuzz σz1c 0.143 0.140 0.138 0.125 0.144 0.366

fuzz σz1c 0.220 0.184 0.140 0.126 0.144 0.367

non-fuzz σz1m 0.160 0.144 0.138 0.126 0.142 0.368

fuzz σz1m 0.555 0.224 0.061 0.225 0.164 0.381

non-fuzz σz2c 0.128 0.132 0.123 0.114 0.124 0.303

fuzz σz2c 0.092 0.087 0.120 0.112 0.122 0.299

non-fuzz σz2m 0.134 0.120 0.123 0.113 0.129 0.310

fuzz σz2m 0.599 0.171 0.034 0.154 0.139 0.325

non-fuzz ρz12c 0.576 0.541 0.588 0.561 0.623 0.669

fuzz ρz12c -0.263 0.272 0.478 0.506 0.592 0.592

non-fuzz ρz12m 0.572 0.459 0.586 0.549 0.660 0.667

fuzz ρz12m 0.380 0.575 0.990 0.711 0.635 0.592

1.2
1.4

1.6
1.8

2

3.2

3.4

3.6

3.8

4
−5

0

5

10

15

phi
R

phi
H

y
c

x
c

y
cm

x
cm

Fig. 10. Control surface non-fuzzy, extracted from [18]
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Fig. 11. Control surface fuzzy,
60◦, extracted from [18]
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Fig. 12. Control surface fuzzy,
30◦, extracted from [18]
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Fig. 13. Control surface fuzzy,
15◦, extracted from [18]
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Fig. 14. Control surface fuzzy,
7.5◦, extracted from [18]

Energetic approach .
In the following we concentrate on 3 examples with the following notations (see
Tab.2):
stds from robot/human orientation plus position (from (45)): σxc ; σyc
sum of orientation and position, computed (from (50)): σsum1

sum of orientation and position, measured: σxr; σyr; σsum2

sum of orientation and position, measured and calculated (from (40)): σtot,end
input energy (from (54)): σs,tot
Example 1: This is a special case where all input standard deviations are equal.
Positions/orientations of robot/human:
xR = 2; yR = 0; xH = 4; yH = 10;
φR = 100◦ + νphi,R; φH = 212◦ + νphi,H ;
Input stds:
σphi,R = 0.02;σphi,H = 0.02;σx,R = 0.02;σy,R = 0.02;σx,H = 0.02;σy,H = 0.02;
In this example we see a high match between the stds σxc

and σyc computed



Fuzzy Geometric Approach to Collision Estimation in HRI 21

from (45) and the measured stds σxr and σyr. In addition, we have a high match
between σsum1

, σsum2
, σtot,end, and σs,tot

Example 2: This example deals with slightly different input stds:
σphi,R = 0.03;σphi,H = 0.05;σx,R = 0.03;σy,R = 0.03;σx,H = 0.05;σy,H = 0.05;
In this example we see also a quite high coincidence between the stds σxc

, σyc
and σxr, σyr mentioned above.
Example 3: This example deals with higher differences between the input stds:
σphi,R = 0.03;σphi,H = 0.12;σx,R = 0.03;σy,R = 0.03;σx,H = 0.03;σy,H = 0.03;
In this example we also see a fairly high match between σsum1 , σsum2 , σtot,end,
and σs,tot but not between the stds σxc

, σyc computed from (45) and the mea-
sured stds σxr and σyr. This result shows the advantage of the ”energetic ap-
proach”. The resulting standard deviation gained from the output ”energy” is
an average value for the intersection error that results from position/orientation
errors of robot and human.

Table 2. energy approach, comparisons

stds/examples Example 1 Example 2 Example 3

σxc 0.1295 0.2191 0.2377

σyc 0.1190 0.2783 0.4428

σsum1 0.1759 0.3543 0.6539

σxr 0.1297 0.2266 0.2487

σyr 0.1172 0.2638 0.6032

σsum2 0.1748 0.3478 0.6524

σtot,end 0.1738 0.3433 0.6447

σs,tot 0.1658 0.3323 0.6084

Mixed Gaussian distributions Due to larger uncertainties of the orientations
of robot and human we assume the input signals to be a mixture of two Gaussian
distributions with the following parameters:
φ̄R1= 1.779 rad,(102 deg), σφR1

= 0.02 rad
φ̄H1= 3.698 rad,(212 deg), σφH1

= 0.02 rad
φ̄R2= 1.762 rad,(101 deg), σφR2

= 0.03 rad
φ̄H2= 3.716 rad,(213 deg), σφH2

= 0.03 rad

σz11 = 0.1309 rad; σz21 = 0.1157 rad
σz12 = 0.2274 rad; σz22 = 0.1978 rad
The following computed non-fuzzy and fuzzy (superscript F ) values and measured
values (superscript m) according to (61) show the correctness of the previous
analysis for the analytical case.

z̄1 = 0.487; z̄F1 = 0.413; z̄m1 = 0.485

z̄2 = 7.746; z̄F2 = 7.737; z̄m2 = 7.737
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σz1 = 0.222; σz1
F = 0.235; σz1

m = 0.199

σz2 = 0.184; σz2
F = 0.184; σz2

m = 0.178

Figures 15 and 16 show the regarding input and output densities where Figs.
17 and 18 depict the scatter diagrams (cuts at certain density levels). Finally it
turns out that the fuzzy approximation is sufficiently accurate.

Fig. 15. Mixed Gaussian, input,
extracted from [18] Fig. 16. Mixed Gaussian, output,

extracted from [18]

Fig. 17. Scatter diagram, mixed
input, extracted from [18]

Fig. 18. Scatter diagram, mixed
output, extracted from [18]

Robots and humans in motion The following simulations shows the im-
pact of the Kalman filter on the prediction of a possible intersection between
robot/human trajectories. As already mentioned in section 7 we will see the re-
sults for the measured stds σxc

, σyc , and mean values x̄c, ȳc of the intersection
coordinates, the standard deviation σsum1

that follows from the ”energy” value
(50). We use example 2 with the input stds of measurement noise
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σphi,R = 0.03; σphi,H = 0.05; σx,R = 0.03 ; σy,R = 0.03; σx,H = 0.05;σy,H = 0.05;
along the time sequences T1 (k=1...10), T2 (k=11...20) and T3 (k=21...30).
These results are then compared with the non-filtered values. The results in Ta-
ble 3 show much smaller stds of the intersection coordinations for the filtered
case and therefore the great benefit of Kalman filtering for positions and ori-
entation angles. We can also see a decrease of the stds in the case of smaller
distances between the intersection and the robot/human. positions. Finally fig.
19 shows the efficiency of the Kalman filter used for the orientation angle ΦH of
the human operator by means of which the standard deviation can be suppressed
by 50% of the non-filtered case.

Table 3. example 2, stds of 3 sequences

sequences T1 T2 T3

stds Kalman no Kalman Kalman no Kalman Kalman no Kalman

σxc 0.0835 0.1755 0.0803 0.2949 0.0665 0.2106

σyc 0.2447 0.6840 0.1245 0.4184 0.1138 0.2208

σsum1 0.2586 0.7062 0.1245 0.4184 0.1318 0.3051

x̄c -1.5597 -1.4773 -1.6186 -1.6743 -1.7138 -1.6743

ȳc 6.5214 6.5113 6.3769 6.6380 6.6658 6.6380

Fig. 19. Kalman filtering, orientation human

9 Conclusions

This research work deals with the prediction of situations and scenarios between
robots and humans in shared areas for collision avoidance, task planning and
control actions in the presence of uncertainties. The problem of the computation
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of intersections of human/robot trajectories is addressed, assuming that uncer-
tainties of positions/orientations of human and robots are modeled by Gaussian
noise. To do that we proposed a transformation from the human/robot posi-
tions/orientations to intersection coordinates using a geometrical model and its
TS fuzzy approximation. From measured ’input’ uncertainties, that are repre-
sented by standard deviations of the positions/orientations of human and robot,
the ’output’ standard deviations of the intersection coordinates are calculated
whereas the nominal position/orientation and disturbance parameters of robot
and human are supposed to be known. This analysis and its fuzzy extension ap-
plies to the static and the dynamic case provided that estimations of positions
of robot and human can be derived. The method is both applied to the case
of 2-inputs/2-outputs and to 6-inputs/2-outputs. In the dynamic case, Kalman
filters for the estimation of robot/human positions and orientations and thus ul-
timately for the estimation of the intersection positions are used. For the overde-
termined case, 6-inputs/2-outputs, we presented a so-called ’energetic’ approach
for the estimation of the intersection. The inverse task is the following: given
the standard deviations for the intersection coordinates, find the correspond-
ing input standard deviations for the orientations of robot and human. This
problem is solved for the analytical and the fuzzy version of the 2-input case
(orientations only). Large standard deviations of the orientation signals leads
to the method of mixed Gaussian distributions. As a whole, the increase of the
accuracy of human-robot pose estimations at small distances increase the sys-
tem performance and human safety of human-robot collaboration which will be
used in factory workshops and for robots working in rescue operations and in
cooperation with human operators.
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