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Abstract. Humans and mobile robots while sharing the same work ar-
eas require a high level of safety especially at possible intersections of
trajectories. An issue of the human-robot navigation is the computa-
tion of the intersection point in the presence of noisy measurements or
fuzzy information. For Gaussian distributions of positions/orientations
(inputs) of robot and human agent and their parameters the correspond-
ing parameters at the intersections (outputs) are computed by analytical
and fuzzy methods. This is done both for the static and the dynamic case
using Kalman �lters for robot/human positions and orientations and thus
for the estimation of the intersection positions. For the overdetermined
case (6 inputs, 2 outputs) a so-called 'energetic' approach is used for
the estimation of the point of intersection. The inverse task is discussed,
specifying the parameters of the output distributions and looking for
the parameters of the input distributions. For larger standard deviations
(stds) mixed Gaussian models are suggested as approximation of non-
Gaussian distributions.

Keywords: human-robot systems, navigation, Gaussian noise, Kalman
�lters, fuzzy modeling

1 Introduction

Human operators and mobile robots in shared work areas require a high de-
gree of system stability, safety and mutual adaptation of the behavior to ensure
a successful collaboration. A general discussion on robot-human cooperation is
presented by [11]. Task planning, navigation and obstacle avoidance were major
research activities in recent years [9, 3, 14]. Recognition of human intentions is a
core issue for reaching particular goals [19, 4, 12, 13]. The problem of intersection
of trajectories between robots and humans is addressed by [2] while describing
planned human-robot rendezvous at intersection areas. The computation of the
intersections of the intended trajectories of robot and human requires the mea-
surement and/or estimation of the the positions and orientations of robot and
human which are subject to uncertainties and observation noise and thus a�ect
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the accuracy of the intersection estimates. [20] and [6] discuss a high level control
strategy for a multiple target tracking approach for robots and other agents. On
the other hand, the present work focuses on the one-robot one-human scenario to
deepen the problem of accuracy and collision avoidance for short distances. Un-
certainties of more than one degree in the orientation measurements on human
and robot can lead to high uncertainties at intersection. For safety reasons and
for an e�ective collaboration between humans and robots, it is therefore essen-
tial to predict uncertainties at possible intersections. Positions and orientations
of human and robot are non-linearly related to the intersection coordinates but
can be linearized if we only consider the linear part of correlation between input
(positions and orientations) and output (intersection coordinates) and for small
stds at the input [16, 1]. The problem of uncertainty in human/robot systems
leads us consequently to fuzzy systems due to the human factor involved and
the issue of uncertain inputs in technical systems. We know two main directions
to deal with uncertainties at system inputs:
- processing of fuzzy inputs (fuzzy sets) in fuzzy systems [17, 10, 5].
- fuzzy reasoning with probabilistic inputs [21] and the transformation of prob-
abilistic distributions into fuzzy sets [15].
Despite the success of these approaches in fuzzy systems, these methods fail to
address the practical problem of processing a probability distribution through a
static nonlinear system, which is described both analytically and fuzzy. Dealing
with uncertain/fuzzy inputs in an analytical way is motivated by prediction of
future situations like collision avoidance or cooperation at speci�c work areas,
and to use this information for feed forward control actions and/or re-planning
of trajectories. Our main application is the bearing taskfor intersections of pos-
sible trajectories of human and robot starting from di�erent positions for the
same "target" (the intersection)[18]. At �rst we consider the static case (human
and robot standing still) in order to show the general problems and challenges.
A next step is to consider Robot and human in motion where Kalman �lters
are used both for positions and orientations to suppress the measurement noise
during motion. For larger stds at the input, we introduce mixed Gaussian distri-
butions. In principle we address the followingdirect task: given the parameters
of Gaussian distributions at the input of a static system (human/robot), �nd the
corresponding distribution parameters at the output (intersection). The inverse
task reads: Given the output distribution parameters, �nd the input distribution
parameters. The paper is organized as follows. Section 2 describes the analyt-
ical way to the intersection problem with Gaussian noise. Section 3 deals with
the inverse problem to �nd the input distribution parameters for given output
parameters. Section 4 describes the local linear fuzzy approximation of the non-
linear analytical calculation. In Section 5 the two orientation inputs are extended
by another four position inputs, a so-called "energy" approach is introduced to
solve the overdetermined problem: 6 inputs and 2 outputs In Section 6, mixed
Gaussian distributions and their contribution to the intersection problem are
presented. Section 7 deals with robot and human in motion with Kalman �lters
for positions and orientations included.Section 8 deals with simulations to eval-
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uate the methods and approaches presented. Finally, Section 9 concludes the
paper.

2 Gaussian noise and the intersection problem

2.1 Computation of intersections - analytical approach

Consider two linear paths xR (t) and xH (t) intended by a robot and a human
and a possible intersection (xc; yc). xH = ( xH ; yH ) and xR = ( xR ; yR ) are the
position of human and robot and � H and � R their orientation angles (see Fig.
1).

Fig. 1. Human-robot scenario: geometry, extracted from [18]

From Fig.1 we get

xH = xR + dRH cos(� R + � R )

yH = yR + dRH sin(� R + � R ) (1)

xR = xH + dRH cos(� H + � H )

yR = yH + dRH sin(� H + � H )

where positive angles� H and � R are measured from they coordinates counter-
clockwise andxH , xR , � R , � H , � R , dRH and the angle 
 are supposed to be
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measurable. The orientation angle� H is computed by

� H = arcsin(( yH � yR )=dRH ) � � H + � (2)

From �g. 1, equations (1) and (2) the intersection coordinates xc and yc are
computed by

xc =
A � B

tan � R � tan � H

yc =
A tan � H � B tan � R

tan � R � tan � H
(3)

A = xR tan � R � yR

B = xH tan � H � yH

Rewriting (3) into a matrix-vector form leads to
x c = ( xc; yc)T and xRH = ( xR ; yR ; xH ; yH )T

x c = ARH � xRH (4)

where x c = ( xc; yc)T and xRH = ( xR ; yR ; xH ; yH )T and

ARH = f (� R ; � H ) =

1
G

�
tan � R � 1 � tan � H 1

tan � R tan � H � tan � H � tan � R tan � H tan � H

�
; G = tan � R � tan � H

The orientation angle � H can be determined by di�erent means, for example
from a scenario recorded by human eye tracking plus a corresponding camera
picture taken from the human's position and transmitted to the robot [14].

A Takagi-Sugeno (TS) fuzzy approximation of (4) is derived by [14]

x c =
X

i;j

wi (� R )wj (� H ) � ARH i;j � xRH (5)

wi (� R ); wj (� H ) 2 [0; 1] are normalized membership functions with
P

i wi (� R ) =
1 and

P
j wj (� H ) = 1. In the following paragraph the accuracy of the computed

intersection in the case of distorted orientation information is addressed.

2.2 Transformation of Gaussian distributions

General considerations Let be given a static nonlinear system

z = F (x) (6)

with two inputs x = ( x1; x2)T and two outputs z = ( z1; z2)T where F de-
notes a nonlinear system. Furthermore let two uncorrelated Gaussian distributed
inputs x1 and x2 be described by the 2-dim density
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f x 1 ;x 2 =
1

2�� x 1 � x 2

exp(�
1
2

(
e2

x 1

� 2
x 1

+
e2

x 2

� 2
x 2

)) (7)

where ex 1 = x1 � �x1, �x1 - mean(x1), � x 1 - standard deviation x1 and ex 2 =
x2 � �x2, �x2 - mean(x2), � x 2 - standard deviation x2.

The goal is to �nd the distribution of the output signals z1 and z2 and
thus their stds and the correlation coe�cient between them. For linear systems
Gaussian distributions are linearly transformed so that the output signals are
also Gaussian distributed. However this does not hold for nonlinear system in
general. Only if we assume the input stds small enough then the output dis-
tributions are nearly Gaussian distributed but with correlated components as
follows

f z1 ;z 2 =
1

2�� z1 � z2

p
1 � � 2

z12

� (8)

exp(�
1

2(1 � � 2
z12 )

(
e2

z1

� 2
z1

+
e2

z2

� 2
z2

�
2� z12 ez1 ez2

� z1 � z2

))

� z12 - correlation coe�cient. For the connection between (7) and (8) we use a
di�erential approach which is described in the next paragraph.

Di�erential approach Function F in (6) can be described by individual smooth
and nonlinear static transfer functions where (x1; x2) = ( � R ; � H ) and (z1; z2) =
(xc; yc)

z1 = f 1(x1 ; x2)

z2 = f 2(x1 ; x2) (9)

Linearization of (9) yields

dz = ~J � dx or ez = ~J � ex (10)

with

ez = ( ez1 ; ez2 )T and ex = ( ex 1 ; ex 2 )T (11)

dz = ( dz1 ; dz2)T and dx = ( dx1 ; dx2)T

~J =

�
@f1=@x1 ; @f1=@x2
@f2=@x1 ; @f2=@x2

�
(12)
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Speci�c approach to the intersection From (4) we derive the di�eren-
tial approach if the contributing agents change their directions of motion. To
quantify the uncertainty of x c for uncertain angles � R and � H or positions
xRH = ( xR ; yR ; xH ; yH )T we di�erentiate (4) with xRH = const.

_xc = ~J � _�

_� = ( _� R _� H )T ; ~J =

�
~J11 ~J12
~J21 ~J22

�
(13)

where

~J11 =
�

� tan � H 1 tan � H � 1
� x RH

G2 � cos2 � R

~J12 =
�

tan � R � 1 � tan � R 1
� x RH

G2 � cos2 � H

~J21 = ~J11 � tan � H

~J22 = ~J12 � tan � R

Output distribution To compute the density f z1 ;z2 of the output signal we
invert (11) and substitute the entries of ex into (7)

ex = J � ez (14)

with J = ~J � 1 and

J =

�
J11 J12

J21 J22

�
=

�
j xz

j yz

�
(15)

where j xz = ( J11; J12) and j yz = ( J21; J22). The entries J ij are the result of
the inversion of ~J . From this substitution we get

f x 1 ;x 2 = K x 1 ;x 2 � exp(�
1
2

� ez
T � (j x 1 ;z

T ; j x 2 ;z
T ) � S� 1

x �

�
j x 1 ;z

j x 2 ;z

�
� ez ) (16)

where K x 1 ;x 2 = 1
2�� x 1 � x 2

and

S� 1
x =

 
1

� 2
x 1

; 0

0; 1
� 2

x 2

!

(17)

The exponent of (16) is rewritten into
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xpo = �
1
2

� (
1

� 2
x 1

(ez1 J11 + ez2 J12)2 +
1

� 2
x 2

(ez1 J21 + ez2 J22)2) (18)

and furthermore

xpo = �
1
2

� [e2
z1 (

J 2
11

� 2
x 1

+
J 2

21

� 2
x 2

) + e2
z2 (

J 2
12

� 2
x 1

+
J 2

22

� 2
x 2

) + 2 � ez1 ez2 (
J11 J12

� 2
x 1

+
J21 J22

� 2
x 2

)] (19)

Then, we compare xpo in (19) with the exponent of the output density (8)
Let

A = (
J 2

11

� 2
x 1

+
J 2

21

� 2
x 2

); B = (
J 2

12

� 2
x 1

+
J 2

22

� 2
x 2

); C = (
J11 J12

� 2
x 1

+
J21 J22

� 2
x 2

) (20)

then this comparison yields

1
(1 � � 2

z12 )
1

� 2
z1

= A;
1

(1 � � 2
z12 )

1
� 2

z2

= B ;
� 2� z12

(1 � � 2
z12 )

1
� z1 � z2

= 2 C (21)

from which we �nally obtain the correlation coe�cient � z12 and the stds � z1

and � z2

� z12 = �
C

p
AB

;
1

� 2
z1

= A �
C2

B
;

1
� 2

z2

= B �
C2

A
(22)

from which yields: once we have measured the parameters of the input dis-
tribution and the mathematical expression for the transfer function F (x; y) then
we can compute the output distribution parameters directly.

3 Inverse Solution

Up to now we discussed the problem: Given the parameters of the input distri-
butions of a nonlinear system, �nd the parameters of the output distributions.
In practice, it might be helpful to de�ne a speci�c accuracy at the intersection
and look for the necessary accuracy of the input measurements.

This inverse task we apply is similar to that we discussed in section 2.2. The
starting point is equation (11). Equations (7) and (8) describe the densities of
the inputs and the outputs, respectively. Then we substitute (11) into (8) and
discuss the exponentxpoz only:

xpoz =
� 1

2(1 � � 2
z12

)
(ex

T ~J T S� 1
z

~J ex �
2� z12 ez1 ez2

� z1 � z2

) (23)

where

S� 1
z =

 1
� 2

z 1
; 0

0; 1
� 2

z 1

!

(24)
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With

ez1 ez2 = ( ~J11ex 1 + ~J12ex 2 ) � ( ~J21ex 1 + ~J22ex 2 );

ex
T ~J T S� 1

z
~J ex = e2

x 1
(

~J 2
11

� 2
z1

+
~J 2
21

� 2
z2

) + e2
x 2

(
~J 2
12

� 2
z1

+
~J 2
22

� 2
z2

)

+2ex 1 ex 2 (
~J11 ~J12

� 2
z1

+
~J21 ~J22

� 2
z2

) (25)

while renaming we obtain xpoz into xpox we obtain

xpoz = �
1
2

(e2
x 1

(
~J 2
11

� 2
z1

+
~J 2
21

� 2
z2

�
2� z12

� z1 � z2

~J11 ~J21)=(1 � � 2
z12

)

+ e2
x 2

(
~J 2
12

� 2
z1

+
~J 2
22

� 2
z2

�
2� z12

� z1 � z2

~J12 ~J22)=(1 � � 2
z12

) (26)

+
2ex 1 ex 2

(1 � � 2
z12

)
� (

~J11 ~J12

� 2
z1

+
~J21 ~J22

� 2
z2

�
� z12

� z1 � z2

( ~J11 ~J22 + ~J12 ~J21)))

Now, comparing (26) with the exponent of (7) of the input density we �nd
that the mixed term in (26) should be zero. Hence we obtain the correlation
coe�cient and the stds of the inputs as follows

� z12 = (
~J11 ~J12

� 2
z1

+
~J21 ~J22

� 2
z2

)
� z1 � z2

( ~J11 ~J22 + ~J12 ~J21)
(27)

1
� 2

x
= (

~J 2
11

� 2
z1

+
~J 2
21

� 2
z2

�
2� z12

� z1 � z2

~J11 ~J21)=(1 � � 2
z12

) (28)

1
� 2

y
= (

~J 2
12

� 2
z1

+
~J 2
22

� 2
z2

�
2� z12

� z1 � z2

~J12 ~J22)=(1 � � 2
z12

) (29)

4 FUZZY SOLUTION

To avoid high costs of an on-line computation of the output distribution a TS-
fuzzy approximation of (26) is suggested by the following rulesRij provided that
an analytical representation (6) is available

Rij : IF x 1 = X 1i AND x 2 = X 2i THEN � z12 = �
Cijp
A ij B ij

AND
1

� 2
z1

= A ij �
C2

ij

B ij
AND

1
� 2

z2

= B ij �
C2

ij

A ij
(30)

whereX 1i ; X 2i are fuzzy terms forx1; x2, A ij ; B ij ; Cij are functions of prede�ned
variables x1 = x1i and x2 = x2i
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From (30) we get

� z12 = �
X

ij

wi (x1)wj (x2)
Cijp
A ij B ij

1
� 2

z1

=
X

ij

wi (x1)wj (x2)(A ij �
C2

ij

B ij
) (31)

1
� 2

z2

=
X

ij

wi (x1)wj (x2)(B ij �
C2

ij

A ij
)

wi (x1) 2 [0; 1] andwj (x2) 2 [0; 1] are weighting functions with
P

i wi (x1) = 1P
j wj (x2) = 1

5 EXTENSION TO SIX INPUTS AND TWO
OUTPUTS

5.1 General approach

In the previous section we dealt with two orientation inputs and two intersection
position outputs where the position coordinates of robot and human are assumed
to be constant.

Consider again the nonlinear system

x c = F (x) (32)

where F denotes a nonlinear system.
Here we have 6 inputsx = ( x1; x2; x3; x4; x5; x6)T and 2 outputs x c = ( xc; yc)T .
For the intersection problem we get x = ( � R ; � H ; xR ; yR ; xH ; yH ) Let further
the uncorrelated Gaussian distributed inputs x1 ... x6 be described by the 6-dim
density

f x i =
1

(2� )6=2jSx j1=2
exp(�

1
2

(ex
T Sx

� 1ex )) (33)

whereex = ( ex 1; ex 2; :::; ex 6)T ; ex = x � �x , �x - mean(x), Sx - covariance matrix.

Sx =

0

B
B
@

� 2
x 1

0 ::: 0
0 � 2

x 2
::: 0

::: ::: ::: :::
0 ::: 0 � 2

x 6

1

C
C
A

The output density is again described by

f x c ;y c =
1

2�� x c � yc

p
1 � � 2

� exp(�
1

2(1 � � 2)
(eT

x c
Sc

� 1ex c �
2�e x c eyc

� x c � yc

)) (34)
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where � - correlation coe�cient , ex c = ( ex c ; eyc )T and

Sc
� 1 =

 
1

� 2
x c

; 0

0; 1
� 2

y c

!

(35)

In correspondence to (6) and (9) function F can be described by

xc = f 1(x) (36)

yc = f 2(x)

Furthermore according to (13) we have

ex c = ~J � ex (37)

with

~J =
� ~J11 ~J12 ::: ~J16

~J21 ~J22 ::: ~J26

�
(38)

where

~J ij =
@fi
@xj

; ; i = 1 ; 2 ; j = 1 ; :::; 6 (39)

Inversion of (38) leads to

ex = ~J t � ex c = J � ex c (40)

with the pseudo inverse ~J t of ~J . Renaming ~J t into J we get

J =

0

@
J11 J12

::: :::
J61 J62

1

A (41)

Substituting (37) into (33) we obtain

f x c ;y c = K x c exp(�
1
2

(ex c
T J T Sx

� 1J ex c )) (42)

where K x c represents a normalization of the output density and

Jx c = J T Sx
� 1J =

�
A B
C D

�
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where

A =
6X

i =1

1
� 2

x i

J 2
i 1; B =

6X

i =1

1
� 2

x i

J i 1J i 2 (43)

C =
6X

i =1

1
� 2

x i

J i 1J i 2; D =
6X

i =1

1
� 2

x i

J 2
i 2

Substitution of (43) into (42) leads with B = C to

f x c ;y c = K x c exp(�
1
2

(Ae2
x c

+ De2
yc

+ 2Cex c eyc )) (44)

Comparison of (44) with (34) leads with (35) to

� = �
C

p
AD

1
� 2

x c

= A �
C2

D
;

1
� 2

yc

= D �
C2

A
(45)

which is the counterpart to the 2-dim input case (22).

5.2 Fuzzy approach

The fuzzy approach is similar to the 2-input 2-output case: The �rst step is to
compute values A i , B i and Ci from (43) at prede�ned positions/orientations
x = ( x1; x2; x3; x4; x5; x6)T

i . Then, we formulate fuzzy rules Ri , according to
(30) and (31) with i = 1 :::n, l - number of fuzzy terms, k = 6 - number of
variables n = lk - number of rules.

R i : IF x i = X i T HEN � z12 = �
Cip
A i B i

(46)

AND
1

� 2
z1

= A i �
C2

i

B i
AND

1
� 2

z2

= B i �
C2

i

A i

where X i are fuzzy terms for x i . From this set of rules we get again (31).

� z12 = �
X

i

wi (x )
Cip
A i B i

1
� 2

z1

=
X

i

wi (x )(A i �
C2

i

B i
) (47)

1
� 2

z2

=
X

i

wi (x )(B i �
C2

i

A i
)

wi (x) = � 6
l =1 wi (x l ), wi (x l ) 2 [0; 1] are weighting functions with

P
i wi (x l ) = 1
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The challenge of this approach is the number of rules needed. Even for the
2-inputs 2-outputs case, the increase of the resolution for the same range of� R

and � H yields an increase of the number of rules. Using 7 membership functions
for � R and � H each we obtain 49 rules. Doubling of the number of membership
functions leads to to 196 rules. To avoid an "explosion" of the number of rules
to be processed at the same time a number of sub-areas together with a small
set of rules is formulated. Then, depending on measurements of� R and � H ,
an appropriate sub-area is selected, and the corresponding set of rules will be
activated (see Fig. 2, sub-areaAR ; AH ). So, the total number of rules could
increase whereas the number of rules to be processed for a calculation would
remain low. To avoid abrupt changes at the borderlines between the sub-areas
an overlap of these regions is recommended. Unfortunately, for 6 inputs one faces
an exponential increase in the number of rules being associated with a very high
computational burden. For l = 7 fuzzy terms for each input variable xk , k = 6 we
end up with n = 7 6 rules which is much to high. A limitation to an appropriate
number of variables at the input of a fuzzy system can be either heuristic or
systematic to �nd out the most in
uential input variables [8] (see Fig.2).

Fig. 2. Fuzzy sectors, extracted from [14]

5.3 The energetic approach

Simulations have shown that this method works well for certain conditions re-
garding the stds of orientations and positions of robot and human. However it
appears that a mixture of orientation angles and robot/human positions leads to
inconsistent results for stds� x c and � yc of the intersection coordinatesx c . The
reason is the use of the pseudo inverse for the transformationex = ~J t � ex c in
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(40), a least square approximation, which leads de�nitely to uncertainties. A way
out is to compute the variations of the intersection position from robot/human
orientations x c �; tot and from robot/human positions x c RH;tot separately

� x c �;tot
2 = � x c �

2 + � yc �
2

� x c RH;tot
2 = � x c RH

2 + � yc RH
2 (48)

Then both variations are summarized to

� x c tot
2 = � x c �;tot

2 + � x c RH;tot
2 (49)

Here it should be observed that the variance of an noise error signalex c repre-
sents the noise energy per sample [7]. Due to the law of preservation of energy,
the energy of the 'input' signal ex should be the same as that of the output
ex c because of a transformationex c = ~J � ex by which energy is neither fed-in
nor gone-away. Following this idea it is obvious to use the resulting standard
deviation

� x c tot =
q

� x c �;tot
2 + � x c RH;tot

2 (50)

as a measure for the uncertainty of the intersection coordinates in the case of
given orientation/position uncertainties of robot and human. The input energy
E in is computed by the energyE � from the orientation angles and byERH from
the positions of robot and human

E in = E � + ERH (51)

where

E � = r 2
x R

� � 2
� R

+ r 2
x H

� � 2
� H

(52)

and r x R - distance robot-intersection,r x H - distance human-intersection. Further

ERH = � 2
x R

+ � 2
yR

+ � 2
x H

+ � 2
yH

(53)

The average standard deviation of the input signal reads

� in =
p

E � + ERH (54)

Since

� in = � x c tot (55)

we know the 'output' average standard deviation just from the 'input' average
standard deviation on the condition that we know the intersection coordinate
x c .
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6 Mixed Gaussian distributions

Gaussian input signals at nonlinear or fuzzy systems with large stds do not usu-
ally lead to Gaussian output signals. Therefore we approximate a distribution
with a large standard deviation by several distributions with small stds. In this
connection, fuzzy systems are linearized around the mean values of these distri-
butions. The following analysis shows that the previous analytical approach and
the fuzzy approximation also applies for mixed Gaussian distributions. Consider
an example of a mixture of two distributions/densities f xy 1 and f xy 2

f xy 1 =
1

2�� x 1 � y1
exp(�

1
2

(
e2

x 1

� 2
x 1

+
e2

y1

� 2
y1

)) (56)

f xy 2 =
1

2�� x 2 � y2
exp(�

1
2

(
e2

x 2

� 2
x 2

+
e2

y2

� 2
y2

)) (57)

that are linearly combined

f xy = a1f xy 1 + a2f xy 2 (58)

with ai > = 0 and
P

i ai = 1 where i = 1 ; 2 and

ex 1 = x1 � �x1; ex 2 = x2 � �x2

ey1 = y1 � �y1; ey2 = y2 � �y2

�x i ; �yi are the mean values ofx i ; yi .
The partial outputs yield

f i
z1 ;z2

=
1

2�� i
z1

� i
z2

q
1 � � i 2

� exp(�
1

2(1 � � i 2)
(

ei
z1

2

� i
z1

2 +
ei

z2

2

� i
z2

2 �
2� i ei

z1
ei

z2

� i
z1

� i
z2

))(59)

ei
z1

= z1 � �zi
1; ei

z2
= z2 � �zi

2; � i - correlation coe�cient.
From this we �nally obtain the output distribution

f z1 ;z2 =
2X

i =1

ai f i
z1 ;z2

(60)

The mixed output distribution f z1 ;z2 are linear combination of partial output
distributions f i

z1 ;z2
resulting from the input distributions f i

x;y . Given the mean

�zi
k ; k = 1 ; 2 and variance � i

zk

2
of the partial output distributions f i

z1 ;z2
, then

mean and variance of the mixed output distribution are
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�zk =
2X

i =1

�zi
k (61)

� zk
2 = a1(� zk 1)2 + a2(� zk 2)2 + a1a2(�z1 � �z2)2

from which we obtain the standard deviation � zk of the intersection straight
forward.

7 Robots and humans in motion

The previous sections dealt with the situation where robot and human are at
rest. For robot and human in motion there occur the following new aspects:

{ characteristic of the trajectories (form of paths, velocities)
{ change of intersection positions during motion
{ �ltering of the positions/orientations of robot and human
{ change of the errors of positions/orientations during motion.

Without restriction of generality we assume robot and human to move on lines
with constant velocities and orientations since every smooth trajectory can be
approximated by piecewise linear trajectories with regarding constant but usu-
ally di�erent velocities. Positions, orientations and their velocities are corrupted
with system noise and measurement noise. Therefore an appropriate discrete
Kalman �lter method is applied. For robot/human we have 6 inputs
x(k) = ( x; y; �; v x ; vy ; ! )T each. Starting with the system equations

state equation : x(k) = A (k � 1) � x(k � 1) + w(k � 1)

measurement equation : y (k) = C(k) � x(k) + v(k)

covariance matrix of system noise : E(ww T ) = Q

covariance matrix of measurement noise : E(vv T ) = R (62)

old estimation : x̂ (k � 1)

error : e = x � x̂

old error covariance matrix : P(k � 1) = E(e � eT )

A - system matrix, C - output matrix, w - system noise,v - measurement noise.
Next, the two steps 'prediction' and 'correction' of the Kalman �lter algorithm
follow:
Prediction
This step includes the extrapolation of the state x(k) based on the previous
estimation x̂ (k � 1)

x?(k) = A (k � 1) � x̂ (k � 1) (63)

Furthermore, an extrapolation of matrix P(k � 1) follows

P ?(k) = Q(k � 1) + A (k � 1)P(k � 1)A (k � 1)T (64)
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Correction
Computation of the Kalman �lter gain K (k) based onP ?(k)

K (k) = P ?(k) � C(k) � (C(k)P ?(k)C(k)T + R (k)) � 1 (65)

Computation of the new error covariance matrix P(k) using the Kalman �lter
gain K (k) and P ?(k)

P(k) = ( I � K (k)) � C(k)) � P ?(k) (66)

Finally we obtain the new estimate

x̂ (k) = x?(k) + K (k) � (y (k) � C(k) � x?(k)) (67)

The discrete Kalman �lter will now be applied to the trajectories x(k) of the
robot and the human to see how the intersection positionx c evolves. Both the
noise of robot/human positions and the noise of orientations have an impact on
the noise of the intersection. However changes in orientations due to noise have
a greater in
uence on the intersection that that of the positions. Therefore an
appropriate Kalman �lter is de�nitely needed. In the connection the combina-
tion of positions and orientation angles in a common Kalman �lter is of great
advantage and will be used in our analysis. An evaluation of the quality of the
�lter is done by the measurement of the standard deviations of the noise at the
intersection at di�erent segments T1; T2; ::: of the trajectories which is necessary
because of di�erent distances of the positions of the acting agents (robot and hu-
man) to the possible intersection of their trajectories (see Fig. 3). The structure
of a trajectory either of the robot and the human is described by eq.(62).

Fig. 3. Computation of the intersection during motion at di�erent time sequences Ti

With a discrete time step �t = 1 the corresponding matrices read
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A (k ) =

0

B
B
B
B
B
@

1 0 0 �t 0 0
0 1 0 0 �t 0
0 0 1 0 0 �t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1

C
C
C
C
C
A

; C (k ) =

 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

!

(68)

Q(1) =

0

B
B
B
B
B
@

� 2
x 0 0 0 0 0

0 � 2
y 0 0 0 0

0 0 � 2
� 0 0 0

0 0 0 � 2
v x 0 0

0 0 0 0 � 2
v y 0

0 0 0 0 0 � 2
!

1

C
C
C
C
C
A

; Q(k > 1) =

0

B
B
B
B
B
@

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 � 2

vx 0 0
0 0 0 0 � 2

vy 0
0 0 0 0 0 � 2

!

1

C
C
C
C
C
A

(69)

R (k ) =

 
� 2

�;x 0 0
0 � 2

�;y 0
0 0 � 2

�;�

!

(70)

Fig. 4. Intersection - no Kalman �lter Fig. 5. Intersection - with Kalman �lter

Figures 4 and 5 show the areas of intersection with the reference trajectories
of robot and human (red lines) and the corresponding estimated trajectories
eq.(67) from the Kalman �lter. In addition we see the results for the time se-
quences T1 (k=1...10,red dots) T2 (k=11...20, black dots) and T3 (k=21...30,
blue crosses). The results for the non-�ltered case are quite scattered whereas
the Kalman-�ltered case depicts much better results for the estimated positions
of the intersection.
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Fig. 6. Sector size: 60� ,
extracted from [18]

Fig. 7. Sector size: 30� ,
extracted from [18]

Fig. 8. Sector size: 15� ,
extracted from [18]

Fig. 9. Sector size: 7:5� ,
extracted from [18]

8 Simulation results

Gaussian input distributions The simulation results show the possibility
of predicting uncertainties at possible intersections by using analytical and /
or fuzzy models for a static situation in which robot and human are not mov-
ing (see �g. 1)). Position and orientation of robot and human are given by
xR = ( xR ; yR ) = (2 ; 0)m and xH = ( xH ; yH ) = (4 ; 10)m and � R = 1 :78 rad,
(= 102 � ), and � H = 3 :69 rad, (= 212� ). � R and � H are corrupted with Gaussian
noise with standard deviations (std) of � � R = � x 1 = 0 :02 rad, (= 1:1� ). The
fuzzy approach is compared with the analytical non-fuzzy approach by using
partitions of 60� ; 30� ; 15� ; 7:5� of the unit circle for the orientation angles, see
table 1 and �gures 6-9. Notations in table 1: � z1 c - std-computed, � z1 m - std-
measured etc. The numbers show two qualitative results:
1. Higher resolutions lead to better results.
2. The performance with regard to a comparison between measured and com-
puted values depends on the shape of membership functions (mf's). Lower input
std's (0.02 rad) require Gaussian mf's, higher input std's (0.05 rad = 2:9� ) re-
quire Gaussian bell shape mf's that can be explained by di�erent smoothing
e�ects (see columns 4 and 5 in table 1).
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Results 1 and 2 can be explained by the comparison of the corresponding con-
trol surfaces and the measurements (black and red dots), see �gures 10 - 14.
Figure 10 displays the control surfaces ofxc and yc for the analytical case (4).
The control surfaces of the fuzzy approximations (5) (see [14]) are depicted in
�gures 11 - 14. Starting from the resolution 60� (�g. 11) we see a very high
di�erence compared to the analytic approach (�g. 10) which decreases more and
more down to resolution 7:5� (�g. 14). This explains the high di�erences in stds
and correlation coe�cients in particular for sector sizes 60� and 30� .

Table 1. Standard deviations, fuzzy and non-fuzzy results, extracted from [18]

input std 0.02 Gauss, bell shaped (GB)Gauss0.05 GB
sector size/ � 60� 30� 15� 7:5� 7:5� 7:5�

non-fuzz � z1 c 0.143 0.140 0.138 0.125 0.144 0.366
fuzz � z1 c 0.220 0.184 0.140 0.126 0.144 0.367

non-fuzz � z1 m 0.160 0.144 0.138 0.126 0.142 0.368
fuzz � z1 m 0.555 0.224 0.061 0.225 0.164 0.381

non-fuzz � z2 c 0.128 0.132 0.123 0.114 0.124 0.303
fuzz � z2 c 0.092 0.087 0.120 0.112 0.122 0.299

non-fuzz � z2 m 0.134 0.120 0.123 0.113 0.129 0.310
fuzz � z2 m 0.599 0.171 0.034 0.154 0.139 0.325

non-fuzz � z12 c 0.576 0.541 0.588 0.561 0.623 0.669
fuzz � z12 c -0.263 0.272 0.478 0.506 0.592 0.592

non-fuzz � z12 m 0.572 0.459 0.586 0.549 0.660 0.667
fuzz � z12 m 0.380 0.575 0.990 0.711 0.635 0.592
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Fig. 10. Control surface non-fuzzy, extracted from [18]
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Fig. 11. Control surface fuzzy,
60� , extracted from [18]
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Fig. 12. Control surface fuzzy,
30� , extracted from [18]

Fig. 13. Control surface fuzzy,
15� , extracted from [18]

Fig. 14. Control surface fuzzy,
7:5� , extracted from [18]

Energetic approach .
In the following we concentrate on 3 examples with the following notations (see
Tab.2):
stds from robot/human orientation plus position (from (45)): � x c ; � yc

sum of orientation and position, computed (from (50)): � sum 1

sum of orientation and position, measured:� xr ; � yr ; � sum 2

sum of orientation and position, measured and calculated (from (40)):� tot;end

input energy (from (54)): � s;tot

Example 1: This is a special case where all input standard deviations are equal.
Positions/orientations of robot/human:
xR = 2; yR = 0; xH = 4; yH = 10;
� R = 100� + � phi;R ; � H = 212� + � phi;H ;
Input stds:
� phi;R = 0 :02;� phi;H = 0 :02;� x;R = 0 :02;� y;R = 0 :02;� x;H = 0 :02;� y;H = 0 :02;
In this example we see a high match between the stds� x c and � yc computed
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from (45) and the measured stds� xr and � yr . In addition, we have a high match
between� sum 1 , � sum 2 , � tot;end , and � s;tot

Example 2: This example deals with slightly di�erent input stds:
� phi;R = 0 :03;� phi;H = 0 :05;� x;R = 0 :03;� y;R = 0 :03;� x;H = 0 :05;� y;H = 0 :05;
In this example we see also a quite high coincidence between the stds� x c , � yc

and � xr , � yr mentioned above.
Example 3: This example deals with higher di�erences between the input stds:
� phi;R = 0 :03;� phi;H = 0 :12;� x;R = 0 :03;� y;R = 0 :03;� x;H = 0 :03;� y;H = 0 :03;
In this example we also see a fairly high match between� sum 1 , � sum 2 , � tot;end ,
and � s;tot but not between the stds � x c , � yc computed from (45) and the mea-
sured stds � xr and � yr . This result shows the advantage of the "energetic ap-
proach". The resulting standard deviation gained from the output "energy" is
an average value for the intersection error that results from position/orientation
errors of robot and human.

Table 2. energy approach, comparisons

stds/examples Example 1 Example 2 Example 3

� x c 0.1295 0.2191 0.2377
� y c 0.1190 0.2783 0.4428

� sum 1 0.1759 0.3543 0.6539
� xr 0.1297 0.2266 0.2487
� yr 0.1172 0.2638 0.6032

� sum 2 0.1748 0.3478 0.6524
� tot;end 0.1738 0.3433 0.6447
� s;tot 0.1658 0.3323 0.6084

Mixed Gaussian distributions Due to larger uncertainties of the orientations
of robot and human we assume the input signals to be a mixture of two Gaussian
distributions with the following parameters:
�� R 1= 1.779 rad,(102 deg),� � R 1 = 0.02 rad
�� H 1= 3.698 rad,(212 deg),� � H 1 = 0.02 rad
�� R 2= 1.762 rad,(101 deg),� � R 2 = 0.03 rad
�� H 2= 3.716 rad,(213 deg),� � H 2 = 0.03 rad

� z1 1 = 0.1309 rad; � z2 1 = 0.1157 rad
� z1 2 = 0.2274 rad; � z2 2 = 0.1978 rad
The following computednon-fuzzy and fuzzy (superscriptF ) values andmeasured
values (superscript m) according to (61) show the correctness of the previous
analysis for the analytical case.

�z1 = 0 :487; �zF
1 = 0 :413; �zm

1 = 0 :485

�z2 = 7 :746; �zF
2 = 7 :737; �zm

2 = 7 :737
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� z1 = 0 :222; � z1
F = 0 :235; � z1

m = 0 :199

� z2 = 0 :184; � z2
F = 0 :184; � z2

m = 0 :178

Figures 15 and 16 show the regarding input and output densities where Figs.
17 and 18 depict the scatter diagrams (cuts at certain density levels). Finally it
turns out that the fuzzy approximation is su�ciently accurate.

Fig. 15. Mixed Gaussian, input,
extracted from [18] Fig. 16. Mixed Gaussian, output,

extracted from [18]

Fig. 17. Scatter diagram, mixed
input, extracted from [18]

Fig. 18. Scatter diagram, mixed
output, extracted from [18]

Robots and humans in motion The following simulations shows the im-
pact of the Kalman �lter on the prediction of a possible intersection between
robot/human trajectories. As already mentioned in section 7 we will see the re-
sults for the measured stds� x c , � yc , and mean values �xc, �yc of the intersection
coordinates, the standard deviation� sum 1 that follows from the "energy" value
(50). We use example 2 with the input stds of measurement noise
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� phi;R = 0 :03; � phi;H = 0 :05; � x;R = 0 :03 ; � y;R = 0 :03; � x;H = 0 :05;� y;H = 0 :05;
along the time sequences T1 (k=1...10), T2 (k=11...20) and T3 (k=21...30).
These results are then compared with the non-�ltered values. The results in Ta-
ble 3 show much smaller stds of the intersection coordinations for the �ltered
case and therefore the great bene�t of Kalman �ltering for positions and ori-
entation angles. We can also see a decrease of the stds in the case of smaller
distances between the intersection and the robot/human. positions. Finally �g.
19 shows the e�ciency of the Kalman �lter used for the orientation angle � H of
the human operator by means of which the standard deviation can be suppressed
by 50% of the non-�ltered case.

Table 3. example 2, stds of 3 sequences

sequences T1 T2 T3

stds Kalman no Kalman Kalman no Kalman Kalman no Kalman

� x c 0.0835 0.1755 0.0803 0.2949 0.0665 0.2106
� y c 0.2447 0.6840 0.1245 0.4184 0.1138 0.2208

� sum 1 0.2586 0.7062 0.1245 0.4184 0.1318 0.3051
�xc -1.5597 -1.4773 -1.6186 -1.6743 -1.7138 -1.6743
�yc 6.5214 6.5113 6.3769 6.6380 6.6658 6.6380

Fig. 19. Kalman �ltering, orientation human

9 Conclusions

This research work deals with the prediction of situations and scenarios between
robots and humans in shared areas for collision avoidance, task planning and
control actions in the presence of uncertainties. The problem of the computation



24 R.Palm, A.Lilienthal

of intersections of human/robot trajectories is addressed, assuming that uncer-
tainties of positions/orientations of human and robots are modeled by Gaussian
noise. To do that we proposed a transformation from the human/robot posi-
tions/orientations to intersection coordinates using a geometrical model and its
TS fuzzy approximation. From measured 'input' uncertainties, that are repre-
sented by standard deviations of the positions/orientations of human and robot,
the 'output' standard deviations of the intersection coordinates are calculated
whereas the nominal position/orientation and disturbance parameters of robot
and human are supposed to be known. This analysis and its fuzzy extension ap-
plies to the static and the dynamic case provided that estimations of positions
of robot and human can be derived. The method is both applied to the case
of 2-inputs/2-outputs and to 6-inputs/2-outputs. In the dynamic case, Kalman
�lters for the estimation of robot/human positions and orientations and thus ul-
timately for the estimation of the intersection positions are used. For the overde-
termined case, 6-inputs/2-outputs, we presented a so-called 'energetic' approach
for the estimation of the intersection. The inverse task is the following: given
the standard deviations for the intersection coordinates, �nd the correspond-
ing input standard deviations for the orientations of robot and human. This
problem is solved for the analytical and the fuzzy version of the 2-input case
(orientations only). Large standard deviations of the orientation signals leads
to the method of mixed Gaussian distributions. As a whole, the increase of the
accuracy of human-robot pose estimations at small distances increase the sys-
tem performance and human safety of human-robot collaboration which will be
used in factory workshops and for robots working in rescue operations and in
cooperation with human operators.
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